TWM482114U - High accuracy of the narrow border embedded flat display touch structure - Google Patents

High accuracy of the narrow border embedded flat display touch structure Download PDF

Info

Publication number
TWM482114U
TWM482114U TW103200740U TW103200740U TWM482114U TW M482114 U TWM482114 U TW M482114U TW 103200740 U TW103200740 U TW 103200740U TW 103200740 U TW103200740 U TW 103200740U TW M482114 U TWM482114 U TW M482114U
Authority
TW
Taiwan
Prior art keywords
layer
lines
conductor block
conductor
distance
Prior art date
Application number
TW103200740U
Other languages
Chinese (zh)
Inventor
xiang-yu Li
Original Assignee
Superc Touch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Superc Touch Corp filed Critical Superc Touch Corp
Priority to TW103200740U priority Critical patent/TWM482114U/en
Publication of TWM482114U publication Critical patent/TWM482114U/en
Priority to CN201520016163.9U priority patent/CN204440369U/en

Links

Description

高準確度之窄邊框內嵌式平面顯示觸控結構 High-accuracy narrow bezel embedded flat display touch structure

本創作係關於一種具有觸控板的結構,尤指一種高準確度之窄邊框內嵌式平面顯示觸控結構。 The present invention relates to a structure having a touch panel, and more particularly to a high-accuracy narrow bezel embedded flat display touch structure.

現代消費性電子裝置多配備觸控板做為其輸入裝置之一。觸控板根據感測原理的不同可分為電阻式、電容式、音波式、及光學式等多種。 Modern consumer electronic devices are often equipped with a touchpad as one of their input devices. The touchpad can be divided into resistive, capacitive, sonic, and optical types according to different sensing principles.

觸控面板的技術原理是當手指或其他介質接觸到螢幕時,依據不同感應方式,偵測電壓、電流、聲波或紅外線等,以此測出觸壓點的座標位置。例如電阻式即為利用上、下電極間的電位差,計算施壓點位置檢測出觸控點所在。電容式觸控面板是利用排列之透明電極與人體之間的靜電結合所產生之電容變化,從所產生之電流或電壓來檢測其座標。 The technical principle of the touch panel is to detect the voltage, current, sound wave or infrared light according to different sensing methods when the finger or other medium touches the screen, thereby measuring the coordinate position of the touch pressure point. For example, the resistance type is to use the potential difference between the upper and lower electrodes to calculate the position of the pressure point to detect the touch point. A capacitive touch panel detects a change in capacitance from a generated current or voltage by utilizing a change in capacitance generated by electrostatic coupling between a transparent electrode arranged and a human body.

隨著智慧型手機的普及,多點觸控的技術需求與日俱增。目前,多點觸控主要是透過投射電容式(Projected Capacitive)觸控技術來實現。 With the popularity of smart phones, the demand for multi-touch technology is increasing. At present, multi-touch is mainly realized by Projected Capacitive touch technology.

投射電容式技術主要是透過雙層氧化銦錫材 質(Indium Tin Oxide,ITO)形成行列交錯感測單元矩陣,以偵測得到精確的觸控位置。投射電容式觸控技術的基本原理是以電容感應為主,利用設計多個蝕刻後的氧化銦錫材質電極,增加數組存在不同平面、同時又相互垂直的透明導線,形成類似X、Y軸驅動線。這些導線皆由控制器所控制,其係依序掃瞄偵測電容值變化饋至控制器。 Projected capacitive technology is mainly through double-layer indium tin oxide Indium Tin Oxide (ITO) forms a matrix of interlaced sensing units to detect accurate touch positions. The basic principle of the projected capacitive touch technology is based on capacitive sensing. By designing a plurality of etched indium tin oxide electrodes, the array has different planes and transparent lines perpendicular to each other to form an X- and Y-axis drive. line. These wires are controlled by the controller, which sequentially feeds the detected capacitance value changes to the controller.

圖1係習知互感應電容(Mutual capacitance)感測之示意圖。習知互感應電容(Cm)感測之觸控面板結構100上的感應導體線110,120係依沿著第一方向(X)及第二方向(Y)排列。第一方向(X)排列的感應導體線110與第二方向(Y)排列的感應導體線120之間有一互感應電容(Cm)160,互感應電容(Cm)160並非實體電容,其係沿著第一方向(X)排列的感應導體線110與第二方向(Y)排列的感應導體線120之間的互感應電容(Cm)。 FIG. 1 is a schematic diagram of a conventional mutual capacitance sensing. The sensing conductor lines 110, 120 on the touch panel structure 100 sensed by the conventional mutual induction capacitance (Cm) are arranged along the first direction (X) and the second direction (Y). There is a mutual induction capacitance (Cm) 160 between the sensing conductor line 110 arranged in the first direction (X) and the sensing conductor line 120 arranged in the second direction (Y), and the mutual induction capacitance (Cm) 160 is not a physical capacitance, and the edge thereof is The mutual induction capacitance (Cm) between the sensing conductor line 110 arranged in the first direction (X) and the sensing conductor line 120 arranged in the second direction (Y).

當要執行觸控感應時,一軟性電路板130上的控制電路131的內部驅動器(圖未示)於第一時間週期T1,對第一方向(X)排列的感應導體線110驅動,其使用電壓Vy_1對互感應電容(Cm)160充電,於第一時間週期T1,控制電路131的內部所有感測器(圖未示)感測所有第二方向(Y)排列的感應導體線120上的電壓(Vo_1,Vo_2,…,Vo_n),用以獲得n個資料,亦即經過m個驅動週期後,即可獲得m×n個資料。 When the touch sensing is to be performed, an internal driver (not shown) of the control circuit 131 on the flexible circuit board 130 drives the sensing conductor line 110 arranged in the first direction (X) for the first time period T1, and uses the same. The voltage Vy_1 charges the mutual induction capacitor (Cm) 160. During the first time period T1, all the sensors (not shown) inside the control circuit 131 sense all the second direction (Y) arranged on the sensing conductor line 120. The voltage (Vo_1, Vo_2, ..., Vo_n) is used to obtain n data, that is, after m driving cycles, m×n data can be obtained.

此種互感應電容(Cm)的感測主要是利用在顯示面板上形成以雙層氧化銦錫材質(Indium Tin Oxide,ITO)的行列交錯感測單元矩陣,以偵測得到精確的觸控位置。因此 會增加製造程序及成本。同時,感應導體線120執行觸控感應時要將感測到的訊號傳輸至一軟性電路板130上的控制電路131時,需經由面板140的側邊150走線方能連接至該軟性電路板130。此種設計將增加觸控面板邊框的寬度,並不適合窄邊框設計的趨勢。 The mutual sensing capacitor (Cm) is mainly used to form a matrix of interlaced sensing units with double-layer Indium Tin Oxide (ITO) on the display panel to detect an accurate touch position. . therefore Will increase manufacturing procedures and costs. At the same time, when the sensing conductor 120 transmits the sensed signal to the control circuit 131 on the flexible circuit board 130 when performing the touch sensing, the side line 150 of the panel 140 needs to be routed to connect to the flexible circuit board. 130. This design will increase the width of the touch panel border and is not suitable for the narrow bezel design trend.

針對上述問題,In-Cell Touch技術則是將觸控元件整合於顯示面板之內,使得顯示面板本身就具備觸控功能,因此不需要另外進行與觸控面板貼合或是組裝的製程。In-Cell Touch技術係在顯示面板的上玻璃基板或下玻璃基板設置ITO透明感應電極層或光學感應元件。然而,如此不僅增加成本,亦增加製程程序,容易導致製程良率降低及製程成本飆昇,以及開口率下降而須要更強的背光,也會增加耗電。因此,習知平面顯示觸控結構仍有改善的空間。 In view of the above problems, the In-Cell Touch technology integrates the touch components into the display panel, so that the display panel itself has a touch function, so that no additional process of assembling or assembling with the touch panel is required. The In-Cell Touch technology is provided with an ITO transparent sensing electrode layer or an optical sensing element on the upper glass substrate or the lower glass substrate of the display panel. However, this not only increases the cost, but also increases the process procedure, which leads to a decrease in process yield and a rise in process cost, and a need for a stronger backlight with a lower aperture ratio, which also increases power consumption. Therefore, there is still room for improvement in the conventional flat display touch structure.

本創作之主要目的係在提供一種高準確度之窄邊框內嵌式平面顯示觸控結構,僅需於單邊設置連接線路,可增加導體區塊之間的感應電容變化量,俾使用較小的電壓即能驅動導體區塊線,同時可提昇接觸點偵測的準確度。 The main purpose of this creation is to provide a high-accuracy narrow-frame in-line flat-panel display touch structure, which only needs to be connected on one side, which can increase the amount of capacitance change between conductor blocks, and use less The voltage can drive the conductor block line and improve the accuracy of contact point detection.

依據本創作之一特色,本創作提供一種高準確度之窄邊框內嵌式平面顯示觸控結構,包括一第一基板、一第二基板、一薄膜電晶體層、一感應電極及走線層、及 一感應電極層。該第一基板及該第二基板以平行成對之配置將一顯示層夾置於二基板之間。該薄膜電晶體層位於該第二基板之面向該顯示層一側的表面,該薄膜電晶體層具有K條閘極驅動線及L條源極驅動線,該K條閘極驅動線及L條源極驅動線設置於一第一方向及一第二方向,以形成複數個畫素區塊,每一個畫素區塊具有對應之一畫素電晶體及一畫素電容,依據一顯示像素訊號及一顯示驅動訊號,以驅動對應之該畫素電晶體及該畫素電容,進而執行顯示操作,其中,K、L為正整數。該感應電極及走線層位於該薄膜電晶體層之面向該顯示層之一側,並具有沿著一第一方向排列的M條第一導體區塊線及N條連接線,其依據一觸控驅動訊號而感應是否有一外部物件接近,其中,M、N為正整數,該M條第一導體區塊線的每一條第一導體區塊線係由複數個第一導體區塊所組成。該感應電極層位於該薄膜電晶體層之面向該顯示層之一側,其係介於該感應電極及走線層及該薄膜電晶體層之間,並具有沿著一第二方向排列的N條第二導體區塊線,其執行觸控感應時,接受該觸控驅動訊號,每一第二導體區塊線以一對應之第i條連接線延伸至該高準確度之窄邊框內嵌式平面顯示觸控結構之一側邊,i為正整數且1≦i≦N,該N條第二導體區塊線的每一條第二導體區塊線係由複數個第二導體區塊所組成;其中,該複數個第一導體區塊、該N條連接線、及該複數個第二導體區塊的位置係依據與該薄膜電晶體層的K條閘極驅動線及該L條源極驅動線的位置相對應而設置。 According to one of the features of the present invention, the present invention provides a high-accuracy narrow bezel embedded flat display touch structure, including a first substrate, a second substrate, a thin film transistor layer, a sensing electrode and a trace layer. ,and A sensing electrode layer. The first substrate and the second substrate are arranged in a parallel pair to sandwich a display layer between the two substrates. The thin film transistor layer is located on a surface of the second substrate facing the display layer, the thin film transistor layer has K gate driving lines and L source driving lines, the K gate driving lines and the L strips The source driving line is disposed in a first direction and a second direction to form a plurality of pixel blocks, each pixel block having a corresponding pixel transistor and a pixel capacitor, according to a display pixel signal And displaying a driving signal to drive the corresponding pixel transistor and the pixel capacitor to perform a display operation, wherein K and L are positive integers. The sensing electrode and the wiring layer are located on one side of the thin film transistor layer facing the display layer, and have M first conductor block lines and N connecting lines arranged along a first direction, according to a touch Controlling the driving signal to sense whether there is an external object approaching, wherein M and N are positive integers, and each of the first conductor block lines of the M first conductor block lines is composed of a plurality of first conductor blocks. The sensing electrode layer is located on a side of the thin film transistor layer facing the display layer, and is disposed between the sensing electrode and the wiring layer and the thin film transistor layer, and has N arranged along a second direction The second conductor block line receives the touch driving signal when performing touch sensing, and each second conductor block line extends to the high-accuracy narrow border with a corresponding ith connecting line The planar display shows one side of the touch structure, i is a positive integer and 1≦i≦N, and each of the second conductor block lines of the N second conductor block lines is composed of a plurality of second conductor blocks The plurality of first conductor blocks, the N connecting lines, and the plurality of second conductor blocks are located according to the K gate driving lines and the L sources of the thin film transistor layer The position of the pole drive line is set correspondingly.

依據本創作之另一特色,本創作提供一種高準確度之窄邊框內嵌式平面顯示觸控結構,包括一第一基板、一第二基板、一薄膜電晶體層、一感應電極層、及一感應電極及走線層。該第一基板及該第二基板以平行成對之配置將一顯示層夾置於二基板之間。該薄膜電晶體層位於該第二基板之面向該顯示層一側的表面,該薄膜電晶體層具有K條閘極驅動線及L條源極驅動線,該K條閘極驅動線及L條源極驅動線設置於一第一方向及一第二方向,以形成複數個畫素區塊,每一個畫素區塊具有對應之一畫素電晶體及一畫素電容,依據一顯示像素訊號及一顯示驅動訊號,以驅動對應之該畫素電晶體及該畫素電容,進而執行顯示操作,其中,K、L為正整數。該感應電極層位於該薄膜電晶體層之面向該顯示層之一側,並具有沿著一第二方向排列的N條第二導體區塊線,其執行觸控感應時,接受一觸控驅動訊號。該感應電極及走線層位於該感應電極層之面向該顯示層之一側,並具有沿著一第一方向排列的M條第一導體區塊線及N條連接線,其依據一觸控驅動訊號而感應是否有一外部物件接近,其中,M、N為正整數,該M條第一導體區塊線的每一條第一導體區塊線係由複數個第一導體區塊所組成。其中,該複數個第一導體區塊、該N條連接線、及該複數個第二導體區塊的位置係依據與該薄膜電晶體層的K條閘極驅動線及該L條源極驅動線的位置相對應而設置,且該第一導體區塊與該第二導體區塊疊置時,係以差排方式疊置。 According to another feature of the present invention, the present invention provides a high-accuracy narrow-frame in-cell planar display touch structure, including a first substrate, a second substrate, a thin film transistor layer, a sensing electrode layer, and A sensing electrode and a wiring layer. The first substrate and the second substrate are arranged in a parallel pair to sandwich a display layer between the two substrates. The thin film transistor layer is located on a surface of the second substrate facing the display layer, the thin film transistor layer has K gate driving lines and L source driving lines, the K gate driving lines and the L strips The source driving line is disposed in a first direction and a second direction to form a plurality of pixel blocks, each pixel block having a corresponding pixel transistor and a pixel capacitor, according to a display pixel signal And displaying a driving signal to drive the corresponding pixel transistor and the pixel capacitor to perform a display operation, wherein K and L are positive integers. The sensing electrode layer is located on one side of the thin film transistor layer facing the display layer, and has N second conductor block lines arranged along a second direction. When performing touch sensing, receiving a touch driving Signal. The sensing electrode and the wiring layer are located on one side of the sensing electrode layer facing the display layer, and have M first conductor block lines and N connecting lines arranged along a first direction, according to a touch Driving the signal to sense whether there is an external object approaching, wherein M and N are positive integers, and each of the first conductor block lines of the M first conductor block lines is composed of a plurality of first conductor blocks. The positions of the plurality of first conductor blocks, the N connecting lines, and the plurality of second conductor blocks are driven according to the K gate driving lines and the L source driving lines of the thin film transistor layer. The positions of the lines are correspondingly arranged, and when the first conductor block and the second conductor block are stacked, they are stacked in a differential manner.

100‧‧‧互感應電容感測之觸控面板結構 100‧‧‧Touch panel structure for mutual induction capacitance sensing

110,120‧‧‧感應導體線 110,120‧‧‧Inductive conductor lines

160‧‧‧互感應電容 160‧‧‧ mutual induction capacitor

130‧‧‧軟性電路板 130‧‧‧Soft circuit board

131‧‧‧控制電路 131‧‧‧Control circuit

140‧‧‧面板 140‧‧‧ panel

150‧‧‧側邊 150‧‧‧ side

200‧‧‧高準確度之窄邊框內嵌式平面顯示觸控結構 200‧‧‧High-accuracy narrow bezel in-line flat display touch structure

210‧‧‧第一基板 210‧‧‧First substrate

220‧‧‧第二基板 220‧‧‧second substrate

230‧‧‧顯示層 230‧‧‧Display layer

240‧‧‧薄膜電晶體層 240‧‧‧film transistor layer

250‧‧‧感應電極及走線層 250‧‧‧Induction electrode and trace layer

260‧‧‧感應電極層 260‧‧‧Induction electrode layer

270‧‧‧遮光層 270‧‧‧ shading layer

280‧‧‧彩色濾光層 280‧‧‧Color filter layer

300‧‧‧第一偏光層 300‧‧‧First polarizing layer

310‧‧‧第二偏光層 310‧‧‧Second polarizing layer

320‧‧‧第一絕緣層 320‧‧‧First insulation

330‧‧‧第二絕緣層 330‧‧‧Second insulation

340‧‧‧第三絕緣層 340‧‧‧ third insulation layer

291‧‧‧薄膜電晶體 291‧‧‧Thin film transistor

293‧‧‧透明電極 293‧‧‧Transparent electrode

271‧‧‧遮光線條 271‧‧‧ shading lines

273‧‧‧遮光區塊 273‧‧‧ shading block

40-1,40-2,...,40-M‧‧‧第一導體區塊線 40-1, 40-2,...,40-M‧‧‧first conductor block line

41-1,41-2,...,41-N‧‧‧連接線 41-1, 41-2,...,41-N‧‧‧Connected cable

400‧‧‧第一導體區塊 400‧‧‧First conductor block

50-1,50-2,...,50-N‧‧‧第二導體區塊線 50-1, 50-2,...,50-N‧‧‧Second conductor block line

201‧‧‧側邊 201‧‧‧ side

500‧‧‧第二導體區塊 500‧‧‧Second conductor block

600‧‧‧軟性電路板 600‧‧‧Soft circuit board

610‧‧‧控制電路 610‧‧‧Control circuit

241‧‧‧閘極驅動線 241‧‧‧ gate drive line

243‧‧‧源極驅動線 243‧‧‧Source drive line

245,245-1,245-2,245-3,245-4,245-5‧‧‧畫素區塊 245,245-1,245-2,245-3,245-4,245-5‧‧‧ pixels block

Q‧‧‧頂點 Vertex of Q‧‧‧

P‧‧‧頂點 P‧‧‧ vertex

O1,O2,O3,O4,O5‧‧‧頂點 O1, O2, O3, O4, O5‧‧‧ Vertices

X1,X2‧‧‧中心 X1, X2‧‧ Center

V1~V5‧‧‧橢圓 V1~V5‧‧‧ ellipse

H1~H6‧‧‧橢圓 H1~H6‧‧‧ ellipse

52‧‧‧貫孔 52‧‧‧through holes

S1,S2‧‧‧點 S1, S2‧‧ points

L1‧‧‧線段 L1‧‧‧ line segment

L2‧‧‧線段 L2‧‧‧ line segment

1200‧‧‧高準確度之窄邊框內嵌式平面顯示觸控結構 1200‧‧‧High-accuracy narrow bezel in-line flat display touch structure

1210‧‧‧陰極層 1210‧‧‧ cathode layer

1220‧‧‧顯示層 1220‧‧‧Display layer

1230‧‧‧陽極層 1230‧‧‧ anode layer

1231‧‧‧陽極畫素電極 1231‧‧‧Anode element electrode

1221‧‧‧電洞傳輸子層 1221‧‧‧ hole transmission sublayer

1223‧‧‧發光層 1223‧‧‧Lighting layer

1225‧‧‧電子傳輸子層 1225‧‧‧Electronic transmission sublayer

247‧‧‧畫素驅動電路 247‧‧‧ pixel drive circuit

2471‧‧‧閘極 2471‧‧‧ gate

2473‧‧‧汲極/源極 2473‧‧‧Bungee/source

2475‧‧‧汲極/源極 2475‧‧‧Bungee/source

1290‧‧‧有機發光二極體層 1290‧‧‧Organic LED layer

1300‧‧‧高準確度之窄邊框內嵌式平面顯示觸控結構 1300‧‧‧High-accuracy narrow bezel in-line flat display touch structure

圖1係習知互感應電容感測之示意圖。 FIG. 1 is a schematic diagram of a conventional mutual induction capacitance sensing.

圖2係本創作之一種高準確度之窄邊框內嵌式平面顯示觸控結構的疊層示意圖。 FIG. 2 is a schematic diagram of a stack of a high-accuracy narrow bezel embedded flat display touch structure of the present invention.

圖3係遮光層的示意圖。 Figure 3 is a schematic illustration of a light shielding layer.

圖4係本創作感應電極及走線層與感應電極層之示意圖。 FIG. 4 is a schematic diagram of the sensing electrode and the wiring layer and the sensing electrode layer.

圖5係本創作第一導體區塊線及第二導體區塊線之示意圖。 FIG. 5 is a schematic diagram of the first conductor block line and the second conductor block line of the present invention.

圖6係本創作第一導體區塊線及第二導體區塊線之另一示意圖。 FIG. 6 is another schematic diagram of the first conductor block line and the second conductor block line of the present invention.

圖7A及圖7B係本創作第一導體區塊及第二導體區塊之互感應電容的一示意圖 7A and FIG. 7B are schematic diagrams showing the mutual induction capacitance of the first conductor block and the second conductor block of the present invention.

圖8係本創作圖4中A-A'處的剖面圖。 Figure 8 is a cross-sectional view taken along line A-A' of Figure 4 of the present invention.

圖9係本創作第一導體區塊線及第二導體區塊線之又一示意圖。 FIG. 9 is still another schematic diagram of the first conductor block line and the second conductor block line of the present invention.

圖10係本創作之一種高準確度之窄邊框內嵌式平面顯示觸控結構的另一示意圖。 FIG. 10 is another schematic diagram of a high-accuracy narrow bezel embedded flat display touch structure of the present invention.

圖11係本創作第一導體區塊線的示意圖。 Figure 11 is a schematic illustration of the first conductor block line of the present invention.

圖12係本創作之一種高準確度之窄邊框內嵌式平面顯示觸控結構的另一疊層示意圖。 FIG. 12 is another stacked diagram of a high-accuracy narrow-frame in-cell planar display touch structure of the present invention.

圖13係本創作之一種高準確度之窄邊框內嵌式平面顯示觸控結構的又一疊層示意圖。 FIG. 13 is another stacked schematic diagram of a high-accuracy narrow-frame in-cell planar display touch structure of the present invention.

本創作是關於一種高準確度之窄邊框內嵌式平面顯示觸控結構。圖2係本創作之一種高準確度之窄邊框內嵌式平面顯示觸控結構200的疊層示意圖,如圖2所示,該高準確度之窄邊框內嵌式平面顯示觸控結構200包括有第一基板210、一第二基板220、一顯示層230、一薄膜電晶體層240、一感應電極及走線層250、一感應電極層260、一遮光層(black matrix)270、一彩色濾光層(color filter)280、一第一偏光層(upper polarizer)300、一第二偏光層(lower polarizer)310、一第一絕緣層320、一第二絕緣層330、及一第三絕緣層340。該顯示層230於本實施例中較佳為一液晶層。 This creation is about a high-accuracy narrow bezel embedded flat display touch structure. FIG. 2 is a schematic diagram of a high-accuracy narrow-frame in-cell planar display touch structure 200. As shown in FIG. 2, the high-accuracy narrow bezel in-line display touch structure 200 includes There is a first substrate 210, a second substrate 220, a display layer 230, a thin film transistor layer 240, a sensing electrode and wiring layer 250, a sensing electrode layer 260, a black matrix 270, a color a color filter 280, a first polarizer layer 300, a second polarizer layer 310, a first insulating layer 320, a second insulating layer 330, and a third insulating layer Layer 340. The display layer 230 is preferably a liquid crystal layer in this embodiment.

該第一基板210及該第二基板220較佳為玻璃基板,該第一基板210及該第二基板220以平行成對之配置將該顯示層230夾置於二基板210,220之間。該第二基板220一般稱為薄膜電晶體基板(thin film transistor substrate,TFT substrate),當作開關用的薄膜電晶體一般設置於薄膜電晶體基板(TFT substrate)上。 The first substrate 210 and the second substrate 220 are preferably glass substrates. The first substrate 210 and the second substrate 220 are disposed in parallel with each other to sandwich the display layer 230 between the two substrates 210 and 220. The second substrate 220 is generally referred to as a thin film transistor substrate (TFT substrate), and the thin film transistor used as a switch is generally disposed on a thin film transistor substrate (TFT substrate).

該遮光層(black matrix)270係位於該第一基板210之面向顯示層230一側的表面,該遮光層270係由複數條遮光線條所構成,該複數條遮光線條271設置於一第一方向(X)及一第二方向(Y),以形成複數個包含遮光柵格與透光區之遮光區塊273。 The black matrix 270 is located on a surface of the first substrate 210 facing the display layer 230. The light shielding layer 270 is formed by a plurality of light shielding lines, and the plurality of light shielding lines 271 are disposed in a first direction. (X) and a second direction (Y) to form a plurality of light shielding blocks 273 comprising a light shielding grid and a light transmitting region.

圖3係遮光層270的示意圖,其係相同於一般習知液晶顯示器之遮光層。如圖3所示,遮光層270係由不透 光的黑色絕緣材質之線條構成複數條遮光線條271,該等黑色絕緣材質之複數條遮光線條271係互相垂直分佈於該習知遮光層270,故該遮光層270又稱為黑矩陣(black matrix)。而本創作具有如此之遮光層270,且彩色濾光層(color filter)280則分佈在該等黑色絕緣材質之線條之間的遮光區塊273。 3 is a schematic view of a light shielding layer 270 which is the same as a light shielding layer of a conventional liquid crystal display. As shown in FIG. 3, the light shielding layer 270 is impervious The black insulating material of the light constitutes a plurality of light-shielding lines 271, and the plurality of light-shielding lines 271 of the black insulating material are vertically distributed to the conventional light-shielding layer 270, so the light-shielding layer 270 is also called a black matrix. ). The present invention has such a light shielding layer 270, and a color filter 280 is distributed over the light blocking block 273 between the lines of the black insulating material.

