TWM435048U - Photovoltaic device - Google Patents

Photovoltaic device Download PDF

Info

Publication number
TWM435048U
TWM435048U TW101202606U TW101202606U TWM435048U TW M435048 U TWM435048 U TW M435048U TW 101202606 U TW101202606 U TW 101202606U TW 101202606 U TW101202606 U TW 101202606U TW M435048 U TWM435048 U TW M435048U
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor layer
photovoltaic
conductive
reflection
Prior art date
Application number
TW101202606U
Other languages
Chinese (zh)
Inventor
Kun-Cheng Lin
jing-zhou Huang
Wei-Yu Li
Pei-Ling Su
Original Assignee
Univ China Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ China Sci & Tech filed Critical Univ China Sci & Tech
Priority to TW101202606U priority Critical patent/TWM435048U/en
Publication of TWM435048U publication Critical patent/TWM435048U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

五、新型說明: 【新型所屬之技術領域】 特別是關於-種具有袓 本創作係關於太陽能發電技術, 縫結構的光伏特元件。 【先前技術】 太陽電池是-種可以將能量轉換的光電元件,料本 是運用P型與N型半導體接合而成的,例如,矽。:據光; 效應’當太陽光照射時PN接面時,光子的能量會釋放出來, 而激發出電子電崎,這些電子和電洞受勒建電場的影 響’分別被N型及P型半導體吸引,*聚集在兩端。此時外 部如果連接成一個迴路,這可達成太陽電池的發電。 太陽能發電是一種可再生的環保發電方式,但如何使太陽 電池或光伏特元件有效率地吸收光能一直是亟待解決的問 題。光線以不同角度入射至太陽能電池時,於太陽能電池的 表面上會有折射及反射的現象發生,必須降低光線反射的機 〇 【新型内容】 根據本創作的一方面,一實施例提供一種光伏特元件, 其包括:一承載部;一光電轉換結構,形成於該承載部上, 該光電轉換結構包含第一及第二導電性型半導體層,該第二 導電性型半導體層設置於該第一導電性型半導體層上,且該 第二導電性料導體層的表Φ具有-_結構;以及一抗反 射/電極層,形成於該光電轉換結構上,該抗反射/電極層 的表面係由一抗反射區及一上電極區所組成,且該抗反^ 區的面積大於該上電極區的面積。該粗糙結構為光子晶體結 構或奈米賴結構;該抗反射/電極層的抗反輕之折射^ 小於該第二導電性型半導體層之折射率。 該第一導電性型半導體層可包含Ρ型半導體且該二 導電性型半導體層包含N型半導體。 一 本質型半導體層可形成於該第一及第二導電性型半導 體層之間;或是作用增強層可形成於該第—及第二導電性型 半導體層之間,該作用增強的結構選自由量子線、量子點、 單量子井、及多重量子井所組成結構群中的至少—者。 該承載部可由選自由銅、金、銀、始、鎳及朗組成的 導電材料群中的至少—者,且歐姆層可進—料置於該承载 4與忒光電轉換結構之間。該歐姆層可由透光的導電材料或 是可反射光的金屬材料組成。 該承載部亦可包含一半導體基板,且該半導體基板具 有連接該第—導電性型半導體層的歐姆接觸。 【實施方式】 為使貴審查委魏對本_之概、目的及功能有更進 步的⑽知與瞭解’兹配合圖式詳細說明如後。為了說明上 的便利和月確目式中各構成要素或信號的尺寸,係以誇張 或省略或概略的方式表示,並非為其實際的尺寸。 M435048 圖1為根據本創作之第一實施例之光伏特元件的結構透 視圖。該光伏特元件HK)可作為統轉換成魏的太^能發 電之用。如圖1所示,該光伏特S件包含-承載部11〇、 一光電轉換結構120、及一抗反射/電極層 130 ;其中,該光 電轉換結構120包含一第一導電性型半導體層121及一第二 導電性型半導體層122 ’且該抗反射/雜層13〇的表面係由 -抗反射1 131及-上電極區132雜成。以下將配合圖丄 來詳述各個組成單元的具體内容。 該承載部110用以作為本實施例之光伏特元件1〇〇的載 體,並藉以進行該元件的製作程序及支持該元件本身的實體 結構。該承載部110可以是半導體或陶瓷材料的基板,或是 表面鑛有金屬或導電材料的玻璃基板,例如,銅、金、銀、 銘、錄、鎢、或其合金。 s玄光電轉換結構120包含該第一導電性型半導體層121 及形成於其上的該第二導電性型半導體層122。該第一導電 性塑半導體層121可以是P型的半導體;例如,矽、碲化锡 (CdTe)、銅銦硒化物(Copper Indium Selenide,CIS)、銅銦錄砸 化物(Copper Indium Gallium Selenide,CIGS)、石申化錄 (GaAs)。該第二導電性型半導體層122可以是相對上述的p 裂半導體之N型半導體,例如’梦、磚化錢、銅銦砸化物、 銅銦鎵硒化物、砷化鎵。但本創作並不對此加以限制,且亦 5]*以是該第一導電性型半導體層121為N型,該第二導電性 蜇半導體層122為P型的相同的半導體材料。該第一導電性 变半導體層121及遠第>一導電性型半導體層122的導電性型 5 M435048 雜質濃度可以是相同或不同的,本創作並不對此結構做限制。 該光電轉換結構120可以金屬有機化學氣相沈積 (MOCVD)、化學氣相沈積(CVD)、電槳加強式化學氣相沉積 (PECVD)、分子束磊晶(MBE)、混合式氣相磊晶(HVPE)等薄 膜成長技術來製作,但其製作該發光結構的方法不限於上述 技術。 該光伏特元件100的技術特徵之一,在於一粗糙結構14〇 形成於該第二導電性型半導體層122的表面上,用以提高太 陽光能量停留於該光電轉換結構120的機會,以提高能量轉 換效率。該粗糙結構140可以是如圖1所示之三角波(或是三 角形週期性出現)的凹凸結構’或是鑛齒、弦波或方波形狀的 凹凸結構。此外,該粗糙結構140可以是光子晶體結構或是 奈米錐體(nanocone)結構。該光子晶體結構可藉由光罩及钱刻 技術來製作;該奈米錐體結構可藉由化學表面處理技術來製 作’而陣列式地分布及形成於該光電轉換結構12〇上。該粗 糙結構140並有使該光電轉換結構12〇的表面積增大之效果。 上電極將形成於δ亥光伏特元件1〇〇上,以連同下電極將 該光電轉換結構120所產生的電功率連接至外部電路。該抗 反射/電極層130形成於該光電轉換結構12〇上,且該抗反射 /電極層130的整個層表面可分成兩個部分:該抗反射區131 及该上電極區132,其中的該上電極區印是為了形成上述 的該光伏特元件1〇〇之上電極,而輔以該抗反射區131以減 少太陽光在進入該光電轉換結構120的界面時就直接被反射 掉。在本實施财’會使該上電極區132的崎儘可能的小, 6 M435048 以免遮蔽過多的入射太陽光,而使該抗反射區131的面積儘 可此的大’以防止過多的入射太陽光被反射;因此,該抗反 射區131的面積大於該上電極區132的面積。 該上電極區132的組成材料可以選自鉻、鎳、鋁、鈦、 及鉑的金屬材料中的任何一者,或上述金屬的合金。該抗反 射區131之折射率小於該第二導電性型半導體層122之折射 率’例如’氧化石夕(Si〇2)、氮化石夕⑻凡)、氧化鈦(Ti〇2)。該 抗反射/電極層130沉積於該光電轉換結構12〇之上時,可以 是覆蓋該粗糙結構14〇,而保形地(c〇nf〇rmaUy)形成於該粗糙 結構140上,或是沉積較厚而形成平坦的上表面本創作並 不對此結構做限制。 倘若該承載部11〇採用半導體基板,例如,矽(Si)或三五 族或二六族元素的化合物半導體,則該半導體基板上可形成 有連接該第-導電性型半導體層121的歐姆接觸(圖中未 示),以作為下電極之用,將該光伏特元件1〇〇電性連接至外 部的電路。倘綠承載部11G採用包含有單一或複數個金屬 鍵膜的玻璃基板’則—歐姆層115可進—步設置於該承載部 與邊光電轉換結構之間,如圖2所示之根據本創作之第二實 施例之光伏特元件102的剖面結構圖。該光伏特元件1〇1藉 由該歐姆層115而與該光電轉換結構12〇的第一導電性型半 導體層121形成歐姆接觸,以利於該光伏特元件1〇1連接至 外部電路,因此上述的金屬鍍膜可作為電極之用。雖然具有 金屬鍍膜的玻璃基板可作為該光伏特元件1〇1的基板之用, 該金屬賴與該第-導概型半導體層⑵之間的歐姆特性 7 可藉由該歐姆層115而得到改善。 該歐姆層115可以是製作透明電極的材料及其類似物, 例如,氧化銦錫(ITO)、氧化銦鋅(IZ〇)、氧化銦鋅錫(氧化鋁 、氧化鎵辞(gz〇)、鎳、銀、 金及辦的至少-者,且可為上述材料的單層或多層的結 構。也就是說,該歐姆層115係由透光的導電材料組成,亦 可以是由可反射光的金屬材料組成,皆可提高太陽光能量停 留於該光電職結構12G的機會,而提高該光伏特元件1〇1 的犯量轉換效率。此外’該歐姆層115可增加電流注入面積 及形成歐姆接觸,藉以降低該光伏特元件1〇1的内電阻。此 外’如圖2所示,本實施例採用錯齒狀的凹凸結構以形成該 粗糙結構140。 更進者,為了進-步提高太陽光能量停留於該光電轉換 結構120的機會’以提高能量轉換效率,該光電轉換結構12〇 於該第-及第二導電性型半導體層121及122之間更可插入 -本質型半導體層123或是作用增強層124,如圖3所示之 根據本創作之第三實施例之光伏特元件103的剖面結構圖。 該本質型(或稱為I型)半導體層為未摻雜雜質的半導體, 可增加該光電娜結構12()接受縣子的_細,而形成 PIN的半導體層狀結構;並可改善該第—及第二導電性型 半導體肩121 * 122之間的結晶差異性。另一方面該作用 增強屬124可以是和該第一及第二導電性型半導體層⑵及 122相同的半導體材料,而形成量子結構例如量子線 (Quantum Wlre)、夏子點(Quantum D〇t)、單量子井(如咖爪 M435048V. New type of description: [Technical field to which the new type belongs] In particular, it is a special element of the photovoltaic system, which is based on solar power generation technology and seam structure. [Prior Art] A solar cell is a photovoltaic element that can convert energy, and is formed by joining a P-type and an N-type semiconductor, for example, germanium. According to the light; effect 'When the PN junction is illuminated by sunlight, the energy of the photon is released, and the electrons are excited, and these electrons and holes are affected by the built-in electric field'. N-type and P-type semiconductors, respectively. Attract, * gather at both ends. At this time, if the external part is connected into a loop, this can achieve solar cell power generation. Solar power generation is a renewable and environmentally friendly way of generating electricity, but how to efficiently absorb solar energy from solar cells or photovoltaic components has always been an urgent problem to be solved. When light is incident on the solar cell at different angles, there is a phenomenon of refraction and reflection on the surface of the solar cell, and it is necessary to reduce the phenomenon of light reflection. [New content] According to an aspect of the present invention, an embodiment provides a photovoltaic An element comprising: a carrier portion; a photoelectric conversion structure formed on the carrier portion, the photoelectric conversion structure comprising first and second conductive semiconductor layers, wherein the second conductive semiconductor layer is disposed on the first On the conductive semiconductor layer, the surface Φ of the second conductive material conductor layer has a _ structure; and an anti-reflection/electrode layer is formed on the photoelectric conversion structure, and the surface of the anti-reflection/electrode layer is An anti-reflection zone and an upper electrode zone are formed, and an area of the anti-reverse zone is larger than an area of the upper electrode zone. The rough structure is a photonic crystal structure or a nano Lai structure; the anti-reflective/refractive refractive index of the anti-reflection/electrode layer is smaller than the refractive index of the second electroconductive semiconductor layer. The first conductive semiconductor layer may comprise a bismuth semiconductor and the second conductive semiconductor layer comprises an N-type semiconductor. An intrinsic semiconductor layer may be formed between the first and second conductive semiconductor layers; or an effect enhancing layer may be formed between the first and second conductive semiconductor layers, and the structure of the enhanced structure is selected At least one of the structural groups of free quantum wires, quantum dots, single quantum wells, and multiple quantum wells. The carrier portion may be at least one selected from the group consisting of copper, gold, silver, tin, nickel, and lan, and the ohmic layer may be placed between the carrier 4 and the erbium photoelectric conversion structure. The ohmic layer may be composed of a light transmissive conductive material or a metal material that reflects light. The carrier portion may also include a semiconductor substrate having an ohmic contact connecting the first conductivity type semiconductor layer. [Embodiment] In order to make the review committee have more advanced (10) knowledge and understanding of the outline, purpose and function of the _, the detailed description of the drawing is as follows. In order to explain the convenience and the size of each component or signal in the monthly definition, it is expressed in an exaggerated or omitted or schematic manner, and is not an actual size. M435048 Fig. 1 is a perspective view showing the structure of a photovoltaic element according to a first embodiment of the present invention. The photovoltaic special component HK) can be used as a system to convert into Wei. As shown in FIG. 1, the photovoltaic device S includes a carrier portion 11A, a photoelectric conversion structure 120, and an anti-reflection/electrode layer 130. The photoelectric conversion structure 120 includes a first conductivity type semiconductor layer 121. And a second conductive type semiconductor layer 122' and the surface of the anti-reflection/hybrid layer 13A is made up of the anti-reflection 1 131 and the upper electrode region 132. The details of each component are detailed below in conjunction with the figure. The carrying portion 110 is used as a carrier of the photovoltaic element 1 of the present embodiment, and the manufacturing process of the element and the physical structure supporting the element itself are performed. The carrier portion 110 may be a substrate of a semiconductor or ceramic material, or a glass substrate having a surface coated with a metal or a conductive material, such as copper, gold, silver, imprint, tungsten, or an alloy thereof. The s-pixel conversion structure 120 includes the first conductive semiconductor layer 121 and the second conductive semiconductor layer 122 formed thereon. The first conductive plastic semiconductor layer 121 may be a P-type semiconductor; for example, germanium, antimony telluride (CdTe), copper indium selenide (CIS), and copper indium gallium selenide (Copper Indium Gallium Selenide, CIGS), Shi Shenhua Record (GaAs). The second conductive semiconductor layer 122 may be an N-type semiconductor with respect to the p-split semiconductor described above, for example, 'dream, brick money, copper indium telluride, copper indium gallium selenide, gallium arsenide. However, this creation does not limit this, and it is also that the first conductive semiconductor layer 121 is N-type, and the second conductive germanium semiconductor layer 122 is a P-type identical semiconductor material. The impurity concentration of the conductivity type 5 M435048 of the first conductive variable semiconductor layer 121 and the farthest > conductive type semiconductor layer 122 may be the same or different, and the present invention does not limit the structure. The photoelectric conversion structure 120 can be metal organic chemical vapor deposition (MOCVD), chemical vapor deposition (CVD), paddle enhanced chemical vapor deposition (PECVD), molecular beam epitaxy (MBE), hybrid vapor phase epitaxy. A film growth technique such as (HVPE) is used, but the method of fabricating the light-emitting structure is not limited to the above technique. One of the technical features of the photovoltaic element 100 is that a roughness 14 〇 is formed on the surface of the second conductive semiconductor layer 122 to enhance the chance that the solar energy stays in the photoelectric conversion structure 120 to improve Energy conversion efficiency. The roughness 140 may be a triangular wave (or a triangular periodically appearing concave-convex structure) as shown in Fig. 1 or a concave-tooth structure of a ore tooth, a sine wave or a square wave shape. Further, the roughness 140 may be a photonic crystal structure or a nanocone structure. The photonic crystal structure can be fabricated by a photomask and a magnetic engraving technique; the nanocone structure can be formed by a chemical surface treatment technique and distributed and formed on the photoelectric conversion structure 12A. The rough structure 140 has an effect of increasing the surface area of the photoelectric conversion structure 12A. The upper electrode will be formed on the δ ray photovoltaic element 1 , to connect the electric power generated by the photoelectric conversion structure 120 to the external circuit together with the lower electrode. The anti-reflection/electrode layer 130 is formed on the photoelectric conversion structure 12, and the entire surface of the anti-reflection/electrode layer 130 can be divided into two parts: the anti-reflection region 131 and the upper electrode region 132, wherein the anti-reflection region 131 The upper electrode region is printed to form the above-mentioned electrode of the photovoltaic element 1 ,, and the anti-reflection region 131 is supplemented to reduce the direct reflection of sunlight when entering the interface of the photoelectric conversion structure 120. In this implementation, the upper electrode region 132 is as small as possible, 6 M435048 so as not to obscure excessive incident sunlight, so that the area of the anti-reflection region 131 can be as large as possible to prevent excessive incident sun. The light is reflected; therefore, the area of the anti-reflection region 131 is larger than the area of the upper electrode region 132. The constituent material of the upper electrode region 132 may be selected from any one of chromium, nickel, aluminum, titanium, and platinum metal materials, or an alloy of the above metals. The refractive index of the anti-reflection region 131 is smaller than the refractive index of the second electroconductive semiconductor layer 122, e.g., 'SiO 2 (Si〇 2), Nitrate (8), and Ti (2). When the anti-reflective/electrode layer 130 is deposited on the photoelectric conversion structure 12A, it may cover the roughness 14〇, and conformally (c〇nf〇rmaUy) is formed on the roughness 140, or deposited. Thicker to form a flat upper surface This creation does not limit this structure. If the carrier portion 11 is a semiconductor substrate, for example, a germanium (Si) or a compound semiconductor of a tri- or five-group element, an ohmic contact connecting the first-conductivity-type semiconductor layer 121 may be formed on the semiconductor substrate. (not shown), for use as a lower electrode, electrically connecting the photovoltaic element 1 to an external circuit. If the green carrier portion 11G uses a glass substrate comprising a single or a plurality of metal bond films, the ohmic layer 115 can be further disposed between the carrier portion and the side photoelectric conversion structure, as shown in FIG. A cross-sectional structural view of a photovoltaic element 102 of the second embodiment. The photovoltaic element 111 is formed in ohmic contact with the first conductive type semiconductor layer 121 of the photoelectric conversion structure 12 by the ohmic layer 115 to facilitate connection of the photovoltaic element 111 to an external circuit. The metal coating can be used as an electrode. Although a glass substrate having a metal plating film can be used as a substrate of the photovoltaic element 110, the ohmic characteristic 7 between the metal layer and the first conductive semiconductor layer (2) can be improved by the ohmic layer 115. . The ohmic layer 115 may be a material for forming a transparent electrode and the like, for example, indium tin oxide (ITO), indium zinc oxide (IZ〇), indium zinc tin oxide (alumina, gallium oxide (gz〇), nickel) At least one of silver, gold, and the like, and may be a single layer or a plurality of layers of the above materials. That is, the ohmic layer 115 is composed of a light-transmitting conductive material, and may also be a metal that can reflect light. The composition of materials can increase the chance that the solar energy stays at 12G of the photovoltaic structure, and improve the conversion efficiency of the photovoltaic element 1〇1. In addition, the ohmic layer 115 can increase the current injection area and form an ohmic contact. Thereby, the internal resistance of the photovoltaic element 1〇1 is lowered. Further, as shown in FIG. 2, the present embodiment adopts a staggered concave-convex structure to form the roughness 140. Further, in order to further improve the solar energy An opportunity to stay in the photoelectric conversion structure 120 to improve energy conversion efficiency, the photoelectric conversion structure 12 being further insertable between the first and second conductive semiconductor layers 121 and 122 - the intrinsic semiconductor layer 123 or Action enhancement layer 1 24. A cross-sectional structural view of a photovoltaic element 103 according to a third embodiment of the present invention as shown in Fig. 3. The intrinsic (or I-type) semiconductor layer is a semiconductor that is not doped with impurities, and the photoelectric can be added. The structure 12 () accepts the _fineness of the county, and forms a semiconductor layered structure of the PIN; and can improve the crystallization difference between the first and second conductive semiconductor shoulders 121*122. The reinforcing genus 124 may be the same semiconductor material as the first and second conductive type semiconductor layers (2) and 122, and form quantum structures such as quantum wires (Quantum Wlre), Xia Zi points (Quantum D〇t), single quantum wells ( Such as coffee claw M435048

Well)、或多重量子井(Multi Quantum Well,MQW)等結構;該 作用增強層124可增強光子能量轉換為電子電洞對復合的過 程。此外,如圖3所示,本實施例亦可採用弦波形狀的凹凸 結構以形成該粗糙結構140。 綜上所述’本創作之該光伏特元件的光電轉換效率可得 到改善。唯上述者僅為本創作之較佳實施例,當不能以之限 制本創作的範圍。即大凡依本創作申請專利範圍所做之均等 變化及修飾,仍將不失本創作之要義所在,亦不脫離本創作 之精神和範圍,故都應視為本創作的進一步實施狀況。 【圈式簡單說明】 圖1為根據本創作第-實施例之光伏特元件的結構透視圖。 圖2為根據本創作第二實施例之光伏航件的剖面結構圖。 圖3為根據本創作第三實關之光伏特元件的剖面結構圖。 【主要元件符號說明】 100/101/102光伏特元件 110承載部 115歐姆層 120光電轉換結構 121第一導電性型半導體層 122第二導電性型半導體層 123本質型半導體層 9 M435048 124作用增強層 130抗反射/電極層 131抗反射區 132上電極區 140粗糙結構Well), or a multi-quantum well (MQW) structure; the action enhancement layer 124 enhances the conversion of photon energy into electron hole-to-composite. Further, as shown in Fig. 3, the present embodiment can also adopt a sinusoidal-shaped uneven structure to form the roughness 140. In summary, the photoelectric conversion efficiency of the photovoltaic element of the present invention can be improved. Only the above is only a preferred embodiment of the present invention, and the scope of the present creation cannot be limited. That is to say, the equal changes and modifications made by the applicants in accordance with the scope of the patent application for this creation will not lose the essence of the creation, and will not deviate from the spirit and scope of the creation, so it should be regarded as the further implementation of the creation. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing the structure of a photovoltaic element according to a first embodiment of the present invention. 2 is a cross-sectional structural view of a photovoltaic carrier according to a second embodiment of the present creation. 3 is a cross-sectional structural view of a photovoltaic element according to the third embodiment of the present invention. [Main element symbol description] 100/101/102 photovoltaic element 110 bearing portion 115 ohmic layer 120 photoelectric conversion structure 121 first conductive type semiconductor layer 122 second conductive type semiconductor layer 123 intrinsic type semiconductor layer 9 M435048 124 action enhancement Layer 130 anti-reflection / electrode layer 131 anti-reflection region 132 upper electrode region 140 roughness structure

Claims (1)

M435048 六、申請專利範圍: 1. 一種光伏特元件,其包括: 一承载部; 一光電轉換結構’形成於該承載部上,該光電轉換結構包 含第一及第二導電性型半導體層,該第二導電性型半導 體層設置於該第一導電性型半導體層上,且該第二導電 性型半導體層的表面具有一粗糖結構;以及 一抗反射/電極層,形成於該光電轉換結構上,該抗反射/ 電極層的表面係由-抗反射區及一上電極區所組成且 該抗反射區的面積大於該上電極區的面積。 2. 如申請專利範圍第1項所述之光伏特元件,其中該第一導 電性型半導體層包含P型半導體_第二導電,=型半導 體層包含N型半導體。 3·如申請專利範圍第丨項所述之光伏特树,進—步包括: 一本質型轉襲,形成_第—及第二導躲型半導體 層之間。 4·如申請專利範圍第1項所述之光伏特it件,進-步包括: —作用増強層’形狀該第―及第二導電性型 之 間’該作用增強的結構選自由量子線、量子點、單i子 井、及多重量子井所組成結構群中的至少一者。 專梅_1項所述之光倾元件,其中該粗链結 馬光子晶體結構或奈米錐體結構。 2、=專梅_1項所述之光伏特元件,其找承載部 自由鋼、金、銀、!自、鎳及騎組成的導電材料群 M435048 中的至少-者,且-歐姆層進—步設置於該承 電轉換結構之間。 -、該光 7.如申請翻範㈣6項所述之光伏特树 係由透光的導電材料組成。 &姆層M435048 VI. Patent application scope: 1. A photovoltaic special component, comprising: a bearing portion; a photoelectric conversion structure formed on the carrying portion, the photoelectric conversion structure comprising first and second conductive semiconductor layers, a second conductive semiconductor layer is disposed on the first conductive semiconductor layer, and a surface of the second conductive semiconductor layer has a coarse sugar structure; and an anti-reflection/electrode layer is formed on the photoelectric conversion structure The surface of the anti-reflection/electrode layer is composed of an anti-reflection region and an upper electrode region, and an area of the anti-reflection region is larger than an area of the upper electrode region. 2. The photovoltaic element according to claim 1, wherein the first conductive semiconductor layer comprises a P-type semiconductor_second conductive, and the =-type semiconductor layer comprises an N-type semiconductor. 3. In the case of the photovoltaic tree described in the scope of the patent application, the further steps include: an intrinsic type of strike, forming between the _th- and second-guided semiconductor layers. 4. In the case of the photovoltaic device described in claim 1, the further step comprises: - acting on the bare layer 'shape between the first and second conductivity types'. The structure enhanced by the action is selected from the group consisting of quantum wires, At least one of a quantum dot, a single i-well, and a plurality of quantum wells. The light tilting element described in item 1-3, wherein the thick chain has a horse photonic crystal structure or a nano-cone structure. 2, = special elements of the photovoltaics described in item _1, find the bearing part Free steel, gold, silver,! At least one of the conductive material group M435048 consisting of nickel, and riding, and the -ohmic layer is stepwise disposed between the power conversion structures. - The light 7. The photovoltaic special tree as described in the application for the four (4) is composed of a light-transmitting conductive material. & m layer 8. 如申請專鄕圍第6顿述之級特元件,其巾該歐姆層 係由可反射光的金屬材料組成。 9. 如申請專鄕圍第丨項所述之光伏特元件其中該承載部 包含一半導體基板,且該半導體基板具有連接該第一導電 性型半導體層的歐姆接觸。 10. 如申請專利範圍第〗項所述之光伏特树,其中該抗反 射/電極層的抗反射區之折射率小於該第二導電性型半導 體層之折射率。 128. If the application is specifically designed for the special components of the sixth stage, the ohmic layer consists of a metal material that reflects light. 9. The photovoltaic element of claim 1, wherein the carrier comprises a semiconductor substrate, and the semiconductor substrate has an ohmic contact connecting the first conductive semiconductor layer. 10. The photovoltaic tree according to claim 7, wherein the antireflection zone of the antireflection/electrode layer has a refractive index smaller than a refractive index of the second conductivity type semiconductor layer. 12
TW101202606U 2012-02-14 2012-02-14 Photovoltaic device TWM435048U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101202606U TWM435048U (en) 2012-02-14 2012-02-14 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101202606U TWM435048U (en) 2012-02-14 2012-02-14 Photovoltaic device

Publications (1)

Publication Number Publication Date
TWM435048U true TWM435048U (en) 2012-08-01

Family

ID=47047571

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101202606U TWM435048U (en) 2012-02-14 2012-02-14 Photovoltaic device

Country Status (1)

Country Link
TW (1) TWM435048U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501411B (en) * 2012-10-04 2015-09-21 Motech Ind Inc Solar cell and module comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501411B (en) * 2012-10-04 2015-09-21 Motech Ind Inc Solar cell and module comprising the same

Similar Documents

Publication Publication Date Title
US9837571B2 (en) Tandem nanofilm photovoltaic cells joined by wafer bonding
US8106289B2 (en) Hybrid photovoltaic device
CN103650165B (en) There is the tunnel knot solaode of copper grid for concentrating photovoltaic application
US7893348B2 (en) Nanowires in thin-film silicon solar cells
US10290755B1 (en) High efficiency photovoltaic cells and manufacturing thereof
US8791359B2 (en) High efficiency photovoltaic cells
US8120132B2 (en) Holey electrode grids for photovoltaic cells with subwavelength and superwavelength feature sizes
US20130206219A1 (en) Cooperative photovoltaic networks and photovoltaic cell adaptations for use therein
EP2963691B1 (en) Solar cell
TW201115762A (en) Solar cell and method for fabricating the same
JPWO2013094233A1 (en) Manufacturing method of solar cell
US11271128B2 (en) Multi-junction optoelectronic device
JP5554409B2 (en) Photoelectric conversion device
CN115336010A (en) Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
JP2009253269A (en) Photoelectric conversion device using semiconductor nanomaterials, and method of manufacturing the same
KR20130030122A (en) Solar cell and method of fabricating the same
US8624108B1 (en) Photovoltaic cells based on nano or micro-scale structures
TWM435048U (en) Photovoltaic device
JP2019009402A (en) Solar cell and manufacturing method of the same
JP2012089712A (en) Thin film solar cell and method for manufacturing the same
JP2007208049A (en) Photoelectric converter, manufacturing method thereof, and optical generator
JPWO2012073941A1 (en) Photoelectric conversion element
CN108198871A (en) Heterojunction solar cell and its manufacturing method
TWI423455B (en) Solar cell
TWI470815B (en) Silicon-based solar cell and method of fabricating the same

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees