TWM438015U - High performance dual port SRAM - Google Patents

High performance dual port SRAM Download PDF

Info

Publication number
TWM438015U
TWM438015U TW101202428U TW101202428U TWM438015U TW M438015 U TWM438015 U TW M438015U TW 101202428 U TW101202428 U TW 101202428U TW 101202428 U TW101202428 U TW 101202428U TW M438015 U TWM438015 U TW M438015U
Authority
TW
Taiwan
Prior art keywords
transistor
inverter
nmos transistor
gate
voltage
Prior art date
Application number
TW101202428U
Other languages
Chinese (zh)
Inventor
Ming-Chuen Shiau
Jhenf-Yu Guo
Original Assignee
Univ Hsiuping Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Hsiuping Sci & Tech filed Critical Univ Hsiuping Sci & Tech
Priority to TW101202428U priority Critical patent/TWM438015U/en
Publication of TWM438015U publication Critical patent/TWM438015U/en

Links

Description

M438015 五、新型說明: 【新型所屬之技術領域】 本創作係有關於一種具高效能之雙埠靜態隨機存取記憶體(Static Random Access Memory,簡稱SRAM),尤指一種有效提高雙埠靜態隨機 存取記憶體之待機效能以及有效提高靜態雜訊邊際(Static Noise Margin,簡 稱SNM),並能有玫降低漏電流(leakage current)且能解決習知具單一位元 線之雙埠SRAM寫入邏輯1困難之雙埠靜態隨機存取記憶體。 【先前技術】 記憶體在電腦工業中扮演著無可或缺的角色。通常,記憶體可依照其 能否在電源關閉後仍能保存資料,而區分為非揮發性(n〇n v〇latile)記憶體 及揮發性(volatile)記憶體,非揮發性記憶體所儲存之資料並不會因電源 關閉或中斷而消失,而儲存在揮發性記憶體之資料則會隨著電源關閉或中 斷而被消除。常見的揮發性記憶體有動紐機存取記憶體(dram)及靜 態隨機存取記憶體(SRAM)兩種。動態隨機存取記憶體(dram)具有面 積小及價格低等優點,但操作時必須不時地更新(她地)以防止資料因漏 #電流而遺失,而導致存在有高速化困難及消耗功率大等缺失1反地靜 '態賴存取記憶體(SRAM)的操作則較為簡易且毋須更新操作’因此且有 \ 高速化及消耗功率低等優點。 μ 八 SRAM為主流。此乃由於SRAM待機電流小, 機時間盡可能延長之手機。 目前以行鱗話域权行動電子麟所_之半導觀織置係以 適於連續通話時間、連續待M438015 V. New description: [New technical field] This creation is about a high-performance static random access memory (SRAM), especially an effective double-station static random access Access memory memory standby performance and effectively improve the static noise margin (SNM), and can reduce the leakage current and can solve the double-bit SRAM write with a single bit line. Logic 1 difficult double-click static random access memory. [Prior Art] Memory plays an indispensable role in the computer industry. Generally, the memory can be classified into non-volatile (n〇nv〇latile) memory and volatile memory according to whether it can save data after the power is turned off, and the non-volatile memory is stored. The data does not disappear due to power off or interruption, and the data stored in volatile memory is removed as the power is turned off or interrupted. Common volatile memory devices include dynamic memory access memory (dram) and static random access memory (SRAM). Dynamic random access memory (dram) has the advantages of small area and low price, but it must be updated from time to time to prevent data from being lost due to leakage current, resulting in high speed and power consumption. The operation of the large-scale missing 1 anti-ground static state-of-sale access memory (SRAM) is relatively simple and does not require updating operations. Therefore, it has the advantages of high speed and low power consumption. μ eight SRAM is the mainstream. This is due to the fact that the SRAM has a small standby current and the machine time is extended as much as possible. At present, the semi-guided weaving system of the electronic scales of the action of the squaring rights is suitable for continuous talk time and continuous waiting.

習知之靜態隨機存取記憶體(SRAM)如第u 記憶體陣列(memory array ),該記憶體陣列係 5 M438015 plurality of rows of memory cells)與複數行記憶體晶胞(a plurality of columns ofmemorycells)所組成,每一列記憶體晶胞與每一行記憶體晶胞各包括有 複數個記憶體晶胞;複數條字元線(word line,WLi、WL2等),每一字 元線對應至複數列記憶體晶胞中之一列;以及複數位元線對(bit line pairs, BL!、BLBi.“BLm、BLBm等)’每一位元線對係對應至複數行記憶體晶胞 中之一行,且每一位元線對係由一位元線(BLl...BLm)及一互補位元線 (BLB^.BLBm)所組成。 第lb圖所示即是6T靜態隨機存取記憶體(SRAM)晶胞之電路示意圖, 鲁其中’ PMOS電晶體(P1)和(P2)稱為負載電晶體(i〇a(j transistor),NMOS電 曰曰體(Ml)和(M2)稱為驅動電晶體(driving transistor),NMOS電晶體(M3) 和⑨稱為存取電晶體(access transistor),WL為字元線(word line),而 BL及BLB分別為位元線(bit line )及互補位元線(complementary bit line ), 由於該SRAM晶胞需要6個電晶體,且驅動電晶體與存取電晶體間的電流 驅動能力比(即單元比率(cell ratio))通常設定在2.2至3.5之間,而導致 存在有高集積化困難及價格高等缺失。 第1b圖所示6T靜態隨機存取記憶體晶胞於寫入操作時之HSPICE暫態 # 刀析模擬結果,如第2圖所示’其係以level 49模型且使用TSMC 0.18微 - 米CM〇S製程參數加以模擬。 用來減少6T靜態隨機存取記憶體(SRAM)晶胞之電晶體數之一種方 式係揭露於第3圖中。第3圖顯示一種僅具單一位元線之5T靜態隨機存取 °己隐體晶胞之電路示意圖,與第1圖之6Τ靜態隨機存取記憶體晶胞相比, 此種5Τ靜態隨機存取記憶體晶胞比6Τ靜態隨機存取記憶體晶胞少一個電 曰曰體及少—條位元線,惟該5Τ靜態隨機存取記憶體晶胞在不變更PMOS 電日曰體P1和1*2以及NMOS電晶體Mb M2和M3的通道寬長比的情況下 存在寫入邏輯1相當困難之問題。茲考慮記憶晶胞左側節點A原本儲存邏 輯0的情況’由於節點A之電荷僅單獨自寫入用位元線(WBL)傳送,因 M438015 此很難將節點A中先前寫入的邏輯〇蓋寫成邏輯1。第3圖所示5T靜態隨 機存取記憶體晶胞,於寫入操作時之HSPICE暫態分析模擬結果’如第4 圖所示,其係以丨evel 49模型且使用TSMC 0.18微米CMOS製程參數加以 模擬’由該模擬結果可証實,具單一位元線之5T靜態隨機存取記憶體晶胞 存在寫入邏輯1相當困難之問題。A conventional static random access memory (SRAM) such as a u-memory array, the memory array is 5 M438015 plurality of rows of memory cells, and a plurality of columns of memory cells The memory cell and each row of memory cells each include a plurality of memory cells; a plurality of word lines (word lines, WLi, WL2, etc.), each word line corresponding to a plurality of columns One column of the memory cell; and a bit line pairs (BL!, BLBi. "BLm, BLBm, etc.") each bit line pair corresponds to one of the plurality of rows of memory cells, And each bit line pair is composed of one bit line (BL1...BLm) and one complementary bit line (BLB^.BLBm). Figure lb shows 6T static random access memory ( Schematic diagram of the circuit of the SRAM), where the 'PMOS transistors (P1) and (P2) are called load transistors (i〇a (j transistor), NMOS bodies (Ml) and (M2) are called drives Driving transistor, NMOS transistor (M3) and 9 are called access transistors, WL is Word line, and BL and BLB are bit line and complementary bit line, respectively. Since the SRAM cell requires 6 transistors, and drives the transistor and accesses. The ratio of current drive capability between transistors (ie, cell ratio) is usually set between 2.2 and 3.5, resulting in the difficulty of high integration and high price. The 6T static random access memory shown in Figure 1b The HSPICE transient state of the body cell during the write operation is the result of the simulation analysis, as shown in Fig. 2, which is simulated by the level 49 model and using TSMC 0.18 micro-meter CM〇S process parameters. One way of counting the number of transistors in a static random access memory (SRAM) cell is disclosed in Figure 3. Figure 3 shows a 5T static random access cell with only a single bit line. The circuit diagram, compared with the 6 Τ static random access memory cell of Figure 1, the 5 Τ SRAM cell is one less than the 6 Τ SRAM cell and less — Strip line, but the 5" static random access memory cell The problem of writing logic 1 is quite difficult without changing the channel width to length ratio of the PMOS electric cell bodies P1 and 1*2 and the NMOS transistors Mb M2 and M3. Consider the case where node A on the left side of the memory cell originally stores logic 0. 'Because the charge of node A is only transmitted from the write bit line (WBL) alone, it is difficult to cover the previously written logic in node A because of M438015. Write as logic 1. Figure 5 shows the 5T SRAM cell, the HSPICE transient analysis simulation result during the write operation. As shown in Figure 4, it uses the 丨evel 49 model and uses TSMC 0.18 micron CMOS process parameters. Simulated by the simulation results, it can be confirmed that the 5T SRAM cell with a single bit line has a problem in writing logic 1 which is quite difficult.

迄今’有許多具單一位元線之5T靜態隨機存取記憶體晶胞之技術被提 • 出’例如非專利文獻 1 (I. Carlson et al.,’’ A high density, low leakage, 5TSo far, there have been many techniques for a 5T static random access memory cell having a single bit line, for example, 'I. Carlson et al.,'' A high density, low leakage, 5T

j SRAM for embedded caches,M Solid-State Circuits Conference, 2004. ESSCIRC φ 2004. Proceeding of the 30th European, ρρ·215-218,2004·)之 5T SRAM 由於 係藉由重新設計晶胞中之二驅動電晶體、二負載電晶體以及一存取電晶體 之通道寬長比以解決寫入邏輯1困難之問題,而造成破壞原有晶胞中之驅 動電晶體與負載電晶體之對稱性關係並從而易受製程變異的影響;非專利 文獻 2 ( M. Wieckowski et al.,,,A novel five-transistor ( 5T ) SRAM cell for high performance cache,” IEEE Conference on SOC,pp.1001-1002,2005.)之 5T SRAM由於係將一長通道長度之存取電晶體設置於晶胞中之二負載電晶體 之間以解決寫入邏輯1困難之問題,而造成降低存取速度之缺失;專利文 φ 獻3 (98年6月1曰第TWM358390號)所提出之「寫入操作時降低電源 ' 電壓之單埠靜態隨機存取記憶體」雖可有效解決寫入邏輯1困難之問題, … 惟寫入操作時,由於缺乏有效的放電路徑,而造成於高記憶容量及/或高速 操作時存在低寫入速度之缺失。 接下來討論靜態隨機存取記憶體(SRAM)之單埠及雙埠架構,第lb圖之 6T靜態隨機存取記憶體(SRAM)晶胞即是單埠靜態隨機存取記憶體(SRAM) 晶胞之一例,其係使用兩條位元線BL及BLB做讀寫的動作,也就是讀與 寫均是經由同樣的-對位元線來達成,是以在同一時間内只能進行讀或寫 的動作,因此,當欲設計具有同時讀寫能力之雙埠靜態隨機存取記憶體時, 便需要多加入兩顆存取電晶體以及另一對位元線(請參考第5圖所示電 7 M438015 路’其中WBL及WBLB為寫入用位元線對、RBL及RBLB為讀取用位元 線對、WWL為寫入用字元線、RWL為讀取用字元線),這使得記憶晶胞的 面積大大地增加’如果我們能夠簡化記憶晶胞的架構,使得一條位元線負 責讀取的動作’而另一條位元線負責寫入的動作,則在設計雙埠靜態隨機 存取記憶體時,記憶晶胞便不需要多加入兩顆電晶體及一對位元線,這樣 記憶晶胞的面積便會減小許多。傳統的雙埠靜態隨機存取記憶體晶胞之所 以不採用這種方法’是因為如前所述之無法達成寫入邏輯1的問題。 至今’有許多降低待機電流之技術被提出,例如專利文獻4 (99年12 月1曰第TW M393773號)所提出之「具放電路徑之雙埠靜態隨機存取記 憶體」、專利文獻5 (98年3月21日第TWI307890號)所提出之「靜態隨 機存取記憶體」、專利文獻6(97年6月3日第US7382674 B2號)所提出 之「Static random access memory (SRAM) with clamped source potential in standby mode」、專利文獻7(96年8月7日第US7254〇85 B2號)所提出之 「Static random access memory device and method of reducing standby <:11^付」、專利文獻8(95年9月19曰第1;8711031782號)所提出之「811^ employing virtual rail scheme stable against various process-voltage-temperature variations」、非專利文獻 9 (Tae-Hyoung Kim et al·,A Voltage Scalable 0.26 V, 64 kb 8T SRAM With Vmin Lowering Techniques and Deep Sleep Mode^, IEEE Journal of Solid-State Circuits., Vol. 64, pp 1785 - 1795,2009.)^iij^:8TSRAMaA#^-^JXl^l〇(Ding-Ming Kwai, Modeling of SRAM Standby Current by Three-Parameter Lognormalj SRAM for embedded caches, M Solid-State Circuits Conference, 2004. ESSCIRC φ 2004. Proceeding of the 30th European, ρρ·215-218, 2004·) 5T SRAM due to the redesign of the second driving power in the unit cell The channel width-to-length ratio of the crystal, the two-loaded transistor, and an access transistor solves the problem of difficulty in writing logic 1, thereby causing damage to the symmetry relationship between the driving transistor and the load transistor in the original unit cell and thus Affected by process variation; Non-Patent Document 2 (M. Wieckowski et al.,, A novel five-transistor (5T) SRAM cell for high performance cache, IEEE Conference on SOC, pp. 1001-1002, 2005.) The 5T SRAM is due to the fact that a long channel length access transistor is placed between the two load transistors in the unit cell to solve the problem of writing logic 1 and the lack of access speed is reduced; 3 (June 1986, No. TWM358390) The "Static SRAM" for "reducing the power supply voltage during write operation" can effectively solve the problem of writing logic 1, ... Operation time The lack of effective discharge path, there is a missing resulting in lower write speed and / or high-speed operation memory capacity. Next, we discuss the static random access memory (SRAM) and double-ended architecture. The 6T static random access memory (SRAM) cell in Figure lb is the static random access memory (SRAM) crystal. One example of a cell, which uses two bit lines BL and BLB for reading and writing, that is, both reading and writing are achieved through the same-to-bit line, so that only reading or reading can be performed at the same time. The action of writing, therefore, when designing a dual-static SRAM with simultaneous read and write capability, it is necessary to add two access transistors and another pair of bit lines (please refer to Figure 5). Electric 7 M438015 path 'Where WBL and WBLB are write bit line pairs, RBL and RBLB are read bit line pairs, WWL is write word line, RWL is read word line), Make the area of the memory cell greatly increase 'If we can simplify the structure of the memory cell, so that one bit line is responsible for the read action' and the other bit line is responsible for the write action, then design the double-tap static random When accessing the memory, the memory cell does not need to add two transistors and one Bit line, the memory cell area so that many will be reduced. The conventional double-twisted static random access memory cell does not use this method because the problem of writing logic 1 cannot be achieved as described above. A technique for reducing the standby current has been proposed so far, for example, "Double-band Static Random Access Memory with Discharge Path" proposed in Patent Document 4 (No. TW M393773, December 1999), Patent Document 5 ( "Static random access memory" proposed by TWI307890, March 21, 1998, "Static random access memory (SRAM) with clamped" proposed in Patent Document 6 (US Pat. No. 7,382,674 B2, June 3, 1997) "source potential in standby mode", "Static random access memory device and method of reducing standby": Patent Document 7 (Japanese Patent No. US7254〇85 B2) "811^ employing virtual rail scheme stable against various process-voltage-temperature variations", September 19, 1995; No. 8711031782, Non-Patent Document 9 (Tae-Hyoung Kim et al., A Voltage Scalable 0.26) V, 64 kb 8T SRAM With Vmin Lowering Techniques and Deep Sleep Mode^, IEEE Journal of Solid-State Circuits., Vol. 64, pp 1785 - 1795, 2009.) ^iij^:8TSRAMaA#^-^JXl^l〇 (Ding-Ming Kwai, M Odeling of SRAM Standby Current by Three-Parameter Lognormal

Distribution”,De吻,训i/ 如卿,2敝 Α/7ΡΓ 似 /£££ Merwaft圆/Distribution", De kiss, training i/ Ruqing, 2敝 Α/7ΡΓ Like /£££ Merwaft round /

