TWM469543U - Touch sensing substrate - Google Patents

Touch sensing substrate Download PDF

Info

Publication number
TWM469543U
TWM469543U TW102214329U TW102214329U TWM469543U TW M469543 U TWM469543 U TW M469543U TW 102214329 U TW102214329 U TW 102214329U TW 102214329 U TW102214329 U TW 102214329U TW M469543 U TWM469543 U TW M469543U
Authority
TW
Taiwan
Prior art keywords
substrate
opaque
touch
sensing
sensing blocks
Prior art date
Application number
TW102214329U
Other languages
Chinese (zh)
Inventor
Chih-Chung Lin
Original Assignee
Chih-Chung Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chih-Chung Lin filed Critical Chih-Chung Lin
Priority to TW102214329U priority Critical patent/TWM469543U/en
Publication of TWM469543U publication Critical patent/TWM469543U/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Description

觸控基板Touch substrate

本創作係有關於一種觸控基板,尤指兼具有達到減少(或簡化)製程工序及低電阻值的效果,進而還有效增加走線空間的效果之觸控基板。
The present invention relates to a touch substrate, and more particularly to a touch substrate having the effect of reducing (or simplifying) the manufacturing process and low resistance value, and thereby effectively increasing the effect of the wiring space.

觸控面板已經廣泛地應用於目前生活中,透過將觸控面板整合於顯示面板,人們可以透過觸控操作其顯示畫面來控制電子裝置執行對應的指令。目前觸控面板的導電薄膜如是氧化銦錫(Indium tin oxide,簡稱之為ITO)薄膜或奈米銀絲薄膜,且此導電薄膜(或稱為透明電極層)形成於透明基板上,例如玻璃板或聚對苯二甲酸乙二酯(Polyethylene terephthalate,簡稱之為PET)板。其中所述奈米銀絲薄膜係由複數奈米金屬線所構成的。
  而一般習知之導電薄膜(如氧化銦錫薄膜或奈米銀絲薄膜)形成在透明基板上的製造方法大致為:將於該透明基板之表面上的導電薄膜進行塗怖光阻後,接著對以塗佈該基板之表面上的導電薄膜進行烘烤,待烘烤完後則進行曝光及顯影製程,使該基板之表面上形成有電極圖案的透明電極層,其中如以奈米銀絲薄膜為例,於該基板之表面的透明電極層係由複數奈米金屬線所構成的;然後再依序對該基板之表面的透明電極層經清洗、蝕刻、清洗、烘烤等步驟後,接著對該基板之表面的透明電極層進行網版印刷,使該基板之表面周邊形成有一走線層電性連接相鄰透明電極層後,再次經烘烤而得一觸控基板。
  雖習知透過上述製程步驟可達到製造出所述觸控面板的觸控基板,但其卻延伸出另一問題,就是必須經過上述多道繁雜步驟作業才能製造出所述觸控基板。另者,奈米銀絲薄膜的低面電阻值約在50 ohm/□,而氧化銦錫薄膜(ITO Film)的低面電阻約在150 ohms/□,且氧化銦錫薄膜面電阻較低的話,則導電性會較好,但會造成氧化銦錫薄膜的厚膜必須增大,以導致氧化銦錫薄膜的穿透度降低,故前述氧化銦錫薄膜的面阻值會影響到氧化銦錫薄膜厚度及穿透度,因此,使得面阻值越小成本會越高且技術門檻也越高,以致於面阻值居高不下。
  此外,由於走線層係透過網版印刷方式形成的,使得於該基板表面上的走線空間會受到局限。
以上所述,習知具有下列之缺點:
1.製造工序複雜繁多;
2.成本提高;
3.走線空間受限。
  是以,要如何解決上述習用之問題與缺失,即為本案之創作人與從事此行業之相關廠商所亟欲研究改善之方向所在者。
The touch panel has been widely used in the current life. By integrating the touch panel into the display panel, one can control the electronic device to execute the corresponding command through the touch operation of the display screen. At present, the conductive film of the touch panel is, for example, an indium tin oxide (ITO) film or a nano silver film, and the conductive film (or a transparent electrode layer) is formed on a transparent substrate, such as a glass plate. Or polyethylene terephthalate (PET) plate. Wherein the nanosilver film is composed of a plurality of nanowires.
The conventionally known conductive film (such as an indium tin oxide film or a nano-silver film) is formed on a transparent substrate by substantially: after the conductive film on the surface of the transparent substrate is subjected to photoresist, and then Baking the conductive film on the surface of the substrate, and after performing baking, performing an exposure and development process to form a transparent electrode layer having an electrode pattern on the surface of the substrate, wherein a nano-silver film is formed. For example, the transparent electrode layer on the surface of the substrate is composed of a plurality of nanowires; and then the transparent electrode layer on the surface of the substrate is sequentially cleaned, etched, cleaned, baked, etc., and then The transparent electrode layer on the surface of the substrate is screen-printed, and a wiring layer is electrically connected to the adjacent transparent electrode layer around the surface of the substrate, and then baked to obtain a touch substrate.
Although it is known that the touch substrate for manufacturing the touch panel can be manufactured through the above-described process steps, it extends another problem that the touch substrate must be manufactured through the above-mentioned multiple complicated steps. In addition, the low surface resistance of the nanosilver film is about 50 ohm/□, and the low surface resistance of the indium tin oxide film (ITO film) is about 150 ohms/□, and the surface resistance of the indium tin oxide film is low. , the conductivity will be better, but the thick film of the indium tin oxide film must be increased to cause the penetration of the indium tin oxide film to decrease, so the surface resistance of the indium tin oxide film affects the indium tin oxide. The thickness and penetration of the film, therefore, the smaller the surface resistance value, the higher the cost and the higher the technical threshold, so that the surface resistance value remains high.
In addition, since the wiring layer is formed by screen printing, the wiring space on the surface of the substrate is limited.
As mentioned above, the conventional disadvantages have the following disadvantages:
1. The manufacturing process is complicated and numerous;
2. Cost increase;
3. The wiring space is limited.
Therefore, how to solve the above problems and problems in the past, that is, the creators of the case and the relevant manufacturers engaged in this industry are eager to study the direction of improvement.

爰此,為有效解決上述之問題,本創作之主要目的在提供一種具有減少(或簡化)製造工序及低面阻值的觸控基板。
本創作之另一目的係提供一種具有達到增加走線空間的觸控基板。
  為達上述目的,本創作係提供一種觸控基板,係應用於一觸控裝置上,且該觸控基板包括一基板、至少一不透明感應電極層及一不透明電極走線層,該基板具有一第一表面及一相反該第一表面之第二表面,該不透明感應電極層係形成在該基板的第一表面上,且其具有複數奈米銀粒及複數不透明感應區塊,該等不透明感應區塊係由該等奈米銀粒以網格狀排列所構成,且該不透明電極走線層係形成在該基板之第一表面的周邊上,且相鄰連接對應該不透明感應電極層;透過本創作此觸控基板的結構設計,得有效達到簡化製程工序及低面電阻的效果,進而還有效達到增加走線佈設空間之效果者。
Therefore, in order to effectively solve the above problems, the main purpose of the present invention is to provide a touch substrate having a reduced (or simplified) manufacturing process and a low surface resistance value.
Another object of the present invention is to provide a touch substrate having an increased wiring space.
To achieve the above objective, the present invention provides a touch substrate for use in a touch device, and the touch substrate includes a substrate, at least one opaque sensing electrode layer, and an opaque electrode routing layer, the substrate having a a first surface and a second surface opposite to the first surface, the opaque sensing electrode layer is formed on the first surface of the substrate, and has a plurality of nano silver particles and a plurality of opaque sensing blocks, the opaque sensing The block is formed by arranging the nano silver particles in a grid shape, and the opaque electrode trace layer is formed on the periphery of the first surface of the substrate, and the adjacent connection corresponds to the opaque sensing electrode layer; The structural design of the touch substrate of the present invention can effectively achieve the effects of simplifying the process process and low surface resistance, and further effectively achieving the effect of increasing the wiring layout space.

1‧‧‧觸控裝置
10‧‧‧觸控基板
101‧‧‧基板
1011‧‧‧第一表面
1012‧‧‧第二表面
11‧‧‧不透明感應電極層
111‧‧‧奈米銀粒
113‧‧‧不透明感應區塊
115‧‧‧不透明無感應區塊
13‧‧‧不透明電極走線層
14‧‧‧觸控區
15‧‧‧周邊區
16‧‧‧網格
161‧‧‧小網格
17‧‧‧光學膠
d‧‧‧線寬
X‧‧‧第一方向
Y‧‧‧第二方向
1‧‧‧ touch device
10‧‧‧ touch substrate
101‧‧‧Substrate
1011‧‧‧ first surface
1012‧‧‧ second surface
11‧‧‧Opacity sensing electrode layer
111‧‧‧Neon Silver
113‧‧‧Opacity sensing block
115‧‧‧opaque, non-sensing block
13‧‧‧opaque electrode trace layer
14‧‧‧ touch area
15‧‧‧The surrounding area
16‧‧‧Grid
161‧‧‧Small grid
17‧‧‧Optical adhesive
d‧‧‧Line width
X‧‧‧ first direction
Y‧‧‧second direction

第1A圖係本創作之較佳實施例之立體示意圖;
第1B圖係本創作之第1A圖之局部放大示意圖;
第1C圖係本創作之第1A圖之另一局部放大示意圖;
第2圖係本創作之較佳實施例之另一立體示意圖;
第3圖係本創作之較佳實施例之觸控裝置立體示意圖;
第4圖係本創作之較佳實施例之觸控裝置剖面示意圖。

Figure 1A is a perspective view of a preferred embodiment of the present invention;
1B is a partial enlarged view of the first drawing of the present invention;
1C is another partial enlarged view of the first drawing of the present invention;
Figure 2 is another perspective view of a preferred embodiment of the present invention;
3 is a perspective view of a touch device according to a preferred embodiment of the present invention;
Figure 4 is a cross-sectional view of a touch device of the preferred embodiment of the present invention.

本創作之上述目的及其結構與功能上的特性,將依據所附圖式之較佳實施例予以說明。
本創作係提供一種觸控基板,請參閱第1A圖示係顯示本創作之較佳實施例之立體示意圖,並輔以參閱第1B、3、4圖示;該觸控基板10係應用於一觸控裝置1(或稱觸控面板)上,於具體實施時,本創作之觸控基板10可應用於各種疊層結構的觸控裝置1,如GFF(Glass-Film-Film)、G1F(Glass-Film)、GG(Glass-Glass)…等,也就是將本創作此觸控基板10取代觸控裝置1上形成有感應電極(如氧化銦錫薄膜或奈米銀絲薄膜)之基板101(如聚對苯二甲酸乙二酯或玻璃)。
  另者,前述觸控基板10包括一基板101、至少一不透明(但可選擇可透光或不可透光其中任一)感應電極層11及一不透明(但可選擇可透光或不可透光其中任一)電極走線層13,該基板101係以可撓性材料所構成,於該較佳實施例之基板101係以聚對苯二甲酸乙二酯(Polyethyleneterephthalate, PET)做說明,但並不侷限於此;且該基板101具有一第一表面1011、一相對該第一表面1011之第二表面1012、一觸控區14及一周邊區15,該觸控區14位於該第一表面1011的中央位置,該周邊區15則位於該觸控區14外側。
  再者,所述不透明感應電極層11係形成在該基板101之第一表面1011上,且其具有複數奈米銀粒111及複數不透明(但可選擇可透光或不可透光其中任一)感應區塊113,該等不透明感應區塊113係由該等奈米銀粒111以網格狀排列所構成,亦即一感光性之奈米銀粒薄膜係透過化學燒結方式形成在該基板101之第一表面1011上,然後依序經曝光、顯影製程,使該等不透明感應區塊113呈網格狀成形在第一表面1011的觸控區14上(如第1A或2圖示中標號113的虛框部份);簡言而之,就是不透明感應電極層11係形成設置在該基板101之第一表面1011上。
  此外,所述每一奈米銀粒111的直徑是介於數奈米至數十奈米之間,且前述不透明感應區塊113內網格16的線寬d係為1μm~10μm之間,於該較佳實施例係以較佳為7μm做說明。並該等不透明感應區塊113內網格16中的每一小網格161係以呈菱形狀做說明,但並不侷限於此,亦可選擇為矩形或其他形狀,藉以改變穿透率,亦即透過小網格161形狀來改變穿透率;所以於具體實施時,使用者可以事先根據所需面阻值及透光率的需求,調整設計所述不透明感應電極層11之網格16的線寬d粗細、改變網格16內小網格161的形狀大小,藉以達到低面阻值(約25 ohms/□)及高透光率之效果者。
  續參閱第1A、1B、2圖示,該等不透明感應區塊113彼此相鄰之間具有一不透明(但可選擇可透光或不可透光其中任一)無感應區塊115,該等不透明無感應區塊115係由複數奈米銀粒以網格狀排列所構成的,亦即該等不透明無感應區塊115呈網格狀形成在第一表面1011的觸控區14上(如第1A或2圖示中標號115的虛框部份),且位於該等不透明感應區塊113彼此之間,並該等不透明無感應區塊115與相鄰的不透明感應區塊113是未有電性連接,換言之,就是該等不透明無感應區塊115未有電流通過,使其不會有感應電極之功效。而該等不透明無感應區塊115係用以避免不透明感應區塊113容易被觀察到,藉以有效達到平衡視覺的效果。其中於該較佳實施例之該等不透明無感應區塊115與相鄰的不透明感應區塊113之間係呈斷開7μm(如第1C圖示)而達到未有電性連接做說明,但於具體實施時上述斷開的距離不侷限於7μm,使用者可以事先根據視覺感官及感應靈敏度做適當的調整,合先陳明。
  另者複數不透明感應區塊113於該較佳實施例係以一第一方向X(即X軸方向)形成設置在該基板101之第一表面1011上(如第1A圖示中標號113的虛框部份)做說明,但於本創作實施時,亦可選擇設計如第2圖示將複數不透明感應區塊113以一第二方向Y(即Y軸方向)形成設置在該基板101之第一表面1011上(如第2圖示中標號113的虛框部份),或是如第3、4圖示將觸控裝置1之兩基板101分別以第一方向X與第二方向Y形成有不透明感應區塊113,且兩基板之間具有一光學膠17(如OCR)。
  再者前述不透明電極走線層13係形成在該第一表面1011的周邊上,且相鄰連接對應該不透明感應電極層11,亦即該不透明電極走線層13係形成在該第一表面1011的周邊區15上,且連接對應於所述觸控區14上的不透明感應電極層11。
  所以透過本創作此觸控基板10的設計,使得有效達到簡化製程工序及低面電阻值的效果,進而還有效達到增加走線佈設空間之效果者。
以上所述,本創作相較於習知具有下列之優點:
1.具有達到減少(或簡化)製造工序及低面電阻值的效果;
2.具有增加走線佈設空間的效果。
  按,以上所述,僅為本創作的較佳具體實施例,惟本創作的特徵並不侷限於此,任何熟悉該項技藝者在本創作領域內,可輕易思及的變化或修飾,皆應涵蓋在以下本創作的申請專利範圍中。
The above object of the present invention, as well as its structural and functional features, will be described in accordance with the preferred embodiments of the drawings.
The present invention provides a touch substrate. Referring to FIG. 1A, a schematic view of a preferred embodiment of the present invention is shown, and reference is made to FIGS. 1B, 3, and 4; the touch substrate 10 is applied to a In the touch device 1 (or the touch panel), the touch substrate 10 of the present invention can be applied to various touch devices 1 of a stacked structure, such as GFF (Glass-Film-Film) and G1F ( Glass-Film), GG (Glass-Glass), etc., that is, the touch substrate 10 is replaced with a substrate 101 on which a sensing electrode (such as an indium tin oxide film or a nano-silver film) is formed on the touch device 1. (such as polyethylene terephthalate or glass).
In addition, the touch substrate 10 includes a substrate 101, at least one opaque (but optionally permeable or non-transmissive) sensing electrode layer 11 and an opaque layer (but may be transparent or opaque). Any of the electrode wiring layers 13, the substrate 101 is made of a flexible material, and the substrate 101 of the preferred embodiment is described by polyethylene terephthalate (PET), but The substrate 101 has a first surface 1011, a second surface 1012 opposite to the first surface 1011, a touch area 14 and a peripheral area 15. The touch area 14 is located on the first surface 1011. The central area 15 is located outside the touch area 14 .
Furthermore, the opaque sensing electrode layer 11 is formed on the first surface 1011 of the substrate 101, and has a plurality of nano silver particles 111 and a plurality of opaque layers (but may be selected to be transparent or non-transparent) In the sensing block 113, the opaque sensing blocks 113 are formed by arranging the nano silver particles 111 in a grid shape, that is, a photosensitive nano silver film is formed on the substrate 101 by chemical sintering. The first surface 1011 is then sequentially exposed and developed to form the opaque sensing blocks 113 in a grid shape on the touch area 14 of the first surface 1011 (as indicated in FIG. 1A or 2). The virtual frame portion of 113); in short, the opaque sensing electrode layer 11 is formed on the first surface 1011 of the substrate 101.
In addition, the diameter of each of the nano silver particles 111 is between several nanometers and several tens of nanometers, and the line width d of the mesh 16 in the opaque sensing block 113 is between 1 μm and 10 μm. The preferred embodiment is illustrated by a preferred 7 μm. And each of the small grids 161 in the grid 16 in the opaque sensing block 113 is illustrated in a diamond shape, but is not limited thereto, and may be selected as a rectangle or other shapes to change the transmittance. That is, the transmittance is changed by the shape of the small mesh 161; therefore, in a specific implementation, the user can adjust the grid 16 of the opaque sensing electrode layer 11 according to the required surface resistance value and the transmittance. The line width d is thick, and the shape of the small mesh 161 in the grid 16 is changed to achieve a low surface resistance value (about 25 ohms/□) and a high light transmittance.
Continuing to refer to FIGS. 1A, 1B, and 2, the opaque sensing blocks 113 have an opaque (but may be permeable or non-transmissive) adjacent to each other without an inductive block 115, such opaque The non-sensing block 115 is formed by arranging a plurality of nano silver particles in a grid shape, that is, the opaque non-sensing blocks 115 are formed in a grid shape on the touch area 14 of the first surface 1011 (eg, The imaginary opaque sensing block 113 and the adjacent opaque sensing block 113 are unpowered. The sexual connection, in other words, is that the opaque non-sensing block 115 has no current passing through, so that it does not have the effect of sensing electrodes. The opaque non-sensing blocks 115 are used to prevent the opaque sensing block 113 from being easily observed, thereby effectively achieving a balanced visual effect. The opaque non-sensing block 115 and the adjacent opaque sensing block 113 of the preferred embodiment are disconnected by 7 μm (as shown in FIG. 1C) to reach an electrically non-electrical connection, but In the specific implementation, the distance of the above disconnection is not limited to 7 μm, and the user can make appropriate adjustments according to the visual sense and the sensitivity of the sensing in advance, and the first and foremost.
In the preferred embodiment, the plurality of opaque sensing blocks 113 are formed on the first surface 1011 of the substrate 101 in a first direction X (ie, the X-axis direction) (as indicated by the reference numeral 113 in FIG. 1A). The frame portion is described. However, in the implementation of the present invention, the second opaque sensing block 113 may be formed in the second direction Y (ie, the Y-axis direction) as shown in FIG. On a surface 1011 (such as the dashed portion of the reference numeral 113 in the second figure), or as shown in FIGS. 3 and 4, the two substrates 101 of the touch device 1 are respectively formed in the first direction X and the second direction Y. There is an opaque sensing block 113 with an optical glue 17 (such as OCR) between the two substrates.
Furthermore, the opaque electrode trace layer 13 is formed on the periphery of the first surface 1011, and the adjacent connection corresponds to the opaque sensing electrode layer 11, that is, the opaque electrode trace layer 13 is formed on the first surface 1011. The peripheral area 15 is connected to the opaque sensing electrode layer 11 corresponding to the touch area 14.
Therefore, through the design of the touch substrate 10, the effect of simplifying the process process and the low surface resistance value is effectively achieved, and the effect of increasing the wiring layout space is effectively achieved.
As mentioned above, this creation has the following advantages over the prior art:
1. It has the effect of reducing (or simplifying) the manufacturing process and the low surface resistance value;
2. It has the effect of increasing the wiring space.
According to the above, it is only a preferred embodiment of the present invention, but the features of the present invention are not limited thereto, and any changes or modifications that can be easily considered by those skilled in the art can be easily changed. It should be covered in the scope of the patent application of the following creations.

10‧‧‧觸控基板 10‧‧‧ touch substrate

101‧‧‧基板 101‧‧‧Substrate

1011‧‧‧第一表面 1011‧‧‧ first surface

1012‧‧‧第二表面 1012‧‧‧ second surface

11‧‧‧不透明感應電極層 11‧‧‧Opacity sensing electrode layer

113‧‧‧不透明感應區塊 113‧‧‧Opacity sensing block

115‧‧‧不透明無感應區塊 115‧‧‧opaque, non-sensing block

13‧‧‧不透明電極走線層 13‧‧‧opaque electrode trace layer

14‧‧‧觸控區 14‧‧‧ touch area

15‧‧‧周邊區 15‧‧‧The surrounding area

16‧‧‧網格 16‧‧‧Grid

161‧‧‧小網格 161‧‧‧Small grid

X‧‧‧第一方向 X‧‧‧ first direction

Claims (7)

一種觸控基板,係包括:
一基板,係具有一第一表面及一相反該第一表面之第二表面;
至少一不透明感應電極層,係形成在該基板的第一表面上,且其具有複數奈米銀粒及複數不透明感應區塊,該等不透明感應區塊係由該等奈米銀粒以網格狀排列所構成;及
一不透明電極走線層,係形成在該基板之第一表面的周邊上,且相鄰連接對應該不透明感應電極層。
A touch substrate includes:
a substrate having a first surface and a second surface opposite the first surface;
At least one opaque sensing electrode layer is formed on the first surface of the substrate, and has a plurality of nano silver particles and a plurality of opaque sensing blocks, wherein the opaque sensing blocks are meshed by the nano silver particles And an opaque electrode routing layer is formed on the periphery of the first surface of the substrate, and the adjacent connections correspond to the opaque sensing electrode layer.
如申請專利範圍第1項所述之觸控基板,其中該等不透明感應區塊彼此相鄰之間具有一不透明無感應區塊,該等不透明無感應區塊係由複數奈米銀粒以網格狀排列所構成,且該等不透明無感應區塊係與相鄰的不透明感應區塊未有電性連接。The touch substrate of claim 1, wherein the opaque sensing blocks have an opaque non-sensing block adjacent to each other, and the opaque non-sensing blocks are made up of a plurality of nano silver particles. The lattice arrangement is formed, and the opaque non-sensing blocks are not electrically connected to the adjacent opaque sensing blocks. 如申請專利範圍第2項所述之觸控基板,其中該等不透明感應區塊係以一第一方向形成設在該基板之第一表面上。The touch substrate of claim 2, wherein the opaque sensing blocks are formed on the first surface of the substrate in a first direction. 如申請專利範圍第2項所述之觸控基板,其中該等不透明感應區塊係以一第二方向形成設在該基板之第一表面上。The touch substrate of claim 2, wherein the opaque sensing blocks are formed on the first surface of the substrate in a second direction. 如申請專利範圍第1項所述之觸控基板,其中該基板係為一聚對苯二甲酸乙二酯(Polyethyleneterephthalate, PET)。The touch substrate of claim 1, wherein the substrate is a polyethylene terephthalate (PET). 如申請專利範圍第1項所述之觸控基板,其中該基板係以可撓性材料所構成。The touch substrate of claim 1, wherein the substrate is made of a flexible material. 如申請專利範圍第1項所述之觸控基板,其中該每一奈米銀粒的直徑介於數奈米至數十奈米之間。The touch substrate of claim 1, wherein the diameter of each nano silver particle is between several nanometers and several tens of nanometers.
TW102214329U 2013-07-31 2013-07-31 Touch sensing substrate TWM469543U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102214329U TWM469543U (en) 2013-07-31 2013-07-31 Touch sensing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102214329U TWM469543U (en) 2013-07-31 2013-07-31 Touch sensing substrate

Publications (1)

Publication Number Publication Date
TWM469543U true TWM469543U (en) 2014-01-01

Family

ID=50347033

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102214329U TWM469543U (en) 2013-07-31 2013-07-31 Touch sensing substrate

Country Status (1)

Country Link
TW (1) TWM469543U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105094412A (en) * 2014-05-21 2015-11-25 胜华科技股份有限公司 Touch panel and touch display device
CN105334988A (en) * 2014-07-01 2016-02-17 长鸿光电(厦门)有限公司 Touch panel
TWI706302B (en) * 2018-07-04 2020-10-01 大陸商祥達光學(廈門)有限公司 Manufacturing method for touch panel and touch panel thereof
TWI793566B (en) * 2021-04-11 2023-02-21 大陸商天材創新材料科技(廈門)有限公司 On-cell touch display and preparing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105094412A (en) * 2014-05-21 2015-11-25 胜华科技股份有限公司 Touch panel and touch display device
CN105334988A (en) * 2014-07-01 2016-02-17 长鸿光电(厦门)有限公司 Touch panel
CN105334988B (en) * 2014-07-01 2019-03-12 长鸿光电(厦门)有限公司 Touch panel
TWI706302B (en) * 2018-07-04 2020-10-01 大陸商祥達光學(廈門)有限公司 Manufacturing method for touch panel and touch panel thereof
TWI793566B (en) * 2021-04-11 2023-02-21 大陸商天材創新材料科技(廈門)有限公司 On-cell touch display and preparing method thereof

Similar Documents

Publication Publication Date Title
TWI450169B (en) Capacitive touch panel structure and manufacturing method
KR102303214B1 (en) Touch screen panel and manufacturing method thereof
KR102052165B1 (en) Method for manufacturing a touch screen panel
TWI703481B (en) Touch panel with transparent flexible electrodes and manufacturing methods thereof
JP5827972B2 (en) Touch sensor integrated display device
KR20140070106A (en) Flexible Touch Screen Panel and Fabricating Method Thereof
KR20150009846A (en) Touch Screen Panel and Fabricating Method Thereof
TWM481451U (en) Single layer solution touch panel
TWM495566U (en) Touch panel
US10222915B2 (en) Input device and method of manufacturing it
KR101241469B1 (en) Touch panel
KR20120072186A (en) Touch panel and method for manufacturing electrode member
TWM469543U (en) Touch sensing substrate
KR102122525B1 (en) Touch panel and method for manufacturing the same
JP3181428U (en) Touch electrode device
TWI590118B (en) Touch-sensitive device and production method making the same
JP6405298B2 (en) Capacitance type sensor, touch panel and electronic equipment
KR20140100089A (en) Touch Screen Panel and Fabricating Method Thereof
KR101985437B1 (en) Flexible Touch Screen Panel and Fabricating Method Thereof
JP2013097801A (en) Touch panel
KR101365036B1 (en) Electrode structure for touch panel, touch panel, and method for fabricating electrode structure for touch panel
US9089061B2 (en) Conductive film, method for making the same, and touch screen including the same
TWI518568B (en) Touch substrate and manufacturing method thereof
JP5605709B2 (en) Multi-sided work substrate and method for manufacturing multi-sided work substrate
US20150055028A1 (en) Touch substrate