本創作係在薄膜電晶體層240之面向該顯示層230一側設置感應電極及走線層250及感應電極層260,並在其上佈植感應觸控圖型結構。 In the present invention, the sensing electrode, the wiring layer 250 and the sensing electrode layer 260 are disposed on the side of the thin film transistor layer 240 facing the display layer 230, and an inductive touch pattern structure is implanted thereon.

該薄膜電晶體層240位於該第二基板220之面向該顯示層230一側的表面,該薄膜電晶體層240具有K條閘極驅動線及L條源極驅動線,該K條閘極驅動線及L條源極驅動線設置於該第一方向(X)及該第二方向(Y),以形成複數個畫素區塊。每一個畫素區塊具有對應之一畫素電晶體及一畫素電容,依據一顯示像素訊號及一顯示驅動訊號,以驅動對應之該畫素電晶體及該畫素電容,進而執行顯示操作,其中,K、L為正整數。薄膜電晶體層240具有薄膜電晶體291及透明電極293。該透明電極293與一共通電極層(Vcom,圖未示)形成前述之畫素電容。 The thin film transistor layer 240 is located on a surface of the second substrate 220 facing the display layer 230. The thin film transistor layer 240 has K gate driving lines and L source driving lines, and the K gate driving The line and the L source driving lines are disposed in the first direction (X) and the second direction (Y) to form a plurality of pixel blocks. Each pixel block has a corresponding pixel transistor and a pixel capacitor, and drives the corresponding pixel transistor and the pixel capacitor according to a display pixel signal and a display driving signal to perform a display operation. Where K and L are positive integers. The thin film transistor layer 240 has a thin film transistor 291 and a transparent electrode 293. The transparent electrode 293 and a common electrode layer (Vcom, not shown) form the aforementioned pixel capacitance.

圖4係本創作感應電極及走線層與感應電極層之示意圖。該感應電極及走線層250位於該薄膜電晶體層240之面向該顯示層230之一側,並具有沿著一第一方向(X)排列的M條第一導體區塊線40-1,40-2,...,40-M及N條連接線41-1,41-2,...,41-N,其依據一觸控驅動訊號而感應是否有一外部物件接近,其中,M、N為正整數。該M條第一導體區塊線40-1, 40-2,...,40-M的每一條第一導體區塊線係由複數個第一導體區塊400所組成。其中,該M條第一導體區塊線40-1,40-2,...,40-M及該N條連接線41-1,41-2,...,41-N係由金屬導電材料所製成,於本實施例,該N條連接線41-1,41-2,...,41-N的長度相同。 FIG. 4 is a schematic diagram of the sensing electrode and the wiring layer and the sensing electrode layer. The sensing electrode and the wiring layer 250 are located on one side of the thin film transistor layer 240 facing the display layer 230, and have M first conductor block lines 40-1 arranged along a first direction (X). 40-2,..., 40-M and N connecting wires 41-1, 41-2, ..., 41-N, which sense whether there is an external object approaching according to a touch driving signal, wherein, M , N is a positive integer. The M first conductor block lines 40-1, Each of the first conductor block lines of 40-2, ..., 40-M is comprised of a plurality of first conductor blocks 400. Wherein, the M first conductor block lines 40-1, 40-2, ..., 40-M and the N connection lines 41-1, 41-2, ..., 41-N are made of metal Made of a conductive material, in the present embodiment, the lengths of the N connecting wires 41-1, 41-2, ..., 41-N are the same.

該感應電極層260位於該薄膜電晶體層240之面向該顯示層230一側的表面上,其係介於該感應電極及走線層250及該薄膜電晶體層240之間,並具有沿著一第二方向(Y)排列的N條第二導體區塊線50-1,50-2,...,50-N,其執行觸控感應時,接受該觸控驅動訊號,每一第二導體區塊線50-1,50-2,...,50-N以一對應之第i條連接線41-1,41-2,...,41-N延伸至該高準確度之窄邊框內嵌式平面顯示觸控結構之一側邊201,i為正整數且1≦i≦N。該N條第二導體區塊線50-1,50-2,...,50-N的每一條第二導體區塊線係由複數個第二導體區塊500所組成。其中,該第一方向係垂直第二方向。該複數個第一導體區塊400、該N條連接線41-1,41-2,...,41-N、及該複數個第二導體區塊500的位置係依據與該薄膜電晶體層240的K條閘極驅動線及該L條源極驅動線的位置相對應而設置。 The sensing electrode layer 260 is located on a surface of the thin film transistor layer 240 facing the display layer 230, and is interposed between the sensing electrode and the wiring layer 250 and the thin film transistor layer 240, and has a along N second conductor block lines 50-1, 50-2, ..., 50-N arranged in a second direction (Y), which receive the touch drive signal when performing touch sensing, each The two conductor block lines 50-1, 50-2, ..., 50-N extend to the high accuracy with a corresponding ith connection line 41-1, 41-2, ..., 41-N The narrow frame in-line display shows one side 201 of the touch structure, i is a positive integer and 1≦i≦N. Each of the N second conductor block lines 50-1, 50-2, ..., 50-N is composed of a plurality of second conductor blocks 500. Wherein the first direction is perpendicular to the second direction. The plurality of first conductor blocks 400, the N connecting lines 41-1, 41-2, ..., 41-N, and the positions of the plurality of second conductor blocks 500 are based on the thin film transistor The K gate drive lines of the layer 240 and the positions of the L source drive lines are disposed correspondingly.

如圖4所示,該M條第一導體區塊線40-1,40-2,...,40-M及該N條第二導體區塊線50-1,50-2,...,50-N的每一導體區塊線係分別由該複數個第一導體區塊400及該複數個第二導體區塊500所構成。 As shown in FIG. 4, the M first conductor block lines 40-1, 40-2, ..., 40-M and the N second conductor block lines 50-1, 50-2, .. Each of the conductor block lines of 50-N is composed of the plurality of first conductor blocks 400 and the plurality of second conductor blocks 500, respectively.

該M條第一導體區塊線40-1,40-2,...,40-M的每 一條第一導體區塊線之複數個第一導體區塊400係形成一個四邊型區域,且電氣連接在一起,該M條第一導體區塊線40-1,40-2,...,40-M的每一條第一導體區塊線之間並未電氣連接。同樣地,該N條第二導體區塊線50-1,50-2,...,50-N的每一條第二導體區塊線之複數個第二導體區塊500係形成一個四邊型區域,且電氣連接在一起,該N條第二導體區塊線50-1,50-2,...,50-N的每一條第二導體區塊線之間並未連接。其中,該N條連接線的每一條連接線係排列於兩條第一導體區塊線40-1,40-2,...,40-M之間。 Each of the M first conductor block lines 40-1, 40-2, ..., 40-M A plurality of first conductor blocks 400 of a first conductor block line form a quadrilateral region electrically connected together, and the M first conductor block lines 40-1, 40-2, ..., There is no electrical connection between each of the first conductor block lines of the 40-M. Similarly, the plurality of second conductor blocks 500 of each of the N second conductor block lines 50-1, 50-2, ..., 50-N form a quadrilateral type The regions are electrically connected together, and each of the N second conductor block lines 50-1, 50-2, ..., 50-N is not connected between each of the second conductor block lines. Wherein, each of the N connecting lines is arranged between the two first conductor block lines 40-1, 40-2, ..., 40-M.

該M條第一導體區塊線40-1,40-2,...,40-M及該N條第二導體區塊線50-1,50-2,...,50-N並未電氣連接。其可在該感應電極及走線層250及該感應電極層260之間設置一第一絕緣層320。亦可僅在該M條第一導體區塊線40-1,40-2,...,40-M及該N條第二導體區塊線50-1,50-2,...,50-N交叉處設置絕緣區塊。 The M first conductor block lines 40-1, 40-2, ..., 40-M and the N second conductor block lines 50-1, 50-2, ..., 50-N and Not electrically connected. A first insulating layer 320 is disposed between the sensing electrode and the wiring layer 250 and the sensing electrode layer 260. Alternatively, only the M first conductor block lines 40-1, 40-2, ..., 40-M and the N second conductor block lines 50-1, 50-2, ..., An insulating block is provided at the 50-N intersection.

該複數個第一導體區塊400及該複數個第二導體區塊500係形成一個四邊型區域且由金屬導電材料所製成,其中,該四邊型區域係為下列形狀其中之一:長方形、正方形。該金屬導電材料係為下列其中之一:鉬、鋇、鋁、銀、銅、鈦、鎳、鉭、鈷、鎢、鎂(Mg)、鈣(Ca)、鉀(K)、鋰(Li)、銦(In)、合金、氟化鋰(LiF)、氟化鎂(MgF2)、氧化鋰(LiO)。 The plurality of first conductor blocks 400 and the plurality of second conductor blocks 500 form a quadrilateral region and are made of a metal conductive material, wherein the quadrilateral region is one of the following shapes: a rectangle, square. The metal conductive material is one of the following: molybdenum, niobium, aluminum, silver, copper, titanium, nickel, lanthanum, cobalt, tungsten, magnesium (Mg), calcium (Ca), potassium (K), lithium (Li) Indium (In), alloy, lithium fluoride (LiF), magnesium fluoride (MgF2), lithium oxide (LiO).

該N條連接線41-1,41-2,...,41-N的每一條連接線係設置於兩條第一導體區塊線40-1,40-2,...,40-M之間。 Each of the N connecting wires 41-1, 41-2, ..., 41-N is disposed on the two first conductor block lines 40-1, 40-2, ..., 40- Between M.

圖5係本創作第一導體區塊線、第二導體區塊 線、閘極驅動線及源極驅動線之示意圖。該複數個第一導體區塊400、該N條連接線41-1,41-2,...,41-N、及該複數個第二導體區塊500的位置係依據與該薄膜電晶體層240之該K條閘極驅動線241及L條源極驅動線243的位置相對應而設置。 Figure 5 is the first conductor block line and the second conductor block of the present invention. Schematic diagram of the line, gate drive line and source drive line. The plurality of first conductor blocks 400, the N connecting lines 41-1, 41-2, ..., 41-N, and the positions of the plurality of second conductor blocks 500 are based on the thin film transistor The positions of the K gate driving lines 241 and the L source driving lines 243 of the layer 240 are correspondingly arranged.

於圖5中,閘極驅動線241係沿著第二方向(Y)排列,源極驅動線243係沿著第一方向(X)排列。於其他實施例中,閘極驅動線241可沿著第一方向(X)排列,源極驅動線243可沿著第二方向(Y)排列。如圖4所示,該薄膜電晶體層240之該K條閘極驅動線241與該薄膜電晶體層240之該L條源極驅動線243形成複數個畫素區塊245。每一畫素區塊245的長度與寬度分別為一第一距離d1及一第二距離d2。 In FIG. 5, the gate drive lines 241 are arranged along the second direction (Y), and the source drive lines 243 are arranged along the first direction (X). In other embodiments, the gate drive lines 241 can be aligned along a first direction (X) and the source drive lines 243 can be aligned along a second direction (Y). As shown in FIG. 4, the K gate driving lines 241 of the thin film transistor layer 240 and the L source driving lines 243 of the thin film transistor layer 240 form a plurality of pixel blocks 245. The length and width of each pixel block 245 are a first distance d1 and a second distance d2, respectively.

如圖5所示,該第一導體區塊線與該第二導體區塊線疊置時,係以差排方式(dislocation)疊置。該第一導體區塊400的中心位置與該第二導體區塊500的中心位置在該第二方向(Y)上相差一第一距離d1之一第一倍數h,在該第一方向(X)上相差一第二距離d2之一第二倍數w,其中,h、w為正整數。 As shown in FIG. 5, when the first conductor block line and the second conductor block line are stacked, they are stacked in a dislocation manner. The center position of the first conductor block 400 and the center position of the second conductor block 500 are different in the second direction (Y) by a first multiple h of the first distance d1, in the first direction (X) And a second multiple of the second distance d2, wherein h and w are positive integers.

該複數個畫素區塊245的每一畫素區塊的長度與寬度分別為該第一距離d1及該第二距離d2。該複數個第一導體區塊的每一第一導體區塊400的長度與寬度分別為一第三距離及一第四距離,該複數個第二導體區塊的每一第二導體區塊500的長度與寬度分別為該第五距離及該第六距離,當中,該第三距離為第一距離d1的第三倍數h1的兩倍(=2h1×d1),該第四距離為第二距離d2的第四倍數w1的兩倍 (2w1×d2),該第五距離為第一距離d1的一第五倍數h2的兩倍(=2h2×d1),該第六距離為第二距離d2的一第六倍數w2的兩倍(2w2×d2),其中,h1、w1、h2、w2為正整數。 The length and width of each pixel block of the plurality of pixel blocks 245 are the first distance d1 and the second distance d2, respectively. The length and width of each of the first conductor blocks 400 of the plurality of first conductor blocks are respectively a third distance and a fourth distance, and each second conductor block 500 of the plurality of second conductor blocks The length and the width are respectively the fifth distance and the sixth distance, wherein the third distance is twice the third multiple of the first distance d1 (=2h1×d1), and the fourth distance is the second distance Double the fourth multiple of d2, w1 (2w1×d2), the fifth distance is twice (=2h2×d1) of a fifth multiple h2 of the first distance d1, and the sixth distance is twice the sixth multiple of the second distance d2 2w2×d2), where h1, w1, h2, and w2 are positive integers.

如圖5所示,該複數個畫素區塊245的每一畫素區塊的長度與寬度分別為該第一距離d1及該第二距離d2、且第三倍數h1為1、第四倍數w1為1、第五倍數h2為1、第六倍數w2為1時,該複數個第一導體區塊400的每一第一導體區塊的長度與寬度分別為一第三距離及一第四距離,該複數個第二導體區塊500的每一第二導體區塊的長度與寬度分別為該第五距離及該第六距離。亦即,因為第三倍數h1為1、第四倍數w1為1、第五倍數h2為1、及第六倍數w2為1,故該第三距離為第一距離d1的兩倍(=2h1×d1=2×d1),該第四距離為第二距離d2的兩倍(2w1×d2=2×d2),該第五距離為第一距離d1的兩倍(=2h2×d1=2×d1),該第六距離為第二距離d2的兩倍(2w2×d2=2×d2)。也就是說,每一第一導體區塊400及每一第二導體區塊500的大小係為4個畫素區塊245的大小。 As shown in FIG. 5, the length and width of each pixel block of the plurality of pixel blocks 245 are the first distance d1 and the second distance d2, respectively, and the third multiple h1 is 1, the fourth multiple. When w1 is 1, the fifth multiple h2 is 1, and the sixth multiple is w1, the length and width of each first conductor block of the plurality of first conductor blocks 400 are respectively a third distance and a fourth The length and the width of each of the second conductor blocks of the plurality of second conductor blocks 500 are the fifth distance and the sixth distance, respectively. That is, since the third multiple h1 is 1, the fourth multiple w1 is 1, the fifth multiple h2 is 1, and the sixth multiple w2 is 1, the third distance is twice the first distance d1 (= 2h1 × D1=2×d1), the fourth distance is twice the second distance d2 (2w1×d2=2×d2), and the fifth distance is twice the first distance d1 (=2h2×d1=2×d1 The sixth distance is twice the second distance d2 (2w2 × d2 = 2 × d2). That is, the size of each of the first conductor block 400 and each of the second conductor blocks 500 is the size of the four pixel blocks 245.

如圖5所示,該第一導體區塊400與該第二導體區塊500以差排方式(dislocation)疊置時,該第一導體區塊400的中心位置X1與該第二導體區塊500的中心位置X2在該第二方向(Y)上相差一h倍第一距離d1(=hxd1=d1),在該第一方向(X)上相差一w倍第二距離d2(=w×d2=d2)。亦即,當該第一導體區塊400的頂點P與畫素區塊245-1的頂點O1對齊時,該第二導體區塊500的頂點Q與該第一導體區塊400的頂點 P在該第二方向(Y)上相差一個第一距離d1,在該第一方向(X)上相差一個第二距離d2。當該第一導體區塊400的頂點P與畫素區塊245-1的頂點O1對齊時,該第二導體區塊500的頂點Q與畫素區塊245-2的頂點O2對齊。或是說,該第一導體區塊400的中心點X1與畫素區塊245-2的頂點O2對齊,該第二導體區塊500的中心點X2與畫素區塊245-3的頂點O3對齊。 As shown in FIG. 5, when the first conductor block 400 and the second conductor block 500 are dislocated, the center position X1 of the first conductor block 400 and the second conductor block are overlapped. The center position X2 of 500 is different by one time in the second direction (Y) by a first distance d1 (=hxd1=d1), and the first direction (X) is different by one w times by the second distance d2 (=w× D2=d2). That is, when the vertex P of the first conductor block 400 is aligned with the vertex O1 of the pixel block 245-1, the vertex Q of the second conductor block 500 and the vertex of the first conductor block 400 P differs by a first distance d1 in the second direction (Y) and a second distance d2 in the first direction (X). When the vertex P of the first conductor block 400 is aligned with the vertex O1 of the pixel block 245-1, the vertex Q of the second conductor block 500 is aligned with the vertex O2 of the pixel block 245-2. Or, the center point X1 of the first conductor block 400 is aligned with the vertex O2 of the pixel block 245-2, and the center point X2 of the second conductor block 500 and the vertex O3 of the pixel block 245-3 Align.

該第一導體區塊400與該第二導體區塊500的間隔距離、線寬與閘極驅動線241的間隔距離、線寬及源極驅動線243的間隔距離、線寬相同、且薄膜電晶體層240一定會設置閘極驅動線241及源極驅動線243,以形成畫素區塊245。因此本案的該第一導體區塊400與該第二導體區塊500並不影響透光率。 The distance between the first conductor block 400 and the second conductor block 500, the distance between the line width and the gate drive line 241, the line width and the distance between the source drive line 243, the line width, and the thin film The crystal layer 240 must be provided with a gate driving line 241 and a source driving line 243 to form a pixel block 245. Therefore, the first conductor block 400 and the second conductor block 500 of the present case do not affect the light transmittance.

圖6係本創作第一導體區塊線及第二導體區塊線之另一示意圖。該第一導體區塊400的中心位置與與該第二導體區塊500的中心位置在該第二方向(Y)上相差一第一距離d1之一第一倍數h,在該第一方向(X)上相差一第二距離d2之一第二倍數w,其中,h、w為正整數。該複數個畫素區塊245的每一畫素區塊的長度與寬度分別為該第一距離d1及該第二距離d2。該複數個第一導體區塊的每一第一導體區塊400的長度與寬度分別為一第三距離及一第四距離,該複數個第二導體區塊的每一第二導體區塊500的長度與寬度分別為該第五距離及該第六距離,當中,該第三距離為第一距離d1的第三倍數h1的兩倍(=2h1×d1),該第四距離為第二距離 d2的第四倍數w1的兩倍(2w1×d2),該第五距離為該第一距離的第五倍數h2的兩倍(=2h2×d1),該第六距離為該第二距離的第六倍數w2的兩倍(2w2×d2)。 FIG. 6 is another schematic diagram of the first conductor block line and the second conductor block line of the present invention. The center position of the first conductor block 400 and the center position of the second conductor block 500 are different in the second direction (Y) by a first multiple h of the first distance d1, in the first direction ( X) is a difference between a second distance d2 and a second multiple, where h and w are positive integers. The length and width of each pixel block of the plurality of pixel blocks 245 are the first distance d1 and the second distance d2, respectively. The length and width of each of the first conductor blocks 400 of the plurality of first conductor blocks are respectively a third distance and a fourth distance, and each second conductor block 500 of the plurality of second conductor blocks The length and the width are respectively the fifth distance and the sixth distance, wherein the third distance is twice the third multiple of the first distance d1 (=2h1×d1), and the fourth distance is the second distance Twice the fourth multiple w1 of d2 (2w1×d2), the fifth distance being twice the fifth multiple of the first distance h2 (=2h2×d1), the sixth distance being the second distance Double the multiple of six times w2 (2w2 × d2).

如圖6所示,該複數個畫素區塊的每一畫素區塊245的長度與寬度分別為該第一距離d1及該第二距離d2,且第三倍數h1為2、第四倍數w1為2、第五倍數h2為2、第六倍數w2為2時,該第三距離為第一距離d1的四倍(=2h1×d1=4×d1),該第四距離為第二距離d2的四倍(2w1×d2=4×d2),該第五距離為第一距離d1的四倍(=2h2×d1=4×d1),該第六距離為第二距離d2的四倍(2w2×d2=4×d2)。也就是說,每一第一導體區塊400及每一第二導體區塊500的大小係為16個畫素區塊245的大小。 As shown in FIG. 6, the length and width of each pixel block 245 of the plurality of pixel blocks are the first distance d1 and the second distance d2, respectively, and the third multiple h1 is 2 and the fourth multiple. When w1 is 2, the fifth multiple h2 is 2, and the sixth multiple w2 is 2, the third distance is four times the first distance d1 (=2h1×d1=4×d1), and the fourth distance is the second distance. Four times d2 (2w1 × d2 = 4 × d2), the fifth distance is four times the first distance d1 (= 2h2 × d1 = 4 × d1), and the sixth distance is four times the second distance d2 ( 2w2 × d2 = 4 × d2). That is, the size of each of the first conductor block 400 and each of the second conductor blocks 500 is the size of the 16 pixel blocks 245.

該第一導體區塊400與該第二導體區塊500以差排方式(dislocation)疊置時,該第一導體區塊400的中心位置與X1該第二導體區塊500的中心位置X2在該第二方向(Y)上相差第一倍數h倍第一距離,第一倍數h為2(h×d1=2d1),在該第一方向(X)上相差一第二倍數w倍第二距離,第二倍數h為2(wxd2=2d2)。亦即,該第二導體區塊500的頂點Q與該第一導體區塊400的頂點P在該第二方向(Y)上相差一2倍第一距離(h×d1=2d1),在該第一方向(X)上相差一2倍第二距離(wxd2=2d2)。當該第一導體區塊400的頂點P與畫素區塊245-1的頂點O1對齊時,該第二導體區塊500的頂點Q與畫素區塊245-3的頂點O3對齊。或是說,該第一導體區塊400的中心點X1與畫素區塊245-3的頂點O3對齊,該第二導體區塊 500的中心點X2與畫素區塊245-5的頂點O5對齊。 When the first conductor block 400 and the second conductor block 500 are dislocated, the center position of the first conductor block 400 and the center position X2 of the second conductor block 500 are In the second direction (Y), the first multiple is h times the first distance, the first multiple h is 2 (h×d1=2d1), and the first direction (X) is different by a second multiple w times second For the distance, the second multiple h is 2 (wxd2 = 2d2). That is, the vertex Q of the second conductor block 500 and the vertex P of the first conductor block 400 are different by a second distance (h×d1=2d1) in the second direction (Y). The first direction (X) differs by a factor of two from the second distance (wxd2 = 2d2). When the vertex P of the first conductor block 400 is aligned with the vertex O1 of the pixel block 245-1, the vertex Q of the second conductor block 500 is aligned with the vertex O3 of the pixel block 245-3. Or, the center point X1 of the first conductor block 400 is aligned with the vertex O3 of the pixel block 245-3, and the second conductor block The center point X2 of 500 is aligned with the vertex O5 of the pixel block 245-5.

由圖5、圖6及相關描述,當第三倍數h1為2及第四倍數w1為3、第五倍數h2為2、第六倍數w2為3、或是其他數值時,熟於該技術者可依據本創作之說明而得知該第一導體區塊線400與該第二導體區塊線500以差排方式(dislocation)疊置的情形,在此不再贅述。 5, FIG. 6 and related description, when the third multiple h1 is 2 and the fourth multiple w1 is 3, the fifth multiple h2 is 2, the sixth multiple is w2, or other values, the skilled person is familiar with The case where the first conductor block line 400 and the second conductor block line 500 are overlapped in a dislocation manner can be known according to the description of the present invention, and details are not described herein again.

圖7A及圖7B係本創作第一導體區塊及第二導體區塊之互感應電容(Mutual capacitance)的一示意圖。如圖7A所示,第一導體區塊線40-1在橢圓V2處與第二導體區塊線50-N在橢圓V1及橢圓V3處互相平行,同理,第二導體區塊線50-N在橢圓V3處與第一導體區塊線40-1在橢圓V2及橢圓V4處互相平行,因此可增加第一導體區塊線40-1與第二導體區塊線50-N之間的感應電容。同樣地,如圖7B所示,第二導體區塊線50-N在橢圓H2處與第一導體區塊線40-1在橢圓H1及橢圓H3處互相平行,因此可增加第一導體區塊線40-1與第二導體區塊線50-N之間的感應電容。同理,第一導體區塊線40-1在橢圓H3處與第二導體區塊線50-N在橢圓H2及橢圓H4處互相平行。本創作藉由將該第一導體區塊線與該第二導體區塊線以差排方式(dislocation)疊置,可增加該第一導體區塊線40-1,40-2,...,40-M與該第二導體區塊線50-1,50-2,...,50-N之間的感應電容。故控制電路的內部驅動器(圖未示)可以使用較小的電壓,以驅動第一導體區塊線,而獲得與習知技術相同的感應電容變化量,可較習知技術節省電力消耗,因此,本創作尤其適合手持式裝置。同時,由於該 第一導體區塊線40-1,40-2,...,40-M與該第二導體區塊線50-1,50-2,...,50-N之間的感應電容變化量變大,控制電路的感測器(圖未示)更能準確地偵測該第二導體區塊線50-1,50-2,...,50-N上的電壓,而可提昇觸碰的準確度。 7A and 7B are schematic diagrams showing the mutual capacitance of the first conductor block and the second conductor block of the present invention. As shown in FIG. 7A, the first conductor block line 40-1 is parallel to the second conductor block line 50-N at the ellipse V1 and the ellipse V3 at the ellipse V2, and the second conductor block line 50- N is parallel to the first conductor block line 40-1 at the ellipse V2 and the ellipse V4 at the ellipse V3, thereby increasing the distance between the first conductor block line 40-1 and the second conductor block line 50-N. Induction capacitor. Similarly, as shown in FIG. 7B, the second conductor block line 50-N is parallel to the first conductor block line 40-1 at the ellipse H1 and the ellipse H3 at the ellipse H2, thereby increasing the first conductor block. The induced capacitance between the line 40-1 and the second conductor block line 50-N. Similarly, the first conductor block line 40-1 is parallel to the second conductor block line 50-N at the ellipse H2 and the ellipse H4 at the ellipse H3. The present invention can increase the first conductor block line 40-1, 40-2, by disposing the first conductor block line and the second conductor block line in a dislocation manner. The induced capacitance between 40-M and the second conductor block lines 50-1, 50-2, ..., 50-N. Therefore, the internal driver (not shown) of the control circuit can use a smaller voltage to drive the first conductor block line, and obtain the same amount of induced capacitance change as the prior art, which can save power consumption compared with the prior art. This creation is especially suitable for handheld devices. At the same time, because of Change in induced capacitance between the first conductor block lines 40-1, 40-2, ..., 40-M and the second conductor block lines 50-1, 50-2, ..., 50-N As the amount becomes larger, the sensor of the control circuit (not shown) can more accurately detect the voltage on the second conductor block lines 50-1, 50-2, ..., 50-N, and can raise the touch. The accuracy of the touch.

如圖4所示,該每一第二導體區塊線50-1,50-2,...,50-N在虛線橢圓處與對應之連接線41-1,41-2,...,41-N電氣連接,而該N條連接線41-1,41-2,...,41-N的每一條連接線亦分別以對應之金屬走線延伸至該高準確度之窄邊框內嵌式平面顯示觸控結構200之同一側邊201,以進一步連接至一軟性電路板600。每一第一導體區塊線40-1,40-2,...,40-M係分別以對應之金屬走線延伸至該面板之同一側邊201,以進一步連接至一軟性電路板600。 As shown in FIG. 4, each of the second conductor block lines 50-1, 50-2, ..., 50-N is at the dotted ellipse and the corresponding connecting line 41-1, 41-2, ... 41-N is electrically connected, and each of the N connecting wires 41-1, 41-2, ..., 41-N also extends to the high-precision narrow frame with corresponding metal wires respectively The in-line plane displays the same side 201 of the touch structure 200 for further connection to a flexible circuit board 600. Each of the first conductor block lines 40-1, 40-2, ..., 40-M extends to the same side 201 of the panel with corresponding metal traces for further connection to a flexible circuit board 600 .

該高準確度之窄邊框內嵌式平面顯示觸控結構200之表面係用以接收至少一個觸控點。其更包含有一控制電路610,其係經由該軟性電路板600電性連接至該M條第一導體區塊線40-1,40-2,...,40-M及該N條第二導體區塊線50-1,50-2,...,50-N。 The surface of the high-accuracy narrow-frame in-line display touch structure 200 is configured to receive at least one touch point. The control circuit 610 further includes a control circuit 610 electrically connected to the M first conductor block lines 40-1, 40-2, ..., 40-M and the N second via the flexible circuit board 600. Conductor block lines 50-1, 50-2, ..., 50-N.

該M條第一導體區塊線40-1,40-2,...,40-M及該N條第二導體區塊線50-1,50-2,...,50-N係根據一手指或一外部物件觸碰該高準確度之窄邊框內嵌式平面顯示觸控結構200的至少一觸控點之位置而對應地產生一感應訊號。一控制電路610係經由該軟性電路板600電性連接至該M條第一導體區塊線40-1,40-2,...,40-M及該N條第二導體區塊線50-1,50-2,...,50-N,並依據感應訊號計算該至少一觸控點的座標。 The M first conductor block lines 40-1, 40-2, ..., 40-M and the N second conductor block lines 50-1, 50-2, ..., 50-N Correspondingly generating an inductive signal according to the position of the at least one touch point of the high-accuracy narrow-frame embedded in-plane display touch structure 200 according to a finger or an external object. A control circuit 610 is electrically connected to the M first conductor block lines 40-1, 40-2, ..., 40-M and the N second conductor block lines 50 via the flexible circuit board 600. -1, 50-2, ..., 50-N, and calculating the coordinates of the at least one touch point according to the sensing signal.

圖8係本創作圖4中A-A'處的剖面圖。如圖8所示,該第二導體區塊線50-N與該連接線41-1在圖4中的B橢圓處電氣連接。如圖2及圖8所示,在該感應電極及走線層250及該感應電極層260之間設有該第一絕緣層320,該第二導體區塊線50-N經由貫孔(via)52穿過該第一絕緣層320而與該連接線41-1電氣連接,亦即,經由該連接線41-1,該第二導體區塊線50-N可將其感測到的訊號傳輸至該控制電路610。 Figure 8 is a cross-sectional view taken along line A-A' of Figure 4 of the present invention. As shown in FIG. 8, the second conductor block line 50-N is electrically connected to the connection line 41-1 at the B ellipse in FIG. As shown in FIG. 2 and FIG. 8 , the first insulating layer 320 is disposed between the sensing electrode and the wiring layer 250 and the sensing electrode layer 260 , and the second conductor block line 50-N passes through the through hole (via The second insulating layer 320 is electrically connected to the connecting line 41-1, that is, the second conductor block line 50-N can sense the signal through the connecting line 41-1. Transfer to the control circuit 610.

於圖5及圖6的實施例中,該第三距離為該第一距離d1的該第三倍數h1的兩倍(=2h1×d1),該第四距離為該第二距離d2的該第四倍數w1的兩倍(2w1×d2),該第五距離為該第一距離d1的該第五倍數h2的兩倍(=2h2×d1),該第六距離為該第二距離d2的該第六倍數w2的兩倍(2w2×d2)。而於其他實施例中,該第三距離只要大於或等於該第一距離d1的兩倍、該第四距離只要大於或等於該第二距離d2的兩倍、該第五距離只要大於或等於該第一距離d1的兩倍、該第六距離只要大於或等於該第二距離d2的兩倍即可。 In the embodiment of FIG. 5 and FIG. 6, the third distance is twice (=2h1×d1) of the third multiple h1 of the first distance d1, and the fourth distance is the second distance d2. Two times the quadruple number w1 (2w1×d2), the fifth distance being twice (=2h2×d1) of the fifth multiple h2 of the first distance d1, the sixth distance being the second distance d2 Double the sixth multiple w2 (2w2 × d2). In other embodiments, the third distance is greater than or equal to twice the first distance d1, and the fourth distance is greater than or equal to twice the second distance d2, and the fifth distance is greater than or equal to the second distance. The first distance d1 is twice as long as the sixth distance is greater than or equal to twice the second distance d2.

圖9係本創作第一導體區塊線及第二導體區塊線之又一示意圖。如圖9所示,該第三距離為該第一距離d1的兩倍,該第四距離為該第二距離d2的三倍,該第五距離為該第一距離d1的兩倍,該第六距離為該第二距離d2的三倍。此時,該第一導體區塊400的中心位置與X1該第二導體區塊500的中心位置X2在該第二方向(Y)上相差一第一距離(d1),在該第一方向(X)上相差一第二距離(d2)。亦即,當該第一導 體區塊400的頂點P與畫素區塊245-1的頂點O1對齊時,該第二導體區塊500的頂點Q與該第一導體區塊400的頂點P在該第二方向(Y)上相差一第一距離(d1),在該第一方向(X)上相差一第二距離(d2)。當該第一導體區塊400的頂點P與畫素區塊245-1的頂點O1對齊時,該第二導體區塊500的頂點Q與畫素區塊245-2的頂點O2對齊。或是說,該第一導體區塊400的中心點X1與畫素區塊245-2的一點S1對齊,該第二導體區塊500的中心點X2與畫素區塊245-3的一點S2對齊。 FIG. 9 is still another schematic diagram of the first conductor block line and the second conductor block line of the present invention. As shown in FIG. 9, the third distance is twice the first distance d1, and the fourth distance is three times the second distance d2, and the fifth distance is twice the first distance d1. The six distances are three times the second distance d2. At this time, the center position of the first conductor block 400 and the center position X2 of the second conductor block 500 in X1 are different by a first distance (d1) in the second direction (Y), in the first direction ( X) differs by a second distance (d2). That is, when the first guide When the vertex P of the body block 400 is aligned with the vertex O1 of the pixel block 245-1, the vertex Q of the second conductor block 500 and the vertex P of the first conductor block 400 are in the second direction (Y) The upper phase is separated by a first distance (d1) which is different by a second distance (d2) in the first direction (X). When the vertex P of the first conductor block 400 is aligned with the vertex O1 of the pixel block 245-1, the vertex Q of the second conductor block 500 is aligned with the vertex O2 of the pixel block 245-2. Or, the center point X1 of the first conductor block 400 is aligned with a point S1 of the pixel block 245-2, and the center point X2 of the second conductor block 500 and the point S2 of the pixel block 245-3 Align.

由圖5、圖6及圖9可知,於本創作中,該第一倍數h小於或等於該第三倍數h1或該第五倍數h2中較小者,該第二倍數w小於或等於該第四倍數w1或該第六倍數w2中較小者。其可用數學式表示:h≦min(h1,h2),w≦min(w1,w2),當中,h為該第一倍數,w為該第二倍數,h1為該第三倍數,w1為該第四倍數,h2為該第五倍數,w2為該第六倍數。 As can be seen from FIG. 5, FIG. 6 and FIG. 9, in the present creation, the first multiple h is less than or equal to the smaller of the third multiple h1 or the fifth multiple h2, and the second multiple w is less than or equal to the first The smaller of the quadruple number w1 or the sixth multiple w2. It can be expressed by a mathematical formula: h≦min(h1, h2), w≦min(w1, w2), where h is the first multiple, w is the second multiple, h1 is the third multiple, w1 is the The fourth multiple, h2 is the fifth multiple, and w2 is the sixth multiple.

圖10係本創作之一種高準確度之窄邊框內嵌式平面顯示觸控結構200的另一示意圖。其與圖4主要差別在於該N條連接線41-1,41-2,...,41-N的長度並非一致,而是逐漸減小。 FIG. 10 is another schematic diagram of a high-accuracy narrow bezel embedded flat display touch structure 200 of the present invention. The main difference from FIG. 4 is that the lengths of the N connecting lines 41-1, 41-2, ..., 41-N are not uniform, but are gradually reduced.

圖11係本創作第一導體區塊線40-1,40-2,...,40-M的示意圖,如圖11所示,該第一導體區塊線40-1,40-2,...,40-M係由在第二方向上的24列(row)之該第一導體區塊400、及在第一方向上的2行(cloumn)之該第一導體區塊400所構成之長方形。於其他實施例,該第一導體區塊400的數目可依 需要而改變。 Figure 11 is a schematic view showing the first conductor block lines 40-1, 40-2, ..., 40-M of the present invention, as shown in Figure 11, the first conductor block lines 40-1, 40-2, ..., 40-M is the first conductor block 400 of 24 rows in the second direction, and the first conductor block 400 of 2 rows in the first direction The rectangle formed. In other embodiments, the number of the first conductor blocks 400 can be Need to change.

線段L1及線段L2的寬度較佳與閘極驅動線241的寬度或源極驅動線243的寬度相同或稍小。該M條第一導體區塊線40-1,40-2,...,40-M、該N條連接線41-1,41-2,...,41-N、及該N條第二導體區塊線50-1,50-2,...,50-N的位置係依據與該薄膜電晶體層240之該複數條閘極驅動線241及源極驅動線243的位置相對應而設置。而該複數條遮光線條271主要目的係遮住閘極驅動線241及源極驅動線243。亦即,由該第一基板210往該第二基板220方向看過去,該M條第一導體區塊線40-1,40-2,...,40-M、該N條連接線41-1,41-2,...,41-N、及該N條第二導體區塊線50-1,50-2,...,50-N係設置在該複數條遮光線條271的位置的下方,因此會被該複數條遮光線條271遮住,使用者則看不到該M條第一導體區塊線40-1,40-2,...,40-M、該N條連接線41-1,41-2,...,41-N、及該N條第二導體區塊線50-1,50-2,...,50-N,因此並不影響透光率。 The width of the line segment L1 and the line segment L2 is preferably the same as or slightly smaller than the width of the gate driving line 241 or the width of the source driving line 243. The M first conductor block lines 40-1, 40-2, ..., 40-M, the N connection lines 41-1, 41-2, ..., 41-N, and the N pieces The positions of the second conductor block lines 50-1, 50-2, ..., 50-N are based on the positions of the plurality of gate drive lines 241 and the source drive lines 243 of the thin film transistor layer 240. Set accordingly. The plurality of light-shielding lines 271 are mainly intended to cover the gate driving line 241 and the source driving line 243. That is, the M first strip conductor lines 40-1, 40-2, ..., 40-M, and the N connecting lines 41 are viewed from the first substrate 210 toward the second substrate 220. -1, 41-2, ..., 41-N, and the N second conductor block lines 50-1, 50-2, ..., 50-N are disposed on the plurality of shading lines 271 The lower part of the position is thus covered by the plurality of light-shielding lines 271, and the user can not see the M first conductor block lines 40-1, 40-2, ..., 40-M, the N pieces Connecting wires 41-1, 41-2, ..., 41-N, and the N second conductor block wires 50-1, 50-2, ..., 50-N, thus not affecting light transmission rate.

在感應電極及走線層250及該感應電極層260之間有一第一絕緣層320。該感應電極層260與該薄膜電晶體層240之間可設置第二絕緣層330。該彩色濾光層280位於該遮光層270之面向該顯示層230一側的表面上。在該彩色濾光層280與該顯示層230之間有一第三絕緣層340。該第一偏光層300係位於該第一基板210之背向該顯示層230一側的表面。該第二偏光層310係位於該下基220板之背向該顯示層230一側的表面。 A first insulating layer 320 is disposed between the sensing electrode and the wiring layer 250 and the sensing electrode layer 260. A second insulating layer 330 may be disposed between the sensing electrode layer 260 and the thin film transistor layer 240. The color filter layer 280 is located on a surface of the light shielding layer 270 facing the display layer 230 side. A third insulating layer 340 is disposed between the color filter layer 280 and the display layer 230. The first polarizing layer 300 is located on a surface of the first substrate 210 facing away from the display layer 230. The second polarizing layer 310 is located on a surface of the lower substrate 220 facing away from the display layer 230.

圖12係本創作之一種高準確度之窄邊框內嵌 式平面顯示觸控結構1200的另一疊層示意圖,如圖12所示,該高準確度之窄邊框內嵌式平面顯示觸控結構1200包括有第一基板210、一第二基板220、一薄膜電晶體層240、一感應電極及走線層250、一感應電極層260、一遮光層(black matrix)270、一彩色濾光層(color filter)280、一第一絕緣層320、一第二絕緣層330、一陰極層1210、一顯示層1220、及一陽極層1230。該顯示層1220於本實施例中較佳為一有機發光二極體層1290。其與圖2主要差別在於使用有機發光二極體層1290替代液晶層,因此亦新增該陰極層1210及該陽極層1230。 Figure 12 is a high-accuracy narrow border inlay of the creation. As shown in FIG. 12 , the high-precision narrow-frame in-cell planar display touch structure 1200 includes a first substrate 210 , a second substrate 220 , and a a thin film transistor layer 240, a sensing electrode and wiring layer 250, a sensing electrode layer 260, a black matrix 270, a color filter 280, a first insulating layer 320, and a first A second insulating layer 330, a cathode layer 1210, a display layer 1220, and an anode layer 1230. The display layer 1220 is preferably an organic light emitting diode layer 1290 in this embodiment. The main difference from FIG. 2 is that the organic light emitting diode layer 1290 is used instead of the liquid crystal layer, so the cathode layer 1210 and the anode layer 1230 are also added.

本實施例係本創作係在薄膜電晶體層240之面向該顯示層1220一側設置感應電極及走線層250及感應電極層260,並在其上佈植感應觸控圖型結構。在感應電極及走線層250設置的M條第一導體區塊線40-1,40-2,...,40-M及N條連接線41-1,41-2,...,41-N、及在感應電極層260設置的N條第二導體區塊線50-1,50-2,...,50-N的詳細情形如第一實施例、及圖3至圖11所揭露,為熟於該技術者基於本發明第一實施例所揭露所能完成,故不再贅述。 In this embodiment, the sensing electrode, the wiring layer 250 and the sensing electrode layer 260 are disposed on the side of the thin film transistor layer 240 facing the display layer 1220, and an inductive touch pattern structure is implanted thereon. M first conductor block lines 40-1, 40-2, ..., 40-M and N connection lines 41-1, 41-2, ... disposed in the sensing electrode and wiring layer 250, 41-N, and the details of the N second conductor block lines 50-1, 50-2, ..., 50-N disposed in the sensing electrode layer 260 are as in the first embodiment, and in FIGS. 3 to 11. It is disclosed that those skilled in the art can complete the disclosure based on the first embodiment of the present invention, and therefore will not be described again.

該有機發光二極體層1290包含一電洞傳輸子層(hole transporting layer,HTL)1221、一發光層(emitting layer)1223、及一電子傳輸子層(electron transporting layer,HTL)1225。 The organic light emitting diode layer 1290 includes a hole transporting layer (HTL) 1221, an emitting layer 1223, and an electron transporting layer (HTL) 1225.

該薄膜電晶體層240位於該第二基板220面對於該有機發光二極體層1290一側的表面,該薄膜電晶體層 240具有複數條閘極驅動線(圖未示)、複數條源極驅動線(圖未示)、及複數個畫素驅動電路247,每一個畫素驅動電路247係對應至一畫素,依據一顯示像素訊號及一顯示驅動訊號,用以驅動對應之畫素驅動電路247,進而執行顯示操作。 The thin film transistor layer 240 is located on a surface of the second substrate 220 facing the organic light emitting diode layer 1290, and the thin film transistor layer The 240 has a plurality of gate driving lines (not shown), a plurality of source driving lines (not shown), and a plurality of pixel driving circuits 247. Each of the pixel driving circuits 247 corresponds to a pixel, according to A display pixel signal and a display driving signal are used to drive the corresponding pixel driving circuit 247 to perform a display operation.

依畫素驅動電路247設計的不同,例如2T1C係由2薄膜電晶體與1儲存電容設計而成畫素驅動電路247,6T2C係由6薄膜電晶體與2儲存電容設計而成畫素驅動電路247。畫素驅動電路247中最少有一薄膜電晶體的閘極2471連接至一條閘極驅動線(圖未示),依驅動電路設計的不同,控制電路中最少有一薄膜電晶體的汲極/源極2473連接至一條源極驅動線(圖未示),畫素驅動電路247中最少有一薄膜電晶體的汲極/源極2475連接至該陽極層1230中的一個對應的陽極畫素電極1231。 Depending on the design of the pixel driving circuit 247, for example, the 2T1C is designed as a pixel driving circuit 247 by a thin film transistor and a storage capacitor, and the 6T2C is designed as a pixel driving circuit 247 by a 6 thin film transistor and a 2 storage capacitor. . The gate electrode 2471 of at least one thin film transistor of the pixel driving circuit 247 is connected to a gate driving line (not shown). According to the design of the driving circuit, at least one thin film transistor has a drain/source 2473 in the control circuit. Connected to a source driving line (not shown), a drain/source 2475 of at least one thin film transistor in the pixel driving circuit 247 is connected to a corresponding anode pixel 1231 of the anode layer 1230.

該陽極層1230位於該薄膜電晶體層240面向該有機發光二極體層1290之一側。該陽極層1230具有複數個陽極畫素電極1231。該複數個陽極畫素電極1231的每一個陽極畫素電極係與該薄膜電晶體層240的該畫素驅動電路247之一個畫素驅動電晶體對應,亦即該複數個陽極畫素電極的每一個陽極畫素電極係與對應的該畫素驅動電路247之該畫素驅動電晶體之源極/汲極連接,以形成一特定顏色的畫素電極,例如紅色畫素電極、綠色畫素電極、或藍色畫素電極。 The anode layer 1230 is located on a side of the thin film transistor layer 240 facing the organic light emitting diode layer 1290. The anode layer 1230 has a plurality of anode pixel electrodes 1231. Each anode pixel electrode of the plurality of anode pixel electrodes 1231 corresponds to a pixel driving transistor of the pixel driving circuit 247 of the thin film transistor layer 240, that is, each of the plurality of anode pixel electrodes An anode pixel electrode is connected to the source/drain of the pixel driving transistor of the corresponding pixel driving circuit 247 to form a pixel electrode of a specific color, such as a red pixel electrode or a green pixel electrode. , or blue pixel electrodes.

該陰極層1210位於該第一基板210面對該有機發光二極體層1290一側的表面。同時,該陰極層1210位於 該第一基板210與該有機發光二極體層1290之間。該陰極層1210係由金屬導電材料所形成。較佳地,該陰極層1210係由厚度小於50奈米(nm)的金屬材料所形成,該金屬材料係選自下列群組其中之一:鋁(Al)、銀(Ag)、鎂(Mg)、鈣(Ca)、鉀(K)、鋰(Li)、銦(In),上述材料之合金或使用氟化鋰(LiF)、氟化鎂(MgF2)、氧化鋰(LiO)與Al組合而成。由於該陰極層1210的厚度小於50nm,因此有機發光二極體層1290所產生的光仍可穿透陰極層1210,以於第一基板210上顯示影像。該陰極層1210係整片電氣連接著,因此可作為遮罩(shielding)之用。同時,該陰極層1210亦接收由陽極畫素電極1231來的電流。 The cathode layer 1210 is located on a surface of the first substrate 210 facing the side of the organic light emitting diode layer 1290. At the same time, the cathode layer 1210 is located The first substrate 210 is between the organic light emitting diode layer 1290. The cathode layer 1210 is formed of a metal conductive material. Preferably, the cathode layer 1210 is formed of a metal material having a thickness of less than 50 nanometers (nm) selected from one of the group consisting of aluminum (Al), silver (Ag), and magnesium (Mg). ), calcium (Ca), potassium (K), lithium (Li), indium (In), an alloy of the above materials or a combination of lithium fluoride (LiF), magnesium fluoride (MgF2), lithium oxide (LiO) and Al Made. Since the thickness of the cathode layer 1210 is less than 50 nm, the light generated by the organic light emitting diode layer 1290 can still penetrate the cathode layer 1210 to display an image on the first substrate 210. The cathode layer 1210 is electrically connected to the entire sheet and thus can be used as a shield. At the same time, the cathode layer 1210 also receives current from the anode pixel electrode 1231.

圖13係本創作之一種高準確度之窄邊框內嵌式平面顯示觸控結構1300的又一疊層示意圖,如圖13所示,其與圖2主要差別在於該感應電極及走線層250及該感應電極層260的位置互換。亦即,一感應電極及走線層250(圖2之感應電極及走線層250)位於該薄膜電晶體層240之面向該顯示層230一側的表面上,並具有沿著一第一方向(X)排列的M條第一導體區塊線40-1,40-2,...,40-M及N條連接線41-1,41-2,...,41-N,其依據一觸控驅動訊號而感應是否有一外部物件接近,其中,M、N為正整數。該M條第一導體區塊線40-1,40-2,...,40-M的每一條第一導體區塊線係由複數個第一導體區塊400所組成。其中,該M條第一導體區塊線40-1,40-2,...,40-M及該N條連接線41-1,41-2,...,41-N係由金屬導電材料所製成。一感應電極層260(圖2之感應電極層260)位於該感應 電極及走線層250(圖2之感應電極及走線層250)之面向該顯示層230一側,亦即該感應電極層260係介於該感應電極及走線層250與該顯示層230之間,或是說該感應電極及走線層250係介於該感應電極層260與該薄膜電晶體層240之間。該感應電極層260具有沿著一第二方向(Y)排列的N條第二導體區塊線50-1,50-2,...,50-N,其執行觸控感應時,接受該觸控驅動訊號,每一第二導體區塊線50-1,50-2,...,50-N以一對應之第i條連接線41-1,41-2,...,41-N延伸至該高準確度之窄邊框內嵌式平面顯示觸控結構之一側邊201,i為正整數且1≦i≦N。該N條第二導體區塊線50-1,50-2,...,50-N的每一條第二導體區塊線係由複數個第二導體區塊500所組成。該複數個第一導體區塊400、該N條連接線41-1,41-2,...,41-N、及該複數個第二導體區塊500的位置係依據與該薄膜電晶體層240之K條閘極驅動線及該L條源極驅動線的位置相對應而設置,且該第一導體區塊400與該第二導體區塊500疊置時,係以差排方式(dislocation)疊置。 FIG. 13 is still another schematic diagram of a high-accuracy narrow-frame in-cell planar display touch structure 1300. As shown in FIG. 13, the main difference from FIG. 2 is that the sensing electrode and the wiring layer 250 are The positions of the sensing electrode layers 260 are interchanged. That is, a sensing electrode and wiring layer 250 (the sensing electrode and wiring layer 250 of FIG. 2) is located on a surface of the thin film transistor layer 240 facing the display layer 230 and has a first direction (X) M first conductor block lines 40-1, 40-2, ..., 40-M and N connection lines 41-1, 41-2, ..., 41-N, which According to a touch driving signal, it is sensed whether there is an external object approaching, wherein M and N are positive integers. Each of the first conductor block lines 40-1, 40-2, ..., 40-M of the M first conductor block lines is composed of a plurality of first conductor blocks 400. Wherein, the M first conductor block lines 40-1, 40-2, ..., 40-M and the N connection lines 41-1, 41-2, ..., 41-N are made of metal Made of conductive material. A sensing electrode layer 260 (the sensing electrode layer 260 of FIG. 2) is located at the sensing The electrode and the wiring layer 250 (the sensing electrode and the wiring layer 250 of FIG. 2 ) face the display layer 230 , that is, the sensing electrode layer 260 is interposed between the sensing electrode and the wiring layer 250 and the display layer 230 . The sensing electrode and the wiring layer 250 are interposed between the sensing electrode layer 260 and the thin film transistor layer 240. The sensing electrode layer 260 has N second conductor block lines 50-1, 50-2, ..., 50-N arranged along a second direction (Y), which is accepted when performing touch sensing The touch driving signal, each of the second conductor block lines 50-1, 50-2, ..., 50-N is connected to the corresponding i-th connecting line 41-1, 41-2, ..., 41 -N extends to the side 201 of one of the high-precision narrow-frame in-cell planar display touch structures, i being a positive integer and 1≦i≦N. Each of the N second conductor block lines 50-1, 50-2, ..., 50-N is composed of a plurality of second conductor blocks 500. The plurality of first conductor blocks 400, the N connecting lines 41-1, 41-2, ..., 41-N, and the positions of the plurality of second conductor blocks 500 are based on the thin film transistor The positions of the K gate driving lines of the layer 240 and the L source driving lines are correspondingly arranged, and when the first conductor block 400 and the second conductor block 500 are stacked, they are arranged in a differential manner ( Dislocation).

習知氧化銦錫材質(ITO)所做的電極點其平均透光率僅約為90%,而本創作的該M條第一導體區塊線40-1,40-2,...,40-M、該N條連接線41-1,41-2,...,41-N、及該N條第二導體區塊線50-1,50-2,...,50-N係設置在K條閘極驅動線及該L條源極驅動線的位置的上方,因此並不影響透光率,故本創作的平均透光率遠較習知技術為佳。當本創作的窄邊框之觸控面板結構與液晶顯示面板結合時,可使液晶顯示面板的亮度較習知技術更亮。或是在相同的亮度下,減低液晶顯 示面板的背光能量消耗。 It is known that the electrode dots made of indium tin oxide (ITO) have an average light transmittance of only about 90%, and the M first conductor block lines 40-1, 40-2, ... 40-M, the N connecting lines 41-1, 41-2, ..., 41-N, and the N second conductor block lines 50-1, 50-2, ..., 50-N It is disposed above the position of the K gate drive lines and the L source drive lines, and thus does not affect the light transmittance. Therefore, the average light transmittance of the present creation is much better than the conventional technology. When the touch panel structure of the narrow frame of the present invention is combined with the liquid crystal display panel, the brightness of the liquid crystal display panel can be made brighter than the prior art. Or reduce the LCD display at the same brightness The backlight energy consumption of the display panel.

由前述說明可知,圖1習知技術的設計將增加觸控面板邊框的寬度,並不適合窄邊框設計的趨勢。同時,當採用氧化銦錫材質當作跨橋結構以連接兩個氧化銦錫材質的電極點時,由於氧化銦錫材質不像金屬具有良好的延展性,容易在跨橋處產生斷點或是電氣訊號不良等現象。若使用金屬當作跨橋結構以連接兩個氧化銦錫材質的電極點時,由於金屬與氧化銦錫為異質材質,容易在跨橋處產生電氣訊號不良現象,而影響偵測觸碰點的正確性。 It can be seen from the foregoing description that the design of the prior art of FIG. 1 will increase the width of the touch panel frame and is not suitable for the trend of narrow frame design. At the same time, when using indium tin oxide as a bridge structure to connect two indium tin oxide electrode points, since indium tin oxide material does not have good ductility like metal, it is easy to generate breakpoints at the bridge or Bad electrical signals and other phenomena. If metal is used as a bridge structure to connect two indium tin oxide electrode points, since the metal and indium tin oxide are heterogeneous materials, it is easy to generate electrical signal defects at the bridge, which affects the detection of touch points. Correctness.

而本創作不論是M條第一導體區塊線40-1,40-2,...,40-M及N條第二導體區塊線50-1,50-2,...,50-N或是走線均為金屬材質,可較習知技術有較佳的傳導性,而容易將導體線的感應訊號傳輸至該控制電路,而使該控制電路計算出的座標更準確。較習知技術有較佳的透光率,且可避免使用昂貴的氧化銦錫材質,據此降低成本。且較習知技術更適合設計在窄邊框的觸控面板,同時使用金屬做為觸控感應電極具有高延展性,適用於軟性顯示器。 The creation is M, the first conductor block lines 40-1, 40-2, ..., 40-M and the N second conductor block lines 50-1, 50-2, ..., 50 -N or the traces are made of metal, which has better conductivity than the conventional technology, and it is easy to transmit the sensing signal of the conductor line to the control circuit, so that the coordinates calculated by the control circuit are more accurate. Compared with the prior art, the light transmittance is better, and the expensive indium tin oxide material can be avoided, thereby reducing the cost. Compared with the conventional technology, it is more suitable for designing a touch panel with a narrow bezel, and the use of metal as a touch sensing electrode has high ductility, and is suitable for a flexible display.

同時,本創作藉由將該第一導體區塊線40-1,40-2,...,40-M與該第二導體區塊線50-1,50-2,...,50-N以差排方式(dislocation)疊置,可增加該第一導體區塊線40-1,40-2,...,40-M與該第二導體區塊線50-1,50-2,...,50-N之間的感應電容。故控制電路的內部驅動器(圖未示)可以使用較小的電壓,以驅動第一導體區塊線,而獲得與習知技術相同的感應電容變化量,可較習知技術節省電力消耗。因此,本創作尤 其適合手持式裝置。同時,由於該第一導體區塊線40-1,40-2,...,40-M與該第二導體區塊線50-1,50-2,...,50-N之間的感應電容變化量變大,控制電路的感測器(圖未示)更能準確地偵測該第二導體區塊線50-1,50-2,...,50-N上的電壓,相較習知技術更可提昇觸碰的準確度。 Meanwhile, the present creation is performed by the first conductor block lines 40-1, 40-2, ..., 40-M and the second conductor block lines 50-1, 50-2, ..., 50 -N is superposed in a dislocation manner to increase the first conductor block lines 40-1, 40-2, ..., 40-M and the second conductor block lines 50-1, 50- 2,..., 50-N between the sensing capacitors. Therefore, the internal driver (not shown) of the control circuit can use a smaller voltage to drive the first conductor block line, and obtain the same amount of induced capacitance variation as the prior art, which can save power consumption compared with the prior art. Therefore, this creation is especially It is suitable for handheld devices. At the same time, due to the first conductor block line 40-1, 40-2, ..., 40-M and the second conductor block line 50-1, 50-2, ..., 50-N The amount of change in the sense capacitance becomes larger, and the sensor of the control circuit (not shown) can more accurately detect the voltage on the second conductor block lines 50-1, 50-2, ..., 50-N, Compared with the prior art, the accuracy of the touch can be improved.

上述實施例僅係為了方便說明而舉例而已,本創作所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。 The above-described embodiments are merely examples for convenience of description, and the scope of the claims is intended to be limited to the above embodiments.

200‧‧‧高準確度之窄邊框內嵌式平面顯示觸控結構 200‧‧‧High-accuracy narrow bezel in-line flat display touch structure

210‧‧‧第一基板 210‧‧‧First substrate

220‧‧‧第二基板 220‧‧‧second substrate

230‧‧‧顯示層 230‧‧‧Display layer

240‧‧‧薄膜電晶體層 240‧‧‧film transistor layer

250‧‧‧感應電極及走線層 250‧‧‧Induction electrode and trace layer

260‧‧‧感應電極層 260‧‧‧Induction electrode layer

270‧‧‧遮光層 270‧‧‧ shading layer

280‧‧‧彩色濾光層 280‧‧‧Color filter layer

300‧‧‧第一偏光層 300‧‧‧First polarizing layer

310‧‧‧第二偏光層 310‧‧‧Second polarizing layer

320‧‧‧第一絕緣層 320‧‧‧First insulation

330‧‧‧第二絕緣層 330‧‧‧Second insulation

340‧‧‧第三絕緣層 340‧‧‧ third insulation layer

291‧‧‧薄膜電晶體 291‧‧‧Thin film transistor

293‧‧‧透明電極 293‧‧‧Transparent electrode

Claims (18)

一種高準確度之窄邊框內嵌式平面顯示觸控結構,包括:一第一基板;一第二基板,該第一基板及該第二基板以平行成對之配置將一顯示層夾置於二基板之間;一薄膜電晶體層,位於該第二基板之面向該顯示層一側的表面,該薄膜電晶體層具有K條閘極驅動線及L條源極驅動線,該K條閘極驅動線及L條源極驅動線設置於一第一方向及一第二方向,以形成複數個畫素區塊,每一個畫素區塊具有對應之一畫素電晶體及一畫素電容,依據一顯示像素訊號及一顯示驅動訊號,以驅動對應之該畫素電晶體及該畫素電容,進而執行顯示操作,其中,K、L為正整數;一感應電極及走線層,位於該薄膜電晶體層之面向該顯示層之一側,並具有沿著一第一方向排列的M條第一導體區塊線及N條連接線,其依據一觸控驅動訊號而感應是否有一外部物件接近,其中,M、N為正整數,該M條第一導體區塊線的每一條第一導體區塊線係由複數個第一導體區塊所組成;以及一感應電極層,位於該薄膜電晶體層之面向該顯示層之一側,該感應電極層係介於該感應電極及走線層及該薄膜電晶體層之間,其具有沿著一第二方向排列的N條第二導體區塊線,其執行觸控感應時,接受該觸控驅動訊號,每一第二導體區塊線以一對應之第i條連接線延伸至該高準確度之窄邊框內嵌式平面顯示觸控結構之一側邊,i為正整數且1≦i≦N,該N條第二導體區塊線的每一條第二導體區塊線係由複數個第二導體區塊所組成; 其中,該複數個第一導體區塊、該N條連接線、及該複數個第二導體區塊的位置係依據與該薄膜電晶體層的K條閘極驅動線及該L條源極驅動線的位置相對應而設置。 A high-accuracy narrow-frame in-cell planar display touch structure includes: a first substrate; a second substrate, the first substrate and the second substrate are sandwiched by a display layer in a parallel pair configuration Between the two substrates; a thin film transistor layer on a surface of the second substrate facing the display layer, the thin film transistor layer having K gate driving lines and L source driving lines, the K gates The pole driving line and the L source driving lines are disposed in a first direction and a second direction to form a plurality of pixel blocks, each pixel block having a corresponding pixel transistor and a pixel capacitor And performing a display operation according to a display pixel signal and a display driving signal to drive the corresponding pixel transistor and the pixel capacitor, wherein K and L are positive integers; a sensing electrode and a wiring layer are located The thin film transistor layer faces one side of the display layer, and has M first conductor block lines and N connection lines arranged along a first direction, which sense whether there is an external part according to a touch driving signal The object is close, where M and N are positive integers Each of the first conductor block lines of the M first conductor block lines is composed of a plurality of first conductor blocks; and a sensing electrode layer is disposed on the thin film transistor layer facing the display layer The sensing electrode layer is interposed between the sensing electrode and the wiring layer and the thin film transistor layer, and has N second conductor block lines arranged along a second direction, when performing touch sensing Receiving the touch driving signal, each second conductor block line extends to a side of one of the high-precision narrow frame in-cell planar display touch structures with a corresponding ith connection line, i is positive Integer and 1≦i≦N, each second conductor block line of the N second conductor block lines is composed of a plurality of second conductor blocks; The positions of the plurality of first conductor blocks, the N connecting lines, and the plurality of second conductor blocks are driven according to the K gate driving lines and the L source driving lines of the thin film transistor layer. The position of the line is set correspondingly. 如申請專利範圍第1項所述之高準確度之窄邊框內嵌式平面顯示觸控結構,其中,該第一導體區塊與該第二導體區塊疊置時,係以差排方式疊置。 The high-accuracy narrow-frame in-cell planar display touch structure as described in claim 1, wherein the first conductor block and the second conductor block are stacked in a differential manner Set. 如申請專利範圍第2項所述之高準確度之窄邊框內嵌式平面顯示觸控結構,其中,該複數個畫素區塊的每一畫素區塊的長度與寬度分別為一第一距離及一第二距離。 The high-accuracy narrow-frame in-line planar display touch structure as described in claim 2, wherein each pixel block of the plurality of pixel blocks has a length and a width respectively Distance and a second distance. 如申請專利範圍第3項所述之高準確度之窄邊框內嵌式平面顯示觸控結構,其中,該第一導體區塊與該第二導體區塊以差排方式疊置時,該第一導體區塊的中心位置與該第二導體區塊的中心位置在該第二方向上相差該第一距離之一第一倍數,在該第一方向上相差該第二距離之一第二倍數,其中,該第一倍數及該第二倍數為正整數。 The high-accuracy narrow-frame in-cell planar display touch structure as described in claim 3, wherein the first conductor block and the second conductor block are stacked in a differential manner, the first a central portion of the one conductor block and a center position of the second conductor block differing in the second direction by a first multiple of the first distance, in the first direction being different from the second multiple of the second distance Wherein the first multiple and the second multiple are positive integers. 如申請專利範圍第4項所述之高準確度之窄邊框內嵌式平面顯示觸控結構,其中,該複數個第一導體區塊的每一第一導體區塊的長度與寬度分別為一第三距離及一第四距離,該複數個第二導體區塊的每一第二導體區塊的長度與寬度分別為一第五距離及一第六距離,當中,該第三距離為該第一距離的一第三倍數的兩倍,該第四距離為該第二距離的一第四倍數的兩倍,該第五距離為該第一距離的一第五倍數的兩倍,該第六距離為該第二距離的一第六倍數的兩倍,其中,該第三倍數、該第四倍數、該第五倍數、及該第六倍數為正整數。 The high-accuracy narrow-frame in-cell planar display touch structure as described in claim 4, wherein each of the plurality of first conductor blocks has a length and a width of one a third distance and a fourth distance, the length and the width of each of the second conductor blocks of the plurality of second conductor blocks are respectively a fifth distance and a sixth distance, wherein the third distance is the first distance a double of a third multiple of the distance, the fourth distance being twice a fourth multiple of the second distance, the fifth distance being twice a fifth multiple of the first distance, the sixth The distance is twice a sixth multiple of the second distance, wherein the third multiple, the fourth multiple, the fifth multiple, and the sixth multiple are positive integers. 如申請專利範圍第5項所述之高準確度之窄邊框內嵌式平面顯示觸控結構,其中,該第一倍數小於或等於該第三倍數或該第五倍數中較小者,該第二倍數小於或等於該第四倍數 或該第六倍數中較小者,h≦min(h1,h2),w≦min(w1,w2),當中,h為該第一倍數,w為該第二倍數,h1為該第三倍數,w1為該第四倍數,h2為該第五倍數,w2為該第六倍數。 The high-accuracy narrow-frame in-cell planar display touch structure as described in claim 5, wherein the first multiple is less than or equal to the third one of the third multiple or the fifth multiple, the first The multiple is less than or equal to the fourth multiple Or the smaller of the sixth multiples, h≦min(h1, h2), w≦min(w1, w2), where h is the first multiple, w is the second multiple, and h1 is the third multiple , w1 is the fourth multiple, h2 is the fifth multiple, and w2 is the sixth multiple. 如申請專利範圍第1項所述之高準確度之窄邊框內嵌式平面顯示觸控結構,其中,每一第一導體區塊線係分別以對應之金屬走線延伸至該第一基板之同一側邊,以進一步連接至一軟性電路板。 The high-accuracy narrow-frame in-line planar display touch structure as described in claim 1 , wherein each of the first conductor block lines extends to the first substrate by a corresponding metal trace The same side to further connect to a flexible circuit board. 如申請專利範圍第7項所述之高準確度之窄邊框內嵌式平面顯示觸控結構,其中,該N條連接線、複數個第一導體區塊、及複數個第二導體區塊係由金屬導電材料所製成。 The high-accuracy narrow-frame in-cell planar display touch structure as described in claim 7, wherein the N connection lines, the plurality of first conductor blocks, and the plurality of second conductor block systems Made of metal conductive material. 如申請專利範圍第8項所述之高準確度之窄邊框內嵌式平面顯示觸控結構,其中,該M條第一導體區塊線的每一條第一導體區塊線之複數個第一導體區塊係形成一個四邊型區域,且電氣連接在一起,該M條第一導體區塊線的每一條第一導體區塊線之間並未連接,該N條第二導體區塊線的每一條第二導體區塊線之複數個第二導體區塊係形成一個四邊型區域,且電氣連接在一起,該N條第二導體區塊線的每一條第二導體區塊線之間並未連接。 The high-accuracy narrow-frame in-cell planar display touch structure as described in claim 8 wherein the first plurality of first conductor block lines of the M first conductor block lines are first The conductor block forms a quadrilateral region and is electrically connected together, and each of the first conductor block lines of the M first conductor block lines is not connected, and the N second conductor block lines are a plurality of second conductor blocks of each of the second conductor block lines form a quadrilateral region and are electrically connected together, and each of the N second conductor block lines is between each of the second conductor block lines not connected. 如申請專利範圍第1項所述之高準確度之窄邊框內嵌式平面顯示觸控結構,其中,該第一方向係垂直第二方向。 The high-accuracy narrow-frame in-cell planar display touch structure as described in claim 1, wherein the first direction is perpendicular to the second direction. 如申請專利範圍第1項所述之高準確度之窄邊框內嵌式平面顯示觸控結構,其中,該N條連接線的每一條連接線係排列於兩條第一導體區塊線之間。 The high-accuracy narrow bezel embedded flat display touch structure as described in claim 1, wherein each of the N connecting lines is arranged between the two first conductor block lines . 如申請專利範圍第9項所述之高準確度之窄邊框內嵌式平面顯示觸控結構,其中,該第一導體區塊及該第二導體區塊所形成之該四邊型區域係為下列形狀其中之一:長方形、正方形。 The high-accuracy narrow-frame in-cell planar display touch structure as described in claim 9, wherein the quadrilateral region formed by the first conductor block and the second conductor block is as follows One of the shapes: rectangle, square. 如申請專利範圍第8項所述之高準確度之窄邊框內嵌式平面顯示觸控結構,其中,該金屬導電材料係為下列其中之一:鉬、鋇、鋁、銀、銅、鈦、鎳、鉭、鈷、鎢、鎂(Mg)、鈣(Ca)、鉀(K)、鋰(Li)、銦(In)、合金、氟化鋰(LiF)、氟化鎂(MgF2)、氧化鋰(LiO)。 The high-accuracy narrow bezel embedded flat display touch structure as described in claim 8 wherein the metal conductive material is one of the following: molybdenum, niobium, aluminum, silver, copper, titanium, Nickel, bismuth, cobalt, tungsten, magnesium (Mg), calcium (Ca), potassium (K), lithium (Li), indium (In), alloy, lithium fluoride (LiF), magnesium fluoride (MgF2), oxidation Lithium (LiO). 如申請專利範圍第1項所述之高準確度之窄邊框內嵌式平面顯示觸控結構,其更包含:一遮光層,位於該第一基板之面向該顯示層之一側的表面,該遮光層係由複數條遮光線條所構成,該複數條遮光線條設置於該第一方向及該第二方向,以形成複數個遮光區塊;一彩色濾光層,位於該遮光層之面向該顯示層一側的表面上;一第一偏光層,係位於該第一基板之背向該顯示層一側的表面;以及一第二偏光層,係位於該第二基板之背向該顯示層一側的表面。 The high-accuracy narrow-frame in-cell planar display touch structure as described in claim 1, further comprising: a light shielding layer on a surface of the first substrate facing one side of the display layer, The light shielding layer is composed of a plurality of light shielding lines, wherein the plurality of light shielding lines are disposed in the first direction and the second direction to form a plurality of light shielding blocks; and a color filter layer is disposed on the light shielding layer facing the display a surface on one side of the layer; a first polarizing layer on a surface of the first substrate facing away from the side of the display layer; and a second polarizing layer on the back side of the second substrate Side surface. 如申請專利範圍第1項所述之高準確度之窄邊框內嵌式平面顯示觸控結構,其中,該顯示層為一液晶層。 The high-accuracy narrow bezel embedded flat display touch structure as described in claim 1, wherein the display layer is a liquid crystal layer. 如申請專利範圍第1項所述之高準確度之窄邊框內嵌式平面顯示觸控結構,其中,該顯示層為一有機發光二極體層。 The high-accuracy narrow bezel embedded flat display touch structure as described in claim 1, wherein the display layer is an organic light emitting diode layer. 一種高準確度之窄邊框內嵌式平面顯示觸控結構,包括:一第一基板;一第二基板,該第一基板及該第二基板以平行成對之配置將一顯示層夾置於二基板之間;一薄膜電晶體層,位於該第二基板之面向該顯示層一側的表面,該薄膜電晶體層具有K條閘極驅動線及L條源極驅動線, 該K條閘極驅動線及L條源極驅動線設置於一第一方向及一第二方向,以形成複數個畫素區塊,每一個畫素區塊具有對應之一畫素電晶體及一畫素電容,依據一顯示像素訊號及一顯示驅動訊號,以驅動對應之該畫素電晶體及該畫素電容,進而執行顯示操作,其中,K、L為正整數;一感應電極層,位於該薄膜電晶體層之面向該顯示層之一側,並具有沿著一第二方向排列的N條第二導體區塊線,其執行觸控感應時,接受一觸控驅動訊號;以及一感應電極及走線層,位於該感應電極層之面向該顯示層之一側,並具有沿著一第一方向排列的M條第一導體區塊線及N條連接線,其依據一觸控驅動訊號而感應是否有一外部物件接近,其中,M、N為正整數,該M條第一導體區塊線的每一條第一導體區塊線係由複數個第一導體區塊所組成其中,該複數個第一導體區塊、該N條連接線、及該複數個第二導體區塊的位置係依據與該薄膜電晶體層的K條閘極驅動線及該L條源極驅動線的位置相對應而設置,且該第一導體區塊與該第二導體區塊疊置時,係以差排方式疊置。 A high-accuracy narrow-frame in-cell planar display touch structure includes: a first substrate; a second substrate, the first substrate and the second substrate are sandwiched by a display layer in a parallel pair configuration Between the two substrates; a thin film transistor layer on a surface of the second substrate facing the display layer, the thin film transistor layer has K gate drive lines and L source drive lines, The K gate driving lines and the L source driving lines are disposed in a first direction and a second direction to form a plurality of pixel blocks, each pixel block having a corresponding pixel transistor and a pixel capacitor, according to a display pixel signal and a display driving signal, to drive the corresponding pixel transistor and the pixel capacitor, thereby performing a display operation, wherein K and L are positive integers; a sensing electrode layer, Located on one side of the thin film transistor layer facing the display layer, and having N second conductor block lines arranged along a second direction, when receiving touch sensing, receiving a touch driving signal; The sensing electrode and the wiring layer are located on one side of the sensing electrode layer facing the display layer, and have M first conductor block lines and N connecting lines arranged along a first direction, according to a touch Driving the signal to sense whether there is an external object approaching, wherein M and N are positive integers, and each of the first conductor block lines of the M first conductor block lines is composed of a plurality of first conductor blocks, The plurality of first conductor blocks, the N strips The wiring and the position of the plurality of second conductor blocks are disposed according to positions of the K gate driving lines and the L source driving lines of the thin film transistor layer, and the first conductor block When stacked with the second conductor block, they are stacked in a differential manner. 如申請專利範圍第17項所述之高準確度之窄邊框內嵌式平面顯示觸控結構,其中,該第一方向係垂直第二方向。 The high-accuracy narrow bezel embedded flat display touch structure as described in claim 17 wherein the first direction is perpendicular to the second direction.
TW103200740U 2014-01-14 2014-01-14 High accuracy of the narrow border embedded flat display touch structure TWM482114U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103200740U TWM482114U (en) 2014-01-14 2014-01-14 High accuracy of the narrow border embedded flat display touch structure
CN201520016163.9U CN204440369U (en) 2014-01-14 2015-01-12 High-accuracy narrow-frame embedded type flat display touch structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103200740U TWM482114U (en) 2014-01-14 2014-01-14 High accuracy of the narrow border embedded flat display touch structure

Publications (1)

Publication Number Publication Date
TWM482114U true TWM482114U (en) 2014-07-11

Family

ID=51724210

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103200740U TWM482114U (en) 2014-01-14 2014-01-14 High accuracy of the narrow border embedded flat display touch structure

Country Status (2)

Country Link
CN (1) CN204440369U (en)
TW (1) TWM482114U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106873826A (en) * 2017-01-16 2017-06-20 麦克思商务咨询(深圳)有限公司 Display device with pressure-sensing function
CN109935173B (en) * 2019-03-29 2021-10-26 上海天马微电子有限公司 Display module and display device

Also Published As

Publication number Publication date
CN204440369U (en) 2015-07-01

Similar Documents

Publication Publication Date Title
US9857903B2 (en) In-cell OLED touch display structure with high light penetration rate
US9153629B2 (en) In-cell OLED touch display panel structure of narrow border
US9164306B2 (en) In-cell touch display panel system using metal wires to connect with sensing electrodes
JP5530515B2 (en) Liquid crystal panel, liquid crystal display device
US9977272B2 (en) In-cell touch display panel structure using conductive wires to connect with sensing electrodes
US9436336B2 (en) In-cell touch display structure
US9671638B2 (en) High-accuracy in-cell touch panel structure of narrow border
KR20120121705A (en) In-cell Type Touch Panel
US10156919B2 (en) In-cell touch display structure
US9250492B2 (en) In-cell touch panel structure of narrow border
CN204178344U (en) Embedded touch display panel structure with induction electrodes connected by conducting wires
US9236421B2 (en) In-cell active matrix OLED touch display panel structure of narrow border
TWM480723U (en) High-accuracy in-cell active matrix OLED display touch structure of narrow border
TWM481449U (en) High precision embedded flat display touch structure
US9218079B2 (en) In-cell touch display panel structure
TWM480722U (en) High-accuracy in-cell flat display touch structure of narrow border
TWM491878U (en) Touch display structure using transparent sensed electrode to connect redistribution layer
CN204203923U (en) Embedded touch display panel structure
TWM482114U (en) High accuracy of the narrow border embedded flat display touch structure
CN113655914B (en) Array substrate, touch display panel and touch display device
TWM477622U (en) Narrow border embedded active matrix organic LED display touch structure
KR102040654B1 (en) Touch sensor integrated type display device and method of fabricating the same
TWM480724U (en) In-cell display touch structure using data lines as touch sensing lines
CN204613900U (en) Embedded display touch structure with display data line as touch sensing connecting line
CN204203937U (en) Embedded display touch structure

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees