M432141 五、新型說明: 【新型所屬之技術領域】 本新型是有關於-種散熱基板,特別是指一種發光二 極體之散熱基板。 【先前技術】 由於發光二極體在發光過程中會逐漸升溫,為避免其 發光效能及亮度受高溫影響而逐漸退化,造成光衰及壽命 降低,業界遂歪思各種能移除發光二極體所產生的熱能之 方式。 參閱圖卜目前用於移除發光二極體所產生的熱能之方 式之一,是在發光二極體(圖未示)底面設置一散熱基板卜 傳統的散熱基板i之結構是以紹材或叙合金材料(導熱係數 約為2〇〇〜237W/mk)製成—底層^,該底層n頂面設置一 樹脂絕緣層12(導熱係數約為01〜〇5w/mk),該樹脂絕緣 層材料為環氧樹脂(EP〇xy)或其他樹脂(p〇lymer),藉此發光 二極體所產生的熱能可透過散熱基板i進行散熱。 然而,因樹脂絕緣層12的導熱係數較低,造成整體導 熱與散熱效果不佳’大大影響發光二極體之發光效能、發 光亮度及使用壽♦,尤其對高功率發光二極體之影響更巨 〇 【新型内容】 因此,本新型之目的,即在提供一種耐崩潰電壓、導 熱性及散熱性均佳的發光二極體之散熱基板。 於是,本新型發光二極體之散熱基板,包含有一金屬 3 M432141 基層、一形成於該金屬基層的頂面且厚度為20nm至5从爪. 之金屬化合物絕緣薄膜層,以及多數佈設於該金屬化合物 -絕緣薄膜層内部之高介電材料粒子。 本新型之功效是在於耐崩潰電壓、導熱性及散熱性均 佳,更適用於高功率發光二極體,且發光二極體組合於其 上後’更能廣泛應用於小型化、薄型化之電子產品。 【實施方式】 有關本新型之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可鲁 清楚的呈現。 參閱圖2,本新型發光二極體之散熱基板2之一較佳實 施例包含有一金屬基層21、一金屬化合物絕緣薄膜層22, 以及多數咼介電材料粒子23。其中,該金屬基層21是選自 下列群組之一所製成:鋁、銅、鋁合金、銅合金,該金屬 基層21具有一頂面211與一底面212。而該金屬化合物絕 緣薄膜層22是由氮化鋁材料(導熱係數約為17〇〜22〇 W/mk)以濺鍍(Sputter)方式形成於該金屬基層21之頂面211鲁 ’厚度為20nm至5pm,並以1.5/zm至1.6#m為最佳。 特別說明的是,該金屬化合物絕緣薄膜層22之材料並 不偈限是氮化鋁’當然也可以是其他金屬氮化物或金屬氧 化物。另外,形成該金屬化合物絕緣薄膜層22之製法也不 以濺鍍方式為限。再者,經過多次實驗發現,該金屬化合 物、’,邑緣薄膜層22的厚度在20nm以下時,存在耐崩潰電壓 不良’而其厚度超過5/zm時,卻又會造成製程時間過長, 4 M432141 不符合效益。 該等高介電材料粒子23是佈設於該金屬化合物絕緣薄 膜層22内部’且該等高介電材料粒子23是選自下列群組 之一所製成:氮化矽(Si3N4)、氧化鋁(a12〇3)、氧化釔(γ2〇3) 、氧化鑭(La203)、氧化鈽(Ce〇2)、氧化鏑(Dy2〇3)、氧化钽 (TaA5)、三氧化镨(ρΓ2〇3)、氧化鈦(Ti〇2)、氧化铪(Hf⑹、 氧化鉻(Zr〇2)。在本較佳實施例中是以氮化矽(Si3N4)做說明 〇 在使用上,發光二極體是固設於該金屬化合物絕緣薄 膜層22上,藉由該金屬化合物絕緣薄膜層22所使用之材 料為導熱係數較佳又具有耐崩潰電壓與絕緣效果之氮化鋁 ,且内含有高介電材料粒子23,使得發光二極體於發光過 程所產生的熱能可迅速地被導離,進而提供良好的導熱與 散熱效果,尤其該散熱基板2應用於高功率發光二極體上 ’其獲得之導熱與散熱效果更為顯著。 現今小型化、薄型化之電子產品的組成元件’特別需 要具有散熱效果佳之特性,而本新型之散熱基板2不但具 有上述耐崩潰電壓、導熱性及散熱性均佳的優點,且整體 厚度相當薄,因此更能廣泛應用於小型化、薄型化之電子 產品中。 綜上所述,本新型發光二極體之散熱基板2藉由上述 構造設計,確實能提供導熱性及散熱性均佳,且發光二極 體組合於其上後,更適用於高功率發光二極體之應用,且 更能廣泛應用於小型化、薄型化之電子產品功效。因此, 5 M432141 格貫能達成本新型之目的。 惟以上所述者,僅為本新型之較佳實施例而已,當不 月&以此限定本新型實施之範圍,即大凡依本新型申請專利 範圍及新型說明内容所作之簡單的等效變化與修飾,皆仍 屬本新型專利涵盘之範圍内。 【圖式簡單說明】 圖1是一示意圖,說明一種現有的發光二極體之散熱 基板;及 圖2是一示意圖,說明本新型發光二極體之散熱基板 之一較佳實施例。 M432141 【主要元件符號說明】 2 散熱基板 21 金屬基層 211 頂面 212 底面 22 金屬化合物絕緣薄膜層 23 高介電材料粒子M432141 V. New description: [New technical field] The present invention relates to a heat-dissipating substrate, in particular to a heat-dissipating substrate of a light-emitting diode. [Prior Art] Since the light-emitting diodes gradually heat up during the light-emitting process, in order to avoid the gradual degradation of the light-emitting efficiency and the brightness affected by the high temperature, the light decay and the lifespan are reduced, and the industry can remove various light-emitting diodes. The way the heat is generated. One of the ways to remove the heat energy generated by the light-emitting diode is to provide a heat-dissipating substrate on the bottom surface of the light-emitting diode (not shown). The structure of the conventional heat-dissipating substrate i is based on the material or The alloy material (thermal conductivity is about 2 〇〇 to 237 W/mk) is formed as a bottom layer, and a resin insulating layer 12 (thermal conductivity of about 01 〇 5 w/mk) is disposed on the top surface of the bottom layer n, and the resin insulating layer is provided. The material is epoxy resin (EP〇xy) or other resin (p〇lymer), whereby the heat energy generated by the light emitting diode can be dissipated through the heat dissipation substrate i. However, due to the low thermal conductivity of the resin insulating layer 12, the overall heat conduction and heat dissipation effect is poor, which greatly affects the luminous efficacy, brightness, and lifetime of the light-emitting diode, especially for the high-power light-emitting diode.巨〇 [New Content] Therefore, the object of the present invention is to provide a heat-dissipating substrate of a light-emitting diode which is excellent in breakdown voltage, thermal conductivity and heat dissipation. Therefore, the heat-dissipating substrate of the novel light-emitting diode comprises a metal 3 M432141 base layer, a metal compound insulating film layer formed on the top surface of the metal base layer and having a thickness of 20 nm to 5 slave claws, and most of the metal film is disposed on the metal High dielectric material particles inside the compound-insulating film layer. The effect of the novel is that it is excellent in breakdown voltage, thermal conductivity and heat dissipation, and is more suitable for high-power light-emitting diodes, and the light-emitting diodes are combined thereon to be more widely used for miniaturization and thinning. electronic product. The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of a preferred embodiment of the drawings. Referring to Fig. 2, a preferred embodiment of the heat-dissipating substrate 2 of the novel light-emitting diode comprises a metal base layer 21, a metal compound insulating film layer 22, and a plurality of germanium dielectric material particles 23. The metal base layer 21 is made of one selected from the group consisting of aluminum, copper, aluminum alloy, and copper alloy. The metal base layer 21 has a top surface 211 and a bottom surface 212. The metal compound insulating film layer 22 is formed of an aluminum nitride material (thermal conductivity of about 17 〇 22 22 W/mk) in a sputtering manner on the top surface 211 of the metal base layer 21, and has a thickness of 20 nm. It is best to 5pm and 1.5/zm to 1.6#m. Specifically, the material of the metal compound insulating film layer 22 is not limited to aluminum nitride. Of course, other metal nitrides or metal oxides may be used. Further, the method of forming the metal compound insulating film layer 22 is not limited to the sputtering method. Furthermore, it has been found through many experiments that the metal compound, 'the thickness of the edge film layer 22 is less than 20 nm, and there is a resistance to breakdown voltage', and when the thickness exceeds 5/zm, the process time is too long. , 4 M432141 is not valid. The high dielectric material particles 23 are disposed inside the metal compound insulating film layer 22 and the high dielectric material particles 23 are selected from one of the group consisting of tantalum nitride (Si3N4), alumina. (a12〇3), yttrium oxide (γ2〇3), yttrium oxide (La203), yttrium oxide (Ce〇2), yttrium oxide (Dy2〇3), yttrium oxide (TaA5), antimony trioxide (ρΓ2〇3) Titanium oxide (Ti〇2), yttrium oxide (Hf(6), chromium oxide (Zr〇2). In the preferred embodiment, yttrium nitride (Si3N4) is used as a description. In use, the light-emitting diode is solid. The metal compound insulating film layer 22 is provided on the metal compound insulating film layer 22, and the material used for the metal compound insulating film layer 22 is aluminum nitride having a high thermal conductivity and having a breakdown voltage and an insulating effect, and contains a high dielectric material particle. 23, the thermal energy generated by the light-emitting diode during the light-emitting process can be quickly guided away, thereby providing good heat conduction and heat dissipation effects, in particular, the heat-dissipating substrate 2 is applied to the high-power light-emitting diode. The heat dissipation effect is more remarkable. Today's miniaturized and thin electronic products The constituent elements of the present invention are particularly required to have a heat-dissipating effect, and the heat-dissipating substrate 2 of the present invention has the advantages of excellent resistance to breakdown voltage, thermal conductivity, and heat dissipation, and the overall thickness is relatively thin, so that it can be widely used for miniaturization. In the thin electronic product, in summary, the heat-dissipating substrate 2 of the novel light-emitting diode 2 can provide thermal conductivity and heat dissipation by the above-mentioned structural design, and the light-emitting diode is combined thereon. It is more suitable for the application of high-power light-emitting diodes, and can be widely used in the miniaturization and thinning of electronic products. Therefore, 5 M432141 can achieve the purpose of this new type. The preferred embodiment of the present invention, however, is not limited to the scope of the present invention, that is, the simple equivalent changes and modifications made by the novel application scope and the novel description contents are still novel. FIG. 1 is a schematic view showing a conventional heat-dissipating substrate of a light-emitting diode; and FIG. 2 is a schematic view FIG described novel one heat-dissipating substrate of the present light-emitting diode of the preferred embodiment. M432141 [2] The main radiating element SIGNS LIST 21 substrate base layer 211 metal surface 212 insulating bottom 22 metal compound thin-film layer 23 of high dielectric material particles