KR100835893B1 - Photo diode having a luminescence converter - Google Patents

Photo diode having a luminescence converter Download PDF

Info

Publication number
KR100835893B1
KR100835893B1 KR1020070027232A KR20070027232A KR100835893B1 KR 100835893 B1 KR100835893 B1 KR 100835893B1 KR 1020070027232 A KR1020070027232 A KR 1020070027232A KR 20070027232 A KR20070027232 A KR 20070027232A KR 100835893 B1 KR100835893 B1 KR 100835893B1
Authority
KR
South Korea
Prior art keywords
photodiode
light
light emitting
region
converter
Prior art date
Application number
KR1020070027232A
Other languages
Korean (ko)
Inventor
이병수
엄재원
Original Assignee
(주)실리콘화일
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)실리콘화일 filed Critical (주)실리콘화일
Priority to KR1020070027232A priority Critical patent/KR100835893B1/en
Priority to PCT/KR2008/001332 priority patent/WO2008114947A1/en
Application granted granted Critical
Publication of KR100835893B1 publication Critical patent/KR100835893B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312

Abstract

A photodiode having a luminescence converter is provided to keep the sensitivity of the photodiode uniformly regardless of wavelength of incident light by converting the incident light of a specified wavelength band into the light of limited wavelength band. A photodiode(300) for image sensor comprises a first conductive substrate(310), a second conductive photodiode region(320) which is formed on the substrate, a first conductive isolation region(330) which is formed on the photodiode region, an oxide layer(340) which is formed on the isolation region, and a luminescence converter(350) which is formed on the oxide layer.

Description

발광변환기를 갖는 포토다이오드{Photo diode having a Luminescence converter}Photodiode with light emitting converter

도 1은 일반적으로 사용되는 종래의 포토다이오드를 나타내는 도면이다.1 is a view showing a conventional photodiode generally used.

도 2a는 종래의 포토다이오드의 표면으로부터의 깊이에 따른 에너지 밴드를 나타내는 도면이다.2A is a diagram showing an energy band according to a depth from a surface of a conventional photodiode.

도 2b는 종래의 포토다이오드의 표면으로부터의 깊이에 따른 빛의 세기를 나타내는 도면이다.2B is a diagram showing the intensity of light with depth from the surface of a conventional photodiode.

도 2c는 종래의 포토다이오드의 표면으로부터의 깊이에 따른 전자-정공의 발생 비율을 나타내는 도면이다.FIG. 2C is a diagram showing the generation rate of electron-holes according to the depth from the surface of the conventional photodiode.

도 3은 본 발명의 일실시예에 따른 발광변환기를 구비한 포토다이오드를 나타내는 도면이다.3 is a diagram illustrating a photodiode having a light emitting converter according to an embodiment of the present invention.

도 4는 본 발명의 일실시예에 따른 발광변환기를 구비한 포토다이오드에 사용되는 발광변환기의 에너지 밴드를 나타내는 도면이다.4 is a diagram illustrating an energy band of a light emitting converter used in a photodiode having a light emitting converter according to an embodiment of the present invention.

본 발명은 포토다이오드에 관한 것으로, 더 상세하게는 단파장의 빛을 받아 들여 장파장의 빛을 발광하는 발광 변환기(Luminescence converter)를 구비하는 포토다이오드에 관한 것이다. The present invention relates to a photodiode, and more particularly, to a photodiode having a luminescence converter (Luminescence converter) that receives light of a short wavelength and emits light of a long wavelength.

이미지 센서에서 사용되는 포토다이오드는 일반적으로 도 1과 같이 제1 도전형의 기판(110)과 제2 도전형의 포토다이오드 영역(120), 포토다이오드 영역을 표면과 격리시키기 위한 제1 도전형의 분리영역(130) 및 표면 보호를 위한 산화막 영역(140)으로 이루어진다.The photodiode used in the image sensor is generally of the first conductivity type to isolate the first conductivity type substrate 110, the second conductivity type photodiode region 120, and the photodiode region from the surface as shown in FIG. The isolation region 130 and the oxide region 140 for protecting the surface are formed.

상기와 같이 구성된 종래의 포토다이오드(100)는 포토다이오드(100)에 반도체의 에너지 갭보다 큰 에너지를 갖는 빛(150)이 입사하면 전자와 정공이 발생하고, 전자나 정공 중에서 선택된 전하를 저장하여 빛의 세기를 측정하는 방식을 사용하여왔다. In the conventional photodiode 100 configured as described above, when light 150 having energy greater than the energy gap of the semiconductor is incident on the photodiode 100, electrons and holes are generated, and electric charges selected from electrons or holes are stored. The method of measuring light intensity has been used.

도 2a 내지 도 2c는 반도체로 실리콘을 사용하고, 포토다이오드 영역이 N-type인 경우의 포토다이오드에서의 에너지 밴드와 포토다이오드 내부에서의 깊이에 따른 빛의 세기 및 전자-정공의 발생 비율을 나타내는 도면이다.2A to 2C illustrate the intensity of light and the rate of generation of electron-holes according to the energy band in the photodiode and the depth inside the photodiode when silicon is used as the semiconductor and the photodiode region is N-type. Drawing.

도 2a 내지 도 2c를 참조하면 포토다이오드는 역방향 전압에 의하여 공핍(depletion)되며, 이후에는 고립된 상태로 있게 된다. 이러한 포토다이오드에 빛이 입사하는 경우, 빛은 파장에 따른 흡수계수,

Figure 112007022151473-pat00001
에 따라 지수 함수적으로 감소하게 된다. 2A to 2C, the photodiode is depleted by the reverse voltage, and then is isolated. When light is incident on the photodiode, the light has an absorption coefficient according to the wavelength,
Figure 112007022151473-pat00001
It decreases exponentially.

Figure 112007022151473-pat00002
Figure 112007022151473-pat00002

도 2b에 도시된 바와 같이 청색(273)의 경우 흡수계수가 높으므로 빛은 주로 표면 쪽에서 흡수되며, 녹색(272)의 경우는 흡수계수가 중간 정도이며, 적색(271)의 경우에는 흡수계수가 작아서 빛은 깊이 침투하게 된다. 위와 같은 빛의 입사에 의하여 발생되는 전자-정공의 밀도는 다음과 같이 표현된다.As shown in FIG. 2B, light is mainly absorbed from the surface side in the case of blue 273, and in the case of green 272, the absorption coefficient is about medium, and in the case of red 271, the absorption coefficient is high. Small, light penetrates deeply. The density of the electron-holes generated by the incident light is expressed as follows.

Figure 112007022151473-pat00003
Figure 112007022151473-pat00003

따라서 각각의 빛에 따른 전자-정공 발생률은 도 2b에 도시된 바와 같다. 이와 같이 발생된 전자-정공 쌍은 potential에 의하여 서로 다른 방향으로 이동하게 되며, 도 2a와 같은 구조에서는 정공은 표면이나 기판(210)으로 이동하여 사라지게 되고 전자는 포토다이오드 영역(220)에 모이게 된다. Therefore, the electron-hole incidence rate for each light is as shown in FIG. The generated electron-hole pairs are moved in different directions by the potential, and in the structure shown in FIG. 2A, the holes move to the surface or the substrate 210 and disappear, and electrons are collected in the photodiode region 220. .

일반적으로 사용되는 포토다이오드는 도 2a에서 볼 수 있듯이 표면에서 발생하는 열전자(thermal electron)의 유입에 의한 노이즈를 방지하기 위하여 배리어(230)가 설치되므로, 표면에서부터 배리어(barrier)까지의 영역에서 발생되는 전자-정공은 포토다이오드에 수집되지 않는다. 따라서 이 영역에서 발생되는 charge는 포토다이오드의 감도에 영향을 미치지 못하고 이 영역에서 발생하는 전자-정공의 쌍의 비율을 줄이는 것은 포토다이오드의 감도에 큰 영향을 미친다. Generally used photodiodes are generated in the area from the surface to the barrier (barrier) because the barrier 230 is installed to prevent noise caused by the inflow of thermal electrons generated from the surface as shown in Figure 2a The resulting electron-holes are not collected in the photodiode. Therefore, the charge generated in this region does not affect the sensitivity of the photodiode, and reducing the ratio of electron-hole pairs generated in this region greatly affects the sensitivity of the photodiode.

도 2c에 도시된 바와 같이 수집되지 않는 전자-정공 쌍의 발생 효율은 녹색(282) 보다는 청색(283)의 경우가 더 크게 나타난다. 따라서 위와 같이 표면 효과에 의한 청색(283), 녹색(282) 및 적색(281)의 감도 차이를 해소하기 위하여 청색(283)의 경우에는 녹색(282)에 비하여 포토다이오드의 영역을 표면에 가깝게 하고, 적색(281)의 경우는 포토다이오드를 녹색(282)에 비하여 깊게 설치하는 방법 등이 제안되었다. 그러나 이러한 기술은 적색, 녹색, 청색의 세 가지에 대하여 서로 다른 도핑을 사용하여 공정이 복잡해진다는 문제가 있다. As shown in FIG. 2C, the generation efficiency of the electron-hole pair that is not collected is greater in the case of blue 283 than in green 282. Therefore, in order to solve the difference in sensitivity of blue 283, green 282 and red 281 due to the surface effect as described above, the area of the photodiode is closer to the surface than the green 282 in the case of blue 283. In the case of the red 281, a method of installing the photodiode deeper than the green 282 has been proposed. However, this technique has a problem in that the process is complicated by using different dopings for the three colors red, green, and blue.

본 발명은 상기와 같은 문제점을 해결하기 위하여 제안된 것으로 본 발명이 이루고자 하는 기술적 과제는 각 색에 대한 도핑 공정의 변화가 없이 포토다이오드 영역 상부에 하나의 발광 변환기(Luminescence converter)를 사용하여 표면 근처에서 손실되는 전자-정공 쌍의 수를 줄이고 각 색에 대한 감도를 동일하게 유지하는 포토다이오드를 제공하는데 있다. The present invention has been proposed to solve the above problems, and the technical problem to be achieved by the present invention is to use a single luminescence converter on the photodiode region without changing the doping process for each color, and the surface is near. It is to provide a photodiode that reduces the number of electron-hole pairs lost at and maintains the same sensitivity for each color.

상기 기술적 과제를 이루기 위한 본 발명에 따른 발광변환기를 구비한 포토다이오드는 제1 도전형의 기판, 상기 기판 상에 형성된 제2 도전형의 포토다이오드 영역, 상기 포토다이오드 영역 상에 형성된 제1 도전형의 분리영역, 상기 분리영역 상에 형성된 산화막 및 상기 산화막 상에 형성된 발광 변환기를 포함하는 것을 특징으로 한다.The photodiode having the light emitting converter according to the present invention for achieving the technical problem is a first conductive substrate, a second conductive photodiode region formed on the substrate, the first conductive type formed on the photodiode region And an emission film formed on the oxide film and the oxide film formed on the separation area.

본 발명에 따른 발광변환기를 구비한 포토다이오드에 있어서, 바람직하게는 상기 발광 변환기는 단파장의 빛을 장파장의 빛으로 하강 변환시킨다.In the photodiode having a light emitting converter according to the present invention, preferably, the light emitting converter converts light of short wavelength into light of long wavelength.

본 발명에 따른 발광변환기를 구비한 포토다이오드에 있어서, 바람직하게는 상기 발광 변환기는 AgGaTe2, GdSe, InSe, GaP, CuGaS2, ZnGeP2 중에서 선택된 하나 이상의 물질로 형성된다.In the photodiode having a light emitting converter according to the present invention, the light emitting converter is preferably formed of at least one material selected from AgGaTe2, GdSe, InSe, GaP, CuGaS2, ZnGeP2.

본 발명에 따른 발광변환기를 구비한 포토다이오드에 있어서, 바람직하게는 상기 발광 변환기는 전이금속이나 불순물이 도핑된 유리로 형성된다.In the photodiode having a light emitting converter according to the present invention, the light emitting converter is preferably formed of a glass doped with a transition metal or impurities.

이하에서 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 보다 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명에 따른 발광변환기를 구비한 포토다이오드의 일 실시예를 나타내는 도면이고, 도 4는 본 발명에 따른 발광변환기를 구비한 포토다이오드에 사용되는 발광변환기의 에너지 밴드를 나타내는 도면이다. 3 is a view showing an embodiment of a photodiode having a light emitting converter according to the present invention, Figure 4 is a view showing an energy band of the light emitting converter used in the photodiode having a light emitting converter according to the present invention.

도 3을 참조하면 본 발명에 따른 발광변환기를 구비한 포토다이오드(300)는 제1 도전형의 기판(310), 상기 기판(310) 상에 형성된 제2 도전형의 포토다이오드 영역(320), 상기 포토다이오드 영역(320) 상에 형성된 제1 도전형의 분리영역(330), 상기 분리영역(330) 상에 형성된 산화막(340) 및 상기 산화막 상에 형성된 발광 변환기(350)를 구비한다.Referring to FIG. 3, the photodiode 300 including the light emitting converter according to the present invention includes a first conductive substrate 310, a second conductive photodiode region 320 formed on the substrate 310, And a first conductivity type isolation region 330 formed on the photodiode region 320, an oxide layer 340 formed on the isolation region 330, and a light emission converter 350 formed on the oxide layer.

발광 변환기(Luminescence Converter)는 특정 파장대의 빛을 다른 파장대의 빛으로 변환하는 장치로서, 상승 변환기(Up Converter)와 하강변환기(Down Converter)로 나눌 수 있다. 상승 변환기(Up Converter)는 에너지가 낮은 빛을 받아서 에너지가 높은 빛을 내는 것이며, 하강변환기(Down Converter)는 에너지가 높은 빛을 받아서 에너지가 낮은 빛을 내는 것이다.Luminescence converter is a device that converts light of a specific wavelength band to light of another wavelength band, and may be divided into an up converter and a down converter. Up Converter receives low energy and emits high energy, and Down Converter receives high energy and emits low energy.

도 4를 참조하면 가전자대(410)에 있는 전자는 발광 변환기의 밴드 갭(Band gap) 이상의 에너지를 갖는 빛(430)을 받아서 전도대(420)로 여기(440)되며, 여기된 전자는 충돌 등에 의하여 에너지를 잃고 밴드갭 에너지를 갖는 빛(460)을 내보내고 정공과 재결합(450)된다.Referring to FIG. 4, the electrons in the valence band 410 receive light 430 having energy above the band gap of the light emitting converter and are excited 440 by the conduction band 420. Thereby losing energy and emitting light 460 with bandgap energy and recombining with holes 450.

즉, 발광변환기(350)의 에너지 갭보다 큰 에너지를 갖는 빛(360)이 발광변환기(350)로 입사되어 발광변환기(350)의 에너지 갭과 동일한 에너지를 갖는 빛(370)으로 변환된 후 포토다이오드(320)로 입사하게 된다. 따라서 원래의 빛(360)이 갖는 에너지에 무관하게 발광변환기(350)를 거친 빛(370)은 모두 동일한 에너지를 갖게 된다. 따라서 전술한 바와 같이 색깔에 따른 감도의 차이가 없어지며 동일한 감도를 갖는 포토다이오드를 구성할 수 있다. That is, the light 360 having an energy larger than the energy gap of the light emitting converter 350 is incident to the light emitting converter 350, and is converted into the light 370 having the same energy as the energy gap of the light emitting converter 350. It is incident to the diode 320. Therefore, regardless of the energy of the original light 360, the light 370 passed through the light emission converter 350 all have the same energy. Therefore, as described above, there is no difference in sensitivity according to color, and a photodiode having the same sensitivity can be configured.

상기 발광변환기(350)로 사용이 가능한 물질로는 가시 광에 대하여는 적색(Red)의 밴드 갭을 갖는 AgGaTe2나 GdSe, InSe등이 선택될 수 있으며, 녹색(Green)의 밴드 갭을 갖는 GaP, CuGaS2, ZnGeP2등이 선택될 수 있다. 또한 전이금속(transition metal)이나 불순물(rare earth)이 도핑된 유리가 사용될 수도 있다. 불순물이 도핑 된 유리의 경우, 불순물의 종류에 따라 일정한 범위를 갖는 특성적인 발광 특성을 나타낸다. 따라서 상기의 발광변환기로 사용될 수 있다.As a material which can be used as the light emitting converter 350, AgGaTe2, GdSe, InSe, etc. having a red band gap may be selected for visible light, and GaP, CuGaS2 having a green band gap. , ZnGeP2 and the like can be selected. In addition, a glass doped with transition metal or rare earth may be used. In the case of glass doped with impurities, it exhibits characteristic luminescence properties having a certain range depending on the type of impurities. Therefore, it can be used as the light emitting converter.

이상으로, 본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다. As described above, the present invention has been described with reference to the embodiments illustrated in the drawings, which are merely exemplary, and it should be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. will be. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

상술한 바와 같이 본 발명에 따른 발광변환기를 구비하는 포토다이오드는 특정 파장대의 빛을 제한된 파장대의 빛으로 변환하여 포토다이오드 영역에 입사시킴 으로써 포토다이오드의 감도가 입사하는 빛의 파장에 관계없이 동일하게 되어 균일한 특성을 가진다는 장점이 있다.As described above, the photodiode having the light emitting converter according to the present invention converts light of a specific wavelength band into light of a limited wavelength band and enters the photodiode region so that the sensitivity of the photodiode is the same regardless of the wavelength of the incident light. There is an advantage that it has a uniform characteristic.

Claims (4)

이미지센서에 사용되는 포토다이오드에 있어서,In photodiodes used in image sensors, 제1 도전형의 기판;A substrate of a first conductivity type; 상기 기판 상에 형성된 제2 도전형의 포토다이오드 영역;A second conductive photodiode region formed on the substrate; 상기 포토 다이오드 영역 상에 형성된 제1 도전형의 분리영역;A separation region of a first conductivity type formed on the photodiode region; 상기 분리영역 상에 형성된 산화막; 및An oxide film formed on the isolation region; And 상기 산화막 상에 형성된 발광 변환기를 포함하는 것을 특징으로 하는 포토다이오드.And a light emitting converter formed on the oxide film. 제 1항에 있어서, 상기 발광 변환기는The method of claim 1, wherein the light emitting converter 단파장의 빛을 장파장의 빛으로 하강 변환시키는 것을 특징으로 하는 포토다이오드. A photodiode characterized by converting light of short wavelengths into light of long wavelengths. 제 1항에 있어서, 상기 발광 변환기는The method of claim 1, wherein the light emitting converter AgGaTe2, GdSe, InSe, GaP, CuGaS2, ZnGeP2 중에서 선택된 하나 이상의 물질로 형성되는 것을 특징으로 하는 포토다이오드. A photodiode formed of at least one material selected from AgGaTe2, GdSe, InSe, GaP, CuGaS2, and ZnGeP2. 제 1항에 있어서, 상기 발광 변환기는The method of claim 1, wherein the light emitting converter 전이금속이나 불순물이 도핑된 유리로 형성되는 것을 특징으로 하는 포토다 이오드.A photodiode, which is formed of a glass doped with a transition metal or impurities.
KR1020070027232A 2007-03-20 2007-03-20 Photo diode having a luminescence converter KR100835893B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070027232A KR100835893B1 (en) 2007-03-20 2007-03-20 Photo diode having a luminescence converter
PCT/KR2008/001332 WO2008114947A1 (en) 2007-03-20 2008-03-10 Photodiode having a luminescence converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070027232A KR100835893B1 (en) 2007-03-20 2007-03-20 Photo diode having a luminescence converter

Publications (1)

Publication Number Publication Date
KR100835893B1 true KR100835893B1 (en) 2008-06-09

Family

ID=39766031

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070027232A KR100835893B1 (en) 2007-03-20 2007-03-20 Photo diode having a luminescence converter

Country Status (2)

Country Link
KR (1) KR100835893B1 (en)
WO (1) WO2008114947A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8487259B2 (en) 2009-11-16 2013-07-16 Samsung Electronics Co., Ltd. Infrared image sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060039945A (en) * 2003-09-05 2006-05-09 마이크론 테크놀로지, 인크 Image sensor having pinned floating diffusion diode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3003597B2 (en) * 1996-11-18 2000-01-31 日本電気株式会社 Solid-state imaging device
WO2006100957A1 (en) * 2005-03-22 2006-09-28 Idemitsu Kosan Co., Ltd. Color conversion substrate, method for manufacturing same and light-emitting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060039945A (en) * 2003-09-05 2006-05-09 마이크론 테크놀로지, 인크 Image sensor having pinned floating diffusion diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8487259B2 (en) 2009-11-16 2013-07-16 Samsung Electronics Co., Ltd. Infrared image sensor

Also Published As

Publication number Publication date
WO2008114947A1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
KR101113364B1 (en) Silicon photomultiplier (variants) and a cell therefor
JP3825358B2 (en) Silicon optical device and light emitting device using the same
US9741879B2 (en) SPAD photodiode covered with a network
Otte The silicon photomultiplier-a new device for high energy physics, astroparticle physics, industrial and medical applications
US20070114626A1 (en) Photodiode device and photodiode array for optical sensor using the same
ITTO20100251A1 (en) AVALANCHE PHOTODIODO OPERATING IN GEIGER MODE WITH HIGH SIGNAL NOISE REPORT AND RELATIVE MANUFACTURING PROCEDURE
KR20080061434A (en) Structure of image sensor made by chemical semiconductor
EP2355155B1 (en) Vertical silicon photomultipler with superior quantum efficiency at optical wavelengths
JP2004193615A (en) Avalanche photodiode for use in hostile environments
CN108550592B (en) Low dark count rate CMOS SPAD photoelectric device
CN102024863B (en) High-speed enhanced ultraviolet silicon selective avalanche photodiode and manufacturing method thereof
US8946617B2 (en) Photodiode having a p-n junction with varying expansion of the space charge zone due to application of a variable voltage
US8450771B2 (en) Semiconductor device and fabrication method
WO2014101601A1 (en) Photoelectric detector and manufacturing method therefor, and radiation detector
Li et al. High fill-factor 4H-SiC avalanche photodiodes with partial trench isolation
CN106461799B (en) Solid state photomultiplier device
Cai et al. Vertical 4H-SiC nipn APDs with partial trench isolation
US6798001B2 (en) Semiconductor device having photo diode with sensitivity to light of different wavelengths
KR100835893B1 (en) Photo diode having a luminescence converter
CN100349304C (en) Silicon light-receiving device
Qiao et al. Avalanche noise in Al 0.52 In 0.48 P diodes
KR101091205B1 (en) Vertical silicon photomultiplier decreased dark current
Wang et al. High photon detection efficiency single photon avalanche diode in 0.18 μ m standard CMOS process
KR100336555B1 (en) Semiconductor opto-electric device
KR100211966B1 (en) Ultraviolet photodetector and its fabrication method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130531

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140530

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150529

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160321

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170526

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180521

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190527

Year of fee payment: 12