TWM426755U - Heat pipe - Google Patents
Heat pipe Download PDFInfo
- Publication number
- TWM426755U TWM426755U TW100214230U TW100214230U TWM426755U TW M426755 U TWM426755 U TW M426755U TW 100214230 U TW100214230 U TW 100214230U TW 100214230 U TW100214230 U TW 100214230U TW M426755 U TWM426755 U TW M426755U
- Authority
- TW
- Taiwan
- Prior art keywords
- heat pipe
- capillary
- pipe
- groove structure
- road
- Prior art date
Links
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Description
M426755 101年.02月10日修正替換頁 五、新型說明: 【新型所屬之技術領域】 [〇〇〇1] 本創作係有關電子元件降低溫度用的熱管,尤其是有關 具有溝槽的扁平式熱管》 【先前技術】M426755 101.02.10.10.Replacement page 5. New description: [New technical field] [〇〇〇1] This is a heat pipe for reducing the temperature of electronic components, especially for flats with grooves. Heat pipe" [prior art]
[0002] 隨著電子元件的微小化,產生較高的溫度,為了能解決 局部元件所產生的高溫,而有使用熱管(Heat pipe)降 溫之發展。熱管的外層是一個密封的銅管,管壁内側有 毛細微結構(Wick),銅管内有工作流體。當熱管的一端 吸收發熱元件所產生的熱能後,熱量傳至熱管的管壁内 的工作流體,由於熱管内呈真空狀態,工作流體吸熱後 產生相變化蒸發成氣相流體,氣相流體流向熱管的另一 端低溫處散熱凝結為液相流體,毛細結構會將降溫過後 的液相流體藉由毛細現象回流至蒸發端,這樣週而復始 的循環,不停的將熱散走。[0002] With the miniaturization of electronic components, higher temperatures are generated, and in order to solve the high temperature generated by the local components, there is a development of using a heat pipe to cool down. The outer layer of the heat pipe is a sealed copper pipe with a capillary structure inside the pipe wall and a working fluid inside the copper pipe. When one end of the heat pipe absorbs the heat energy generated by the heat generating component, the heat is transferred to the working fluid in the pipe wall of the heat pipe. Because the heat pipe is in a vacuum state, the working fluid absorbs heat and generates a phase change to evaporate into a gas phase fluid, and the gas phase fluid flows to the heat pipe. The other end of the heat dissipates into a liquid phase at a low temperature, and the capillary structure returns the liquid phase fluid after the temperature drop to the evaporation end by the capillary phenomenon, so that the cycle is repeated, and the heat is continuously dispersed.
[0003] 目前發展扁平式的熱管,也就是將熱管壓扁後使用,可 以減少熱管的體積空間,但相對的扁平式熱管的毛細微 結構更難設計,且需要保持一定的蒸氣通道,使蒸氣與 液體(二相流)可以順利循環。 [0004] 台灣專利M406173揭示一種具徑向引流之熱管,係設置有 中空狀之本體,並於本體之内壁表面設置有第一毛細結 構,而本體二側分別設置有蒸發段與冷凝段,且本體内 填充有工作流體;第一毛細結構係於本體表面軸向設置 有複數貫穿蒸發段延伸與冷凝段之凸肋,而二相鄰之凸 肋間形成有溝槽,且第一毛細結構於蒸發段處設置有螺 1002U2#單編號 A0101 第3頁/共14頁 1013049020-0 M426755 10Γ年:02月10曰,核正替換頁 紋狀之導槽,導槽為由凸肋表面徑向切過,使蒸發段處 之二相鄰溝槽藉由導槽相互連通;蒸發段處之第一毛細 結構表面局部燒結有第二毛細結構,且第二毛細結構填 充於溝槽與導槽,以及覆蓋於凸肋表面;第二毛細結構 為高含水量之絲網纖維式、粉末燒結式、高分子材料、 複合材料或其任一複合型式所形成。 [0005] 台灣專利1259264揭示一種熱管之複合式毛細結構,包含 :一熱管之管體,管體内具複數溝槽,溝槽係延該管體 軸向延伸,且形成於該管體内周面上;一層複合毛細組 織,設於管體内周面之溝槽上;複合毛細組織之位置僅 限於熱管之管體受熱端,且環圍於管體内周面之溝槽。[0003] At present, the development of a flat heat pipe, that is, the use of a heat pipe after flattening, can reduce the volume of the heat pipe, but the capillary structure of the relatively flat heat pipe is more difficult to design, and it is necessary to maintain a certain vapor passage to make the steam It can circulate smoothly with liquid (two-phase flow). [0004] Taiwan Patent No. M406173 discloses a heat pipe with radial drainage, which is provided with a hollow body, and is provided with a first capillary structure on the inner wall surface of the body, and an evaporation section and a condensation section are respectively disposed on two sides of the body, and The body is filled with a working fluid; the first capillary structure is disposed on the surface of the body with a plurality of ribs extending through the evaporation section and the condensing section, and a groove is formed between the two adjacent ribs, and the first capillary structure is evaporated. The section is provided with a screw 1002U2# single number A0101 page 3 / a total of 14 pages 1013049020-0 M426755 10 years: February 10, the core is replacing the page-shaped guide groove, the guide groove is radially cut by the surface of the rib Having two adjacent grooves at the evaporation section communicate with each other by a guide groove; a surface of the first capillary structure at the evaporation section is locally sintered with a second capillary structure, and the second capillary structure is filled in the groove and the guide groove, and covered On the surface of the rib; the second capillary structure is formed by a high water content of a mesh fiber type, a powder sintered type, a polymer material, a composite material or any composite type thereof. [0005] Taiwan Patent No. 1,259,264 discloses a composite capillary structure of a heat pipe, comprising: a tube of a heat pipe having a plurality of grooves in the tube body, the groove extending in the axial direction of the tube body, and being formed in the inner circumference of the tube body a layer of composite capillary structure, disposed on the groove on the circumferential surface of the tube body; the position of the composite capillary structure is limited to the heat receiving end of the tube of the heat pipe, and surrounds the groove on the circumferential surface of the tube body.
[0006] 上述兩台灣專利揭示的溝槽式熱管,其毛細結構(組織) 設於溝槽内而造成毛細作用方向被溝槽的方向所限制, 氣相通道與液相通道互相干涉的缺點,其散熱的效果有 限,且結構複雜製造成本較高。 [0007] 【新型内容】 為了進一步改良習知溝槽式熱管的結構,並提升熱管的 散熱效果及降低製造費用,而提出本創作。[0006] The grooved heat pipe disclosed in the above two Taiwan patents has the disadvantage that the capillary structure (tissue) is disposed in the groove to cause the capillary action direction to be restricted by the direction of the groove, and the gas phase channel and the liquid phase channel interfere with each other. The heat dissipation effect is limited, and the structure is complicated and the manufacturing cost is high. [0007] [New content] In order to further improve the structure of the conventional grooved heat pipe, and to improve the heat dissipation effect of the heat pipe and reduce the manufacturing cost, the present invention is proposed.
[0008] 本創作係延伸申請人核准的新型專利第M397508號揭示的 「平板式熱管及其支撐結構」,直接於容置工作流體的 長溝槽内上設有多條第一毛細凹槽;除了基座及蓋板外 不需要利用其他材料再經高溫燒結製作毛細結構,可大 幅簡化平板式熱管的結構、減少組合元件的數量、節省 組裝的時間,具有較低的製造成本創作的理念,經創作 人一再研究、試驗後應用於本創作的熱管而提出申請者 10021423(^^^ A0101 第4頁/共14頁 1013049020-0 M426755 101年.02月10日修正替换頁 [0009] 本創作的主要目的,在提供一種熱管,係於管體的内壁 形成毛細微結構及至少一軸向延伸且凹陷的凹槽結構; 凹槽結構内沒有毛細微結構;毛細微結構作為液體通道 ,凹槽結構作為蒸氣通道,可以直接封裝成熱管,構造 簡單,且具有較佳的散熱效果。[0008] The present invention extends the "flat heat pipe and its supporting structure" disclosed in the new patent No. M397508 approved by the applicant, and is provided with a plurality of first capillary grooves directly in the long groove of the working fluid; The pedestal and the cover plate do not need to be sintered by high temperature to form a capillary structure, which can greatly simplify the structure of the flat heat pipe, reduce the number of combined components, save assembly time, and have a low manufacturing cost creation concept. The creator has repeatedly researched and tested the heat pipe applied to the creation and applied for the applicant 10021423 (^^^ A0101 Page 4/14 pages 1013049020-0 M426755 101. February 10th revised replacement page [0009] The main object is to provide a heat pipe which is formed on the inner wall of the pipe body to form a capillary microstructure and at least one axially extending and concave groove structure; there is no capillary microstructure in the groove structure; the capillary microstructure acts as a liquid passage, the groove structure As a vapor channel, it can be directly packaged into a heat pipe, which has a simple structure and a better heat dissipation effect.
[0010] 本創作的另一目的,在提供一種熱管,除了於管體的内 部表面形成毛細微結構之外,無需附加多餘的毛細結構 ,可製作更扁平的熱管,以節省熱管佔有的空間。 [0011] 本創作的又一目的,在提供一種熱管,可利用抽管製造 工法製造一管體,同時在管體的内壁形成至少一軸向延 伸且凹陷的凹槽結構;利用化學蝕刻法或機械加工法, 於管體的内部表面直接形成毛細微結構,除了管體本身 的材料之外不需要利用其他材料再經高溫燒結製作毛細 結構,製作成本低廉。[0010] Another object of the present invention is to provide a heat pipe which, in addition to forming a capillary microstructure on the inner surface of the pipe body, does not require an additional capillary structure, and can make a flatter heat pipe to save space occupied by the heat pipe. [0011] Still another object of the present invention is to provide a heat pipe which can be manufactured by a pipe manufacturing method while forming at least one axially extending and concave groove structure on the inner wall of the pipe body; by chemical etching or The mechanical processing method directly forms a capillary microstructure on the inner surface of the pipe body, and does not need to use other materials to form a capillary structure by high-temperature sintering, except for the material of the pipe body itself, and the manufacturing cost is low.