Workshop on Memory Technology, pp 77 - 82, Aug. 31 2009-Sept. 2 2009.) 所提出之SRAM ’該等專利文獻或非專利文獻於待機操作時,均是藉由將 所有記憶體晶胞中之驅動電晶體(亦即第比圖之NMOS電晶體Ml和M2 ) 之源極電壓由原本之接地電壓提高至較該接地電壓為高之一預定電壓,以 8 M438015 謀求降低待機操作之辨雜,惟由於該預定電壓僅係藉由電晶體之漏電 流對寄生電料充電而產生’而造成靜態隨機存取記紐進人待機模式之 速度極為緩慢,並因而導致降低待機效能之缺失:亦即該等專利文獻或非 專利文獻均缺乏待機啟動電路以促使靜態隨機存取記憶體快速進入待機模 式。 有鑑於此,本創作之主要目的係提出一種具高效能之雙埠靜態隨機存取 • 記憶體’其能有效促使靜態隨機存取記憶體快速進入待機模式,並因而有效 提高雙埠靜態隨機存取記憶體之待機效能。 φ 本創作之次要目的係提出一種具高效能之雙埠靜態隨機存取記憶體其 能有效提尚雙埠靜態隨機存取記憶體之靜態雜訊邊際(SNM)。 本創作之再一目的係提出一種具高效能之雙埠靜態隨機存取記憶體, 其能藉由控制電路以有效避免習知具單一位元線之雙埠靜態隨機存取記憶 體晶胞存在寫入邏輯1相當困難之問題。 【新型内容】 本創作提出一種具高效能之雙埠靜態隨機存取記憶體,其主要包括一 5己憶體陣列、複數個控制電路(2)以及一待機啟動電路(3),該記憶體陣 • 列係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞 - 設置一個控制電路,且每一記憶體晶胞(1)係包括一第一反相器(由一第 一 PM〇S電晶體P1與一第一 NMOS電晶體Ml所組成)、一第二反相器 (由一第二PMOS電晶體P2與一第二NMOS電晶體M2所組成)、一存 取電晶體(由第三NMOS電晶體M3所組成)、一第一和第二讀取用電晶體 (M4和M5) ' —第三反相器(由一第一 PMOS控制電晶體pci與一第一 NMOS控制電晶體MCI所組成)以及一第四反相器(由一第二PM〇s控制 電晶體(PC2)與一第二NMOS控制電晶體(MC2)所組成)。每一控制 單元係連接至對應列記憶體晶胞中之每一記憶體晶胞的該第一 NMOS電晶 體(Ml)的源極以及該第二NMOS電晶體(M2)的源極,以便因應不同 9 M438015 操作模式而控制該第- nm〇s電晶體(M1)的源極電壓以及該第二 電晶體(M2)的祕電壓,藉此於寫人模式時,可有效防止寫人邏困 難之問題,於待機模式時,可有效降低漏電流,而於其他模式時則可維持 原有的電氣特性。再者,將每一記憶體晶胞中之該第一 NM〇s電晶體(M1) 的背閘極(back gate)連接至該第三反相器之輸出端,以及將該第二NM〇s電 晶體(M2)的背閘極與該第三nmos電晶體(M3)的背閘極均該連接至該 第四反相器之輸出端’以便有效提高雙埠靜態隨機存取記憶體之靜態雜訊邊 際(SNM)。另’藉由該待機啟動電路(3)的設計,可有效促使靜態隨機 存取記憶體快速進入待機模式’並因而大幅提高靜態隨機存取記憶體之待機 效能。 【實施方式】 根據上述之主要目的,本創作提出一種具高效能之雙埠靜態隨機存取 記憶體’其主要包括一記憶體陣列,該記憶體陣列係由複數列記憶體晶胞 與複數行記憶體晶胞所組成,每一列記憶體晶胞與每一行記憶體晶胞均包 括有複數個記憶體晶胞(1);複數個控制電路(2),每一列記憶晶胞設 置一個控制電路(2);以及一待機啟動電路(3),該待機啟動電路(3) • 係促使靜態隨機存取記憶體快速進入待機模式,以有效提高雙埠靜態隨機存 取記憶體之待機效能。 * 為了便於說明起見,第6圖所示之具高效能之雙埠靜態隨機存取記憶 體僅以一個記憶體晶胞(1)、一條寫入用字元線(WWL)、一條寫入用位 元線(WBL)、一控制電路(2)以及一待機啟動電路(3)做為實施例來說 明。該記憶體晶胞(1)係包括一第一反相器(由一第一 PMOS電晶體pi 與一第一 NMOS電晶體Ml所組成)、一第二反相器(由一第二PMOS電 晶體P2與一第二NMOS電晶體M2所組成)、一第三反相器(由一第一 M438015 mos控制電晶體ρα與-第一麵os控制電晶體題所組成)、一第四 反相器(由-第二PMOS㈣電晶體?(:2與_第二丽〇s_電晶體MC2 所組成)…第三NM0S電晶體(M3)、一第一讀取用電晶體(M4)以及 -第一頃取用電晶體(M5),其中,該第一反相器及該第二反相器係呈交 互耦合連接’亦即該第-反相器之輸出(即節點A)係連接該第二反相器 之輸入,而該第二反相器之輸出(即節點幻則連接該第―反相器之輸入, •並且該第-反相器之輸丨(節點A)係用於儲存SRA]V^胞之資料而該 • 第二反相S之輸ίϋ (節點B)則用於儲存SRAM晶胞之反相資料。 該第二讀取用電晶體(M5)之祕、閘極歧極係分別連接至接地電 壓、該第二反相器之輸出(節點B)與該第一讀取用電晶體(M4)之源極; 該第-讀取用電晶體(M4)之源極、閘極與没極係分別連接至該第二讀取 用電晶體(M5)之及極、該讀取用字元線(RWL)與該讀取用位元線(RBL)。 請再參考帛6 ffl ’該第三反㈣之輪人錢接至反相器之輸出 (節點A),並於該第三反相器之輸出形成一第二控制節點(B2),而該第 四反相器之輸入係連接至該第二反相器之輸出(節點B),並於該第四反 相器之輸出形成一第一控制節點(B1);該第三nmos電晶體(M3)係連 φ 接在該節點(A)與寫入用位元線(WBL)之間,且該背閘極(backgate)連 接至該第一控制節點(B1),而其閘極則連接至寫入用字元線(WWL)。 .在此值得注意的是,該第三反相器之輸出(即第二控制節點B2)連接至該 第一 NMOS電晶體(Ml)之背閘極,而該第四反相器之輸出(即第一控制 節點B1)除了連接至該第三NMOS電晶體(M3)之該背閘極外,亦連接 到第二NMOS電晶體(M2)之背閘極。 請再參考6圖’該控制電路(2)係由一第四NM〇s電晶體(M21)、 一第五NMOS電晶體(M22)、一第六NMOS電晶體(M23)、一第七NMOS 電晶體(M24)、一第八NMOS電晶體(M25)、一第九NMOS電晶體(M26)、 一第十NMOS電晶體(M27)、一第十一 NMOS電晶體(M28)、一第十 11 M438015 二NMOS電晶體(M29)、一第三PMOS電晶體(P21)、一第四pM〇s 電晶體(P22)、一第五反相器(121)、一第一延遲電路(di)以及—寫 入控制信號(CTL)所組成。該第四NMOS電晶體(M21)之源極係連接 至該第七NMOS電晶體(M24)之汲極,而閘極與汲極連接在一起並連接 至一第一低電壓節點(VL1);該第五NMOS電晶體(M22)之源極、閘 極與汲極係分別連接至接地電壓、一反相待機模式控制信號(/s)與一第二 ; 低電壓節點(%2);該第六NMOS電晶體(M23)之源極、閘極與沒極 - 係分別連接至該第二低電壓節點(VL2)、一待機模式控制信號(s)與該 φ 第一低電壓節點(VL1);該第七NMOS電晶體(M24)之源極連接至接 地電壓,而閘極與汲極連接在一起並連接至該第四電晶體(从^) 之源極;該第八NMOS電晶體(M25)之源極、閘極與汲極係分別連接至 該第一低電壓節點(VL1)、該反相待機模式控制信號(/s)與該第九_〇8 電晶體(M26)之汲極;該第九NMOS電晶體(M26)之源極係連接至接 地電壓’而閘極與汲極連接在一起並連接至該第八NMOS電晶體(^5) 之汲極;該第十NMOS電晶體(M27)之源極、閘極與汲極係分別連接至 接地電壓、該第十一 NMOS電晶體(M28)之汲極與該第九NMOS電晶體 φ (M26)之閘極;該第十一 NMOS電晶體(M28)之源極、閘極與汲極係 分別連接至該第十二NMOS電晶體(M29)之汲極、該寫入控制信號(CTL) 與該第十NMOS電晶體(M27)之閘極、該第三pM〇s電晶體(p21)之 汲極和該第四PM0S電晶體(P22)之汲極;該第十二nmos電晶體(M29) 之源極、閘極與汲極係分別連接至接地電壓、該第五反相器(K1)之輸出 端與該第十―刪^電晶體(Μ28)之源極;該第五反抑(121)之輸入 連接至該第一延遲電路(D1)之輸出,而該第五反相器(121)之輸出則連接 至該第十—NMOS電晶體(M29)之閘極;該第一延遲電路(D1)之輸入 連接至該寫入控制信號(CTL)與該第三PMOS電晶體(P21)之閘極和該 第十一 NMOS電晶體(M28)之閘極;該第三pM〇s電晶體(p21)之源 12 M438015 極、閘極與汲極係分別連接至一電源供應電壓(vDD)、該寫入控制信號 (CTL)、與該第四PMOS電晶體(P22)之汲極和該第十_ 電晶 體(M28)之没極;該第四PM0S電晶體(P22)之源極、閘極與沒極係分 別連接至該電源供應電壓(VDD)、該第五反相器(Ι2ι)之輸出與該第三 PMOS電晶體(P21)之汲極和該第十一 nmos電晶體(M28)之汲極。在 此值得注意的是’該反相待機模式控制信號(/S)係由該待機模式控制信號 - (S)經一反相器而獲得。 . 該控制電路(2)係設计成可因應不同操作模式而控制該第一低電壓節 - 點(凡1)與該第二低電壓節點(VL2)之電壓位準,於寫入模式時,將選 定晶胞中較接近寫入用位元線(WBL)之驅動電晶體(即該第一 電晶 體Ml)的源極電壓(即該第一低電壓節點%1:)在初始期間(該初始期間 係為該第一延遲電路(D1)所提供之一第一延遲時間以及該第五反相器 (121)所提供之下降延遲時間的總和)設定成較接地電壓為高之一第一預 疋電壓(即該第九NMOS電晶體(M26)之閘源極電壓vGS(M26)),且將選 疋晶胞中另一驅動電晶體(即該第土 NM〇s電晶體M2)的源極電壓(即 該第二低電壓節點VL2)設定成接地電壓,以便防止寫入邏輯丨困難之問 題,於待機模式時,將所有記憶晶胞中之驅動電晶體的源極電壓設定成較 接地電壓為咼之一第二預定電壓(即該第四NMOS電晶體(M21)之臨界 鲁電壓V·及該第七nm〇S電晶體(M24)之臨界電壓v_的總和, '+V™24)’以便降低漏電流;而於其他模式時則將記憶晶胞中之驅動電晶體 ‘ 的源極電壓設定成接地電壓,以便維持讀取穩定度,其詳細工作電壓位準 如表1所示。 13Workshop on Memory Technology, pp 77 - 82, Aug. 31 2009-Sept. 2 2009.) The proposed SRAM 'The patent documents or non-patent documents are used in standby mode by all memory cells. The source voltage of the driving transistor (ie, the NMOS transistors M1 and M2 of the first graph) is raised from the original ground voltage to a predetermined voltage higher than the ground voltage, and 8 M438015 is sought to reduce the standby operation. However, since the predetermined voltage is generated only by charging the parasitic electric material by the leakage current of the transistor, the static random access memory enters the standby mode at a very slow speed, and thus the lack of standby performance is reduced: That is, the patent documents or non-patent documents lack a standby start circuit to cause the static random access memory to quickly enter the standby mode. In view of this, the main purpose of this creation is to propose a high-performance dual-static static random access memory that can effectively cause the static random access memory to enter the standby mode quickly, and thus effectively improve the static random memory. Take the memory standby performance. φ The second objective of this creation is to propose a high-performance dual-static static random access memory that can effectively improve the static noise margin (SNM) of double-static static random access memory. A further object of the present invention is to provide a high-performance dual-static static random access memory capable of effectively avoiding the existence of a double-埠 static random access memory cell with a single bit line by a control circuit. Writing logic 1 is quite a difficult problem. [New content] This creation proposes a high-performance dual-static static random access memory, which mainly includes a 5 memory array, a plurality of control circuits (2) and a standby start circuit (3), the memory Array • The column consists of a complex column of memory cells and a plurality of rows of memory cells, each column of memory cells - a control circuit is provided, and each memory cell (1) includes a first inversion a second inverter (composed of a second PMOS transistor P2 and a second NMOS transistor M2) An access transistor (consisting of a third NMOS transistor M3), a first and second read transistor (M4 and M5)' - a third inverter (controlled by a first PMOS transistor) Pci is composed of a first NMOS control transistor MCI and a fourth inverter (composed of a second PM 〇s control transistor (PC2) and a second NMOS control transistor (MC2)). Each control unit is connected to a source of the first NMOS transistor (M1) and a source of the second NMOS transistor (M2) of each memory cell of the corresponding column memory cell, so as to cope with Different 9 M438015 operating modes control the source voltage of the first-nm 〇s transistor (M1) and the secret voltage of the second transistor (M2), thereby effectively preventing writing difficulties when writing a human mode The problem is that the leakage current can be effectively reduced in the standby mode, while the original electrical characteristics can be maintained in other modes. Furthermore, a back gate of the first NM〇s transistor (M1) in each memory cell is connected to an output of the third inverter, and the second NM is The back gate of the s transistor (M2) and the back gate of the third nmos transistor (M3) are both connected to the output terminal of the fourth inverter to effectively improve the double-turn static random access memory. Static Noise Margin (SNM). In addition, by the design of the standby starting circuit (3), the static random access memory can be effectively pushed into the standby mode quickly, and thus the standby performance of the static random access memory is greatly improved. [Embodiment] According to the above main object, the present invention proposes a high-performance dual-static static random access memory, which mainly includes a memory array, which is composed of a plurality of columns of memory cells and a plurality of rows. The memory cell is composed of a memory cell and each row of memory cells including a plurality of memory cells (1); a plurality of control circuits (2), each column of memory cells is provided with a control circuit (2); and a standby start circuit (3), the standby start circuit (3) • prompts the static random access memory to enter the standby mode quickly, so as to effectively improve the standby performance of the dual-static static random access memory. * For the sake of explanation, the high-performance dual-static SRAM shown in Figure 6 is written with only one memory cell (1), one write word line (WWL), and one write. A bit line (WBL), a control circuit (2), and a standby start circuit (3) are described as an embodiment. The memory cell (1) includes a first inverter (composed of a first PMOS transistor pi and a first NMOS transistor M1) and a second inverter (by a second PMOS device) The crystal P2 is composed of a second NMOS transistor M2, a third inverter (composed of a first M438015 mos control transistor ρα and a first surface os control transistor), and a fourth inversion (by - second PMOS (four) transistor? (: 2 and _ second 〇 s_ transistor MC2) ... third NMOS transistor (M3), a first read transistor (M4) and - The first access transistor (M5), wherein the first inverter and the second inverter are in an alternating coupling connection, that is, the output of the first inverter (ie, node A) is connected to the The input of the second inverter, and the output of the second inverter (ie, the node phantom is connected to the input of the first inverter), and the input of the first-inverter (node A) is used Store the data of the SRA]V^ cell and the second inversion S (ϋB) is used to store the inverted data of the SRAM cell. The second read transistor (M5) is the secret Extremely divergent Connected to a ground voltage, an output of the second inverter (node B) and a source of the first read transistor (M4); a source and a gate of the first read transistor (M4) The pole and the immersion are respectively connected to the sum of the second read transistor (M5), the read word line (RWL) and the read bit line (RBL). Please refer to 帛6 again. Ffl 'The third counter (four) wheel is connected to the output of the inverter (node A), and forms a second control node (B2) at the output of the third inverter, and the fourth inverter The input is connected to the output of the second inverter (node B), and forms a first control node (B1) at the output of the fourth inverter; the third nmos transistor (M3) is coupled to φ Connected between the node (A) and the write bit line (WBL), and the back gate is connected to the first control node (B1), and the gate is connected to the write word Yuan line (WWL). It is worth noting here that the output of the third inverter (ie, the second control node B2) is connected to the back gate of the first NMOS transistor (M1), and the fourth Inverter output (ie first The control node B1) is connected to the back gate of the second NMOS transistor (M2) in addition to the back gate of the third NMOS transistor (M3). Please refer to FIG. 6 for the control circuit (2). ) is a fourth NM〇s transistor (M21), a fifth NMOS transistor (M22), a sixth NMOS transistor (M23), a seventh NMOS transistor (M24), and an eighth NMOS device. Crystal (M25), a ninth NMOS transistor (M26), a tenth NMOS transistor (M27), an eleventh NMOS transistor (M28), a tenth 11 M438015 two NMOS transistor (M29), one a third PMOS transistor (P21), a fourth pM〇s transistor (P22), a fifth inverter (121), a first delay circuit (di), and a write control signal (CTL) . The source of the fourth NMOS transistor (M21) is connected to the drain of the seventh NMOS transistor (M24), and the gate is connected to the drain and connected to a first low voltage node (VL1); The source, the gate and the drain of the fifth NMOS transistor (M22) are respectively connected to a ground voltage, an inverted standby mode control signal (/s) and a second; a low voltage node (%2); a source, a gate and a gate of the sixth NMOS transistor (M23) are respectively connected to the second low voltage node (VL2), a standby mode control signal (s) and the φ first low voltage node (VL1) The source of the seventh NMOS transistor (M24) is connected to the ground voltage, and the gate is connected to the drain and connected to the source of the fourth transistor (from ^); the eighth NMOS transistor a source, a gate and a drain of (M25) are respectively connected to the first low voltage node (VL1), the reverse standby mode control signal (/s) and the ninth 〇8 transistor (M26) a drain; the source of the ninth NMOS transistor (M26) is connected to a ground voltage ' and the gate is connected to the drain and connected to the eighth NMOS transistor (^ 5) a drain; a source, a gate and a drain of the tenth NMOS transistor (M27) are respectively connected to a ground voltage, a drain of the eleventh NMOS transistor (M28), and the ninth NMOS a gate of a crystal φ (M26); a source, a gate and a drain of the eleventh NMOS transistor (M28) are respectively connected to the drain of the twelfth NMOS transistor (M29), the write control a signal (CTL) and a gate of the tenth NMOS transistor (M27), a drain of the third pM〇s transistor (p21), and a drain of the fourth PMOS transistor (P22); the twelfth The source, the gate and the drain of the nmos transistor (M29) are respectively connected to a ground voltage, an output end of the fifth inverter (K1) and a source of the tenth-deleted transistor (Μ28); The input of the fifth anti-suppression (121) is connected to the output of the first delay circuit (D1), and the output of the fifth inverter (121) is connected to the gate of the tenth-NMOS transistor (M29) The input of the first delay circuit (D1) is connected to the write control signal (CTL) and the gate of the third PMOS transistor (P21) and the gate of the eleventh NMOS transistor (M28); The third pM s The source of the transistor (p21) 12 M438015 The pole, the gate and the drain are respectively connected to a power supply voltage (vDD), the write control signal (CTL), and the fourth PMOS transistor (P22). a pole and a tenth electrode of the tenth transistor (M28); a source, a gate and a gate of the fourth PMOS transistor (P22) are respectively connected to the power supply voltage (VDD), the fifth inversion The output of the device (Ι2ι) is the drain of the third PMOS transistor (P21) and the drain of the eleventh nmos transistor (M28). It is worth noting here that the inverted standby mode control signal (/S) is obtained by the standby mode control signal -(S) via an inverter. The control circuit (2) is designed to control the voltage level of the first low voltage node point (1) and the second low voltage node (VL2) according to different operation modes, in the write mode , the source voltage of the driving transistor (ie, the first transistor M1) that is closer to the write bit line (WBL) in the selected unit cell (ie, the first low voltage node %1:) is in an initial period ( The initial period is set to be higher than the ground voltage by one of the first delay time provided by the first delay circuit (D1) and the sum of the falling delay times provided by the fifth inverter (121). a pre-voltage (ie, the gate-source voltage vGS (M26) of the ninth NMOS transistor (M26)), and another driving transistor in the selected cell (ie, the first NM〇s transistor M2) The source voltage (ie, the second low voltage node VL2) is set to a ground voltage to prevent difficulty in writing logic, and in the standby mode, the source voltage of the driving transistor in all memory cells is set to The grounding voltage is one of the second predetermined voltages (ie, the criticality of the fourth NMOS transistor (M21) The voltage V· and the sum of the threshold voltages v_ of the seventh nm 〇S transistor (M24), '+VTM24)' to reduce the leakage current; and in other modes, the driving transistor in the memory cell The source voltage of ' is set to ground voltage to maintain read stability. The detailed operating voltage level is shown in Table 1. 13

