TWM508122U - Photodiode structure - Google Patents
Photodiode structure Download PDFInfo
- Publication number
- TWM508122U TWM508122U TW104208272U TW104208272U TWM508122U TW M508122 U TWM508122 U TW M508122U TW 104208272 U TW104208272 U TW 104208272U TW 104208272 U TW104208272 U TW 104208272U TW M508122 U TWM508122 U TW M508122U
- Authority
- TW
- Taiwan
- Prior art keywords
- semiconductor layer
- protrusion
- photodiode structure
- top surface
- plane
- Prior art date
Links
Landscapes
- Light Receiving Elements (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
本創作是有關於一種光二極體結構。This creation is about a light diode structure.
光二極體(Photodiode)是一種能夠將光根據使用方式,轉換成電流或者電壓訊號的光探測器。常見的傳統太陽能電池就是通過大面積的光二極體來產生電能。光二極體與常規的半導體二極體基本相似,只是光二極體可以直接暴露在光源附近或通過透明小窗、光導纖維封裝,來允許光到達這種器件的光敏感區域來檢測光訊號。許多用來設計光二極體的使用PIN結構(即n型半導體層、本質半導體層以及p型半導體層的堆疊結構),而不是一般的PN接面,來增加器件對訊號的響應速度。光二極體常常被設計為工作在逆向偏壓狀態。Photodiode is a photodetector that converts light into a current or voltage signal depending on the mode of use. A common traditional solar cell generates electricity through a large area of photodiode. The photodiode is substantially similar to a conventional semiconductor diode, except that the photodiode can be exposed directly to the source or through a small transparent window or optical fiber package to allow light to reach the light sensitive area of the device to detect the optical signal. Many of the PIN structures used to design photodiodes (ie, stack structures of n-type semiconductor layers, intrinsic semiconductor layers, and p-type semiconductor layers), rather than the general PN junction, increase the response speed of the device to the signal. Light diodes are often designed to operate in a reverse biased state.
當光二極體在工作狀態時,若有一個具有充足能量的光子衝擊到光二極體上,它將激發一個電子,從而產生自由電子(同時有一個帶正電的電洞)。這樣的機制也被稱作是內光電效應。如果光子的吸收發生在PIN結構的空乏層,則該區域的內電場將會消除其間的屏障,使得電洞能夠向著陽極的方向運動,電子向著陰極的方向運動,於是 光電流就產生了。由於實際量測到的光電流是漏電流(即光二極體在工作狀態且未受光照時所產生的電流)和光照產生電流的總合,因此漏電流必須被最小化來提高器件對光的靈敏度。When the photodiode is in operation, if a photon with sufficient energy hits the photodiode, it will excite an electron, which will generate free electrons (and a positively charged hole). Such a mechanism is also referred to as an internal photoelectric effect. If the absorption of photons occurs in the depletion layer of the PIN structure, the internal electric field in the region will eliminate the barrier between them, so that the hole can move toward the anode and the electrons move toward the cathode, so Photocurrent is generated. Since the actual measured photocurrent is the sum of the leakage current (the current generated when the photodiode is in operation and not illuminated) and the illumination generated current, the leakage current must be minimized to improve the device's light. Sensitivity.
本創作提供一種光二極體結構,用以降低光二極體結構在操作時會產生的漏電流。The present invention provides a photodiode structure for reducing leakage current generated during operation of the photodiode structure.
根據本創作一實施方式,一種光二極體結構,包含第一半導體層、第二半導體層以及第三半導體層。第二半導體層設置於第一半導體層上,其中第二半導體層具有側壁,側壁具有上部、下部以及連接上部與下部之中央部,中央部之側壁輪廓實質上形成一平面。第三半導體層設置於第二半導體層上,其中中央部向上延伸之延伸平面會將第三半導體層區分為第一本體與第一突出部,第一突出部自延伸平面向相對於第一本體的外側延伸。According to an embodiment of the present invention, a photodiode structure includes a first semiconductor layer, a second semiconductor layer, and a third semiconductor layer. The second semiconductor layer is disposed on the first semiconductor layer, wherein the second semiconductor layer has a sidewall having an upper portion, a lower portion, and a central portion connecting the upper portion and the lower portion, and the sidewall portion of the central portion substantially forms a plane. The third semiconductor layer is disposed on the second semiconductor layer, wherein the extending plane of the central portion extending upwardly divides the third semiconductor layer into the first body and the first protrusion, and the first protrusion extends from the extending plane to the first body The outer side extends.
於本創作之一或多個實施方式中,第一半導體層為n型半導體層。In one or more embodiments of the present invention, the first semiconductor layer is an n-type semiconductor layer.
於本創作之一或多個實施方式中,第二半導體層為本質半導體層。In one or more embodiments of the present invention, the second semiconductor layer is an intrinsic semiconductor layer.
於本創作之一或多個實施方式中,第三半導體層為p型半導體層。In one or more embodiments of the present invention, the third semiconductor layer is a p-type semiconductor layer.
於本創作之一或多個實施方式中,第一半導體層之厚度為約200~500埃(Å)。In one or more embodiments of the present invention, the thickness of the first semiconductor layer is about 200 to 500 angstroms (Å).
於本創作之一或多個實施方式中,第二半導體層之厚度為約10000~15000埃(Å)。In one or more embodiments of the present invention, the thickness of the second semiconductor layer is about 10,000 to 15,000 angstroms (Å).
於本創作之一或多個實施方式中,第三半導體層之厚度為約200~800埃(Å)。In one or more embodiments of the present invention, the third semiconductor layer has a thickness of about 200 to 800 angstroms (Å).
於本創作之一或多個實施方式中,第一本體具有第一頂面,第一突出部具有第二頂面,第一頂面與第二頂面鄰接。In one or more embodiments of the present invention, the first body has a first top surface, and the first protrusion has a second top surface, the first top surface being adjacent to the second top surface.
於本創作之一或多個實施方式中,第二頂面自延伸平面向相對於第一頂面的外側延伸約100~500埃(Å)。In one or more embodiments of the present invention, the second top surface extends from the plane of extension to an outer side relative to the first top surface by about 100 to 500 angstroms (Å).
於本創作之一或多個實施方式中,第一突出部自延伸平面向相對於第一本體的外側延伸的距離,實質上隨其高度增加而遞增。In one or more embodiments of the present invention, the distance the first protrusion extends from the plane of extension to the outside of the first body increases substantially as its height increases.
於本創作之一或多個實施方式中,中央部向上延伸之延伸平面會將第二半導體層區分為第二本體與第二突出部,第二突出部自延伸平面向相對於第二本體的外側延伸,且第一突出部沿著延伸平面連接第二突出部。In one or more embodiments of the present invention, the extending plane extending upward from the central portion divides the second semiconductor layer into a second body and a second protrusion, and the second protrusion extends from the extending plane to the second body. The outer side extends, and the first protrusion connects the second protrusion along the extending plane.
於本創作之一或多個實施方式中,第二突出部自延伸平面向相對於第二本體的外側延伸的距離,較第一突出部自延伸平面向相對於第一本體的外側延伸的距離小。In one or more embodiments of the present invention, the distance from the extending plane to the outside of the second body extends from the extending plane to the distance from the extending plane to the outside of the first body. small.
於本創作之一或多個實施方式中,第二突出部自延伸平面向相對於第二本體的外側延伸的距離,實質上隨其高度增加而遞增。In one or more embodiments of the present invention, the distance that the second protrusion extends from the plane of extension to the outside of the second body increases substantially as its height increases.
本創作上述實施方式藉由讓第一突出部微幅凸出於第一本體,並形成一個鳥嘴結構,因此在形成光二極 體結構的反應式離子蝕刻製程中,第一突出部將可以阻擋可能會直接撞擊到光二極體結構的側壁的電漿離子。於是,光二極體結構的側壁結構將不會被破壞,進而大幅度降低光二極體結構在操作時會產生的漏電流。The above embodiment of the present invention forms a photodiode by causing the first protrusion to protrude slightly from the first body and form a bird's beak structure. In a reactive ion etching process of bulk structure, the first protrusions will block plasma ions that may directly impinge on the sidewalls of the photodiode structure. Therefore, the sidewall structure of the photodiode structure will not be destroyed, thereby greatly reducing the leakage current generated by the photodiode structure during operation.
100‧‧‧光二極體結構100‧‧‧Light diode structure
120‧‧‧第一半導體層120‧‧‧First semiconductor layer
130‧‧‧第二半導體層130‧‧‧Second semiconductor layer
131‧‧‧上部131‧‧‧ upper
132‧‧‧中央部132‧‧‧Central Department
133‧‧‧下部133‧‧‧ lower
134‧‧‧第二本體134‧‧‧Second ontology
135‧‧‧第二突出部135‧‧‧Second protrusion
140‧‧‧第三半導體層140‧‧‧ third semiconductor layer
141‧‧‧第一本體141‧‧‧ first ontology
143‧‧‧第一頂面143‧‧‧First top surface
144‧‧‧第一突出部144‧‧‧First protrusion
145‧‧‧第二頂面145‧‧‧second top surface
190‧‧‧延伸平面190‧‧‧Extension plane
200‧‧‧基板200‧‧‧Substrate
210‧‧‧頂面210‧‧‧ top surface
300、400‧‧‧曲線300, 400‧‧‧ curve
第1圖繪示依照本創作一實施方式之光二極體結構的剖面示意圖。FIG. 1 is a cross-sectional view showing the structure of an optical diode according to an embodiment of the present invention.
第2圖繪示依照本創作一實施例之光二極體結構與傳統之光二極體結構的漏電流強度-時間圖。FIG. 2 is a diagram showing a leakage current intensity-time diagram of the photodiode structure and the conventional photodiode structure according to an embodiment of the present invention.
第3圖繪示依照本創作不同實施例之光二極體結構與傳統之光二極體結構的漏電流強度。FIG. 3 illustrates the leakage current intensity of the photodiode structure and the conventional photodiode structure according to different embodiments of the present invention.
以下將以圖式揭露本創作之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本創作。也就是說,在本創作部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。In the following, a plurality of embodiments of the present invention will be disclosed in the drawings. For the sake of clarity, a number of practical details will be described in the following description. However, it should be understood that these practical details are not applied to limit the creation. That is to say, in the implementation part of this creation, these practical details are not necessary. In addition, some of the conventional structures and elements are shown in the drawings in a simplified schematic manner in order to simplify the drawings.
第1圖繪示依照本創作一實施方式之光二極體結構100的剖面示意圖。本創作不同實施方式提供一種 光二極體結構100。光二極體結構100主要用於(醫療用)X光數位平板感測器。具體而言,光二極體結構100用於製作X光數位平板感測器的一個畫素單元。FIG. 1 is a cross-sectional view showing a photodiode structure 100 in accordance with an embodiment of the present invention. Different implementations of this creation provide a Light diode structure 100. The photodiode structure 100 is mainly used for (medical) X-ray digital flat panel sensors. Specifically, the photodiode structure 100 is used to fabricate a pixel unit of an X-ray digital flat panel sensor.
如第1圖所繪示,光二極體結構100設置於基板200上。光二極體結構100包含第一半導體層120、第二半導體層130以及第三半導體層140。第二半導體層130設置於第一半導體層120上,其中第二半導體層130具有側壁,側壁具有上部131、下部133以及連接上部131與下部133之中央部132,中央部132的側壁輪廓實質上形成一平面,且此平面基本上與基板200的頂面210(或是水平面)實質垂直。第三半導體層140設置於第二半導體層130上,其中中央部132向上延伸之延伸平面190會將第三半導體層140區分為第一本體141與第一突出部144,第一突出部144自延伸平面190向相對於第一本體141的外側延伸。As shown in FIG. 1 , the photodiode structure 100 is disposed on the substrate 200 . The photodiode structure 100 includes a first semiconductor layer 120, a second semiconductor layer 130, and a third semiconductor layer 140. The second semiconductor layer 130 is disposed on the first semiconductor layer 120, wherein the second semiconductor layer 130 has a sidewall having an upper portion 131, a lower portion 133, and a central portion 132 connecting the upper portion 131 and the lower portion 133. The sidewall portion of the central portion 132 is substantially A plane is formed which is substantially perpendicular to the top surface 210 (or horizontal plane) of the substrate 200. The third semiconductor layer 140 is disposed on the second semiconductor layer 130, wherein the extending plane 190 extending upwardly from the central portion 132 divides the third semiconductor layer 140 into the first body 141 and the first protruding portion 144, and the first protruding portion 144 The extension plane 190 extends toward the outside of the first body 141.
具體而言,第一半導體層120為n型半導體層,第二半導體層130為本質(Intrinsic)半導體層,第三半導體層140為p型半導體層。於是,第一半導體層120、第二半導體層130、第三半導體層140形成一個PIN結構。Specifically, the first semiconductor layer 120 is an n-type semiconductor layer, the second semiconductor layer 130 is an Intrinsic semiconductor layer, and the third semiconductor layer 140 is a p-type semiconductor layer. Thus, the first semiconductor layer 120, the second semiconductor layer 130, and the third semiconductor layer 140 form a PIN structure.
在形成光二極體結構100時,通常會使用反應式離子蝕刻(Reactive Ion Etching)製程,然而在此製程中,電漿離子可能會撞擊到光二極體結構100的側壁(例如上部131、下部133以及中央部132)而破壞光二極體結構100的側壁結構,進而使光二極體結構100在操作時會產 生較大的漏電流。In the formation of the photodiode structure 100, a reactive ion etching process is generally used. However, in this process, plasma ions may impinge on the sidewalls of the photodiode structure 100 (eg, upper portion 131, lower portion 133). And the central portion 132) destroys the sidewall structure of the photodiode structure 100, thereby causing the photodiode structure 100 to be produced during operation A large leakage current is generated.
具體而言,在反應式離子蝕刻製程中,首先會在基板200下方產生負極偏壓,於是電漿離子因為負極偏壓的吸引而從上方往下方垂直移動,並撞擊光二極體結構100中所欲蝕刻膜層,並產生異方向性的蝕刻效果。在電漿離子撞擊欲蝕刻膜層後,電漿離子會接觸欲蝕刻膜層並與之化學反應,進而產生等向性的蝕刻效果。Specifically, in the reactive ion etching process, a negative bias is first generated under the substrate 200, so that the plasma ions vertically move from the top to the bottom due to the attraction of the negative bias, and impinge on the photodiode structure 100. The film layer is to be etched and an omnidirectional etching effect is produced. After the plasma ions strike the layer to be etched, the plasma ions contact and chemically react with the layer to be etched, thereby producing an isotropic etching effect.
然而,前述僅為理想狀況的描述,在某些情況中,電漿離子可能會直接撞擊到光二極體結構100中已蝕刻膜層的側壁,進而破壞光二極體結構100的側壁結構。However, the foregoing is only a description of the ideal situation. In some cases, the plasma ions may directly impinge on the sidewalls of the etched film layer in the photodiode structure 100, thereby destroying the sidewall structure of the photodiode structure 100.
為此,第三半導體層140具有第一本體141與第一突出部144,且第一突出部144自延伸平面190向相對於第一本體141的外側延伸。因為第一突出部144為微幅凸出於第一本體141,並形成一個鳥嘴(Beak Type)結構,因此第一突出部144將可以阻擋可能會直接撞擊到光二極體結構100之側壁的電漿離子。於是,光二極體結構100的側壁結構將不會被破壞,進而大幅度降低光二極體結構100在操作時會產生的漏電流。To this end, the third semiconductor layer 140 has a first body 141 and a first protrusion 144 , and the first protrusion 144 extends from the extension plane 190 toward the outside of the first body 141 . Because the first protrusion 144 is slightly protruded from the first body 141 and forms a Beak Type structure, the first protrusion 144 can block the direct impact on the sidewall of the photodiode structure 100. Plasma ion. Therefore, the sidewall structure of the photodiode structure 100 will not be destroyed, thereby greatly reducing the leakage current generated by the photodiode structure 100 during operation.
具體而言,第一半導體層120、第二半導體層130以及第三半導體層140之材質可為矽或鍺。應了解到,以上所舉之第一半導體層120、第二半導體層130以及第三半導體層140之材質僅為例示,而非用以限制本創作,本創作所屬技術領域中具有通常知識者,可依實際需要,彈性選擇第一半導體層120、第二半導體層130以及 第三半導體層140之材質。Specifically, the material of the first semiconductor layer 120, the second semiconductor layer 130, and the third semiconductor layer 140 may be tantalum or niobium. It should be understood that the materials of the first semiconductor layer 120, the second semiconductor layer 130, and the third semiconductor layer 140 are merely exemplified, and are not intended to limit the present invention. The first semiconductor layer 120 and the second semiconductor layer 130 may be elastically selected according to actual needs. The material of the third semiconductor layer 140.
第一半導體層120之厚度可為約200~500埃(Å)。應了解到,以上所舉之第一半導體層120之厚度僅為例示,而非用以限制本創作,本創作所屬技術領域中具有通常知識者,可依實際需要,彈性選擇第一半導體層120之厚度。The first semiconductor layer 120 may have a thickness of about 200 to 500 angstroms (Å). It should be understood that the thickness of the first semiconductor layer 120 is merely exemplified, and is not intended to limit the present invention. Those skilled in the art of the present invention can flexibly select the first semiconductor layer 120 according to actual needs. The thickness.
第二半導體層130之厚度可為約10000~15000埃(Å)。應了解到,以上所舉之第二半導體層130之厚度僅為例示,而非用以限制本創作,本創作所屬技術領域中具有通常知識者,可依實際需要,彈性選擇第二半導體層130之厚度。The second semiconductor layer 130 may have a thickness of about 10,000 to 15,000 Å. It should be understood that the thickness of the second semiconductor layer 130 is only exemplified, and is not intended to limit the present invention. Those skilled in the art can flexibly select the second semiconductor layer 130 according to actual needs. The thickness.
第三半導體層140之厚度可為約200~800埃(Å)或200~400埃(Å)。應了解到,以上所舉之第三半導體層140之厚度僅為例示,而非用以限制本創作,本創作所屬技術領域中具有通常知識者,可依實際需要,彈性選擇第三半導體層140之厚度。The third semiconductor layer 140 may have a thickness of about 200 to 800 Å or 200 to 400 Å. It should be understood that the thickness of the third semiconductor layer 140 is only exemplified, and is not intended to limit the present invention. Those skilled in the art can flexibly select the third semiconductor layer 140 according to actual needs. The thickness.
具體而言,第一本體141具有第一頂面143,第一突出部144具有第二頂面145,第一頂面143與第二頂面145鄰接。更進一步來說,第一頂面143與第二頂面145可能共同形成一個平面。Specifically, the first body 141 has a first top surface 143, and the first protrusion 144 has a second top surface 145 that is adjacent to the second top surface 145. Furthermore, the first top surface 143 and the second top surface 145 may together form a plane.
如第1圖所繪示,第二頂面145自延伸平面190向相對於第一頂面143的外側延伸約100~500埃(Å)。或者,第二頂面145自延伸平面190向相對於第一頂面143的外側延伸約200~400埃(Å)。又或者,第二頂面 145自延伸平面190向相對於第一頂面143的外側延伸約200~300埃(Å)。As shown in FIG. 1 , the second top surface 145 extends from the plane of extension 190 to an outer side relative to the first top surface 143 by about 100 to 500 angstroms (Å). Alternatively, the second top surface 145 extends from the extension plane 190 to an outer side relative to the first top surface 143 by about 200 to 400 angstroms (Å). Or, the second top surface 145 extends from the extension plane 190 to an outer side relative to the first top surface 143 by about 200 to 300 angstroms (Å).
具體而言,第一突出部144自延伸平面190向相對於第一本體141的外側延伸的距離,實質上隨其高度增加而遞增。Specifically, the distance that the first protrusion 144 extends from the extension plane 190 toward the outside of the first body 141 substantially increases as its height increases.
另外,延伸平面190亦將第二半導體層130區分為第二本體134與第二突出部135,第二突出部135自延伸平面190向相對於第二本體134的外側延伸,且第一突出部144沿著延伸平面190連接第二突出部135。In addition, the extension plane 190 also divides the second semiconductor layer 130 into a second body 134 and a second protrusion 135. The second protrusion 135 extends from the extension plane 190 toward the outside of the second body 134, and the first protrusion The second protrusion 135 is connected along the extension plane 190.
具體而言,第二突出部135自延伸平面190向相對於第二本體134的外側延伸的距離,較第一突出部144自延伸平面190向相對於第一本體141的外側延伸的距離小。第二突出部135自延伸平面190向相對於第二本體134的外側延伸的距離,實質上隨其高度增加而遞增。Specifically, the distance from the extension plane 190 to the outer side of the second body 134 from the extension plane 190 is smaller than the distance that the first protrusion 144 extends from the extension plane 190 toward the outside of the first body 141. The distance that the second protrusion 135 extends from the extension plane 190 to the outside of the second body 134 substantially increases as its height increases.
綜上所述,第一突出部144與第二突出部135共同組成一個形狀類似於三角柱體的突出部。In summary, the first protrusion 144 and the second protrusion 135 together form a protrusion shaped like a triangular cylinder.
光二極體結構100與傳統光二極體結構皆為使用反應式離子蝕刻製程形成,然而光二極體結構100的第一突出部144與第二突出部135必須在特定的參數下才可形成。具體而言,反應式離子蝕刻製程的氣壓(Pressure)應為70至120毫托(Millitorr),射頻輸出功率(RF-Output)應為1200至1400瓦特(Watt),六氟化硫(SF6 )氣體的流入速率應為200至460sccm(Standard Cubic Centimeter per Minute),氯化氫(HCl)氣體的流入速率應為350至 780sccm。Both the photodiode structure 100 and the conventional photodiode structure are formed using a reactive ion etching process, however, the first protrusion 144 and the second protrusion 135 of the photodiode structure 100 must be formed under specific parameters. Specifically, the reactive ion etching process should have a pressure of 70 to 120 millitorr (Millitorr), a radio frequency output (RF-Output) of 1200 to 1400 watts (Watt), and sulfur hexafluoride (SF 6 ). The gas inflow rate should be 200 to 460 sccm (Standard Cubic Centimeter per Minute), and the inflow rate of hydrogen chloride (HCl) gas should be 350 to 780 sccm.
此處需要注意的是,光二極體結構100的第一突出部144與第二突出部135是在反應式離子蝕刻製程中形成,並在形成後阻擋可能會直接撞擊到光二極體結構100之側壁的電漿離子。It should be noted here that the first protrusion 144 and the second protrusion 135 of the photodiode structure 100 are formed in a reactive ion etching process, and may hinder the light diode structure 100 directly after formation. Plasma ion of the sidewall.
另外,在光二極體結構100的後續相關的製程中亦可能會再度使用反應式離子蝕刻製程,而這時第一突出部144與第二突出部135將能再次地發揮阻擋直接撞擊光二極體結構100側壁之電漿離子的功能。In addition, the reactive ion etching process may be used again in the subsequent related process of the photodiode structure 100, and at this time, the first protrusion 144 and the second protrusion 135 will again function to block the direct impact of the photodiode structure. The function of the plasma ion of the 100 side wall.
前述有關光二極體結構100的結構描述並非僅適用於光二極體結構100的其中一側,光二極體結構100的其他側亦可具有與前述結構描述相同的結構。The foregoing description of the structure of the photodiode structure 100 is not only applicable to one side of the photodiode structure 100, and the other side of the photodiode structure 100 may have the same structure as described in the foregoing structure.
第2圖繪示依照本創作一實施例之光二極體結構100與傳統之光二極體結構的漏電流強度-時間圖。如第2圖所繪示,曲線300代表本創作之光二極體結構100在操作狀態時漏電流強度與時間的關係,曲線400代表傳統之光二極體結構在操作狀態時漏電流強度與時間的關係。從第2圖我們可以發現,在光二極體結構100與傳統之光二極體結構的狀態穩定後(即時間大於100秒),光二極體結構100的漏電流強度約為30fA/pixel,而傳統之光二極體結構的漏電流強度約為60fA/pixel。於是,光二極體結構100的漏電流強度相較傳統之光二極體結構的漏電流強度降低了約50%。FIG. 2 is a diagram showing a leakage current intensity-time diagram of the photodiode structure 100 and the conventional photodiode structure according to an embodiment of the present invention. As shown in FIG. 2, the curve 300 represents the relationship between the leakage current intensity and the time of the photodiode structure 100 of the present invention in the operating state, and the curve 400 represents the leakage current intensity and time of the conventional photodiode structure in the operating state. relationship. From Fig. 2, we can find that after the state of the photodiode structure 100 and the conventional photodiode structure is stabilized (i.e., the time is longer than 100 seconds), the leakage current intensity of the photodiode structure 100 is about 30 fA/pixel, while the conventional The leakage current intensity of the light diode structure is about 60fA/pixel. Thus, the leakage current intensity of the photodiode structure 100 is reduced by about 50% compared to the leakage current intensity of the conventional photodiode structure.
第3圖繪示依照本創作不同實施例之光二極 體結構100與傳統之光二極體結構的漏電流強度,其中取樣面板編號1至取樣面板編號6為傳統之光二極體結構,取樣面板編號7至取樣面板編號10為不同實施例之光二極體結構100。如第3圖所繪示,在光二極體結構100與傳統之光二極體結構的狀態穩定後,傳統之光二極體結構的漏電流強度幾乎皆大於60fA/pixel,而不同實施例之光二極體結構100的漏電流強度皆為約30fA/pixel。由此來看,藉由設置鳥嘴結構於光二極體結構100確實可以穩定地有效降低其漏電流強度。Figure 3 illustrates a photodiode according to various embodiments of the present creation The leakage current intensity of the bulk structure 100 and the conventional photodiode structure, wherein the sampling panel number 1 to the sampling panel number 6 are conventional photodiode structures, and the sampling panel number 7 to the sampling panel number 10 are light dipoles of different embodiments. Structure 100. As shown in FIG. 3, after the state of the photodiode structure 100 and the conventional photodiode structure is stabilized, the leakage current intensity of the conventional photodiode structure is almost greater than 60 fA/pixel, and the photodiodes of different embodiments are different. The leakage current intensity of the bulk structure 100 is about 30 fA/pixel. From this point of view, it is indeed possible to stably and effectively reduce the leakage current intensity by providing the bird's beak structure to the photodiode structure 100.
本創作上述實施方式藉由讓第一突出部144微幅凸出於第一本體141,並形成一個鳥嘴結構,因此在形成光二極體結構100的反應式離子蝕刻製程中,第一突出部144將可以阻擋可能會直接撞擊到光二極體結構100的側壁的電漿離子。於是,光二極體結構100的側壁結構將不會被破壞,進而大幅度降低光二極體結構100在操作時會產生的漏電流。In the above embodiment, the first protrusion 144 is slightly protruded from the first body 141 and forms a bird's beak structure. Therefore, in the reactive ion etching process for forming the photodiode structure 100, the first protrusion is formed. 144 will be able to block plasma ions that may strike directly into the sidewalls of photodiode structure 100. Therefore, the sidewall structure of the photodiode structure 100 will not be destroyed, thereby greatly reducing the leakage current generated by the photodiode structure 100 during operation.
雖然本創作已以實施方式揭露如上,然其並非用以限定本創作,任何熟習此技藝者,在不脫離本創作之精神和範圍內,當可作各種之更動與潤飾,因此本創作之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any person skilled in the art can make various changes and refinements without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.
100‧‧‧光二極體結構100‧‧‧Light diode structure
120‧‧‧第一半導體層120‧‧‧First semiconductor layer
130‧‧‧第二半導體層130‧‧‧Second semiconductor layer
131‧‧‧上部131‧‧‧ upper
132‧‧‧中央部132‧‧‧Central Department
133‧‧‧下部133‧‧‧ lower
134‧‧‧第二本體134‧‧‧Second ontology
135‧‧‧第二突出部135‧‧‧Second protrusion
140‧‧‧第三半導體層140‧‧‧ third semiconductor layer
141‧‧‧第一本體141‧‧‧ first ontology
143‧‧‧第一頂面143‧‧‧First top surface
144‧‧‧第一突出部144‧‧‧First protrusion
145‧‧‧第二頂面145‧‧‧second top surface
190‧‧‧延伸平面190‧‧‧Extension plane
200‧‧‧基板200‧‧‧Substrate
210‧‧‧頂面210‧‧‧ top surface
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104208272U TWM508122U (en) | 2015-05-27 | 2015-05-27 | Photodiode structure |
CN201520549787.7U CN204809232U (en) | 2015-05-27 | 2015-07-27 | Photodiode structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104208272U TWM508122U (en) | 2015-05-27 | 2015-05-27 | Photodiode structure |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM508122U true TWM508122U (en) | 2015-09-01 |
Family
ID=54594008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104208272U TWM508122U (en) | 2015-05-27 | 2015-05-27 | Photodiode structure |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN204809232U (en) |
TW (1) | TWM508122U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106335374A (en) * | 2016-11-21 | 2017-01-18 | 扬中市盛源车辆配件有限公司 | Ceiling of Solar Electric Vehicle |
-
2015
- 2015-05-27 TW TW104208272U patent/TWM508122U/en unknown
- 2015-07-27 CN CN201520549787.7U patent/CN204809232U/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN204809232U (en) | 2015-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201727190A (en) | Demodulation pixel devices, arrays of pixel devices and optoelectronic devices incorporating the same | |
US10930700B2 (en) | Semiconductor light detection element | |
JP2015041746A (en) | Single-photon avalanche diode | |
JP5385315B2 (en) | Vertical silicon photomultiplier tube with excellent quantum efficiency in all wavelength bands | |
EP3477710B1 (en) | Avalanche photodiode and method of manufacturing the avalanche photodiode | |
JP2020532133A (en) | Semiconductor photomultiplier tube with improved operating voltage range | |
CN110047955A (en) | A kind of AlGaN ultraviolet avalanche photodiode detector and preparation method thereof | |
TWI390720B (en) | Image sensor | |
WO2018103358A1 (en) | Photodiode device and photodiode detector | |
JP2007165478A (en) | Photoelectric surface and photo-detector | |
TWM508122U (en) | Photodiode structure | |
JP2015088602A (en) | Semiconductor optical device | |
US20160035928A1 (en) | Photodiode | |
WO2022179223A1 (en) | Single photon avalanche diode | |
US20100018576A1 (en) | Solar cell | |
JP2017183633A (en) | Infrared light-receiving element, manufacturing method thereof, and gas sensor | |
CN117059694B (en) | Single photon avalanche diode, preparation method, photoelectric detection device and electronic equipment | |
CN117810275B (en) | Photoelectric detector | |
US8384012B2 (en) | Photodiode comprising polarizer | |
WO2022077456A1 (en) | Single photon avalanche diode, image sensor and electronic device | |
KR101091205B1 (en) | Vertical silicon photomultiplier decreased dark current | |
CN117374087A (en) | Photoelectric detector and single photon detection system | |
KR100729048B1 (en) | Photo diode and fabricating method the same | |
JP2022101468A (en) | Infrared device and manufacturing method of infrared device | |
JPWO2006095381A1 (en) | Photoelectric conversion element |