[0012] 本創作的其他目的、功效,請參閱圖式及實施例,詳細 說明如下。 【實施方式】 [0013] 如圖1、2所示,本創作的熱管1包括一管體10及工作流體 20所組成。管體10内部呈一密閉空間11,工作流體20置 於密閉空間11内。管體10的内壁12形成毛細微結構13及 至少一軸向延伸且凹陷的凹槽結構14 ;凹槽結構14内沒 有毛細微結構13 ;毛細微結構13作為液體通道,凹槽結 構14作為蒸氣通道。 1〇〇21423(^單編號 A_ 第5頁/共14頁 1013049020-0 M426755 ίσα:年:〇2月ίο日梭正替換頁 [0014] 當熱管1的蒸發段15吸收發熱元件所產生的熱能後,熱量 傳至管體10内部的工作流體20,由於熱管1内呈接近真空 狀態,工作流體20吸熱後蒸發成氣相流體,氣相流體經 由凹槽結構14流向熱管1的凝結段16 ;氣相流體於低溫處 散熱後凝結為液相流體,液相流體藉由毛細微結構13的 毛細現象回流至熱管1的蒸發段15,這樣週而復始的循環 ,不停的將發熱元件所產生的熱能散去。[0012] For other purposes and functions of the present invention, please refer to the drawings and the embodiments, which are described in detail below. [Embodiment] As shown in Figs. 1 and 2, the heat pipe 1 of the present invention comprises a pipe body 10 and a working fluid 20. The inside of the tubular body 10 is in a closed space 11, and the working fluid 20 is placed in the sealed space 11. The inner wall 12 of the tubular body 10 forms a capillary microstructure 13 and at least one axially extending and concave groove structure 14; the groove structure 14 has no capillary microstructures 13; the capillary microstructures 13 serve as liquid passages, and the groove structure 14 serves as a vapor aisle. 1〇〇21423(^单号A_第5页/14 pages 1013049020-0 M426755 ίσα: Year: 〇February ίο日梭正换页[0014] When the evaporation section 15 of the heat pipe 1 absorbs the heat energy generated by the heating element After that, the heat is transferred to the working fluid 20 inside the pipe body 10. Since the heat pipe 1 is in a near vacuum state, the working fluid 20 absorbs heat and evaporates into a gas phase fluid, and the gas phase fluid flows to the condensation section 16 of the heat pipe 1 via the groove structure 14; The gas phase fluid is condensed into a liquid phase fluid after being dissipated at a low temperature, and the liquid phase fluid is returned to the evaporation section 15 of the heat pipe 1 by the capillary phenomenon of the capillary microstructure 13, so that the cycle of the heating element is continuously generated by the cycle of the heating element. Scattered.
[0015] 管體10的材質可為銅、鋁、不鏽鋼及其合金;管體10可 呈扁平狀。毛細微結構13可包括連通蒸發段15及凝結段 16的多條紋路,該多條紋路可互相呈平行或互相呈交叉 ,例如呈垂直交叉、呈不規則交叉或呈有序規則交叉等 各種交叉形狀;該多條紋路與凹槽結構14呈分開設置, 凹槽結構14内沒有該多條紋路,使液體通道與蒸氣通道 不互相干涉。毛細微結構13的紋路的深度可為1 μ m (微 米)-200//m,最佳50//m-150//m。可利用化學#刻法或 機械加工法其中之一的工法,在管體10的内壁12形成毛 細微結構13。 [0016] 如圖3所示,本創作的熱管1可被壓的更扁平,使管體10 内上方及下方的毛細微結構13之間的距離在0毫米(互相 接觸)至1毫米之間,可增加毛細作用力,並能減少熱管1 佔有的空間,有助於使電子產品輕薄短小的需求。 [0017] 如圖1、4所示,製造本創作熱管的方法,包括如下步驟 [0018] (1)以抽管製造工法製造一管體10,同時在管體10的内壁 12形成至少一轴向延伸且凹陷作為蒸氣通道的凹槽結構 1()()21423(^單编號A0101 第6頁/共14頁 1013049020-0 M426755 __[0015] The material of the pipe body 10 may be copper, aluminum, stainless steel or alloys thereof; the pipe body 10 may be flat. The capillary structure 13 may include a multi-striped path connecting the evaporation section 15 and the condensation section 16, which may be parallel or cross each other, for example, intersecting vertically, irregularly intersecting, or intersecting in an orderly manner. The multi-striped road is disposed separately from the groove structure 14, and the multi-striped path is not present in the groove structure 14, so that the liquid passage and the vapor passage do not interfere with each other. The texture of the capillary microstructure 13 may have a depth of 1 μm (micrometer) - 200 / / m, preferably 50 / / m - 150 / / m. The capillary microstructure 13 can be formed on the inner wall 12 of the tubular body 10 by a method of one of chemical or mechanical processing. [0016] As shown in FIG. 3, the heat pipe 1 of the present invention can be pressed flatter so that the distance between the capillary microstructures 13 above and below the tube body 10 is between 0 mm (contact each other) to 1 mm. It can increase the capillary force and reduce the space occupied by the heat pipe 1, which helps to make the electronic products light and thin. [0017] As shown in FIGS. 1 and 4, a method of manufacturing the present heat pipe includes the following steps: [0018] (1) A pipe body 10 is manufactured by a pipe manufacturing method while at least one axis is formed on the inner wall 12 of the pipe body 10. Groove structure 1()() 21423 extending and recessed as a vapor channel (^单单 A0101 Page 6 / 14 pages 1013049020-0 M426755 __
[ιοί年.02月ϊ〇日修正替換頁I 14 ; 1 [0019] (2)以化學蝕刻法或機械加工法其中之一的工法,加工管 體10的内壁12以形成作為液體通道的毛細微結構a ; [0020] (3)利用一般熱管的封管製程,使管體1〇内部呈一容置工 作流體20的密閉空間U,且密閉空間的空氣被抽出,而 形成熱管1。一般熱管的封管製程包括:使工作流體2〇置 於官體10内部,抽出管體10内部的空氣之後封閉管體10 使管體10内部呈一密閉空間丨i,而形成熱管!;或抽出管 Φ 冑10内部的空氣’然後使卫作流體2G置於管體Π)内部之 後,封閉管體10使管體10内部呈一密閉空間n,而形成 熱管1。 [0021] 其中步驟(2)中該化學蝕刻法係以化學溶液蝕刻管體丨〇内 部的凹槽結構14之外的内壁12,而在内壁12表面形成毛 細微結構13 ;機械加工法係以刀具加工管體.1〇内部的凹 槽結構14之外的内壁12,由於管體1〇是由較軟的金屬製 φ 成,經過刀具加工後,在内壁12表面會形成到痕,而在 内壁12表面形成具有多條紋路的毛細微結構13 ;該多條 紋路與凹槽結構14呈分開設置,凹槽結構14内沒有該多 條紋路,使液體通道與蒸氣通道不互相干涉◊刀具可以 是砂輪或金屬刷子或拉刀或塘刀等。 [_其中步称(3)中可進-步包括使熱管!形成扁平狀,且使 使管體10内上方及下方的毛細微結構i 3之間的距離在〇毫 米(互相接觸)至1毫米之間。 剛本創作歸及其製法,係於管體㈣卿成作為液體通 10021423(^^^ A0101 第 7 頁 / 共 14 頁 1013049020-0 M426755 1ΌΪ年02月10 &後正替換頁 道的毛細微結構及至少一軸向延伸且凹陷的凹槽結構作 為蒸氣通道;凹槽結構内沒有毛細微結構;毛細微結構 與凹槽結構分開設置,因此不會造成毛細作用方向被凹 槽結構的方向所限制,液體通道與蒸氣通道互相干涉的 缺點,故可以提升散熱的效果,且構造簡單可以直接封 裝成熱管,故可以降低製造成本。 [0024] [0025] 本創作的熱管,除了於管體的内部表面形成毛細微結構 之外,無需附加多餘的毛細結構,可製作更扁平的熱管 ,以節省熱管佔有的空間。 製造本創作熱管的方法,係利用抽管製造工法製造一管 體,同時在管體的内壁形成至少一轴向延伸且凹陷的凹 槽結構;利用化學蝕刻法或機械加工法,於管體的内部 表面直接形成毛細微結構,除了管體本身的材料之外不 需要利用其他材料再經高溫燒結製作毛細結構,製作成 本低廉。[ιοί年.02月ϊ〇日 Revision Replacement Page I 14 ; 1 [0019] (2) The inner wall 12 of the pipe body 10 is machined to form a capillary as a liquid passage by one of a chemical etching method or a mechanical processing method. Microstructure a; [0020] (3) Using a sealing process of a general heat pipe, the inside of the pipe body 1 is a sealed space U in which the working fluid 20 is accommodated, and the air in the sealed space is extracted to form the heat pipe 1. Generally, the heat pipe sealing process includes: placing the working fluid 2 inside the body 10, and after withdrawing the air inside the pipe body 10, closing the pipe body 10 to make the inside of the pipe body 10 a closed space 丨i, and forming a heat pipe! Or, after the air inside the pipe Φ 胄 10 is pulled out and then the inside of the pipe body 10 is placed inside the pipe body, the pipe body 10 is closed to make the inside of the pipe body 10 a closed space n, and the heat pipe 1 is formed. [0021] wherein in the step (2), the chemical etching method etches the inner wall 12 outside the groove structure 14 inside the tube body with a chemical solution, and forms the capillary microstructure 13 on the surface of the inner wall 12; the machining method is The inner wall 12 of the inner surface of the groove structure 14 is formed by the tool, and since the tube body 1 is made of softer metal, after the tool is processed, a mark is formed on the surface of the inner wall 12, and The surface of the inner wall 12 forms a capillary microstructure 13 having a multi-striped path; the multi-striped road is disposed separately from the groove structure 14, and the groove structure 14 does not have the multi-striped path, so that the liquid passage and the vapor passage do not interfere with each other. It is a grinding wheel or a metal brush or a broach or a pond knife. [_ Which step can be called in step (3) - step includes making the heat pipe! The flat shape is formed such that the distance between the capillary microstructures i 3 above and below the inside of the tubular body 10 is between 〇m (contacting each other) to 1 mm. The original creation and its production method are based on the pipe body (four) Qingcheng as the liquid pass 10021423 (^^^ A0101 page 7 / 14 pages 1013049020-0 M426755 1 year February 10 & The structure and the at least one axially extending and concave groove structure serve as a vapor passage; the groove structure has no capillary microstructure; the capillary microstructure is disposed separately from the groove structure, so that the direction of the capillary action is not caused by the direction of the groove structure Limiting the disadvantage that the liquid passage and the vapor passage interfere with each other, so that the heat dissipation effect can be improved, and the structure is simple, and the heat pipe can be directly packaged, so that the manufacturing cost can be reduced. [0025] The heat pipe of the present invention, except for the pipe body In addition to the formation of the capillary microstructure on the inner surface, a flatter heat pipe can be produced without adding extra capillary structure to save space occupied by the heat pipe. The method for manufacturing the heat pipe is to manufacture a pipe body by using a pipe manufacturing method. The inner wall of the tubular body forms at least one axially extending and concave groove structure; using chemical etching or machining to the inner surface of the tubular body The capillary microstructure is directly formed, and the capillary structure is not required to be sintered by high-temperature sintering other than the material of the tube itself, and the production cost is low.
[0026] [0027] [0028] [0029] [0030] 以上所記載,僅為利用本創作技術内容之實施例,任何 熟悉本項技藝者運用本創作所為之修飾、變化,皆屬本 創作主張之專利範圍,而不限於實施例所揭示者。 【圖式簡單說明】 圖1為本創作部分熱管未壓扁時的立體示意圖。 圖2為本創作熱管被壓扁時的剖面示意圖。 圖3為本創作熱管被壓的更扁時的剖面示意圖。 圖4為本創作熱管的製法的流程圖。[0030] [0030] [0030] [0030] As described above, only the embodiment using the content of the present technical technology, any person skilled in the art using this creation is modified and changed, which belongs to the creative claim. The patent scope is not limited to those disclosed in the examples. [Simple description of the drawing] Fig. 1 is a schematic perspective view of a portion of the heat pipe which is not flattened. Figure 2 is a schematic cross-sectional view of the heat pipe when it is crushed. Fig. 3 is a schematic cross-sectional view showing the heat pipe in which the heat pipe is pressed. FIG. 4 is a flow chart of the method for manufacturing the heat pipe.
1_23(Ρ编號 Α0101 第8頁/共14頁 1013049020-0 M4267551_23(Ρ号 Α0101 Page 8 of 14 1013049020-0 M426755
101年.02月10日修正替換百 【主要元件符號說明】 [0031] 1熱管10管體 [0032] 11 密閉空間12内壁 [0033] 13 毛細微結構14凹槽結構 [0034] 15 蒸發段16凝結段 [0035] 20 工作流體 [0036] (1) 、(2)、(3)分別為本創作熱管的製法的步驟編號 10021423产單編號 A〇101 第9頁/共14頁 1013049020-0101 years. February 10th revision replacement hundred [main component symbol description] [0031] 1 heat pipe 10 pipe body [0032] 11 confined space 12 inner wall [0033] 13 capillary microstructure 14 groove structure [0034] 15 evaporation section 16 Condensation section [0035] 20 Working fluid [0036] (1), (2), (3) respectively, the manufacturing method of the heat pipe is step number 10021423, the production order number A〇101, page 9 / total 14 pages 1013049020-0
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100214230U TWM426755U (en) | 2011-08-02 | 2011-08-02 | Heat pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100214230U TWM426755U (en) | 2011-08-02 | 2011-08-02 | Heat pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM426755U true TWM426755U (en) | 2012-04-11 |
Family
ID=46463871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100214230U TWM426755U (en) | 2011-08-02 | 2011-08-02 | Heat pipe |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM426755U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9689625B2 (en) | 2012-12-14 | 2017-06-27 | Furui Precise Component (Kunshan) Co., Ltd. | Heat pipe |
TWI818804B (en) * | 2022-11-15 | 2023-10-11 | 大陸商深圳興奇宏科技有限公司 | Vapor chamber structure |
-
2011
- 2011-08-02 TW TW100214230U patent/TWM426755U/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9689625B2 (en) | 2012-12-14 | 2017-06-27 | Furui Precise Component (Kunshan) Co., Ltd. | Heat pipe |
TWI818804B (en) * | 2022-11-15 | 2023-10-11 | 大陸商深圳興奇宏科技有限公司 | Vapor chamber structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qu et al. | Recent advances in MEMS-based micro heat pipes | |
US7743819B2 (en) | Heat pipe and method for producing the same | |
Mehrali et al. | Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe | |
Zhou et al. | Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe | |
US7726384B2 (en) | Heat pipe | |
TWI585358B (en) | Heat pipe and method for manufacturing the same | |
US20070034357A1 (en) | Heat pipe and method of producing the same | |
Rahman et al. | Effect of length scales on the boiling enhancement of structured copper surfaces | |
US20100326644A1 (en) | Plane-type heat-dissipating structure with high heat-dissipating effect and method for manufacturing the same | |
JP2011002216A (en) | Extremely thin heat pipe and method of manufacturing the same | |
JP2016023821A (en) | Flat heat pipe | |
Volodin et al. | Heat transfer enhancement at boiling and evaporation of liquids on modified surfaces—A review | |
Li et al. | Forming method of micro heat pipe with compound structure of sintered wick on grooved substrate | |
TWM375205U (en) | Flat hot pipe | |
TWI438043B (en) | Method for fabricating a heat pipe, and instrument of the method | |
TWM426755U (en) | Heat pipe | |
Upot et al. | Etching-enabled ultra-scalable micro and nanosculpturing of metal surfaces for enhanced thermal performance | |
Hao et al. | Experimental investigation on heat transfer performance of a flat plate heat pipe with MWCNTS-acetone nanofluid | |
JP5224328B2 (en) | Fine metal wire, wick structure and heat pipe using the same | |
Sahoo et al. | Impact of novel dissimilar shape ternary composition-based hybrid nanofluids on the thermal performance analysis of radiator | |
JP2006189232A (en) | Heat transfer pipe for heat pipe, and heat pipe | |
US8695687B2 (en) | Hybrid pin-fin micro heat pipe heat sink and method of fabrication | |
JP3175383U (en) | Heat tube heat dissipation structure | |
TWI494531B (en) | Flat heat pipe and method for manufacturing the same | |
TW201307779A (en) | Heat pipe and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4K | Annulment or lapse of a utility model due to non-payment of fees |