亦表1中之該寫入控制信號(CTL)可簡單的為一寫入用字元線(WWL), '可為-寫入致能(Write Enable,簡稱細)信號與對應之寫人用字元線 )信號的及閘(AND gate)運算結果,此時僅於該寫人致能(WE) «號與該對應之字元線(乳)信號均為邏輯高位準時該寫入控制信號 (CTL)方為邏輯高位準。 請再參考第6圖’該待機啟動電路(3 )係由一第五pM〇s電晶體(p31)、 第六PMOS電晶體(P32)、一第六反相器⑴3)以及一第二延遲電路 (D2)所組成。該第五PM〇s電晶體(p31)之源極、閘極與汲極係分別 連接至該電源供應電壓(vDD)、該反相待機模式控制信號(/s)與該第六 PMOS電晶體(P32)之源極;該第六PM0S電晶體(p32)之源極、閘極 與汲極係分別連接至該第五PM0S電晶體(P31)之汲極、該第六反相器(133 ) 之輸出與該第一低電壓節點(VL1);該第六反相器(133)之輸入連接至 該第二延遲電路(〇2)之輸出,而該第六反相器(133)之輸出則連接至該第 六PMOS電晶體(P32)之閘極;該第二延遲電路(D2)之輸入連接至該 反相待機模式控制信號(/S),而該第二延遲電路(D2)之輸出則連接至 該第六反相器(133)之輸入。 茲依靜態隨機存取記憶體之工作模式說明第6圖之本創作較佳實施例 的工作原理如下(該第三反相器與該第四反相器之主要目的在於增加記憶 體晶胞的靜態雜訊邊際,為了簡潔起見,於此將省略該第三反相器與該第 四反相器之敘述): (I )寫入模式(writemode) 於寫入操作開始前,該寫入控制信號(c孔)為邏輯低位準使得該第 ^MOS電晶體(間導通(〇N),並使得該第十—動s電晶體(顧) 截止(〇阳,於是節點C為邏輯高轉,該邏輯高鱗之節點c會導通 該第十NMOS電晶體(M27)’並使得該低壓節點(vli)呈接地電壓。 而於寫入操作之初始期間内(該初始期間係為該第一延遲電路(di) 所提供之絲-延遲時帥及雜五反抑(m)所提供之下降延遲時間 的總和)’該寫入控制信號(CTL)為邏輯高位準,而寫入反相延遲控制信 號(/CTL)仍呈邏輯高位準,使得該第三pM〇s電晶體⑽)截止該 第=NMQS電晶體(應)導通,由於在該初始躺内寫人反相贼控 制信號(/CTL)仍呈邏輯高位準,於是使得該第十二_〇§電晶體(M29) 導通。該第四PMOS電晶體(P22)截止’並使得節點c為邏輯低位準, 該邏輯低位準之節點C會使得該奸NM〇S電晶體⑽7)截止,並使得 該低電壓節點(VL1)等於該第九職^電晶體(M26)之閘源極電壓 VGS(M26) ’藉此得以有效防止寫入邏輯1困難之問題。 最後於寫入操作初始期間之後,由於此時該寫入控制信號(CTL)為邏 輯高位準,且該寫入反相延遲控制信號(/CXL)為邏輯低位準,因此,該 第二PMOS電晶體(P21)截止,該第•一 NMOS電晶體(M28)導通, 該第十二NMOS電晶體(M29)截止,該第四PMOS電晶體(P22)導通, 於是節點C為邏輯高位準,該邏輯高位準之節點c會導通該第十NMOS 電晶體(M27) ’並使得該低電壓節點(^丨)呈接地電壓。 接下來依靜態隨機存取記憶體靜態隨機存取記憶晶胞之4種寫入狀態 來說明第ό圖之本創作較佳實施例如何完成寫入動作。 (一)節點Α原本儲存邏輯〇,而現在欲寫入邏輯〇 :The write control signal (CTL) in Table 1 can also be simply a write word line (WWL), and can be a Write Enable (referred to as a fine) signal and a corresponding writer. Word line) The result of the AND gate operation of the signal, at which time the write control signal is only written when the write enable (WE) « number and the corresponding word line (milk) signal are both logic high. (CTL) is logically high. Please refer to FIG. 6 again. The standby start circuit (3) is composed of a fifth pM〇s transistor (p31), a sixth PMOS transistor (P32), a sixth inverter (1) 3), and a second delay. The circuit (D2) is composed of. a source, a gate and a drain of the fifth PM〇s transistor (p31) are respectively connected to the power supply voltage (vDD), the inverted standby mode control signal (/s) and the sixth PMOS transistor a source of (P32); a source, a gate and a drain of the sixth PMOS transistor (p32) are respectively connected to a drain of the fifth PMOS transistor (P31), and the sixth inverter (133) And an output of the sixth low voltage node (VL1); an input of the sixth inverter (133) is coupled to an output of the second delay circuit (〇2), and the sixth inverter (133) The output is connected to the gate of the sixth PMOS transistor (P32); the input of the second delay circuit (D2) is connected to the inverted standby mode control signal (/S), and the second delay circuit (D2) The output is coupled to the input of the sixth inverter (133). The working principle of the preferred embodiment of the present invention is as follows. The main purpose of the third inverter and the fourth inverter is to increase the memory cell. Static noise margin, for the sake of brevity, the description of the third inverter and the fourth inverter will be omitted here): (I) write mode (writemode) before the write operation starts, the write The control signal (c-hole) is at a logic low level such that the first MOS transistor is turned on (〇N), and the tenth-moving s-transistor (Gu) is turned off (Yangyang, so node C is logic high) The logic crest node c turns on the tenth NMOS transistor (M27)' and causes the low voltage node (vli) to be grounded. During the initial period of the write operation (the initial period is the first The sum of the delay-delay time provided by the delay circuit (di) and the delay delay time provided by the m(5) is 'the write control signal (CTL) is a logic high level, and the write inversion delay The control signal (/CTL) is still at a logic high level, making the third pM〇s transistor The cut-off of the NMQS transistor (should) is turned on, since the write-inversion thief control signal (/CTL) is still at a logic high level in the initial lying position, thus making the twelfth 电 电 transistor (M29) Turning on. The fourth PMOS transistor (P22) is turned off and causes node c to be a logic low level, and the logic low level node C turns off the trait NM 〇S transistor (10) 7) and causes the low voltage node (VL1) ) is equal to the gate voltage VGS (M26) of the ninth job transistor (M26), thereby effectively preventing the problem of writing logic 1 difficult. Finally, after the initial period of the write operation, since the write control signal (CTL) is at a logic high level and the write inverted delay control signal (/CXL) is at a logic low level, the second PMOS is The crystal (P21) is turned off, the first NMOS transistor (M28) is turned on, the twelfth NMOS transistor (M29) is turned off, the fourth PMOS transistor (P22) is turned on, and the node C is at a logic high level. The logic high level node c turns on the tenth NMOS transistor (M27)' and causes the low voltage node (^丨) to be grounded. Next, how the preferred embodiment of the present embodiment of the present invention performs the write operation according to the four write states of the SRAM SRAM. (1) The node Α originally stores the logic 〇, but now wants to write the logic 〇:

在寫入動作發生前(該寫入用字元線WWL為接地電壓),該第一 NM〇S M438015 電晶體(Ml)為導通(0N)。因為該第一蘭〇8電晶體㈤u為⑽, 所以當寫入動作開始時,該寫入用字元線(WWL)由L〇w (接地電壓)轉 High (電雜應電壓VDD)。當該寫人用字元線(WWL)的電壓大於該第 三NMOS電晶體(M3)(即存取電晶體)的臨界電壓時,該第三_〇8電 晶體(M3)由截止(OFF)轉變為導通(ON),此時因為寫入用位元線(wbl) 是接地電壓’顺會將該節點A放電,而完成邏輯㈣寫人動作,直到寫 入週期結束。 (二)節點A原本儲存邏輯〇,而現在欲寫入邏輯j : 鲁在寫入動作發生前(該寫入用字元線〜^為接地電壓),該第一 NM〇s 電晶體(Ml)為導通(on)。因為該第一醒〇8電晶體(M1)為⑽, 所以當寫入動作開始時,該字元線d)由L〇w (接地電壓)轉芘曲(該 電源供應電壓VDD),該節點A的電壓會跟隨該寫入用字元線(WWL) 的電壓而上升。 當該寫入用字元線(WWL)的電壓大於該第三nm〇s電晶體(奶) 的臨界電壓時,該第三NMOS電晶體(M3)由截止(OFF)轉變為導通(on), 此時因為該寫入用位元線(WBL)是High (該電源供應電壓Vdd),並且 φ 因為該第一 NM〇S電晶體(M1)仍為ON且該節點B仍處於電壓位準為接 - 近於該電源供應電壓(Vdd)之電壓位準的初始狀態,所以該第一 pm〇S 電晶體P1仍為截止(OFF)’而該節點A則會朝一分壓電壓位準快速充電, 該分壓電壓位準等於(Rj^+R^) / (Rm3+Rmi + Rm25+Rm26)乘以該電源 供應電壓(VDD),其中該RMS表示該第XNM〇s電晶體(M3)之導通等 效電阻,該RM1表示該第一 NMOS電晶體(Ml)之導通等效電阻,該 表不該第八NMOS電晶體(M25)之導通等效電阻,而該表示該第九 電晶體(M26)之導通等效電阻,此時因為第三nmos電晶體(m3) 仍工作於飽和區(saturationregion)且該第一 NMOS電晶體(Ml)仍工作 於線性區(triode region),雖然該第三NMOS電晶體(M3)之導通等效 M438015 電阻(Rk〇)會遠大於該第一 nmos電晶體(M1)之導通等效電阻(Rmi), 但由於該第九NMOS電晶體(M26)係呈二極體連接,因此可於該第一低 電壓節點(VL1)處提供一等於該第九nm〇s電晶體(祕)之間源極電 壓VGs_之電壓位準,結果節點A所呈現的該分壓電壓位準,其電壓值會 比第4圖之習知5T·'隨機存憶體晶胞之該節點A之電壓辦還要& 許多。該還要高許多之分㈣壓位準足以使該第二順沉電晶體⑽)導 :通’於是使得節點B放電至-較低電壓位準,該節點B之較低電壓位準會 使得該第-NMOS電晶體(Ml)之導通等效電阻(Rmi)呈現較高的電阻 鲁值’該第- NMOS電晶體(Ml)之該較高的電阻值會於該節點a獲得較 高電壓位準,該節點A之較高電壓位準又會經由一第二反相器(由第二 PMOS電晶體P2與第二NM〇S電晶體M2所組成),而使得該節點b呈 現更低電壓位準,該節點B之更低電壓位準又會經由一第一反相器(由第 一 PMOS電晶體P1與第一 nm〇S€晶體M1所組成),而使得該節點a 獲得更高電壓位準,依此循環,即可將該節點A充電至該電源供應電壓 (VDD) ’而完成邏輯1的寫入動作。 在此值得注意的是’該第一低電壓節點W僅於寫入邏輯i之初始期 •間,方具有等於該第λΝΜΟδ電晶體(祕)之閘源極電壓VGS(M26)的電壓 ·. 位準。 (二)節點A原本儲存邏輯丨,而現在欲寫入邏輯1: 在寫入動作發生前(該寫入用字元線WWL為接地電慶),該第一 pM〇s 電晶體(pi)為導通(0N)。當該字元線(WL)由L〇w (接地電幻轉 High(該電雜麟M Vdd),且财元線(肌)㈣壓大於雜三麵 電晶體(M3)的臨界電壓時,該第三臓^電晶體(M3)由截止(〇的 轉變為導通(ON);此時因為該寫入用位元線(WBL)是卿(該電源 供應電麼VDD) ’並且g為該第—pM〇s電晶體(ρι)仍為〇N,所以該節 點A的電麼會維持於該電源供應電壓(Vdd)之電壓位準,直到寫入週期結 17 M438015 束。在此值得注意的是’該第一低電壓節點)於寫入邏輯丄後係具 有等於該第四丽⑽電晶體(M21)之臨界電壓之電壓位準。 (四)節點A原本儲存邏輯!,而現在欲寫入邏輯〇: 在寫入動作發生前(該寫入用字元線WWL為接地電廢),該第一 pM〇s 電晶體(P1)為導通(〇N)。當該寫人用字元線由(接地 電墨)轉High (該電源供應電壓Vdd),且該寫入用字元線(wwl)的電 *墨大於該第一顺〇8電晶體(M3)的臨界電壓時,該第三NM〇s電晶體 :由截止(〇FF)轉變為導通(ON),此時因為該寫入用位元線([) _是Low (接地電壓),所以會將該節點a以及該第一低電壓節點() 放電而完成邏輯0的寫入動作,直到寫入週期結束。在此值得注意的是, 該第-低電麗節點(VU)於寫入邏輯〇後,係具有接地電壓之位準。 第6圖所不之本創作較佳實施例,於寫入操作時之服暫態分析 模擬,果如第7圖所示’其係以ievel 49模型且使用tsmc㈣微米⑽^ 製程參數加輯擬’由_赌果可对,本創作所提出之具高效能之雙 埠靜態隨機存取記憶體,能藉由寫入邏輯!時提高該第一低電壓節點(則 之電壓位準,以有效避免習知具單—位元線之雙轉態隨機存取記憶體晶 ^ 胞存在寫入邏輯1相當困難之問題。 .·> ( 11 )待機模式(standby mode) 此時該待機模式控制信號⑻為邏輯高位準,而該反相待機模式控制 ㈣⑹為邏輯低位準’該邏辑低位準之該反相待機模式控制信號⑹ 可使得該㈣電路⑵巾之該第五觸s電晶體(助)和該第八围s 電=^25)截止(OFF),而該邏輯高鱗之鱗顧式控繼號⑻ ^祕六NMOS電晶體(廳)導通_,此時該第六麵電 L (哪輪)使用,耻可藉由呈導通狀態之該 第,、NMOS電曰曰體⑽3) ’以使得該第一低電虔節點^之電壓位 準相等於絲二_顯點(VL2)之赠解,且該等電触準均會等於 M438015 該第四NMOS電晶體(贿)之臨界電壓及該第七丽⑽電晶 體(Μ24)之臨界電壓(Vtm24)的總和,即v_+v麵之電壓位準。 接下來姻本創作於待機模式(standbym〇de)時如何減少漏電流請 參考第6 ® ’第6 _述有摘作實細處於待賊式時所產生之各漏電 ^ C subthreshold leakage current) I!、12、13 和 14,其中假設 SRAM 晶胞中Before the write operation occurs (the write word line WWL is the ground voltage), the first NM 〇 S M438015 transistor (M1) is turned on (0N). Since the first Lancome 8 transistor (5) u is (10), the write word line (WWL) is turned from L〇w (ground voltage) to High (electrical voltage VDD) when the write operation starts. When the voltage of the write word line (WWL) is greater than the threshold voltage of the third NMOS transistor (M3) (ie, the access transistor), the third _8 transistor (M3) is turned off (OFF) Turning to ON (ON), at this time, because the write bit line (wbl) is the ground voltage, the node A is discharged, and the logic (4) write action is completed until the end of the write cycle. (2) Node A originally stores the logic 〇, but now wants to write logic j: Before the write operation occurs (the write word line ~^ is the ground voltage), the first NM〇s transistor (Ml ) is on (on). Since the first wake-up 8 transistor (M1) is (10), when the write operation starts, the word line d) is twisted by L〇w (ground voltage) (the power supply voltage VDD), the node The voltage of A rises following the voltage of the write word line (WWL). When the voltage of the write word line (WWL) is greater than the threshold voltage of the third nm 〇s transistor (milk), the third NMOS transistor (M3) is turned from off (OFF) to on (on) At this time, since the write bit line (WBL) is High (the power supply voltage Vdd), and φ because the first NM〇S transistor (M1) is still ON and the node B is still at the voltage level In order to connect to the initial state of the voltage level of the power supply voltage (Vdd), the first pm S transistor P1 is still OFF (OFF) and the node A is fast toward a divided voltage level. Charging, the divided voltage level is equal to (Rj^+R^) / (Rm3+Rmi + Rm25+Rm26) multiplied by the power supply voltage (VDD), wherein the RMS represents the XNM〇s transistor (M3) The on-resistance equivalent resistance, the RM1 represents the on-resistance equivalent resistance of the first NMOS transistor (M1), and the table represents the on-resistance equivalent resistance of the eighth NMOS transistor (M25), and the ninth transistor is represented (M26) is the equivalent resistance, because the third nmos transistor (m3) is still operating in the saturation region and the first NMOS transistor (Ml) is still working. In the triode region, although the conduction equivalent M438015 resistance (Rk〇) of the third NMOS transistor (M3) is much larger than the on-resistance equivalent (Rmi) of the first nmos transistor (M1), However, since the ninth NMOS transistor (M26) is diode-connected, a source voltage equal to the source voltage of the ninth nm 电s transistor can be provided at the first low voltage node (VL1). The voltage level of VGs_, the result of the voltage division value presented by node A, the voltage value will be more than the voltage of the node A of the conventional 5T·'random memory cell of FIG. ; a lot of. The higher (4) voltage level is sufficient for the second sinker transistor (10) to conduct: then 'so that node B is discharged to a lower voltage level, the lower voltage level of the node B will cause The on-resistance equivalent (Rmi) of the first NMOS transistor (M1) exhibits a higher resistance Lu value. The higher resistance value of the first NMOS transistor (M1) will obtain a higher voltage at the node a. Level, the higher voltage level of the node A is again caused by a second inverter (composed of the second PMOS transistor P2 and the second NM〇S transistor M2), so that the node b is lower The voltage level, the lower voltage level of the node B is again passed through a first inverter (composed of the first PMOS transistor P1 and the first nm 晶体S, the crystal M1), so that the node a obtains more At the high voltage level, according to this cycle, the node A can be charged to the power supply voltage (VDD)' to complete the logic 1 write operation. It is worth noting here that 'the first low voltage node W is only between the initial period of the write logic i, and has a voltage equal to the gate source voltage VGS (M26) of the λ ΝΜΟ δ transistor. Level. (2) Node A originally stores the logic 丨, but now wants to write logic 1: Before the write operation occurs (the write word line WWL is grounded), the first pM〇s transistor (pi) To be on (0N). When the word line (WL) is from L〇w (grounded electric illusion to High (the electric hybrid lining M Vdd), and the financial line (muscle) (four) pressure is greater than the critical voltage of the three-sided transistor (M3), The third transistor (M3) is turned off (〇 is turned on (ON); at this time, because the write bit line (WBL) is qing (the power supply is VDD) 'and g is the The first -pM〇s transistor (ρι) is still 〇N, so the power of the node A will be maintained at the voltage level of the power supply voltage (Vdd) until the write cycle is 17 M438015 beam. It is worth noting here. The 'the first low voltage node' has a voltage level equal to the threshold voltage of the fourth (10) transistor (M21) after writing the logic. (4) Node A originally stores the logic! Write logic 〇: Before the write operation occurs (the write word line WWL is grounded, the first pM〇s transistor (P1) is turned on (〇N). When the write word is used The line is turned from (grounded ink) to High (the power supply voltage Vdd), and the electric* ink of the write word line (wwl) is greater than the threshold voltage of the first pass 8 transistor (M3) The third NM〇s transistor: is turned from off (〇FF) to turned on (ON), because the write bit line ([) _ is Low (ground voltage), the node a will be And the first low voltage node () discharges to complete the logic 0 write operation until the end of the write cycle. It is worth noting that the first low-voltage node (VU) is after writing the logic The level of the ground voltage is the same. The preferred embodiment of the present invention is not shown in Fig. 6. The transient analysis of the service is performed during the writing operation, as shown in Fig. 7, which is based on the ievel 49 model and uses tsmc (four) micron. (10)^ The process parameters are added to the _ gambling effect. The high-performance dual-static SRAM proposed by this creation can improve the first low-voltage node by writing logic! The voltage level is effective to avoid the problem that it is difficult to write the logic 1 in the double-transition random access memory cell with a single-bit line. . . . (> (11) Standby mode At this time, the standby mode control signal (8) is a logic high level, and the inverted standby mode control (4) (6) is The inverted standby mode control signal (6) of the logic low level can make the fifth touch s transistor (help) of the (4) circuit (2) and the eighth circumference s electric = ^25) cut off (OFF) ), and the logical high scale scales the control number (8) ^ secret six NMOS transistor (office) conduction _, at this time the sixth surface electricity L (which round) use, shame can be turned on First, the NMOS electrical body (10) 3) 'so that the voltage level of the first low power node ^ is equal to the gift of the wire two-display point (VL2), and the electrical contacts are equal to M438015 The sum of the threshold voltage of the fourth NMOS transistor (bribe) and the threshold voltage (Vtm24) of the seventh NMOS transistor (Μ24), that is, the voltage level of the v_+v plane. Next, how to reduce the leakage current when creating a standby mode (standbym〇de), please refer to Section 6 ® '6th _There are various leakages generated when the thief is selected as the thief type. !, 12, 13, and 14, which assume SRAM cells

之該第-反相器之輸出(即節點A)為邏輯Lqw (在此值得注意的是,由 於^機模柄該帛二低電壓祕(心)之電壓辦絲持在該細·〇s 電晶體(M21)及該第七譲⑽電晶體(M24)之臨界電壓總和(Vtm2i + _)的電壓位準,因此節點A為邏輯Lgw之電壓位準亦維持在該V誦 _的電壓位準),而該第二反相器之輸出(即節點B)為邏輯扭妨 電原供應電壓VDD)。請參考第5圖之先前技藝與第6圖之本創作實施 ★說月本邊J作所提出之靜,態隨機存取記憶體與第5圖之於漏 電机方面之比較’首先關於流經該第三NM〇S電晶體(M3)之漏電流l ’ :於本創作於待機模式時節點A之電壓位準係維持在該ν· + Υ漏的電 位準,且假設寫入肖字元線(佩)於待麵式時係設定成接地電壓, 因此本創作之第三電晶體㈤)賴源極電壓%為負值反觀 =機模式時第5耻前技藝之·〇s電晶體(M3) _源極電壓I ▲;根朗極服⑦極脑(Gate Induced Drain Leakage,祕 GIDL) 聰年3月8日第_5119號專利案第3⑷及3⑻圖之結 齡對於NMOS電晶體而言,閘源極電壓為_〇 ι伏特時之次臨界電流 引發^極電壓為G伏特時之次臨界電流的1%,因此導因於GIDL效應所 圖弁十^本㈤作之該第二觸⑽電晶體(M3)之漏電流11遠小於第5 體d 電晶體(M3)者;再者’本創作該第三舰⑽電晶 之汲源極電壓vDS為該電源供應電壓v 電壓位準,反顴於她m 馮忑V_+V_的The output of the first-inverter (ie, node A) is logic Lqw (it is worth noting here that the voltage of the second low voltage secret (heart) is held in the thin 〇s The voltage level of the sum of the threshold voltages (Vtm2i + _) of the transistor (M21) and the seventh (10) transistor (M24), so that the voltage level of the node A is the logic Lgw is also maintained at the voltage level of the V诵_ The output of the second inverter (ie, node B) is a logic-torque supply voltage VDD). Please refer to the previous technique in Figure 5 and the creation of the figure in Figure 6. The comparison between the static random state memory and the leakage motor proposed in Figure 5 is the first thing about the flow. The leakage current l ' of the third NM〇S transistor (M3): the voltage level of the node A is maintained at the potential level of the ν· + drain when the mode is created in the standby mode, and it is assumed that the xiao character is written. The line (penetration) is set to the grounding voltage when it is in the face-to-face mode. Therefore, the third transistor (5) of the present invention has a negative source voltage % of negative value, and the fifth mode of the art is 〇s transistor. M3) _ source voltage I ▲; Gate Induced Drain Leakage, GIDL) The age of the 3rd (4) and 3 (8) figures of the _5119 patent on March 8th is for the NMOS transistor. In other words, when the gate source voltage is _〇ι volt, the sub-critical current induces 1% of the sub-critical current when the voltage is G volts. Therefore, the second voltage is caused by the GIDL effect. The leakage current 11 of the (10) transistor (M3) is much smaller than that of the fifth body d (M3); and the 'source of the third ship (10) is the source of the electron. VDS pressure power supply voltage v for the voltage level of anti von m zygomatic in her nervous V_ + V_ of

雷㈣w 切傳絲5 ®叮靜態隨機存取記賴之NMOS 日日之沒源極電群ds係等於該電源供應電壓Vdd,根據没極引發能 19 M438015 障下跌(Drain-Induced Barrier Lowering,簡稱 DIBL)效應,由於 DIBL 效 應所引發之流經本創作之該第三NMOS電晶體(M3)之漏電流1丨亦小於 第5圖先前技藝之NMOS電晶體(M3)者;結果,流經本創作之該第三 NMOS電晶體(M3)之漏電流I丨遠小於第5圖先前技藝之NMOS電晶體 (M3)者。 接著關於流經該第一 PMOS電晶體(P1)之漏電流12,由於待機模式 ; 時該第一 pM〇S電晶體(P1)之源極係為該電源供應電壓(Vdd),而該 第一 PMOS電晶體(P1)之汲極係維持在該該Vtm21+Vtm24的電壓位準, φ 因此本創作之該第一 PMOS電晶體(P1)之源汲極電壓VSD為該電源供應 電壓(VDD)扣減該Vti^+Vt^4的電壓位準,反觀於待機模式時第5圖先 前技藝之PMOS電晶體(P1)之源汲極電壓vSD係等於該電源供應電壓 (VDD) ’根據DIBL效應,因此流經該第一 PMOS電晶體(Pi)之漏電流 工2會小於第5圖先前技藝之PMOS電晶體(P1)者;最後,關於流經該第 二NMOS電晶體(M2)之漏電流I3,由於待機模式時該第二低電壓節點 (VL2)之電壓位準係維持在該Vtm2i + Vtm24的電壓位準,節點A之電壓 位準亦維持在該VTivm+VTNm的電壓位準,而節點B之電壓位準係等於該 φ 電源供應電壓(Vdd)且該第二NMOS電晶體(M2)之基底為接地電壓, 因此本創作之該第二NMOS電晶體(M2 )的基源極電壓VBS為負值,且該 • 第二NMOS電晶體(M2)之汲源極電壓VDS為該電源供應電壓(Vdd)扣 減該Vtm2i + Vtm24的電壓位準’反觀於待機模式時第5圖先前技藝之NMOS 電晶體(M2)的基源極電壓VBS等於0,且NMOS電晶體(M2)之汲源 極電壓VDS等於該電源供應電壓(VDD),根據本體效應(body effect)及 DIBL效應可知’流經本創作之該第二NMOS電晶體(M2)之漏電流13遠 小於第5圖先前技藝之NMOS電晶體(M2)者。 最後,關於流經該第一讀取用電晶體(M4)之漏電流L»,由於本創作 之雙埠靜態隨機存取記憶體與傳統8T雙埠靜態隨機存取記憶體之讀取方式 20 M4J8015 不同’且本創作之雙埠靜態隨機存取記憶體待機模式下之讀取用位元線 (RBL)可設定成接地電壓,而傳統訂雙埠靜態隨機存取記憶體為了防止 節點B之電壓位準下降,待機模式下之讀取用位元線(RBL)係設定成電 源供應電壓(VDD),因此無從比較流經該第一讀取用電晶體(M4)之漏電 流Ϊ4°综合以上分析可知,本創作提出之雙埠靜態隨機存取記憶體於待機 模式時確實可有效減少漏電流。 第6圖所示之本創作較佳實施例與傳統第5圖8Τ靜態隨機存取記憶體 於待機模式下之漏電流(即&、12及13之總和)比較如表2所示,其係以 level 49模型且使用TSMC 0.18微米CMOS製程參數加以模擬,由表2可 看出於製程TT、SS以及FF,本論文所提出之雙埠靜態隨機存取記憶體與 傳統6T靜態隨機存取記憶體分別減少90.7%、31.5%及87.3%的漏電流。 表2漏電流比較 製程與溫度 傳統8T SRAM (PA) 本發明 SRAM(pA) 減少百分比(%) TT 22.2203 2.0576 90.7 SS 1.6191 1.1091 31.5 FF 309.2402 39.3803 _ · — 87.3 (III )讀取模式(Readmode) 茲依雙埠靜態隨機存取記憶體晶胞之二種儲存資料狀態說明第6圖之 雙埠靜態隨機存取記憶體如何完成讀取動作。 (一)節點A儲存邏輯〇 在讀取動作發生前,(該讀取用字元線RWL為接地電壓),該第二 NMOS電晶體(M2)為截止(OFF),該第二PMOS電晶體(p2)為導 通(ON),節點B為High (電源供應電壓VDD)。當讀取動作開始時,讀 取用字元線(RWL)由Low (接地電壓)轉為High (電源供應電壓Vdd), 且當該讀取用字元線(RWL)的電壓大於該第一讀取用電晶體之臨 界電壓時,該第一讀取用電晶體(M4)由截止(OFF)轉變為導通(〇N), 21 M438015 此時由於節點B為High (電源供應電壓Vdd),該第二讀取用電晶體(M5) 為導通(ON),因此,會在讀取用位元線(RBL)、該第一讀取用電晶體 (M4)和該第二讀取用電晶體以及接地間形成電流路徑,此電流路 徑即會使該讀取用位元線(RBL)之電壓位準降低,藉此即可感測出節點A 係儲存邏輯〇之資料,並完成邏輯0的讀取動作。 (二)節點A儲存邏輯1 在讀取動作發生前,(該讀取用字元線RWL為接地電壓),該第二 NMOS電晶體(M2)導通(〇N),該第二PM0S電晶體(P2)為截止(〇FF), 節點B為Low (接地電壓)。當讀取動作開始時,該讀取用字元線RWL 由Low (接地電壓)轉為扭块(電源供應電壓Vdd),且當該讀取用字元 線(RWL)的電壓大於該第一讀取用電晶體(M4)之臨界電壓時,該第一 讀取用電晶體(M4)由截止(OFF)轉變為導通(ON),此時由於節點B 為Low (接地電壓),該第二讀取用電晶體(M5)為截止,因此,並不會 在讀取用位元線(RBL)、該第一讀取用電晶體(M4)和該第二讀取用電 晶體(M5)以及接地間形成電流路徑,結果,讀取用位元線(rbl)之電 壓位準能平穩地保持在High (電源供應電壓VDD)狀態,藉此即可感測出 節點A係儲存邏輯1之資料,並完成邏輯1的讀取動作。 接著’說明第6圖中之待機啟動電路(3)如何促使靜態隨機存取記憶 體快速進入待機模式’以有效提高靜態隨機存取記憶體之待機效能:(1) 於進入待機模式之前’該反相待機模式控制信號(/S)為邏輯扭曲,該邏 輯High之反相待機模式控制信號(/S)使得該第五PM〇s電晶體(p31) 截止(OFF),並使得該第六PM0S電晶體(P32)導通(〇N) ; (2)而 於進入待機模式後,該反相待機模式控制信號(/S)為邏輯Low,該邏輯 Low之反相待機模式控制信號(/S)使得該第五pM〇s電晶體(p31)導通 (ON )’惟於待機模式之初始期間内(該初始期間係為該第二延遲電路(D2 ) 所提供之一第二延遲時間以及該第六反相器(B3)所提供之上升延遲時間 的總和),該第六PMOS電晶體(P32)仍導通(ON),於是該第一低電壓 節點(VL1)可快速到達該第四NMOS電晶體(M21)之臨界電壓(Vtm21) 22 M438015 及該第七NMOS電晶體(M24)之臨界輕(v丽)的總和,即乂細+ Vt^4之電壓位準,亦即靜態隨機存取記憶體可快速進入待機模式。 曰最^ D兒月第6圖中之該第二反相器與該第四反相器如何増加記憶體 :胞的靜態雜訊邊際,請再參考第6圖,該第三反相器之輸出(即第二控制 節點B2)連接至該第—nmos電晶體(M1)之f ,而該第四反相器 之輸出(即第-控制節點B1)除了連接至該第三電晶體⑽)之 f閘極和亦連接到第二NM〇s電晶體(M2)之背閘極。在此值得注意的 ' 是,該第三反相器與該第四反相器均係連接在-次電源供應電壓(Vddl) •與接地電壓之間,而触電源縣電壓(VDDL)的電壓鱗大小係設定成 鲁小於該第-NMOS電晶體(M1〕之背閘極與源極間之寄生二極體的切入電 壓(cutinvohage)大小與該第二nm〇s電晶體(M2)之背閉極與源極間之 寄生二極體的切人電壓大小二者中之較小者,並且為了糊達成該設定, 限定該第-PMOS控制電晶體(PC1)與該第二pM〇s控制電晶體(pc2) 之臨界電壓大小小於該次電源供應電壓(Vddl)的電壓位準大小。 兹說月靜態隨機存取記憶體處於保持狀態(h〇ld State)時,如何增加靜 態雜訊邊際:⑴假設SRAM晶胞中之該第—反相器之輸出(即節點A) 為邏輯Low,則該第一控制節點(B1)為接地電壓之邏輯l〇w,而該第二 控制節點(B2)為該次電源供應電壓(Vddl)的電壓位準之邏輯_,根 據本體效應’該邏輯High之第二控制節點(B2)會減少該第一 電晶 攀體(Ml )之臨界電屋,該較低之臨界電壓即可增加節點a為邏輯[⑽之 -靜態雜訊邊際;⑴假設SRAM晶胞中之該第一反相器之輸出(即節點A) 為邏輯扭沙’則該第-控制節‘點(B1)為該次電源供應電壓(Vddl)的電 壓位準之邏輯High,而該第二控制節點(B2)為接地電壓之邏輯L〇w,根 據本體效應’該邏輯High之第_控制節點(B1)會減少該第二舰⑽電晶 體(M2)之臨界電壓,該較低之臨界電壓即可增加節點a為邏輯 之 靜態雜訊邊際。 接著藉由觀察該第三爾〇3電晶體(M3)之背閘極電麗以說明靜態隨 機存取記憶體處於寫入動作時,如何增加靜態雜訊邊際:⑴假設寫入前 SRAM晶胞中之該第—反相器之輸出(即節點A)為邏輯_,則該第一 23 M438015 控制節點(B1)為該次電源供應電壓(VDDL)的電壓位準之邏輯High,根 據本體效應,此時該第三NM〇S電晶體(M3)之臨界電壓會小於第5圖先 前技藝之NMOS電晶體(M3)之臨界電壓,該較低之臨界電壓有助於增加 由邏輯1寫入邏輯0之靜態雜訊邊際;(2)假設寫入前SRAM晶胞中之該 第一反相器之輸出(即節點A)為邏輯Low,則該第一控制節點(B1)為 接地電壓之邏輯Low,此時該第三NMOS電晶體(M3)之背閘極電壓相同 :於第5 ®先前技藝之丽〇8電晶體(M3)之背問極電壓,此時將具有與第 3圖先前技藝相同的靜態雜訊邊際。 • ,Β:本創作特别揭露並描述了所選之較佳實施例,但舉凡熟悉本技術之 人士可明瞭任何形式或是細節上可能的變化均未脫離本創作的精神虚範 圍。因此’所有相關技術範嘴内之改變都包括在本創作之申請專利範圍内。 24 M438015 【圖式簡單說明】 第la圖係顯示習知之靜態隨機存取記憶體; 第lb圖係顯示習知6T靜態隨機存取記憶體晶胞之電路示意圖; 第2圖係顯示習知6T靜態隨機存取記憶體晶胞之寫入動作時序圖; 第3圖係顯示習知5T靜態隨機存取記憶體晶胞之電路示意圖; 第4圖係顯示習知5T靜態隨機存取記憶體晶胞之寫入動作時序圖; :第5圖係顯示習知8Τ雙埠靜態隨機存取記憶體晶胞之電路示意圖; 第6圖係顯示本創作較佳實施例所提出之電路示意圖; # 第7圖係顯示6圖之本創作較佳實施例之寫入動作時序圖。 【主要元件符號說明】 Ρ1 第一 PMOS電晶體 Ml 第一 NMOS電晶體 M3 第三NMOS電晶體 WBL 寫入用位元線 B 反相儲存節點 S 待機模式控制信號 VL1 第一低電壓節點 M21 第四NMOS電晶體 M23 第六NMOS電晶體 M25 第八NMOS電晶體 P2 第二PMOS電晶體 M2 第二NMOS電晶體 WWL 寫入用字元線 A 儲存節點 V〇d 電源供應電壓 /S 反相待機模式控制信號 VL2 第二低電壓節點 M22 第五NMOS電晶體 M24 第七NMOS電晶體 M26 第九NMOS電晶體 25 M438015Thunder (four) w cut wire 5 ® 叮 static random access memory NMOS day and day no source group ds is equal to the power supply voltage Vdd, according to the immersion trigger energy 19 M438015 barrier down (Drain-Induced Barrier Lowering, referred to as The DIBL) effect, the leakage current 1丨 of the third NMOS transistor (M3) flowing through the creation caused by the DIBL effect is also smaller than that of the prior art NMOS transistor (M3) of FIG. 5; The leakage current I 该 of the third NMOS transistor (M3) is much smaller than that of the prior art NMOS transistor (M3) of FIG. Next, regarding the leakage current 12 flowing through the first PMOS transistor (P1), the source of the first pM〇S transistor (P1) is the power supply voltage (Vdd) due to the standby mode; The drain of a PMOS transistor (P1) is maintained at the voltage level of the Vtm21+Vtm24, φ. Therefore, the source drain voltage VSD of the first PMOS transistor (P1) is the power supply voltage (VDD). Deducting the voltage level of the Vti^+Vt^4, in contrast to the standby mode, the source drain voltage vSD of the PMOS transistor (P1) of the prior art is equal to the power supply voltage (VDD) 'according to DIBL Effect, so the leakage current 2 flowing through the first PMOS transistor (Pi) will be smaller than that of the PMOS transistor (P1) of the prior art of FIG. 5; finally, regarding the flow through the second NMOS transistor (M2) Leakage current I3, since the voltage level of the second low voltage node (VL2) is maintained at the voltage level of the Vtm2i + Vtm24 in the standby mode, the voltage level of the node A is also maintained at the voltage level of the VTivm + VTNm. And the voltage level of the node B is equal to the φ power supply voltage (Vdd) and the second NMOS transistor (M2) The bottom is the ground voltage, so the base-source voltage VBS of the second NMOS transistor (M2) of the present invention is a negative value, and the source voltage VDS of the second NMOS transistor (M2) is the power supply voltage. (Vdd) deducting the voltage level of the Vtm2i + Vtm24'. In the standby mode, the base-source voltage VBS of the NMOS transistor (M2) of the prior art of FIG. 5 is equal to 0, and the source of the NMOS transistor (M2) The pole voltage VDS is equal to the power supply voltage (VDD). According to the body effect and the DIBL effect, the leakage current 13 flowing through the second NMOS transistor (M2) of the present invention is much smaller than that of the prior art of FIG. Transistor (M2). Finally, regarding the leakage current L» flowing through the first read transistor (M4), the reading mode of the dual-bit static random access memory and the conventional 8T dual-static static random access memory of the present invention is 20 The M4J8015 is different and the read bit line (RBL) in the standby mode of the dual-static SRAM can be set to the ground voltage, while the conventional double-static static random access memory is used to prevent the node B. The voltage level drops, and the read bit line (RBL) in the standby mode is set to the power supply voltage (VDD), so there is no comparison of the leakage current flowing through the first read transistor (M4) Ϊ4°. The above analysis shows that the dual-static SRAM proposed by the present invention can effectively reduce leakage current in the standby mode. The comparison between the preferred embodiment of the present invention shown in FIG. 6 and the leakage current of the conventional FIG. 5 FIG. 8 static random access memory in the standby mode (ie, the sum of &, 12 and 13) is as shown in Table 2, It is simulated by level 49 model and using TSMC 0.18 micron CMOS process parameters. It can be seen from Table 2 that the process TT, SS and FF, the two-dimensional static random access memory proposed in this paper and the traditional 6T static random access The memory reduces leakage current by 90.7%, 31.5%, and 87.3%, respectively. Table 2 Leakage current comparison process and temperature Conventional 8T SRAM (PA) SRAM (pA) reduction percentage (%) of the present invention TT 22.2203 2.0576 90.7 SS 1.6191 1.1091 31.5 FF 309.2402 39.3803 _ · - 87.3 (III) Read mode (Readmode) According to the two kinds of stored data states of the double-static SRAM cell, how the Shuangqi static random access memory of FIG. 6 completes the reading operation. (1) Node A stores logic 前 before the read operation occurs (the read word line RWL is a ground voltage), and the second NMOS transistor (M2) is turned off (OFF), the second PMOS transistor (p2) is ON (ON), and Node B is High (power supply voltage VDD). When the read operation starts, the read word line (RWL) is changed from Low (ground voltage) to High (power supply voltage Vdd), and when the read word line (RWL) voltage is greater than the first When the threshold voltage of the transistor is read, the first read transistor (M4) is turned from off (OFF) to on (〇N), 21 M438015 at this time, since the node B is High (power supply voltage Vdd), The second read transistor (M5) is turned on (ON), and therefore, the read bit line (RBL), the first read transistor (M4), and the second read power A current path is formed between the crystal and the ground, and the current path reduces the voltage level of the read bit line (RBL), thereby sensing the data stored in the node A and completing the logic 0. Read action. (2) Node A stores logic 1 Before the read operation occurs, (the read word line RWL is the ground voltage), the second NMOS transistor (M2) is turned on (〇N), and the second PMOS transistor (P2) is cutoff (〇FF) and node B is Low (ground voltage). When the read operation starts, the read word line RWL is converted from a Low (ground voltage) to a twist block (power supply voltage Vdd), and when the voltage of the read word line (RWL) is greater than the first When the threshold voltage of the transistor (M4) is read, the first read transistor (M4) is turned from off (OFF) to on (ON), and since the node B is Low (ground voltage), the first The second read transistor (M5) is off, and therefore, is not in the read bit line (RBL), the first read transistor (M4), and the second read transistor (M5) And forming a current path between the grounds, and as a result, the voltage level of the read bit line (rbl) can be smoothly maintained in the High (power supply voltage VDD) state, thereby sensing the node A storage logic 1 The data, and complete the logic 1 read action. Then, 'how the standby start circuit (3) in Fig. 6 causes the SRAM to quickly enter the standby mode' to effectively improve the standby performance of the SRAM: (1) before entering the standby mode. The inverted standby mode control signal (/S) is a logic distortion, and the logic high inverted standby mode control signal (/S) causes the fifth PM 〇s transistor (p31) to be turned off (OFF), and makes the sixth The PM0S transistor (P32) is turned on (〇N); (2) After entering the standby mode, the inverted standby mode control signal (/S) is logic Low, and the logic Low is in the standby mode control signal (/S) Making the fifth pM〇s transistor (p31) conductive (ON)' only during the initial period of the standby mode (the initial period is one of the second delay times provided by the second delay circuit (D2) and the The sixth PMOS transistor (P32) is still turned ON (the sum of the rising delay times provided by the sixth inverter (B3)), so that the first low voltage node (VL1) can quickly reach the fourth NMOS The threshold voltage of the transistor (M21) (Vtm21) 22 M438015 and the seventh NM The sum of the critical light (vLi) of the OS transistor (M24), that is, the voltage level of 乂 fine + Vt^4, that is, the static random access memory can quickly enter the standby mode.曰The most inversion of the second inverter and the fourth inverter in Figure 6 how to add memory: the static noise margin of the cell, please refer to Figure 6, the third inverter The output (ie, the second control node B2) is coupled to the fth of the -nmos transistor (M1), and the output of the fourth inverter (ie, the first control node B1) is coupled to the third transistor (10). The gate of the f is also connected to the back gate of the second NM〇s transistor (M2). It is worth noting here that the third inverter and the fourth inverter are both connected between the secondary power supply voltage (Vddl) and the ground voltage, and the voltage of the power supply county voltage (VDDL) is touched. The scale size is set to be less than the cutinvohage of the parasitic diode between the back gate and the source of the first NMOS transistor (M1) and the back of the second nm〇s transistor (M2) Limiting the smaller of the cutoff voltage of the parasitic diode between the closed pole and the source, and defining the first PMOS control transistor (PC1) and the second pM〇s for the paste to achieve the setting The threshold voltage of the transistor (pc2) is smaller than the voltage level of the power supply voltage (Vddl). How to increase the static noise margin when the monthly static random access memory is in the hold state (h〇ld State) (1) Assuming that the output of the first-inverter in the SRAM cell (ie node A) is logic Low, the first control node (B1) is the logic l〇w of the ground voltage, and the second control node ( B2) is the logic level of the voltage level of the secondary power supply voltage (Vddl), according to the ontology effect 'The second control node (B2) of the logic High will reduce the critical electric house of the first electro-ceramic climbing body (M1), and the lower threshold voltage can increase the node a to logic [(10) - static noise margin (1) Assuming that the output of the first inverter in the SRAM cell (ie node A) is a logical torsion sand' then the first control node 'point (B1) is the voltage level of the secondary power supply voltage (Vddl) Logic High, and the second control node (B2) is the logic L 〇 w of the ground voltage, according to the ontology effect 'the logic _ control node (B1) will reduce the second ship (10) transistor (M2) The threshold voltage, the lower threshold voltage can increase the static noise margin of node a. Then, by observing the back gate of the third transistor 3 (M3), the static random access memory is explained. How to increase the static noise margin when the body is in the write operation: (1) Assuming that the output of the first-inverter in the pre-SRAM cell (ie, node A) is logic_, then the first 23 M438015 control node ( B1) is the logic High of the voltage level of the secondary power supply voltage (VDDL), according to the ontology effect Therefore, the threshold voltage of the third NM〇S transistor (M3) at this time is smaller than the threshold voltage of the NMOS transistor (M3) of the prior art of FIG. 5, and the lower threshold voltage helps to increase the writing by the logic 1. Entering the static noise margin of logic 0; (2) assuming that the output of the first inverter (ie, node A) in the pre-SRAM cell is logic Low, the first control node (B1) is the ground voltage Logic Low, at this time, the back NMOS voltage of the third NMOS transistor (M3) is the same: in the 5th prior art, the back-electrode voltage of the 电8 transistor (M3), which will have the third The same static noise margin as the previous technique. • The present invention has been specifically described and described in its preferred embodiments, and it is obvious to those skilled in the art that any form or detail may be modified without departing from the spirit of the present invention. Therefore, all changes in the relevant technical specifications are included in the scope of the patent application of this creation. 24 M438015 [Simple description of the drawing] The first drawing shows the conventional static random access memory; the lb is a schematic circuit diagram showing the conventional 6T static random access memory unit cell; the second figure shows the conventional 6T Schematic diagram of the write operation of the SRAM cell; Figure 3 shows the circuit diagram of the conventional 5T SRAM cell; Figure 4 shows the conventional 5T SRAM Schematic diagram of the write operation of the cell; Fig. 5 is a schematic diagram showing the circuit of the conventional 8-inch dual-static SRAM cell; Figure 6 is a schematic diagram showing the circuit proposed in the preferred embodiment of the present invention; 7 is a timing chart showing the write operation of the preferred embodiment of the present invention. [Description of main component symbols] Ρ1 First PMOS transistor M1 First NMOS transistor M3 Third NMOS transistor WBL Write bit line B Inverting storage node S Standby mode control signal VL1 First low voltage node M21 Fourth NMOS transistor M23 sixth NMOS transistor M25 eighth NMOS transistor P2 second PMOS transistor M2 second NMOS transistor WWL write word line A storage node V〇d power supply voltage / S inverting standby mode control Signal VL2 second low voltage node M22 fifth NMOS transistor M24 seventh NMOS transistor M26 ninth NMOS transistor 25 M438015

M27 第十NMOS電晶體 M28 第十一 NMOS電晶體 M29 第十二NMOS電晶體 P21 第三PMOS電晶體 P22 第四PMOS電晶體 1 SRAM晶胞 2 控制電路 3 待機啟動電路 Ιι 漏電流 h 漏電流 I3 漏電流 I4 漏電流 M4 第一讀取用電晶體 M5 第二讀取用電晶體 BLB 互補位元線 BLrBLm 位元線 WL]· WLn字元線 CTL 寫入控制信號 /CTL 寫入反相延遲控制信號 V〇dl 低電源供應電壓 D1 第一延遲電路 D2 第二延遲電路 121 第五反相器 133 第六反相器 P31 第五PMOS電晶體 P32 第六PMOS電晶體 MCI 第一 NMOS控制電晶體 MC2 第二NMOS控制電晶體 PCI 第一 PMOS控制電晶體 PC2 第二PMOS控制電晶體 c 節點 GND 接地 BLBj BLB,互補位元線 B1 第一控制節點 B2 第二控制節點 MBfMBk 記憶體區塊 26M27 Tenth NMOS transistor M28 Eleventh NMOS transistor M29 Twelfth NMOS transistor P21 Third PMOS transistor P22 Fourth PMOS transistor 1 SRAM cell 2 Control circuit 3 Standby startup circuit Ιι Leakage current h Leakage current I3 Leakage current I4 Leakage current M4 First read transistor M5 Second read transistor BLB Complementary bit line BLrBLm Bit line WL]· WLn word line CTL Write control signal / CTL Write inversion delay control Signal V〇dl Low power supply voltage D1 First delay circuit D2 Second delay circuit 121 Fifth inverter 133 Sixth inverter P31 Fifth PMOS transistor P32 Sixth PMOS transistor MCI First NMOS control transistor MC2 Second NMOS control transistor PCI first PMOS control transistor PC2 second PMOS control transistor c node GND ground BLBj BLB, complementary bit line B1 first control node B2 second control node MBfMBk memory block 26

Claims (1)

M438015 六、申請專利範圍: 1. 一種具高效能之雙埠靜態隨機存取記憶體,包括: -記憶體陣列,該纖體_係由複數瓶憶體晶胞與複數行記憶體晶 胞所組成,每一列記憶體晶胞與每一行記憶體晶胞均包含有複數 = 體晶胞(1) ; u 複數個控制電珞(2),每一列記憶體晶胞設置一個控制電路(2);以 一待機啟動電路(3) ’該待機啟動電路(3)係促使該靜態隨機存取記憶 體快速進入待機模式,並藉此以有效提高靜態隨機存取記憶體之待機效 能, 其中’每一記憶體晶胞(1)更包含: 第反相器,係由一第一PMOS電晶體(P1)與一第一NMOS電晶體 (Ml)所組成,該第一反相器係連接在一電源供應電壓(Vdd)與一第 一低電壓節點(VL1)之間; 一第二反相器’係由一第二PMOS電晶體(P2)與一第二_〇§電晶體 (M2)所組成’該第二反相器係連接在該電源供應電壓(Vdd)與一第 二低電壓節點(VL2)之間; 一儲存節點(A),係由該第一反相器之輸出端所形成; 一反相儲存節點(B),係由該第二反相器之輸出端所形成; 一第三NMOS電晶體(M3),係連接在該儲存節點(A)與對應之一寫 入用位元線(WBL)之間,且閘極連接至對應之一寫入用字元線 (WWL); 一第一項取用電晶體(M4 ),該第·一讀取用電晶體(M4 )之源極、閘 極與汲極係分別連接至·-第二讀取用電晶體(M5)之汲極、一讀取用字 元線(RWL)與一讀取用位元線(RBL);以及 該第二讀取用電晶體(M5),該第二讀取用電晶體(M5)之源極、閘 極與汲極係分別連接至接地電壓、該第二反相器之輸出(節點B)與該 第二讀取用電晶體(M5)之源極; 一第三反相器,係由一第一PMOS控制電晶體(PC1)與一第一NMOS控制 27 M438015 電晶體(MCI)所組成,該第三反相器係連接在一次電源供應電壓(VDDL) 與接地電壓之間,且該第三反相器之輸入端係連接至該儲存節點(A); 一第四反相器,係由一第二PMOS控制電晶體(PC2)與一第二NMOS控制 電晶體(MC2)所組成,該第四反相器係連接在該次電源供應電壓(VDDL) 與接地電壓之間,且該第四反相器之輸入端係連接至該反相儲存節點 (B); 一第一控制節點(B1),係由該第四反相器之輸出端所形成,且連接至 該第二NMOS電晶體(M2)之背閘極(back gate)及該第三NMOS電晶體 (M3)之背閘極; 一第二控制節點(B2),係由該第三反相器之輸出端所形成,且連接至 該第一NMOS電晶體(Ml)之背閘極; 其中’該第一反相器和該第二反相器係呈交互耦合連接,亦即該第一反 相器之輸出端(即儲存節點A)係連接至該第二反相器之輸入端,而該 第二反相器之輸出端(即反相儲存節點B)則連接至該第一反相器之輸 入端; 而每一控制電路(2)更包含:一第四NMOS電晶體(M21)、一第五NM〇S 電晶體(M22)、一第六NMOS電晶體(M23)、一第七NMOS電晶體 (M24)、一第八NMOS電晶體(M25)、一第九NMOS電晶體(M26)、 一第十NMOS電晶體(M27)、一第•一NMOS電晶體(M28)、一第十 二NMOS電晶體(M29)、一第三PMOS電晶體(P21)、一第四pM0S 電晶體(P22)、一第五反相器(121)、一第一延遲電路(D1)以及一 寫入控制信號(CTL)所組成; 其中,該第四NMOS電晶體(M21)之源極係連接至該第七观〇8電晶 體(M24)之没極,而閘極與雜連接在—起並連接至該第—低電墨節 點(VL1); 該第五NMOSf:晶體(M22)之源極、閘極與汲極係、分別連接至接地電 壓、-反相待機模式控制信號⑻與該第二低電_點(VL2); 該第六NMOS電晶體(M23)之源極、_與汲極係分別連接至該第二 低電㈣點(VL2)、-待機模式控制信號⑻與該第—低電壓 (VL1); 28 M438015 該第七顺08電晶體(M24)之源極連接至接地電屋,而閘極與汲極連 接在一起並連接至該第四NMOS電晶體(M2D之源極; 該第/\NMOS電晶體(M25)之源極、閘極與汲極係分別連接至該第一 低電壓節點(VL1)、該反相待機模式控制信號⑹與該第九蘭⑽ 電晶體(M26)之没極; 該第九NMOS電晶體(M26)之源極係連接至接地電壓,而閘極與汲極 連接在一起並連接至該第八NMOS電晶體(M25)之沒極; ' .鮮十NMOSf;晶體(M27)之源極、祕與没極係㈣連接至接地電 壓、該第十一NMOS電晶體(M28)之没極與該第九麵〇8電晶體(M26) ; 之閘極; _ 該帛十一麵08電晶體(M28)之源極、閘極與汲極係分別連接至該第 十二NMOS電晶體(M29)之汲極、該寫入控制信號(CTL)與該第十 NM〇S電晶體(M27)之閘極、該第三脱⑽電晶體(p21)之没極和該 第四PMOS電晶體(P22)之没極; 該第十二NMOS電晶體(M29)之源極、閘極與汲極係分別連接至接地 電壓、該第五反相器(121)之輸出端與該第_^_____NMOS電晶體(M28) 之源極; 該第五反相器(121)之輸入連接至該第一延遲電路(D1)之輸出,而該第 五反相器(121)之輸出則連接至該第十二電晶體之閘極 • 與該第四PMOS電晶體(P22)之閘極; 該第一延遲電路(D1)之輸入連接至該寫入控制信號(CrL)與該第三 PMOS電晶體(P21)之閘極和該第十一nmos電晶體(Μ%之閘極; . 該第:PM0S電晶體(P21)之源極、閘極與汲極係分別連接至該電源供 應電壓(VDD)、該控制信號(CTL)、與該第四pm〇S電晶體(P22) 之汲極和該第十一NMOS電晶體(M28)之汲極;而 該第四PMOS電晶體(P22)之源極、閘極與汲極係分別連接至該電源供 應電壓(VDD)、該第五反相器(121)之輸出與該第三pM〇s電晶體(p21) 之没極和該第十一NMOS電晶體(M28)之汲極; 再者,該待機啟動電路(3)係設計成於進入待機模式之一初始期間内, 對該第一低電壓節點(VL1)處之寄生電容快速充電至該第四nmos電 29 M438015 5.如申請專利範圍第1項所述之具高效能之雙埠靜態隨機存取記憶體,其 中,該第一 PMOS控制電晶體(PC1)與該第二PMOS控制電晶體(PC2) 之臨界電壓大小係設定成小於該次電源供應電壓(VDDL)之電壓位準大 31M438015 VI. Scope of Application: 1. A high-performance double-static static random access memory, comprising: - a memory array, which is composed of a plurality of memory cells and a plurality of memory cells. Composition, each column of memory cells and each row of memory cells contain a complex number = body cell (1); u a plurality of control cells (2), each column of memory cells set a control circuit (2) a standby start circuit (3) 'The standby start circuit (3) prompts the SRAM to quickly enter the standby mode, thereby effectively improving the standby performance of the SRAM, where 'Every A memory cell (1) further comprises: an inverter consisting of a first PMOS transistor (P1) and a first NMOS transistor (M1) connected to the first inverter A power supply voltage (Vdd) is connected between a first low voltage node (VL1); a second inverter ' is connected by a second PMOS transistor (P2) and a second NMOS transistor (M2) Composition 'the second inverter is connected to the power supply voltage (Vdd) and a second low Between the voltage nodes (VL2); a storage node (A) formed by the output of the first inverter; an inverting storage node (B) connected by the output of the second inverter Forming a third NMOS transistor (M3) connected between the storage node (A) and a corresponding one of the write bit lines (WBL), and the gate is connected to the corresponding one of the write characters a wire (WWL); a first access transistor (M4), the source, the gate and the drain of the first read transistor (M4) are respectively connected to the second read power a drain of the crystal (M5), a read word line (RWL) and a read bit line (RBL); and the second read transistor (M5), the second read power The source, the gate and the drain of the crystal (M5) are respectively connected to a ground voltage, an output of the second inverter (node B) and a source of the second read transistor (M5); The three inverters are composed of a first PMOS control transistor (PC1) and a first NMOS control 27 M438015 transistor (MCI) connected to the primary power supply voltage (VDDL) and Between the ground voltages, and the input end of the third inverter is connected to the storage node (A); a fourth inverter is controlled by a second PMOS control transistor (PC2) and a second NMOS a transistor (MC2) connected between the secondary power supply voltage (VDDL) and a ground voltage, and an input end of the fourth inverter is connected to the inverting storage node ( B); a first control node (B1) formed by the output of the fourth inverter, and connected to the back gate of the second NMOS transistor (M2) and the third a back gate of the NMOS transistor (M3); a second control node (B2) formed by the output of the third inverter and connected to the back gate of the first NMOS transistor (M1) Wherein the first inverter and the second inverter are in an alternately coupled connection, that is, the output of the first inverter (ie, storage node A) is connected to the input of the second inverter And the output of the second inverter (ie, the inverting storage node B) is connected to the input end of the first inverter; and each control circuit 2) further comprising: a fourth NMOS transistor (M21), a fifth NM 〇S transistor (M22), a sixth NMOS transistor (M23), a seventh NMOS transistor (M24), an eighth NMOS transistor (M25), a ninth NMOS transistor (M26), a tenth NMOS transistor (M27), a first NMOS transistor (M28), a twelfth NMOS transistor (M29), a a third PMOS transistor (P21), a fourth pM0S transistor (P22), a fifth inverter (121), a first delay circuit (D1), and a write control signal (CTL); The source of the fourth NMOS transistor (M21) is connected to the bottom of the seventh transistor 8 (M24), and the gate is connected to the impurity and connected to the first low ink node. (VL1); the fifth NMOSf: the source, the gate and the drain of the crystal (M22), respectively connected to the ground voltage, the -inverting standby mode control signal (8) and the second low-power point (VL2); The source, the _ and the drain of the sixth NMOS transistor (M23) are respectively connected to the second low (four) point (VL2), the - standby mode control signal (8) and the first low voltage (VL1); 28 M438015The source of the seventh cis 08 transistor (M24) is connected to the grounded electric house, and the gate is connected to the drain and connected to the fourth NMOS transistor (the source of the M2D; the / NMOS transistor) a source, a gate and a drain of (M25) are respectively connected to the first low voltage node (VL1), the reverse standby mode control signal (6) and the ninth (10) transistor (M26); The source of the ninth NMOS transistor (M26) is connected to the ground voltage, and the gate is connected to the drain and connected to the terminal of the eighth NMOS transistor (M25); '. Fresh ten NMOSf; crystal ( M27) source, secret and immersion (4) connected to the ground voltage, the eleventh NMOS transistor (M28) and the ninth facet 8 transistor (M26); the gate; _ the 帛The source, gate and drain of the eleven-sided 08 transistor (M28) are respectively connected to the drain of the twelfth NMOS transistor (M29), the write control signal (CTL) and the tenth NM〇 a gate of the S transistor (M27), a gate of the third (10) transistor (p21), and a gate of the fourth PMOS transistor (P22); the twelfth NMOS transistor (M29) The source, the gate and the drain are respectively connected to a ground voltage, an output end of the fifth inverter (121) and a source of the _______ NMOS transistor (M28); the fifth inverter ( The input of 121) is connected to the output of the first delay circuit (D1), and the output of the fifth inverter (121) is connected to the gate of the twelfth transistor; and the fourth PMOS transistor ( a gate of P22); an input of the first delay circuit (D1) is connected to the write control signal (CrL) and a gate of the third PMOS transistor (P21) and the eleventh nmos transistor (Μ% The gate: the source, the gate and the drain of the PM0S transistor (P21) are respectively connected to the power supply voltage (VDD), the control signal (CTL), and the fourth pm〇S a drain of the crystal (P22) and a drain of the eleventh NMOS transistor (M28); and a source, a gate and a drain of the fourth PMOS transistor (P22) are respectively connected to the power supply voltage ( VDD), an output of the fifth inverter (121) and a drain of the third pM〇s transistor (p21) and a drain of the eleventh NMOS transistor (M28); The startup circuit (3) is designed to quickly charge the parasitic capacitance at the first low voltage node (VL1) to the fourth nmos power 29 M438015 during an initial period of entering the standby mode. The high-performance dual-static SRAM, wherein the threshold voltage of the first PMOS control transistor (PC1) and the second PMOS control transistor (PC2) is set to be smaller than the The voltage level of the power supply voltage (VDDL) is large 31
TW101202428U 2012-02-10 2012-02-10 High performance dual port SRAM TWM438015U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101202428U TWM438015U (en) 2012-02-10 2012-02-10 High performance dual port SRAM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101202428U TWM438015U (en) 2012-02-10 2012-02-10 High performance dual port SRAM

Publications (1)

Publication Number Publication Date
TWM438015U true TWM438015U (en) 2012-09-21

Family

ID=47225063

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101202428U TWM438015U (en) 2012-02-10 2012-02-10 High performance dual port SRAM

Country Status (1)

Country Link
TW (1) TWM438015U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587131B (en) * 2013-02-04 2017-06-11 三星電子股份有限公司 Memory system comprising nonvolatile memory device and program method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587131B (en) * 2013-02-04 2017-06-11 三星電子股份有限公司 Memory system comprising nonvolatile memory device and program method thereof

Similar Documents

Publication Publication Date Title
TWI490868B (en) Static random access memory with five transistors
TWI556242B (en) Single port static random access memory (8)
TWI433152B (en) 7t dual port sram
TWI436359B (en) 5t single port sram
TWI529712B (en) Single port static random access memory (6)
TWI494924B (en) Static random access memory with five transistors (2)
TWI529713B (en) Single port static random access memory (5)
TWI425510B (en) Single port sram with reducing standby current
TW201535370A (en) Single port static random access memory (3)
TWI451412B (en) Dual port sram with improved snm
TWI441178B (en) Dual port sram
TWM438015U (en) High performance dual port SRAM
TWI478165B (en) High performance single port sram
TWI500032B (en) Static random access memory with five transistors (3)
TWI478164B (en) Dual port sram with standby start-up circuit
TW201537686A (en) Single port static random access memory
TWM406791U (en) 7T dual port sram
TWI451413B (en) High performance dual port sram
TWI521510B (en) Single port static random access memory (1)
TWI494927B (en) Static random access memory (3)
TWI489457B (en) Single port sram with standby start-up circuit
TWI490857B (en) Static random access memory
TWI451414B (en) High performance sram
TWI509605B (en) Static random access memory (2)
TWI490858B (en) Static random access memory with single port (1)

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees