TWM517808U - Multi-stages refrigeration system using multi-cavities evaporator - Google Patents
Multi-stages refrigeration system using multi-cavities evaporator Download PDFInfo
- Publication number
- TWM517808U TWM517808U TW104210241U TW104210241U TWM517808U TW M517808 U TWM517808 U TW M517808U TW 104210241 U TW104210241 U TW 104210241U TW 104210241 U TW104210241 U TW 104210241U TW M517808 U TWM517808 U TW M517808U
- Authority
- TW
- Taiwan
- Prior art keywords
- cooling
- refrigerant
- compressor
- heat exchanger
- evaporator
- Prior art date
Links
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Description
本新型是有關於一種冷凍系統,特別是指一種應用多腔體蒸發器的多元冷凍系統。 The present invention relates to a refrigeration system, and more particularly to a multiple refrigeration system using a multi-chamber evaporator.
參閱圖1,現有一元冷凍系統包括一壓縮機11、一連接該壓縮機11的冷凝器12、一連接該冷凝器12的膨脹閥13,及一連接該膨脹閥13與該壓縮機11的蒸發器14。 Referring to Figure 1, the conventional one-unit refrigeration system includes a compressor 11, a condenser 12 connected to the compressor 11, an expansion valve 13 connected to the condenser 12, and an evaporation connecting the expansion valve 13 and the compressor 11. 14.
經該壓縮機11加壓成高溫高壓的氣態冷媒101,經冷凝器12散熱後成為常溫高壓的液態冷媒102,常溫高壓的液態冷媒102經該膨脹閥13成為低溫低壓的液態冷媒103,低溫低壓的液態冷媒103經該蒸發器14吸熱成為低溫低壓的氣態冷媒104再流往該壓縮機11。現有一元冷凍系統普遍應用於空調系統與冷藏系統,雖然可以達成冷卻效果,但是應用面為間接冷卻其冷卻溫度約在10℃至30℃之間,需要更低溫之冷凍系統時,則需改用二元冷凍系統。 The gas refrigerant 101 pressurized to the high temperature and high pressure by the compressor 11 is cooled by the condenser 12 to become a liquid refrigerant 102 at normal temperature and high pressure, and the liquid refrigerant 102 at normal temperature and high pressure is passed through the expansion valve 13 to become a low temperature and low pressure liquid refrigerant 103, low temperature and low pressure. The liquid refrigerant 103 is absorbed by the evaporator 14 to become a low-temperature low-pressure gaseous refrigerant 104 and then flows to the compressor 11. The existing one-way refrigeration system is widely used in air conditioning systems and refrigeration systems. Although the cooling effect can be achieved, the application surface is indirect cooling. The cooling temperature is between 10 ° C and 30 ° C. When a cryogenic refrigeration system is required, it needs to be used instead. Binary refrigeration system.
參閱圖2,現有一二元冷凍系統,包括一液化單元15,與一冷卻單元16。該液化單元15包括一液化壓縮機151、一連接該液化壓縮機151的液化冷凝器152、一連 接該液化冷凝器152的液化膨脹閥153,及一連接該液化膨脹閥153與該液化壓縮機151的熱交換器154。該冷卻單元16包括一連接該熱交換器154的冷卻壓縮機161、一連接該熱交換器154的冷卻膨脹閥162,及一連接該冷卻膨脹閥162與該冷卻壓縮機161的冷卻蒸發器163。 Referring to FIG. 2, a conventional binary refrigeration system includes a liquefaction unit 15 and a cooling unit 16. The liquefaction unit 15 includes a liquefaction compressor 151, a liquefaction condenser 152 connected to the liquefaction compressor 151, and a continuous connection. A liquefaction expansion valve 153 connected to the liquefaction condenser 152, and a heat exchanger 154 connecting the liquefaction expansion valve 153 and the liquefaction compressor 151. The cooling unit 16 includes a cooling compressor 161 connected to the heat exchanger 154, a cooling expansion valve 162 connected to the heat exchanger 154, and a cooling evaporator 163 connecting the cooling expansion valve 162 and the cooling compressor 161. .
該液化單元15是使用例如:R404A或R507在高壓常溫下可液化的冷媒105,而該冷卻單元16則是使用例如:R23在高壓常溫下仍無法液化的冷媒106。利用液化單元15的冷媒105配合該熱交換器154,使該冷卻單元16的冷媒106可以液化,使冷卻溫度可達-85℃左右。 The liquefaction unit 15 is a refrigerant 105 that can be liquefied at a high pressure and normal temperature using, for example, R404A or R507, and the cooling unit 16 is a refrigerant 106 that cannot be liquefied at a high pressure and normal temperature, for example, using R23. The refrigerant 105 is liquefied by the refrigerant 105 of the liquefaction unit 15, so that the refrigerant 106 of the cooling unit 16 can be liquefied so that the cooling temperature can be about -85 °C.
現有一元冷凍系統與二元冷凍系統是各自獨立的系統,因此,若有廣溫域的冷卻需求時,現有作法必須同時具備一個一元冷凍系統,與一個二元冷凍系統,不僅製作成本與後續維護成本較高,而且又佔空間,如何在一系統即能達成廣溫域的冷卻需求,又能降低成本與減少空間浪費,成為相關業者欲改善的目標。 The existing one-unit refrigeration system and the binary refrigeration system are independent systems. Therefore, if there is a wide-temperature domain cooling demand, the existing method must have both a one-unit refrigeration system and a binary refrigeration system, not only the production cost and subsequent maintenance. The cost is high, and it takes up space. How to achieve the cooling demand in the wide temperature range in one system, and reduce the cost and reduce the space waste, has become the target of the relevant industry.
因此,本新型之目的,即在提供一種具有廣溫域應用環境,且能降低成本與減少空間浪費的應用多腔體蒸發器的多元冷凍系統。 Therefore, the object of the present invention is to provide a multi-frozen refrigeration system with a multi-cavity evaporator that has a wide temperature range application environment and can reduce cost and space waste.
於是,本新型應用多腔體蒸發器的多元冷凍系統,包含一第一冷卻裝置、一第二冷卻裝置及一循環切換裝置。該第一冷卻裝置包括一第一壓縮機、一冷凝器、一第一控制器、一多腔體蒸發器,及一連接該第一壓縮機、 該冷凝器、該第一控制器與該多腔體蒸發器且流通有一第一冷媒的第一冷卻管路,該多腔體蒸發器具有一用以連接該第一冷卻管路的第一冷卻流道,及一與該第一冷卻流道相互獨立且不相互連通的第二冷卻流道。 Thus, the novel multi-refrigeration system using a multi-chamber evaporator includes a first cooling device, a second cooling device, and a cycle switching device. The first cooling device includes a first compressor, a condenser, a first controller, a multi-cavity evaporator, and a first compressor, a first cooling circuit of the condenser, the first controller and the multi-chamber evaporator and having a first refrigerant, the multi-cavity evaporator having a first cooling flow for connecting the first cooling pipe And a second cooling flow path independent of the first cooling flow path and not communicating with each other.
該第二冷卻裝置包括一第二壓縮機、一第一熱交換器,及一連接該第二壓縮機、該第一熱交換器與該多腔體蒸發器的第二冷卻流道的第二冷卻管路。 The second cooling device includes a second compressor, a first heat exchanger, and a second cooling flow passage connecting the second compressor, the first heat exchanger and the multi-cavity evaporator Cool the piping.
該循環切換裝置包括一第一切換單元,該第一切換單元具有一安裝於該第一冷卻管路且介於該冷凝器與該第一控制器間的第一切換機構、一連接該第一切換機構、該第一熱交換器與該第一壓縮機的第一循環管路,及一安裝於該第一循環管路且介於該第一切換機構與該第一熱交換器間的第一循環控制器,該第一切換機構能在一第一冷卻位置與一第二冷卻位置間切換,當該第一切換機構在該第一冷卻位置時,該第一冷媒是經該第一冷卻管路與該第一控制器流向該多腔體蒸發器的第一冷卻流道,當該第一切換機構在該第二冷卻位置時,該第一冷媒是由該第一循環管路與該第一循環控制器流向該第一壓縮機。 The cycle switching device includes a first switching unit, the first switching unit has a first switching mechanism installed between the condenser and the first controller, and a first switching mechanism a switching mechanism, a first circulation line of the first heat exchanger and the first compressor, and a first stage connected between the first switching mechanism and the first heat exchanger a cycle controller, the first switching mechanism is switchable between a first cooling position and a second cooling position, and when the first switching mechanism is in the first cooling position, the first refrigerant is subjected to the first cooling The pipeline and the first controller flow to the first cooling flow passage of the multi-chamber evaporator, and when the first switching mechanism is in the second cooling position, the first refrigerant is used by the first circulation pipeline The first cycle controller flows to the first compressor.
本新型之功效在於:利用具有相互獨立且不相互連通之第一冷卻流道與第二冷卻流道的多腔體蒸發器,配合能在第一冷卻位置與第二冷卻位置間切換的第一切換機構,使該多元冷凍系統同時兼具一元及二元冷凍系統的冷卻能力,而能降低成本與減少空間浪費。 The utility of the present invention is to utilize a multi-cavity evaporator having first cooling channels and second cooling channels that are independent of each other and not in communication with each other, and cooperate with the first switchable between the first cooling position and the second cooling position. The switching mechanism enables the multi-refrigeration system to simultaneously have the cooling capacity of the unary and binary refrigeration systems, thereby reducing costs and reducing space waste.
2‧‧‧第一冷卻裝置 2‧‧‧First cooling device
21‧‧‧第一壓縮機 21‧‧‧First compressor
22‧‧‧冷凝器 22‧‧‧Condenser
23‧‧‧第一控制器 23‧‧‧First controller
24‧‧‧多腔體蒸發器 24‧‧‧Multi-cavity evaporator
241‧‧‧第一冷卻流道 241‧‧‧First cooling runner
242‧‧‧第二冷卻流道 242‧‧‧Second cooling runner
243‧‧‧第三冷卻流道 243‧‧‧ Third cooling runner
25‧‧‧第一冷卻管路 25‧‧‧First cooling line
26‧‧‧第一輔助單元 26‧‧‧First Auxiliary Unit
261‧‧‧第一油氣分離器 261‧‧‧First oil separator
262‧‧‧第一高壓錶 262‧‧‧First high voltage meter
263‧‧‧第一儲液器 263‧‧‧First reservoir
264‧‧‧第一乾燥過濾器 264‧‧‧First Dry Filter
3‧‧‧第二冷卻裝置 3‧‧‧Second cooling device
31‧‧‧第二壓縮機 31‧‧‧Second compressor
32‧‧‧第一熱交換器 32‧‧‧First heat exchanger
33‧‧‧第二冷卻管路 33‧‧‧Second cooling line
34‧‧‧第二輔助單元 34‧‧‧Second auxiliary unit
341‧‧‧第二油氣分離器 341‧‧‧Second oil and gas separator
342‧‧‧第二高壓錶 342‧‧‧Second high pressure gauge
343‧‧‧第二儲液器 343‧‧‧Second reservoir
344‧‧‧第二乾燥過濾器 344‧‧‧Second drying filter
35‧‧‧第二控制器 35‧‧‧Second controller
4‧‧‧循環切換裝置 4‧‧‧Cycle switching device
41‧‧‧第一切換單元 41‧‧‧First switching unit
411‧‧‧第一切換機構 411‧‧‧First switching mechanism
412‧‧‧第一循環管路 412‧‧‧First circulation line
413‧‧‧第一循環控制器 413‧‧‧First Cycle Controller
42‧‧‧第二切換單元 42‧‧‧Second switching unit
421‧‧‧第二切換機構 421‧‧‧Second switching mechanism
422‧‧‧第二循環管路 422‧‧‧Second circulation line
423‧‧‧第二循環控制器 423‧‧‧Second cycle controller
5‧‧‧第三冷卻裝置 5‧‧‧ Third cooling device
51‧‧‧第三壓縮機 51‧‧‧ Third compressor
52‧‧‧第二熱交換器 52‧‧‧second heat exchanger
53‧‧‧第三冷卻管路 53‧‧‧ Third cooling line
54‧‧‧第三輔助單元 54‧‧‧ third auxiliary unit
541‧‧‧第三油氣分離器 541‧‧‧ Third Oil and Gas Separator
542‧‧‧第三高壓錶 542‧‧‧ Third high voltage meter
543‧‧‧第三儲液器 543‧‧‧ third reservoir
544‧‧‧第三乾燥過濾器 544‧‧‧The third drying filter
200‧‧‧第一冷媒 200‧‧‧First refrigerant
201‧‧‧第二冷媒 201‧‧‧Second refrigerant
202‧‧‧第三冷媒 202‧‧‧ Third refrigerant
本新型之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一示意圖,說明現有一個一元冷凍系統的態樣;圖2是一示意圖,說明現有一個二元冷凍系統的態樣;圖3是一系統圖,說明本新型應用多腔體蒸發器的多元冷凍系統的第一實施例,其中,該第一切換機構在一第一冷卻位置;圖4是一系統圖,說明該第一實施例的第一切換機構在一第二冷卻位置;圖5是一系統圖,說明本新型應用多腔體蒸發器的多元冷凍系統的第二實施例,其中,該第二切換機構在一第三冷卻位置;及圖6是一系統圖,說明本新型的第二實施例,其中,該第二切換機構在一第四冷卻位置。 Other features and effects of the present invention will be apparent from the following description of the drawings, wherein: FIG. 1 is a schematic view showing a state of a conventional one-unit refrigeration system; FIG. 2 is a schematic view showing a conventional one Figure 3 is a system diagram illustrating a first embodiment of the novel multi-vessel refrigeration system employing a multi-chamber evaporator, wherein the first switching mechanism is in a first cooling position; a system diagram illustrating the first switching mechanism of the first embodiment in a second cooling position; and FIG. 5 is a system diagram illustrating a second embodiment of the novel multi-frozen system employing a multi-chamber evaporator, wherein The second switching mechanism is in a third cooling position; and FIG. 6 is a system diagram illustrating a second embodiment of the present invention, wherein the second switching mechanism is in a fourth cooling position.
在本新型被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same reference numerals.
參閱圖3,本新型應用多腔體蒸發器的多元冷凍系統的第一實施例包含一第一冷卻裝置2、一第二冷卻裝置3,及一連接該第一冷卻裝置2與該第二冷卻裝置3的循環切換裝置4。 Referring to FIG. 3, a first embodiment of the novel multi-refrigeration system using a multi-chamber evaporator includes a first cooling device 2, a second cooling device 3, and a first cooling device 2 and the second cooling device. The cycle switching device 4 of the device 3.
該第一冷卻裝置2包括一第一壓縮機21、一冷凝器22、一第一控制器23、一多腔體蒸發器24、一連接該第一壓縮機21、該冷凝器22、該第一控制器23與該多腔 體蒸發器24且流通有一在高壓常溫下可液化的第一冷媒200的第一冷卻管路25,及一安裝於該第一冷卻管路25的第一輔助單元26。 The first cooling device 2 includes a first compressor 21, a condenser 22, a first controller 23, a multi-chamber evaporator 24, a first compressor 21, a condenser 22, and a first cooling unit a controller 23 and the multi-cavity The body evaporator 24 is circulated with a first cooling line 25 of a first refrigerant 200 liquefiable at a high pressure normal temperature, and a first auxiliary unit 26 mounted to the first cooling line 25.
於本實施例中,該第一冷媒200是R507冷媒,而該第一控制器23是用以使該第一冷媒200降壓降溫的毛細管,在實際應用上,該第一控制器23也可以是膨脹閥,依然可以達成相同的效果。 In the embodiment, the first refrigerant 200 is R507 refrigerant, and the first controller 23 is a capillary for reducing and cooling the first refrigerant 200. In practical applications, the first controller 23 can also be used. It is an expansion valve that still achieves the same effect.
該多腔體蒸發器24具有一用以連接該第一冷卻管路25的第一冷卻流道241,及一與該第一冷卻流道241相互獨立且不相互連通的第二冷卻流道242。 The multi-cavity evaporator 24 has a first cooling flow path 241 for connecting the first cooling circuit 25, and a second cooling flow path 242 which is independent of the first cooling flow path 241 and does not communicate with each other. .
該第一輔助單元26具有一安裝於該第一冷卻管路25且連接該第一壓縮機21的第一油氣分離器261、一安裝於該第一冷卻管路25且連接該第一油氣分離器261與該冷凝器22的第一高壓錶262、一安裝於該第一冷卻管路25且連接該冷凝器22的第一儲液器263,及一安裝於該第一冷卻管路25且連接該第一儲液器263的第一乾燥過濾器264。該第一油氣分離器261可分離第一壓縮機21的潤滑油與第一冷媒200,該第一儲液器263可以分離氣態的第一冷媒200與液態的第一冷媒200並儲存液態的第一冷媒200,而該第一乾燥過濾器264則能乾燥第一冷媒200中的水氣或濕氣並過濾可能的雜質。 The first auxiliary unit 26 has a first oil separator 261 mounted on the first cooling line 25 and connected to the first compressor 21, and is mounted on the first cooling line 25 and connected to the first oil and gas separation. And a first high pressure gauge 262 of the condenser 22, a first accumulator 263 mounted to the first cooling duct 25 and connected to the condenser 22, and a first cooling duct 25 A first drying filter 264 of the first reservoir 263 is connected. The first oil separator 261 can separate the lubricating oil of the first compressor 21 from the first refrigerant 200, and the first accumulator 263 can separate the first refrigerant 200 in the gaseous state from the first refrigerant 200 in the liquid state and store the liquid state. A refrigerant 200, and the first drying filter 264 can dry the moisture or moisture in the first refrigerant 200 and filter possible impurities.
該第二冷卻裝置3包括一第二壓縮機31、一第一熱交換器32、一連接該第二壓縮機31、該第一熱交換器32與該多腔體蒸發器24的第二冷卻流道242的第二冷卻管 路33,及一安裝於該第二冷卻管路33的第二輔助單元34。該第二冷卻管路33內流通有一在高壓常溫下仍無法液化的第二冷媒201。於本實施例中,該第二冷媒201是R23冷媒。 The second cooling device 3 includes a second compressor 31, a first heat exchanger 32, a second cooling connected to the second compressor 31, the first heat exchanger 32 and the multi-chamber evaporator 24. Second cooling tube of flow channel 242 The road 33 and a second auxiliary unit 34 mounted to the second cooling duct 33. A second refrigerant 201 that cannot be liquefied at a high pressure and normal temperature flows through the second cooling line 33. In this embodiment, the second refrigerant 201 is an R23 refrigerant.
該第二輔助單元34包括一安裝於該第二冷卻管路33且連通該第二壓縮機31的第二油氣分離器341、一安裝於該第二冷卻管路33且連接該第二油氣分離器341與該第一熱交換器32的第二高壓錶342、一安裝於該第二冷卻管路33且連接該第一熱交換器32的第二儲液器343,及一安裝於該第二冷卻管路33且連接該第二儲液器343與該多腔體蒸發器24的第二冷卻流道242的第二乾燥過濾器344。該第二油氣分離器341、第二儲液器343與該第二乾燥過濾器344的功效分別與該第一油氣分離器261、第一儲液器263與該第一乾燥過濾器264相似,在此不多加贅述。 The second auxiliary unit 34 includes a second oil separator 341 installed in the second cooling line 33 and communicating with the second compressor 31, and is mounted on the second cooling line 33 and connected to the second oil and gas separation. And a second high pressure gauge 342 of the first heat exchanger 32, a second accumulator 343 connected to the second cooling duct 33 and connected to the first heat exchanger 32, and a second reservoir 343 The second cooling line 33 is connected to the second reservoir 343 and the second drying filter 344 of the second cooling channel 242 of the multi-chamber evaporator 24. The functions of the second oil separator 341, the second reservoir 343 and the second drying filter 344 are similar to the first oil separator 261, the first reservoir 263 and the first drying filter 264, respectively. I will not repeat them here.
該循環切換裝置4包括一連接該冷凝器22的第一切換單元41,該第一切換單元41具有一安裝於該第一冷卻管路25且介於該第一乾燥過濾器264與該第一控制器23間的第一切換機構411、一連接該第一切換機構411、該第一熱交換器32與該第一壓縮機21的第一循環管路412,及一安裝於該第一循環管路412且介於該第一切換機構411與該第一熱交換器32間的第一循環控制器413。 The cycle switching device 4 includes a first switching unit 41 connected to the condenser 22. The first switching unit 41 has a first cooling circuit 25 installed between the first drying filter 264 and the first a first switching mechanism 411 between the controllers 23, a first switching mechanism 411 connected to the first switching mechanism 411, the first heat exchanger 32 and the first circulation line 412 of the first compressor 21, and a first cycle A conduit 412 and a first circulation controller 413 between the first switching mechanism 411 and the first heat exchanger 32.
於本實施例中,該第一切換機構411是一三孔兩位的三通電磁閥,該第一循環控制器413是用以使該第一冷媒200降壓降溫的毛細管,在實際應用上,該第一循環控制器413也可以是膨脹閥,依然可以達成相同的效果。 In the embodiment, the first switching mechanism 411 is a three-hole three-way solenoid valve, and the first circulation controller 413 is a capillary tube for stepping down and cooling the first refrigerant 200. In practical applications, The first circulation controller 413 can also be an expansion valve, and the same effect can still be achieved.
參閱圖3、4,該第一切換機構411能在一如圖3所示的第一冷卻位置,與一如圖4所示的第二冷卻位置間切換。 Referring to Figures 3 and 4, the first switching mechanism 411 can be switched between a first cooling position as shown in Figure 3 and a second cooling position as shown in Figure 4.
參閱圖3,當該第一切換機構411在該第一冷卻位置時,是關閉該第二壓縮機31,使該第二冷卻管路33中的第二冷媒201不流動。 Referring to FIG. 3, when the first switching mechanism 411 is in the first cooling position, the second compressor 31 is closed, so that the second refrigerant 201 in the second cooling line 33 does not flow.
而該第一冷卻管路25內的第一冷媒200經該第一壓縮機21加壓成為高溫高壓的氣態第一冷媒200,氣態第一冷媒200經該冷凝器22散熱後成為常溫高壓的液態第一冷媒200,常溫高壓的液態第一冷媒200經該第一控制器23成為低溫低壓的液態第一冷媒200,低溫低壓的液態第一冷媒200經該多腔體蒸發器24的第一冷卻流道241吸熱後,使該多腔體蒸發器24能提供-50℃左右的冷卻溫度,並成為低溫低壓的氣態第一冷媒200,再流往該第一壓縮機21以完成冷卻循環。 The first refrigerant 200 in the first cooling pipe 25 is pressurized by the first compressor 21 into a high-temperature high-pressure gaseous first refrigerant 200, and the gaseous first refrigerant 200 is cooled by the condenser 22 to become a normal-temperature high-pressure liquid. The first refrigerant 200, the normal temperature and high pressure liquid first refrigerant 200 passes through the first controller 23 to become a low temperature and low pressure liquid first refrigerant 200, and the low temperature and low pressure liquid first refrigerant 200 is first cooled by the multi-chamber evaporator 24. After the flow path 241 absorbs heat, the multi-chamber evaporator 24 can provide a cooling temperature of about -50 ° C, and becomes a low-temperature low-pressure gaseous first refrigerant 200, and then flows to the first compressor 21 to complete the cooling cycle.
參閱圖4,當該第一切換機構411在該第二冷卻位置時,經該冷凝器22散熱後成為常溫高壓的液態第一冷媒200,是如圖4所示,流向該第一循環管路412的第一循環控制器413,而位於該多腔體蒸發器24的第一冷卻流道241內的第一冷媒200暫時呈停滯狀態。常溫高壓的液態第一冷媒200經該第一循環控制器413成為低溫低壓的液態第一冷媒200,低溫低壓的液態第一冷媒200經該第一熱交換器32吸收熱後,成為低溫低壓的氣態第一冷媒200再流往該第一壓縮機21並持續循環。 Referring to FIG. 4, when the first switching mechanism 411 is in the second cooling position, the liquid is cooled by the condenser 22 to become a normal temperature and high pressure liquid first refrigerant 200, which flows to the first circulation pipeline as shown in FIG. The first circulation controller 413 of the 412, and the first refrigerant 200 located in the first cooling flow passage 241 of the multi-chamber evaporator 24 is temporarily in a stagnant state. The normal temperature and high pressure liquid first refrigerant 200 becomes a low temperature and low pressure liquid first refrigerant 200 through the first circulation controller 413, and the low temperature and low pressure liquid first refrigerant 200 absorbs heat through the first heat exchanger 32, and becomes a low temperature and low pressure. The gaseous first refrigerant 200 then flows to the first compressor 21 and continues to circulate.
當該第一循環管路412內的第一冷媒200的溫度足以使第二冷卻管路33內的第二冷媒201液化時,則啟動該第二壓縮機31,加壓該第二冷卻管路33內的第二冷媒201成為流向該第一熱交換器32的高溫高壓的氣態第二冷媒201,低溫低壓的液態第一冷媒200與高溫高壓的氣態第二冷媒201於該第一熱交換器32中熱交換,使高溫高壓的氣態第二冷媒201成為低溫高壓的液態第二冷媒201,低溫高壓的液態第二冷媒201流經該多腔體蒸發器24的第二冷卻流道242吸熱後,成為低溫低壓的氣態第二冷媒201再流往該第二壓縮機31,使該多腔體蒸發器24能提供低於-50℃的低溫,甚至是-70℃以下的超低溫的冷卻溫度。 When the temperature of the first refrigerant 200 in the first circulation line 412 is sufficient to liquefy the second refrigerant 201 in the second cooling line 33, the second compressor 31 is activated to pressurize the second cooling line. The second refrigerant 201 in the 33 is a high-temperature high-pressure gaseous second refrigerant 201 flowing to the first heat exchanger 32, and a low-temperature low-pressure liquid first refrigerant 200 and a high-temperature high-pressure gaseous second refrigerant 201 in the first heat exchanger. The heat exchange in 32 causes the high temperature and high pressure gaseous second refrigerant 201 to become a low temperature and high pressure liquid second refrigerant 201, and the low temperature and high pressure liquid second refrigerant 201 flows through the second cooling flow path 242 of the multi-chamber evaporator 24 to absorb heat. The gaseous second refrigerant 201, which becomes a low temperature and a low pressure, flows to the second compressor 31, so that the multi-chamber evaporator 24 can provide a low temperature of less than -50 ° C, or even an ultra-low temperature of -70 ° C or less.
利用具有相互獨立且不相互連通之第一冷卻流道241與第二冷卻流道242的多腔體蒸發器24,配合能在第一冷卻位置與第二冷卻位置間切換的第一切換機構411,使該多元冷凍系統同時兼具一元及二元冷凍系統的冷卻能力,而能降低成本與減少空間浪費。 The first switching mechanism 411 capable of switching between the first cooling position and the second cooling position is engaged by the multi-cavity evaporator 24 having the first cooling flow path 241 and the second cooling flow path 242 that are independent of each other and not in communication with each other. The multi-refrigeration system can simultaneously reduce the cooling capacity of the unary and binary refrigeration systems, thereby reducing costs and reducing space waste.
參閱圖5,本新型應用多腔體蒸發器的多元冷凍系統的第二實施例大致是與該第一實施例相似,不同的地方在於:該多元冷凍系統還包含一第三冷卻裝置5,而該循環切換裝置4還包括一第二切換單元42,且該多腔體蒸發器24還具有一與該第一冷卻流道241及該第二冷卻流道242相互獨立且不相互連通的第三冷卻流道243,該第二冷卻裝置3還包括一安裝於該第二冷卻管路33且介於該第一熱交換器32與該多腔體蒸發器24之間的第二控制器35。 於本實施例中,該第二控制器35是毛細管。 Referring to FIG. 5, the second embodiment of the novel multi-refrigeration system using the multi-chamber evaporator is substantially similar to the first embodiment, except that the multi-refrigeration system further includes a third cooling device 5, and The cyclic switching device 4 further includes a second switching unit 42 and the multi-cavity evaporator 24 further has a third independent of the first cooling flow passage 241 and the second cooling flow passage 242 and not in communication with each other. Cooling runner 243, the second cooling device 3 further includes a second controller 35 mounted to the second cooling conduit 33 and interposed between the first heat exchanger 32 and the multi-chamber evaporator 24. In this embodiment, the second controller 35 is a capillary.
該第三冷卻裝置5包括一第三壓縮機51、一第二熱交換器52、一連接該第三壓縮機51、該第二熱交換器52與該多腔體蒸發器24的第三冷卻流道243的第三冷卻管路53,及一第三輔助單元54。該第三冷卻管路53內流通有一第三冷媒202。於本實施例中,該第三冷媒202是業者針對需求自行混合調整的冷媒。 The third cooling device 5 includes a third compressor 51, a second heat exchanger 52, a third cooling connected to the third compressor 51, the second heat exchanger 52, and the multi-chamber evaporator 24. The third cooling line 53 of the flow path 243 and a third auxiliary unit 54. A third refrigerant 202 flows through the third cooling line 53. In the embodiment, the third refrigerant 202 is a refrigerant that is self-mixed and adjusted by the manufacturer.
該第三輔助單元54包括一安裝於該第三冷卻管路53且連通該第三壓縮機51的第三油氣分離器541、一安裝於該第三冷卻管路53且連接該第三油氣分離器541與該第二熱交換器52的第三高壓錶542、一安裝於該第三冷卻管路53且連接該第二熱交換器52的第三儲液器543,及一安裝於該第三冷卻管路53且連接該第三儲液器543與該多腔體蒸發器24的第三冷卻流道243的第三乾燥過濾器544。該第三油氣分離器541、第三儲液器543與該第三乾燥過濾器544的功效分別與該第一油氣分離器261、第一儲液器263與該第一乾燥過濾器264相似,在此不多加贅述。 The third auxiliary unit 54 includes a third oil separator 541 installed in the third cooling line 53 and communicating with the third compressor 51, and is mounted on the third cooling line 53 and connected to the third oil and gas separation. And a third high pressure gauge 542 of the second heat exchanger 52, a third accumulator 543 attached to the third cooling duct 53 and connected to the second heat exchanger 52, and a The third cooling line 53 is connected to the third reservoir 543 and the third drying filter 544 of the third cooling passage 243 of the multi-chamber evaporator 24. The functions of the third oil separator 541, the third reservoir 543 and the third drying filter 544 are similar to the first oil separator 261, the first reservoir 263 and the first drying filter 264, respectively. I will not repeat them here.
該第二切換單元42具有一安裝於該第二冷卻管路33且介於該第二乾燥過濾器344與該第二控制器35間的第二切換機構421、一連接該第二切換機構421、該第二熱交換器52與該第二壓縮機31的第二循環管路422,及一安裝於該第二循環管路422且介於該第二切換機構421與該第二熱交換器52間的第二循環控制器423。於本實施例中,該第二切換機構421該是一三孔二位的三通電磁閥,而該 第二循環控制器423是毛細管。 The second switching unit 42 has a second switching mechanism 421 installed between the second drying filter 344 and the second controller 35, and a second switching mechanism 421 connected to the second switching mechanism 421. The second heat exchanger 52 and the second circulation line 422 of the second compressor 31, and one of the second circulation line 422 and the second switching mechanism 421 and the second heat exchanger 52 second cycle controllers 423. In this embodiment, the second switching mechanism 421 is a three-hole two-position three-way solenoid valve, and the The second circulation controller 423 is a capillary.
參閱圖5、6,該第二切換機構421能在一如圖5所示的第三冷卻位置,與一如圖6所示的第四冷卻位置間切換。 Referring to Figures 5 and 6, the second switching mechanism 421 can be switched between a third cooling position as shown in Figure 5 and a fourth cooling position as shown in Figure 6.
參閱圖5,當該第一切換機構411在該第二冷卻位置,且該第二切換機構421在該第三冷卻位置時,關閉該第三壓縮機51,使該第三冷卻管路53中的第三冷媒202不流動。而經該第一熱交換器32散熱後成為常溫高壓的液態第二冷媒201,是流經該第二控制器35成為低溫低壓的液態第二冷媒201,低溫低壓的液態第二冷媒201經該多腔體蒸發器24的第二冷卻流道242吸熱後,使該多腔體蒸發器24能提供低於-50℃的低溫的冷卻溫度,甚至是-70℃以下的超低溫的冷卻溫度,而成為低溫低壓的氣態第二冷媒201,再流往該第二壓縮機31。 Referring to FIG. 5, when the first switching mechanism 411 is in the second cooling position, and the second switching mechanism 421 is in the third cooling position, the third compressor 51 is turned off to make the third cooling line 53 The third refrigerant 202 does not flow. The liquid second refrigerant 201 which is cooled by the first heat exchanger 32 and becomes a normal temperature and high pressure is a liquid second refrigerant 201 which flows through the second controller 35 to become a low temperature and a low pressure, and the low temperature and low pressure liquid second refrigerant 201 passes through the liquid refrigerant. After the second cooling runner 242 of the multi-chamber evaporator 24 absorbs heat, the multi-chamber evaporator 24 can provide a low temperature cooling temperature of less than -50 ° C, even an ultra-low temperature cooling temperature of -70 ° C or less, and The gaseous second refrigerant 201 which becomes a low temperature and a low pressure flows to the second compressor 31.
參閱圖6,當該第一切換機構411在該第二冷卻位置時,且該第二切換機構421在該第四冷卻位置時,而經該第一熱交換器32散熱後成為常溫高壓的液態第二冷媒201,是流向該第二循環管路422,而位於該多腔體蒸發器24的第一冷卻流道241內的第一冷媒200與第二冷卻流道242內的第二冷媒201暫時呈停滯狀態。常溫高壓的液態第二冷媒201經該第二循環控制器423成為低溫低壓的液態第二冷媒201,低溫低壓的液態第二冷媒201經該第二熱交換器52吸收熱後,成為低溫低壓的氣態第二冷媒201再流往該第二壓縮機31並持續循環。 Referring to FIG. 6, when the first switching mechanism 411 is in the second cooling position, and the second switching mechanism 421 is in the fourth cooling position, the first heat exchanger 32 dissipates heat and becomes a liquid at room temperature and high pressure. The second refrigerant 201 flows to the second circulation line 422, and the first refrigerant 200 located in the first cooling flow passage 241 of the multi-chamber evaporator 24 and the second refrigerant 201 in the second cooling flow passage 242 Temporarily stagnant. The liquid-phase second refrigerant 201 at normal temperature and high pressure passes through the second circulation controller 423 to become a low-temperature low-pressure liquid second refrigerant 201, and the low-temperature low-pressure liquid second refrigerant 201 absorbs heat through the second heat exchanger 52, and becomes a low-temperature low-pressure. The gaseous second refrigerant 201 then flows to the second compressor 31 and continues to circulate.
當該第二循環管路422內的第二冷媒201的溫度足以使第三冷卻管路53內的第三冷媒202液化時,啟動該第三壓縮機51,加壓該第三冷卻管路53內的第三冷媒202成為流向該第二熱交換器52的高溫高壓的氣態第三冷媒202,低溫低壓的液態第二冷媒201與高溫高壓的氣態第三冷媒202於該第二熱交換器52中熱交換,使高溫高壓的氣態第三冷媒202成為低溫高壓的液態第三冷媒202,低溫高壓的液態第三冷媒202流經該多腔體蒸發器24的第三冷卻流道243吸熱後,成為低溫低壓的氣態第三冷媒202再流往該第三壓縮機51,使該多腔體蒸發器24能提供比第二冷媒201更低的冷卻溫度(約-100℃左右)。 When the temperature of the second refrigerant 201 in the second circulation line 422 is sufficient to liquefy the third refrigerant 202 in the third cooling line 53, the third compressor 51 is activated to pressurize the third cooling line 53. The third refrigerant 202 in the interior is a high-temperature high-pressure gaseous third refrigerant 202 flowing to the second heat exchanger 52, and a low-temperature low-pressure liquid second refrigerant 201 and a high-temperature high-pressure gaseous third refrigerant 202 in the second heat exchanger 52. The medium heat exchange causes the high temperature and high pressure gaseous third refrigerant 202 to become a low temperature and high pressure liquid third refrigerant 202, and the low temperature and high pressure liquid third refrigerant 202 flows through the third cooling flow passage 243 of the multi-chamber evaporator 24 to absorb heat. The gaseous third refrigerant 202, which becomes a low temperature and a low pressure, flows to the third compressor 51, so that the multi-chamber evaporator 24 can provide a lower cooling temperature (about -100 ° C) than the second refrigerant 201.
當該第一切換機構411在如圖3所示的該第一冷卻位置,且該第二壓縮機31與該第三壓縮機51未啟動時,該第一冷卻裝置2能進行如圖3所示的冷卻循環,在此不予贅述。 When the first switching mechanism 411 is in the first cooling position as shown in FIG. 3, and the second compressor 31 and the third compressor 51 are not activated, the first cooling device 2 can perform the operation as shown in FIG. The illustrated cooling cycle will not be described here.
綜上所述,本新型應用多腔體蒸發器的多元冷凍系統利用具有相互獨立且不相互連通之第一冷卻流道241與第二冷卻流道242的多腔體蒸發器24,配合能在第一冷卻位置與第二冷卻位置間切換的第一切換機構411,使該多元冷凍系統同時兼具一元及二元冷凍系統的冷卻能力,而能降低成本與減少空間浪費,故確實能達成本新型之目的。 In summary, the novel multi-vessel refrigeration system using a multi-cavity evaporator utilizes a multi-cavity evaporator 24 having first cooling channels 241 and second cooling channels 242 that are independent of each other and not in communication with each other. The first switching mechanism 411 that switches between the first cooling position and the second cooling position enables the multi-refrigeration system to simultaneously have the cooling capacity of the unary and binary refrigeration systems, thereby reducing costs and reducing space waste, so that the present invention can be achieved. The purpose of the new type.
惟以上所述者,僅為本新型之較佳實施例而已,當不能以此限定本新型實施之範圍,凡是依本新型申 請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本新型專利涵蓋之範圍內。 However, the above is only the preferred embodiment of the present invention, and when it is not possible to limit the scope of the implementation of the present invention, The simple equivalent changes and modifications made by the scope of patents and the contents of the patent specifications are still within the scope of this new patent.
2‧‧‧第一冷卻裝置 2‧‧‧First cooling device
21‧‧‧第一壓縮機 21‧‧‧First compressor
22‧‧‧冷凝器 22‧‧‧Condenser
23‧‧‧第一控制器 23‧‧‧First controller
24‧‧‧多腔體蒸發器 24‧‧‧Multi-cavity evaporator
241‧‧‧第一冷卻流道 241‧‧‧First cooling runner
242‧‧‧第二冷卻流道 242‧‧‧Second cooling runner
25‧‧‧第一冷卻管路 25‧‧‧First cooling line
26‧‧‧第一輔助單元 26‧‧‧First Auxiliary Unit
261‧‧‧第一油氣分離器 261‧‧‧First oil separator
262‧‧‧第一高壓錶 262‧‧‧First high voltage meter
263‧‧‧第一儲液器 263‧‧‧First reservoir
264‧‧‧第一乾燥過濾器 264‧‧‧First Dry Filter
3‧‧‧第二冷卻裝置 3‧‧‧Second cooling device
31‧‧‧第二壓縮機 31‧‧‧Second compressor
32‧‧‧第一熱交換器 32‧‧‧First heat exchanger
33‧‧‧第二冷卻管路 33‧‧‧Second cooling line
34‧‧‧第二輔助單元 34‧‧‧Second auxiliary unit
341‧‧‧第二油氣分離器 341‧‧‧Second oil and gas separator
342‧‧‧第二高壓錶 342‧‧‧Second high pressure gauge
343‧‧‧第二儲液器 343‧‧‧Second reservoir
344‧‧‧第二乾燥過濾器 344‧‧‧Second drying filter
4‧‧‧循環切換裝置 4‧‧‧Cycle switching device
41‧‧‧第一切換單元 41‧‧‧First switching unit
411‧‧‧第一切換機構 411‧‧‧First switching mechanism
412‧‧‧第一循環管路 412‧‧‧First circulation line
200‧‧‧第一冷媒 200‧‧‧First refrigerant
201‧‧‧第二冷媒 201‧‧‧Second refrigerant
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104210241U TWM517808U (en) | 2015-06-25 | 2015-06-25 | Multi-stages refrigeration system using multi-cavities evaporator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104210241U TWM517808U (en) | 2015-06-25 | 2015-06-25 | Multi-stages refrigeration system using multi-cavities evaporator |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM517808U true TWM517808U (en) | 2016-02-21 |
Family
ID=55811906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104210241U TWM517808U (en) | 2015-06-25 | 2015-06-25 | Multi-stages refrigeration system using multi-cavities evaporator |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM517808U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI565921B (en) * | 2015-06-25 | 2017-01-11 | Multi-chamber refrigeration system with multi - cavity evaporator |
-
2015
- 2015-06-25 TW TW104210241U patent/TWM517808U/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI565921B (en) * | 2015-06-25 | 2017-01-11 | Multi-chamber refrigeration system with multi - cavity evaporator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10605498B2 (en) | Heat pump apparatus | |
US9845973B2 (en) | Cascade refrigeration system | |
CN103175344B (en) | Cold-region used multi-connected heat pump system and control method thereof | |
CN105004100B (en) | Vapor compression refrigeration/heat pump system of single refrigerant circuit, more pressures of inspiration(Pi) | |
CN105004090A (en) | Multi-split air-conditioning system and supercooling and enhanced vapor injection method thereof | |
KR101327818B1 (en) | A hybrid type cascade refrigeration system | |
JP4553761B2 (en) | Air conditioner | |
JP5842310B2 (en) | Refrigeration apparatus and defrost method for load cooler | |
US11747052B2 (en) | Refrigeration system | |
US9581359B2 (en) | Regenerative air-conditioning apparatus | |
US20100300124A1 (en) | Refrigerating machine comprising different sorption materials | |
KR20120022203A (en) | Defrosting system using air cooling refrigerant evaporator and condenser | |
KR102136883B1 (en) | A heat pump system | |
TWI565921B (en) | Multi-chamber refrigeration system with multi - cavity evaporator | |
JP2008267729A (en) | Air-conditioning device | |
TWM517808U (en) | Multi-stages refrigeration system using multi-cavities evaporator | |
JP7100244B2 (en) | Four-way switching valve and refrigerating device | |
CN206514562U (en) | A kind of refrigeration system of constant temperature humidity chamber | |
JP7097762B2 (en) | Heat pump, heat pump control method | |
KR101146216B1 (en) | Sectional cooling type refrigerator | |
KR20150076685A (en) | Refrigerator | |
CN106705478B (en) | Hot gas bypass enhanced vapor injection air conditioning system | |
KR102201311B1 (en) | Combined cooling and heating system for defrost-free heat pump and hot gas defrosting and control method thereof | |
CN204963279U (en) | Use many first refrigeration system of multi -chamber evaporimeter | |
JP2004232905A (en) | Refrigerator |