TWM432061U - Pixel array substrate - Google Patents

Pixel array substrate Download PDF

Info

Publication number
TWM432061U
TWM432061U TW101200225U TW101200225U TWM432061U TW M432061 U TWM432061 U TW M432061U TW 101200225 U TW101200225 U TW 101200225U TW 101200225 U TW101200225 U TW 101200225U TW M432061 U TWM432061 U TW M432061U
Authority
TW
Taiwan
Prior art keywords
electrodes
pixel
halogen
lines
array substrate
Prior art date
Application number
TW101200225U
Other languages
Chinese (zh)
Inventor
Huan-Ting Zhou
Ying-Hui Chen
Okita Masaya
Original Assignee
Chunghwa Picture Tubes Ltd
Hdt Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Picture Tubes Ltd, Hdt Inc filed Critical Chunghwa Picture Tubes Ltd
Priority to TW101200225U priority Critical patent/TWM432061U/en
Priority to CN2012201394172U priority patent/CN202548496U/en
Publication of TWM432061U publication Critical patent/TWM432061U/en
Priority to JP2013000251A priority patent/JP2013140366A/en

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

五、新型說明: 【新型所屬之技術領域】 本創作是有關於一種顯示器的元件,且特別是有關於 一種晝素陣列基板(pixel array substrate )。 【先前技術】 目前有些大尺寸或高解析度的液晶顯示器(Liquid Crystal Display,LCD)具有大量的掃描線(scan line),而 這類型的液晶顯示器在運作時會一次驅動多條相鄰的掃描 線’以開啟多個薄膜電晶體(Thin-Film Transistor,TFT )。 這樣能增加各個畫素電極(pixel electrode)所對應的液晶 電容(liquid crystal capacitance )的充電時間,進而減少發 生液晶電容充電不足的情形。 在上述液晶顯示器中,各個晝素電極以及與其相鄰的 掃描線二者會形成耦合電容,而這些耦合電容會影響晝素 電極所產生的灰階電壓。當液晶顯示器運作時,一些掃描 線會被驅動’以使一些晝素電極產生灰階電壓來對液晶電 容充電。然而,此時’仍有其他掃描線未被驅動,所以這 些耦合電容所存有的電荷量並不一致。這可能會造成晝素 電極所產生錯誤的灰階電壓,破壞液晶顯示器的畫面品質。 【新塑内容】 本創作提供一種畫素陣列基板,其能降低耦合電容搿 灰階電壓的影響。 M432061 本創作提出一種晝素陣列基板,包括一基板、多條掃 描線、多條資料線、多條共用線、多個晝素單元、一絕緣 層以及多個遮蔽電極。基板具有一平面。這些掃描線彼此 並列,而這些資料線彼此並列。這些掃描線、這些資料線 與這些共用線皆配置在平面上。這些資料線與這些掃描線 交錯,以在平面上劃分出多個畫素區域。這些共用線與這 些掃描線並列,並配置在平面上。各個晝素單元配置在其 中一個畫素區域内,並包括一晝素開關、一晝素電極以及 一導電柱。這些畫素開關電性連接這些掃描線與這些資料 線。這些導電柱連接在這些晝素開關與這些畫素電極之 間,其中各個晝素電極具有一第一侧邊緣,而位在相鄰二 條掃描線之間的這些第一侧邊緣皆面向其中一條掃描線。 絕緣層配置在這些晝素電極與平面之間,並覆蓋這些掃描 線、這些資料線、這些共用線以及這些晝素開關。這些導 電柱配置在絕緣層中。這些遮蔽電極分別配置在這些晝素 區域内,並位在這些晝素電極與平面之間。這些遮蔽電極 分別與這些晝素電極部分重疊,其中各個遮蔽電極凸出於 其中一個第一侧邊緣,且這些遮蔽電極皆與這些共用線、 這些掃描線以及這些資料線電性絕緣。 在本創作一實施例中,上述晝素陣列基板更包括一保 護層。保護層配置在平面與絕緣層之間,並覆蓋這些掃描 線與這些共用線,其中這些遮蔽電極配置在保護層與絕緣 層之間。 4 M432061 在本創作一實施例中,各個晝素區域内的遮蔽電極的 數量為一個。 在本創作一實施例中,各個晝素區域内的遮蔽電極的 數量為多個。 在本創作一實施例中,各個晝素電極更具有一對彼此 相對的第二側邊緣,而第一侧邊緣連接在這些第二側邊緣 之間。同一晝素區域内的其中一個遮蔽電極凸出於這些第 二側邊緣。 在本創作一實施例中;上述晝素陣列基板更包括多個 電容電極。這些電容電極分別配置在這些晝素區域内,並 連接這些共用線。絕緣層更覆蓋這些電容電極,而各個電 容電極與其中一個晝素電極部分重疊。 在本創作一實施例中,各個畫素電極更具有一對彼此 相對的第二側邊緣,而第一侧邊緣連接在這些第二側邊緣 之間。各個電容電極凸出於其中一個第二側邊緣。 在本創作一實施例中,各個晝素區域内的電容電極的 數量為多個。 在本創作一實施例中,各條共用線具有相對二側邊, 而這些電容電極凸出於這些共用線的其中一個侧邊。 在本創作一實施例中,上述各條共用線具有相對二側 邊,而這些電容電極凸出於這些共用線的這些側邊。 在本創作一實施例中,各個畫素區域内的遮蔽電極的 數量為多個。在同一個畫素區域中,電容電極位在這些遮 5 蔽電極之間。 在本創作一實施例中,各個畫素電極更具有一對彼此 相對的第二側邊緣,而第一側邊緣連接在這些第二側邊緣 之間。這些遮蔽電極的形狀皆為環形,且各個遮蔽電極凸 出於其中一個晝素電極的第一側邊緣與這些第二側邊緣。 基於上述,當本創作的晝素陣列基板運作時,這些遮 蔽電極能產生電場屏蔽效應(electric field shielding effect),進而能降低晝素電極與掃描線二者所形成的耦合 電容對灰階電壓的影響,以減少發生畫面品質因受到耦合 電容的影響而被破壞的情形。 為讓本創作之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 圖1A是本創作一實施例的晝素陣列基板的俯視示意 圖,而圖1B是圖1A中沿線I-Ι剖面所繪製的剖面示意圖。 請參閱圖1A與圖1B,本實施例的晝素陣列基板100包括 一基板110、多條掃描線120s、多條資料線120d以及多條 共用線120c。基板110具有一平面112,而這些掃描線 120s、資料線120d與共用線120c皆配置在平面112上。 這些資料線120d彼此並列,而這些掃描線120s彼此 並列,其中這些資料線120d與這些掃描線120s交錯,以 在平面112上劃分出多個畫素區域P1。詳細而言,這些資 料線120d與這些掃描線120s呈網狀排列,從而形成多個 網格(lattice),其中網格為畫素區域ρι,如圖ia所示。 這些共用線120c與這些掃描線12〇s並列,而各條掃 描線120s可以位在相鄰二條共用線12〇c之間,所以共用 線120c可以穿過多個晝素區域ρι。此外,共用線咖與 掃描線120s二者可以是由同一層膜層製作而成。舉例而 §,共用線120c與掃描線12〇s二者可以是由同—層金屬 層經微影(photolithography)及蝕刻(etching)後而形成。 因此,構成共用線120c與掃描線12〇s二者的材料皆可相 同。 畫素陣列基才反100 1包括多個晝素單元13〇與一絕緣 層140(如圖1B所示)。各個畫素單元13〇配置在其中一 個畫素區域pi内,並包括-晝素_ 132一畫素電極134 與一導電柱136。絕緣層140配置在這些晝素電極134與 平面112之間,並覆蓋掃描線12〇s、資料線l2〇d、共用線 120c以及畫素開關132’而共用線12〇c與畫素電極134部 为重疊,如圖1A所不。這些導電柱136配置在絕緣層14〇 中,並連接在這些畫素開關132與這些晝素電極134之間, 以使晝素開關132電性連接晝素電極134。 這些晝素開關132電性連接這些掃描線12〇s與這些資 料線120d。詳細而言,各個晝素開關132可以是場效電晶 體(Field-Effect Transistor,FET),並且可以包括一源極 S1、一汲極D1、一閘極G1以及一通道層C1,其中源極 M432061 S1、沒極D1與通道層Cl皆位在閘極G1的上方,而通道 層C1位在閘極G1與源極S1之間,以及閘極G1與汲極 D1之間。此外,通道層C1可以是一種半導體層。 在同一個畫素單元130中,閘極G1連接掃描線120s, 並且可以與掃描線120s —體成型。詳細而言,閘極G1與 掃描線120s二者可由同一層膜層製作而成,例如閘極G1 與掃描線120s二者可由同一層金屬層經微影及蝕刻後而形 成。源極S1連接資料線120d,而汲極D1連接導電柱136。 當多條掃描線120s驅動時,已驅動的掃描線120s所 電性連接的多個畫素開關132會被開啟。此時,資料線120d 所輸出的灰階信號會輸入至這些已開啟的畫素開關132的 源極S1,並且依序經過通道層C1、汲極D1與導電柱136。 之後,灰階信號傳遞至畫素電極134,從而產生灰階電壓。 晝素陣列基板100更包括多個遮蔽電極150,其中這 些遮蔽電極150分別配置在這些晝素區域P1内,並且位在 這些晝素電極134與平面112之間(如圖1B所示)。此外, 在圖1A所示的實施例中,各個晝素區域P1内的遮蔽電極 150的數量可以僅為一個。 這些遮蔽電極150分別與這些晝素電極134部分重 疊。各個晝素電極134具有一第一側邊緣E1以及一對彼此 相對的第二側邊緣E2。在各個晝素電極134中,第一侧邊 緣E1連接在這些第二侧邊緣E2之間,而各個遮蔽電極150 凸出於其中一個第一侧邊緣E1。 8 M432061 這些遮蔽電極150皆與這些共用線120c、這些掃描線 120s以及這些資料線120d電性絕緣,而位在相鄰二條掃描 線120s之間的這些第一側邊緣E1皆會面向其中一條掃描 線120s,所以遮蔽電極150會配置在其中一條掃描線120s 與其中一個晝素電極134之間。 畫素電極134以及其第一側邊緣E1所面向的掃描線 120s二者會形成影響灰階電壓的耦合電容,但是遮蔽電極 150能在搞合電容中產生電場屏蔽效應,進而降低上述粞 合電容對灰階電壓的影響,促使晝素電極134產生合適的 灰階電壓,以減少發生晝面品質因受到耦合電容的影響而 被破壞的情形。 另外,晝素陣列基板100可以更包括一保護層160, 如圖1B所示。保護層160配置在平面112與絕緣層140 之間,並且覆蓋這些掃描線120s與這些共用線120c,而這 些遮蔽電極150與這些晝素開關132的源極S1及汲極D1 皆可配置在保護層160與絕緣層140之間。遮蔽電極150、 源極S1與汲極D1三者可以是由同一層膜層製作而成,例 如是由同一層金屬層經微影及蝕刻後而形成,因此構成遮 蔽電極150、源極S1與汲極D1三者的材料皆可相同。 在本實施例中,晝素陣列基板100可以更包括多個電 容電極170,其中這些電容電極170分別配置在這些晝素 區域P1内,而各個畫素區域P1内的電容電極170的數量 可為多個。以圖1A為例,各個畫素區域P1内的電容電極 9 M432061 170的數量為二個。此外,各個電容電極πα位在書素電 極134的下方,並且與晝素電極134部分重疊’其中各個 電容電極mu於其中—㈣二側邊緣. 這些電容電極170可以配置在平面m上’而電容電 極170與共用線120c二者可由同製作而成。舉例 而電谷電極170與共用線二者可以是由同一層金 屬層經微影及㈣後而形成,因此構成電容電極17〇斑共 用線咖二者的材料皆可以相同,而絕緣層刚更覆蓋這 些電容電極170。此外,由於播 於知描線12〇s與共用線120c 二者可由同—層膜層製作而成,因此電容電極Π0、掃描 線腕與共用線麗三者更可由同—層膜層製作而成。 這些電容電極Π0連接這些共用線⑽,以使電容電 極Π〇與其所連接的共用線120c電性導通。在圖认所示 的實施例中,各條共用線咖具有相對二侧邊的,而這 些電容電極Π0凸出於這些共用線i2〇c的其中一個侧邊 E3。換句純,在同-條共崎12Qe巾,多個電容電極 no只連接其中-個侧邊幻,而不連接另一個側邊e3。 由於共用線noc及電容電極17〇皆與畫素電極i34重 疊,因此同-畫素區域内的共用線12〇。電容電極η。 與畫素電極134三者能形成-種用於維持灰階電壓的儲存 電容(storage capacitances’又稱Cst)。此外,上述儲存電 容可以是架構在共麟上的儲存電容⑽⑽。。軸⑽)。 圖2是本創作另-實施例的晝素陣列基板的俯視示意 10 M432061 圖。請參閱圖2,本實施例的晝素陣列基板200與畫素陣 列基板100二者結構相似,功效相同,例如晝素陣列基板 200也包括掃描線120s、資料線120d、共用線120c與畫素 單元130等元件,且畫素陣列基板200、100二者的剖面結 構極為相似。因此,以下將主要介紹畫素陣列基板100、 200二者的差異,並僅配合圖2來進行詳細的說明,不再 重複介紹二者相同的技術特徵及功效。 晝素陣列基板1〇〇、200二者的差異包括各個晝素區域 P1内的遮蔽電極150的數量,以及畫素陣列基板200所包 括的多個電容電極270與多條共用線120c二者之間的連接 方式。詳細而言,在本實施例中,各個畫素區域P1内的遮 蔽電極150的數量為多個,而在同一晝素區域P1内,其中 一個遮蔽電極150凸出於晝素電極134的二個第二侧邊緣 E2,而另一個遮蔽電極150則凸出於第一側邊緣E1。 各個電容電極270位在畫素電極134的下方,而且電 容電極170與共用線120c二者可以是由同一層膜層製作而 成。電容電極270與晝素電極134部分重疊,其中各個電 容電極270凸出於其中一個第二侧邊緣E2。此外,在同一 個畫素區域P1中,這些電容電極270可以位在這些遮蔽電 極150之間,如圖2所示。 電容電極270與共用線120c二者之間的連接方式不同 於前述實施例中電容電極170與共用線120c二者之間的連 接方式。詳細而言,在本實施例中,這些電容電極270'凸 11 M432061 出於這些共用線120c的二側邊E3。也就是說,在同一條 共用線120c中,一些電容電極27〇連接其中一個側邊E3, 而另一些電容電極270連接另一個侧邊E3,如圖2所示。 圖3是木創作另一實施例的畫素陣列基板的俯視示意 圖。请參閱圖3,本實施例的晝素陣列基板3〇〇與畫素陣 列基板100相似,例如晝素陣列基板3〇〇也包括掃描線 120s、資料線12〇d、共用線120c以及晝素單元13〇,且晝 素陣列基板300、1〇〇二者的剖面結構極為相似, 因此以下 將主要介紹畫素陣列基板1〇〇、3〇〇二者的差異,不再重複 介紹二者相同的技術特徵與功效,也不繪示晝素陣列基板 300的刮面結構’而僅配合圖3來進行詳細的說明。 詳細而言,晝素陣列基板300、100二者的主要差異在 於:晝素陣列基板300所包括的多個遮蔽電極350,其形 狀,皆為環形’其中各個遮蔽電極350不僅與其中一個畫素 電極134部分重疊,而且凸出於晝素電極i34的第一側邊 緣E1與二個第二側邊緣E2,如圖3所示。 另外’在圖3所示的實施例中,畫素陣列基板300可 以不包括任何前述實施例中的電容電極170、270。不過, 共用線120c仍與晝素電極134部分重疊,因此即使晝素陣 列基板300未包括任何電容電極170、270,同一畫素區域 P1内的共用線120c與晝素電極134二者仍可以形成用於 維持灰階電壓的儲存電容。 綜上所述,本創作的晝素陣列基板所包括的遮蔽電極 12 M432061 能在晝素電極與掃描線二者所形成的耦合電容中產生電場 屏蔽效應。如此,本創作能降低耦合電容對灰階電壓的影 響,促使晝素電極產生合適的灰階電壓,以減少發生晝面 品質因受到耦合電容的影響而被破壞的情形。 雖然本創作以前述實施例揭露如上,然其並非用以限 定本創作,任何熟習相像技藝者,在不脫離本創作之精神 和範圍内,所作更動與潤飾之等效替換,仍為本創作之專 利保護範圍内。 13 M432061 【圖式簡單說明】 圖1A是本創作一實施例的畫素陣列基板的俯視示意圖。 圖1B是圖1A中沿線I-Ι剖面所繪製的剖面示意圖。 圖2是本創作另一實施例的晝素陣列基板的俯視示意圖。 圖3是本創作另一實施例的畫素陣列基板的俯視示意圖。 14 M432061 【主要元件符號說明】V. New description: [New technical field] The present invention relates to a component of a display, and in particular to a pixel array substrate. [Prior Art] At present, some large-sized or high-resolution liquid crystal displays (LCDs) have a large number of scan lines, and this type of liquid crystal display drives multiple adjacent scans at a time during operation. Line 'to turn on a plurality of Thin Film Transistors (TFTs). This can increase the charging time of the liquid crystal capacitance corresponding to each pixel electrode, thereby reducing the shortage of charging of the liquid crystal capacitor. In the above liquid crystal display, each of the pixel electrodes and the scanning lines adjacent thereto form a coupling capacitance, and these coupling capacitances affect the gray scale voltage generated by the pixel electrodes. When the liquid crystal display is in operation, some of the scan lines are driven to cause some of the halogen electrodes to generate gray scale voltages to charge the liquid crystal capacitors. However, at this time, there are still other scan lines that are not driven, so the amount of charge stored in these coupling capacitors is not uniform. This may cause the wrong gray scale voltage generated by the halogen electrode to deteriorate the picture quality of the liquid crystal display. [New Plastic Content] This creation provides a pixel array substrate that reduces the influence of the coupling capacitor 搿 gray scale voltage. M432061 The present invention proposes a halogen array substrate comprising a substrate, a plurality of scanning lines, a plurality of data lines, a plurality of common lines, a plurality of halogen units, an insulating layer and a plurality of shielding electrodes. The substrate has a flat surface. These scan lines are juxtaposed to each other, and these data lines are juxtaposed to each other. These scan lines, these data lines, and these common lines are all arranged on a plane. These data lines are interleaved with these scan lines to divide a plurality of pixel areas on a plane. These common lines are juxtaposed with these scan lines and are arranged on a plane. Each of the pixel units is disposed in one of the pixel regions, and includes a halogen switch, a halogen electrode, and a conductive column. These pixel switches electrically connect these scan lines to these data lines. The conductive posts are connected between the pixel switches and the pixel electrodes, wherein each of the pixel electrodes has a first side edge, and the first side edges between the adjacent two scan lines face one of the scans line. An insulating layer is disposed between the pixel electrodes and the plane, and covers the scan lines, the data lines, the common lines, and the pixel switches. These conductive posts are arranged in an insulating layer. These shielding electrodes are respectively disposed in these halogen regions and are located between the pixel electrodes and the plane. The shielding electrodes are partially overlapped with the respective pixel electrodes, wherein each of the shielding electrodes protrudes from one of the first side edges, and the shielding electrodes are electrically insulated from the common lines, the scanning lines, and the data lines. In an embodiment of the present invention, the halogen array substrate further includes a protective layer. The protective layer is disposed between the planar and insulating layers and covers the scan lines and the common lines, wherein the shielding electrodes are disposed between the protective layer and the insulating layer. 4 M432061 In an embodiment of the present invention, the number of shielding electrodes in each of the pixel regions is one. In an embodiment of the present invention, the number of shielding electrodes in each of the pixel regions is plural. In an embodiment of the present invention, each of the pixel electrodes further has a pair of second side edges opposite each other, and the first side edge is coupled between the second side edges. One of the shielding electrodes in the same halogen region protrudes from the second side edges. In an embodiment of the present invention, the halogen matrix substrate further includes a plurality of capacitor electrodes. These capacitor electrodes are respectively disposed in these halogen regions and are connected to these common lines. The insulating layer covers the capacitor electrodes more, and each of the capacitor electrodes partially overlaps one of the halogen electrodes. In an embodiment of the present invention, each of the pixel electrodes further has a pair of second side edges opposite each other, and the first side edge is coupled between the second side edges. Each of the capacitor electrodes protrudes from one of the second side edges. In an embodiment of the present invention, the number of capacitive electrodes in each of the pixel regions is plural. In an embodiment of the present invention, each of the common lines has opposite sides, and the capacitor electrodes protrude from one of the sides of the common lines. In an embodiment of the present invention, each of the common lines has opposite sides, and the capacitor electrodes protrude from the sides of the common lines. In an embodiment of the present creation, the number of shielding electrodes in each pixel region is plural. In the same pixel region, the capacitor electrode is located between these shielded electrodes. In an embodiment of the present invention, each of the pixel electrodes further has a pair of second side edges opposite each other, and the first side edge is coupled between the second side edges. The shielding electrodes are all annular in shape, and each of the shielding electrodes protrudes from the first side edge of one of the halogen electrodes and the second side edges. Based on the above, when the pixel array substrate of the present invention is operated, the shielding electrodes can generate an electric field shielding effect, thereby reducing the coupling capacitance formed by the pixel electrode and the scanning line to the gray scale voltage. The effect is to reduce the occurrence of picture quality that is destroyed by the influence of the coupling capacitance. In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following detailed description of the embodiments and the accompanying drawings are set forth below. 1A is a plan view of a pixel array substrate according to an embodiment of the present invention, and FIG. 1B is a schematic cross-sectional view taken along line I-Ι of FIG. 1A. Referring to FIG. 1A and FIG. 1B, the pixel array substrate 100 of the present embodiment includes a substrate 110, a plurality of scan lines 120s, a plurality of data lines 120d, and a plurality of common lines 120c. The substrate 110 has a flat surface 112, and the scan lines 120s, the data lines 120d and the common lines 120c are disposed on the plane 112. These data lines 120d are juxtaposed with each other, and these scanning lines 120s are juxtaposed with each other, and these data lines 120d are interleaved with these scanning lines 120s to divide a plurality of pixel areas P1 on the plane 112. In detail, the data lines 120d are arranged in a network with the scan lines 120s to form a plurality of lattices, wherein the grid is a pixel area ρι, as shown in FIG. These common lines 120c are juxtaposed with the scanning lines 12〇s, and the respective scanning lines 120s can be positioned between the adjacent two common lines 12〇c, so the common line 120c can pass through the plurality of pixel areas ρι. Further, both the shared line coffee and the scanning line 120s may be fabricated from the same film layer. For example, §, both the common line 120c and the scan line 12〇s may be formed by photolithography and etching of the same layer of metal. Therefore, the materials constituting both the common line 120c and the scanning line 12?s can be the same. The pixel array substrate 100 includes a plurality of pixel units 13A and an insulating layer 140 (as shown in FIG. 1B). Each of the pixel units 13A is disposed in one of the pixel areas pi, and includes a halogen element 134 and a conductive column 136. The insulating layer 140 is disposed between the halogen electrodes 134 and the plane 112, and covers the scan lines 12〇s, the data lines l2〇d, the common lines 120c, and the pixel switches 132', and the common lines 12〇c and the pixel electrodes 134. The parts are overlapping, as shown in Figure 1A. The conductive pillars 136 are disposed in the insulating layer 14A and connected between the pixel switches 132 and the halogen electrodes 134 to electrically connect the halogen switches 132 to the halogen electrodes 134. These halogen switches 132 are electrically connected to the scan lines 12〇s and the data lines 120d. In detail, each of the pixel switches 132 may be a Field-Effect Transistor (FET), and may include a source S1, a drain D1, a gate G1, and a channel layer C1, wherein the source M432061 S1, the pole D1 and the channel layer C1 are all located above the gate G1, and the channel layer C1 is located between the gate G1 and the source S1, and between the gate G1 and the drain D1. Further, the channel layer C1 may be a semiconductor layer. In the same pixel unit 130, the gate G1 is connected to the scanning line 120s, and can be formed integrally with the scanning line 120s. In detail, both the gate G1 and the scan line 120s can be formed by the same film layer. For example, both the gate G1 and the scan line 120s can be formed by lithography and etching of the same metal layer. The source S1 is connected to the data line 120d, and the drain D1 is connected to the conductive post 136. When the plurality of scanning lines 120s are driven, the plurality of pixel switches 132 electrically connected to the driven scanning lines 120s are turned on. At this time, the gray scale signal output from the data line 120d is input to the source S1 of the turned-on pixel switches 132, and sequentially passes through the channel layer C1, the drain D1 and the conductive pillar 136. Thereafter, the gray scale signal is transmitted to the pixel electrode 134 to generate a gray scale voltage. The halogen array substrate 100 further includes a plurality of shielding electrodes 150, wherein the shielding electrodes 150 are disposed in the respective pixel regions P1, respectively, and are located between the halogen electrodes 134 and the plane 112 (as shown in FIG. 1B). Further, in the embodiment shown in Fig. 1A, the number of the shielding electrodes 150 in each of the pixel regions P1 may be only one. These shielding electrodes 150 are partially overlapped with these halogen electrodes 134, respectively. Each of the pixel electrodes 134 has a first side edge E1 and a pair of second side edges E2 opposed to each other. In each of the pixel electrodes 134, the first side edge E1 is connected between the second side edges E2, and each of the shielding electrodes 150 protrudes from one of the first side edges E1. 8 M432061 These shielding electrodes 150 are electrically insulated from the common lines 120c, the scanning lines 120s and the data lines 120d, and the first side edges E1 located between the adjacent two scanning lines 120s are facing one of the scanning lines. The line 120s, so the shield electrode 150 is disposed between one of the scan lines 120s and one of the pixel electrodes 134. Both the pixel electrode 134 and the scan line 120s facing the first side edge E1 form a coupling capacitance that affects the gray scale voltage, but the shield electrode 150 can generate an electric field shielding effect in the capacitor, thereby reducing the above-mentioned coupling capacitance. The influence on the gray scale voltage causes the halogen electrode 134 to generate a suitable gray scale voltage to reduce the occurrence of the flawed surface quality being damaged by the coupling capacitance. In addition, the halogen array substrate 100 may further include a protective layer 160 as shown in FIG. 1B. The protective layer 160 is disposed between the plane 112 and the insulating layer 140, and covers the scan lines 120s and the common lines 120c. The shielding electrodes 150 and the source S1 and the drain D1 of the pixel switches 132 can be disposed in the protection. Between the layer 160 and the insulating layer 140. The shielding electrode 150, the source S1 and the drain D1 may be formed by the same layer of the film, for example, formed by lithography and etching of the same metal layer, thereby constituting the shielding electrode 150 and the source S1. The material of the bungee D1 can be the same. In this embodiment, the pixel array substrate 100 may further include a plurality of capacitor electrodes 170, wherein the capacitor electrodes 170 are respectively disposed in the pixel regions P1, and the number of the capacitor electrodes 170 in each pixel region P1 may be Multiple. Taking FIG. 1A as an example, the number of capacitor electrodes 9 M432061 170 in each pixel region P1 is two. In addition, each of the capacitor electrodes πα is located below the pixel electrode 134 and partially overlaps the pixel electrode 134 where each of the capacitor electrodes mu is in- (four) two side edges. These capacitor electrodes 170 can be disposed on the plane m' and the capacitor Both the electrode 170 and the common line 120c can be fabricated in the same manner. For example, the electric grid electrode 170 and the common line may be formed by lithography and (4) of the same metal layer, so that the materials constituting the capacitor electrode 17 may be the same, and the insulating layer is just the same. These capacitor electrodes 170 are covered. In addition, since both the broadcast line 12〇s and the common line 120c can be made of the same layer, the capacitor electrode Π0, the scan line wrist and the shared line 丽 can be made of the same layer. . These capacitor electrodes Π0 are connected to these common lines (10) so that the capacitor electrodes are electrically connected to the common line 120c to which they are connected. In the illustrated embodiment, each of the shared line consumers has opposite sides, and the capacitive electrodes Π0 protrude from one of the sides E3 of the common lines i2〇c. In other words, in the same - strips of the 12Qe towel, multiple capacitor electrodes no only connect one side of the side, not the other side of the e3. Since the common line noc and the capacitor electrode 17 are overlapped with the pixel electrode i34, the common line 12 in the same-pixel area is 〇. Capacitor electrode η. The storage capacitors (also referred to as Cst) for maintaining the gray scale voltage can be formed with the pixel electrodes 134. In addition, the above storage capacitors may be storage capacitors (10) (10) constructed on a common ridge. . Axis (10)). Fig. 2 is a top plan view of a pixel array substrate of another embodiment of the present invention, 10 M432061. Referring to FIG. 2, the pixel array substrate 200 and the pixel array substrate 100 of the present embodiment have similar structures and the same functions. For example, the pixel array substrate 200 also includes a scan line 120s, a data line 120d, a common line 120c, and a pixel. The elements such as the unit 130, and the cross-sectional structures of the pixel array substrates 200, 100 are very similar. Therefore, the differences between the pixel array substrates 100 and 200 will be mainly described below, and will be described in detail only in conjunction with FIG. 2, and the same technical features and effects will not be repeatedly described. The difference between the pixel array substrates 1 and 200 includes the number of the shielding electrodes 150 in each of the pixel regions P1, and the plurality of capacitor electrodes 270 and the plurality of common lines 120c included in the pixel array substrate 200. The way to connect. In detail, in the present embodiment, the number of the shielding electrodes 150 in each of the pixel regions P1 is plural, and in the same pixel region P1, one of the shielding electrodes 150 protrudes from the two of the pixel electrodes 134. The second side edge E2, while the other shielding electrode 150 protrudes from the first side edge E1. Each of the capacitor electrodes 270 is positioned below the pixel electrode 134, and both the capacitor electrode 170 and the common line 120c may be formed of the same film layer. The capacitor electrode 270 partially overlaps the halogen electrode 134, wherein each of the capacitor electrodes 270 protrudes from one of the second side edges E2. Further, in the same pixel region P1, these capacitor electrodes 270 may be positioned between these shield electrodes 150 as shown in FIG. The manner of connection between the capacitor electrode 270 and the common line 120c is different from the manner of connection between the capacitor electrode 170 and the common line 120c in the foregoing embodiment. In detail, in the present embodiment, these capacitor electrodes 270' are convex 11 M432061 out of the two sides E3 of these common lines 120c. That is, in the same common line 120c, some of the capacitor electrodes 27 are connected to one of the sides E3, and the other of the capacitor electrodes 270 are connected to the other side E3, as shown in FIG. Fig. 3 is a plan view showing a pixel array substrate of another embodiment of wood creation. Referring to FIG. 3, the pixel array substrate 3 of the present embodiment is similar to the pixel array substrate 100. For example, the pixel array substrate 3 includes a scan line 120s, a data line 12〇d, a common line 120c, and a pixel. The unit 13A, and the cross-sectional structures of the pixel array substrates 300 and 1 are very similar, so the following will mainly introduce the difference between the pixel array substrates 1 and 3, and the description will not be repeated. The technical features and effects are not shown in the scratched surface structure of the halogen array substrate 300, and only a detailed description will be given with reference to FIG. In detail, the main difference between the two pixel array substrates 300 and 100 is that the plurality of shielding electrodes 350 included in the halogen array substrate 300 are in the shape of a ring, wherein each of the shielding electrodes 350 is not only associated with one of the pixels. The electrodes 134 partially overlap and protrude from the first side edge E1 of the halogen electrode i34 and the two second side edges E2, as shown in FIG. Further, in the embodiment shown in Fig. 3, the pixel array substrate 300 may not include the capacitor electrodes 170, 270 in any of the foregoing embodiments. However, the common line 120c still partially overlaps the halogen electrode 134, so even if the halogen array substrate 300 does not include any of the capacitor electrodes 170, 270, the common line 120c and the halogen electrode 134 in the same pixel region P1 can be formed. A storage capacitor used to maintain the grayscale voltage. In summary, the mask electrode 12 M432061 included in the created pixel array substrate can generate an electric field shielding effect in the coupling capacitance formed by both the pixel electrode and the scan line. In this way, the creation can reduce the influence of the coupling capacitance on the gray scale voltage, and cause the halogen electrode to generate a suitable gray scale voltage to reduce the occurrence of the flawed surface quality being damaged by the coupling capacitance. Although the present invention is disclosed above in the foregoing embodiments, it is not intended to limit the present invention. Any skilled person skilled in the art, without departing from the spirit and scope of the present invention, is equivalent to the replacement of the modifiers and retouchings. Within the scope of patent protection. 13 M432061 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a schematic plan view of a pixel array substrate according to an embodiment of the present invention. Figure 1B is a schematic cross-sectional view taken along line I-Ι of Figure 1A. 2 is a top plan view of a pixel array substrate of another embodiment of the present invention. 3 is a top plan view of a pixel array substrate of another embodiment of the present invention. 14 M432061 [Main component symbol description]

100、200、300 畫素陣列基板 110 基板 112 平面 120c 共用線 120d 資料線 120s 掃描線 130 畫素單元 132 畫素開關 134 晝素電極 136 導電柱 140 絕緣層 150、350 遮蔽電極 160 保護層 170 > 270 電容電極 Cl 通道層 D1 汲極 El 第一側邊緣 E2 第二侧邊緣 E3 側邊 G1 閘極 PI 晝素區域 SI 源極 15100, 200, 300 pixel array substrate 110 substrate 112 plane 120c common line 120d data line 120s scan line 130 pixel unit 132 pixel switch 134 pixel electrode 136 conductive pillar 140 insulating layer 150, 350 shielding electrode 160 protective layer 170 &gt ; 270 Capacitor Electrode Cl Channel Layer D1 Dipole El First Side Edge E2 Second Side Edge E3 Side G1 Gate PI Cell Area SI Source 15

Claims (1)

M432061 六、申請專利範圍: 1. 一種畫素陣列基板,包括: 一基板,具有一平面; 多條掃描線,彼此並列,並配置在該平面上; 多條資料線,彼此並列,並配置在該平面上,該 些資料線與該些掃描線交錯,以在該平面上劃分出多 個晝素區域; 多條共用線,與該些掃描線並列,並配置在該平 面上; 多個畫素單元,各該晝素單元配置在其中一個畫 素區域内,並包括一晝素開關、一晝素電極以及一導 電柱,該些畫素開關電性連接該些掃描線與該些資料 線,該些導電柱連接在該些晝素開關與該些晝素電極 之間,其中各該晝素電極具有一第一側邊緣,而位在 相鄰二條掃描線之間的該些第一側邊緣皆面向其中一 條掃描線; 一絕緣層,配置在該些晝素電極與該平面之間, 並覆蓋該些掃描線、該些資料線、該些共用線以及該 些畫素開關,其中該些導電柱配置在該絕緣層中;以 及 多個遮蔽電極,分別配置在該些畫素區域内,並 位在該些晝素電極與該平面之間,該些遮蔽電極分別 與該些晝素電極部分重疊,其中各該遮蔽電極凸出於 16 M432061 其中一個第一側邊緣,且該些遮蔽電極皆與該些共用 線、該些掃描線以及該些資料線電性絕緣。 2. 如申請專利範圍第1項所述之畫素陣列基板,更包括 一保護層,該保護層配置在該平面與該絕緣層之間, 並覆蓋該些掃描線與該些共用線,其中該些遮蔽電極 配置在該保護層與該絕緣層之間。 3. 如申請專利範圍第1項所述之畫素陣列基板,其中各 該晝素區域内的該遮蔽電極的數量為一個。 4. 如申請專利範圍第1項所述之晝素陣列基板,其中各 該晝素區域内的該遮蔽電極的數量為多個。 5. 如申請專利範圍第4項所述之晝素陣列基板,其中各 該晝素電極更具有一對彼此相對的第二側邊緣,而該 第一側邊緣連接在該些第二側邊緣之間,同一晝素區 域内的其中一個遮蔽電極凸出於該些第二侧邊緣。 6. 如申請專利範圍第1項所述之晝素陣列基板,更包括 多個電容電極,該些電容電極分別配置在該些晝素區 域内,並連接該些共用線,該絕緣層更覆蓋該些電容 電極,而各該電容電極與其中一個晝素電極部分重疊。 7. 如申請專利範圍第6項所述之晝素陣列基板,其中各 該畫素電極更具有一對彼此相對的第二側邊緣,而該 第一側邊緣連接在該些第二侧邊緣之間,各該電容電 極凸出於其中一個第二側邊緣。 8. 如申請專利範圍第6項所述之畫素陣列基板,其中各 17 M432061 該畫素區域内的該電容電極的數量為多個。 9. 如申請專利範圍第6項所述之畫素陣列基板,其中各 該共用線具有相對二側邊,而該些電容電極凸出於該 些共用線的其中一個侧邊。 10. 如申請專利範圍第6項所述之晝素陣列基板,其中各 該共用線具有相對二側邊,而該些電容電極凸出於該 些共用線的該些側邊。 11. 如申請專利範圍第10項所述之晝素陣列基板,其中各 該晝素區域内的該遮蔽電極的數量為多個,在同一個 畫素區域中’該電容電極位在該些遮蔽電極之間。 12. 如申請專利範圍第1項所述之晝素陣列基板,其中各 該晝素電極更具有一對彼此相對的第二側邊緣,而該 第一側邊緣連接在該些第二侧邊緣之間,該些遮蔽電 極的形狀皆為環形,且各該遮蔽電極凸出於其中一個 晝素電極的該第一側邊緣與該些第二側邊緣。 18M432061 VI. Patent application scope: 1. A pixel array substrate, comprising: a substrate having a plane; a plurality of scanning lines juxtaposed with each other and arranged on the plane; a plurality of data lines juxtaposed with each other and arranged in In the plane, the data lines are interlaced with the scan lines to divide a plurality of pixel regions on the plane; a plurality of common lines are juxtaposed with the scan lines and arranged on the plane; Each of the pixel units is disposed in one of the pixel regions, and includes a pixel switch, a halogen electrode, and a conductive column, and the pixel switches are electrically connected to the scan lines and the data lines The conductive pillars are connected between the halogen switches and the halogen electrodes, wherein each of the halogen electrodes has a first side edge and the first side is located between adjacent two scan lines The edges are all facing one of the scan lines; an insulating layer is disposed between the pixel electrodes and the plane, and covers the scan lines, the data lines, the common lines, and the pixel switches, wherein the Some guides An electric pole is disposed in the insulating layer; and a plurality of shielding electrodes are disposed in the pixel regions respectively, and are located between the pixel electrodes and the plane, and the shielding electrodes and the halogen electrode portions respectively In the overlap, each of the shielding electrodes protrudes from one of the first side edges of the 16 M432061, and the shielding electrodes are electrically insulated from the common lines, the scanning lines, and the data lines. 2. The pixel array substrate of claim 1, further comprising a protective layer disposed between the plane and the insulating layer and covering the scan lines and the common lines, wherein The shielding electrodes are disposed between the protective layer and the insulating layer. 3. The pixel array substrate of claim 1, wherein the number of the shielding electrodes in each of the halogen regions is one. 4. The halogen array substrate according to claim 1, wherein the number of the shielding electrodes in each of the halogen regions is plural. 5. The halogen array substrate of claim 4, wherein each of the halogen electrodes further has a pair of second side edges opposite to each other, and the first side edge is connected to the second side edges. One of the shielding electrodes in the same pixel region protrudes from the second side edges. 6. The halogen array substrate according to claim 1, further comprising a plurality of capacitor electrodes, wherein the capacitor electrodes are respectively disposed in the halogen regions, and the common lines are connected, and the insulating layer is further covered. The capacitor electrodes, and each of the capacitor electrodes partially overlaps one of the pixel electrodes. 7. The halogen array substrate according to claim 6, wherein each of the pixel electrodes further has a pair of second side edges opposite to each other, and the first side edge is connected to the second side edges. Each of the capacitor electrodes protrudes from one of the second side edges. 8. The pixel array substrate of claim 6, wherein the number of the capacitor electrodes in the pixel region of each of 17 M432061 is plural. 9. The pixel array substrate of claim 6, wherein each of the common lines has opposite sides, and the capacitor electrodes protrude from one of the side edges of the common lines. 10. The pixel array substrate of claim 6, wherein each of the common lines has opposite sides, and the capacitor electrodes protrude from the sides of the common lines. 11. The halogen array substrate according to claim 10, wherein the number of the shielding electrodes in each of the pixel regions is plural, and the capacitance electrode is located in the same pixel region. Between the electrodes. 12. The halogen array substrate of claim 1, wherein each of the halogen electrodes further has a pair of second side edges opposite to each other, and the first side edges are connected to the second side edges. The shielding electrodes are all annular in shape, and each of the shielding electrodes protrudes from the first side edge of the one of the halogen electrodes and the second side edges. 18
TW101200225U 2012-01-05 2012-01-05 Pixel array substrate TWM432061U (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW101200225U TWM432061U (en) 2012-01-05 2012-01-05 Pixel array substrate
CN2012201394172U CN202548496U (en) 2012-01-05 2012-04-05 Pixel array substrate
JP2013000251A JP2013140366A (en) 2012-01-05 2013-01-04 Tft array substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101200225U TWM432061U (en) 2012-01-05 2012-01-05 Pixel array substrate

Publications (1)

Publication Number Publication Date
TWM432061U true TWM432061U (en) 2012-06-21

Family

ID=46723866

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101200225U TWM432061U (en) 2012-01-05 2012-01-05 Pixel array substrate

Country Status (3)

Country Link
JP (1) JP2013140366A (en)
CN (1) CN202548496U (en)
TW (1) TWM432061U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733462B (en) * 2019-12-04 2021-07-11 友達光電股份有限公司 Pixel array substrate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI595299B (en) * 2014-01-23 2017-08-11 元太科技工業股份有限公司 Pixel array
TWI750763B (en) 2019-08-20 2021-12-21 友達光電股份有限公司 Electronic device
TWI719838B (en) 2019-08-20 2021-02-21 友達光電股份有限公司 Display device
TWI718021B (en) 2019-08-20 2021-02-01 友達光電股份有限公司 Dsiplay panel
CN112908156B (en) * 2019-12-04 2022-09-16 友达光电股份有限公司 Pixel array substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3210437B2 (en) * 1991-09-24 2001-09-17 株式会社東芝 Liquid crystal display
TWI329775B (en) * 2007-03-27 2010-09-01 Au Optronics Corp Pixel structure and manufacturinf method thereof
JP2009003328A (en) * 2007-06-25 2009-01-08 Mitsubishi Electric Corp Display device and its manufacturing method
KR101443380B1 (en) * 2007-11-23 2014-09-26 엘지디스플레이 주식회사 Liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733462B (en) * 2019-12-04 2021-07-11 友達光電股份有限公司 Pixel array substrate

Also Published As

Publication number Publication date
JP2013140366A (en) 2013-07-18
CN202548496U (en) 2012-11-21

Similar Documents

Publication Publication Date Title
US9368520B2 (en) Array substrate, manufacturing method thereof and display device
TW432061B (en) Lactams
CN101750818B (en) Liquid crystal display device and display apparatus
US9529236B2 (en) Pixel structure and display panel
CN106855670A (en) Array base palte, display panel and display device
TWI408477B (en) Pixel array, and polymer stablized alignment liquid crystal display panel
US20150192832A1 (en) Liquid crystal display panel
US8643802B2 (en) Pixel array, polymer stablized alignment liquid crystal display panel, and pixel array driving method
US10644120B2 (en) Thin film transistor, GOA circuit, display substrate and display device
US9417493B2 (en) Array substrate, method for producing the array substrate, and display apparatus
WO2015039386A1 (en) Array substrate, liquid crystal display panel and display device
US20140160416A1 (en) Array substrate for tft-led, method of manufacturing the same, and display device
CN104461161A (en) Touch substrate and touch device
TW201508928A (en) Array substrate of liquid crystal display
US9190427B2 (en) Array substrate and manufacturing method thereof, and display device
TWM432061U (en) Pixel array substrate
US9252159B2 (en) Array substrate and fabrication method thereof, and display device
WO2013044783A1 (en) Array substrate and method for manufacturing same and display device
US10546879B2 (en) Array substrate and display device
JP2014056237A (en) Array substrate, manufacturing method for the same, and display device
US20150236042A1 (en) Array Substrate and Liquid Crystal Display Device
US20100315569A1 (en) Pixel designs of improving the aperture ratio in an lcd
WO2018040560A1 (en) Array substrate, display panel and display device
US9136283B2 (en) Thin film transistor array panel
KR101777323B1 (en) Liquid crystal display and driving method thereof

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees