TWM410996U - Lighting apparatus - Google Patents

Lighting apparatus Download PDF

Info

Publication number
TWM410996U
TWM410996U TW100204434U TW100204434U TWM410996U TW M410996 U TWM410996 U TW M410996U TW 100204434 U TW100204434 U TW 100204434U TW 100204434 U TW100204434 U TW 100204434U TW M410996 U TWM410996 U TW M410996U
Authority
TW
Taiwan
Prior art keywords
layer structure
light
illuminating
diode elements
carrier substrate
Prior art date
Application number
TW100204434U
Other languages
Chinese (zh)
Inventor
Ying-Che Sung
Kuang-Hua Cheng
Original Assignee
Litup Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Litup Technology Co Ltd filed Critical Litup Technology Co Ltd
Priority to TW100204434U priority Critical patent/TWM410996U/en
Publication of TWM410996U publication Critical patent/TWM410996U/en

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

A lighting apparatus is disclosed including: a supporting substrate; a first layer containing one or more kinds of phosphor powder therein and the first layer having a first refractive index; one or more LED chips positioned between the supporting substrate and the first layer; a second layer positioned between the supporting substrate and the first layer and having a second refractive index; and a third layer, positioned between the supporting substrate and the second layer, for covering the one or more LED chips and having a third refractive index; wherein the third refractive index is greater than or equal to the second refractive index and the second refractive index is greater than or equal to the one refractive index.

Description

五、新型說明: 【新型所屬之技術領域】 [0001] 本新型是有關發光二極體元件的封裝技術,尤指一種可 降低以發光二極體元件做為光源時,在不同出光角度的 色溫差異的發光裝置。 【先前技術】 [0002] 發光二極體(1 ight erai tt ing di ode,LED)元件具有 體積小、壽命長、反應速度快、低耗電量以及較環保等 優點,逐漸被廣泛應用在照明設備或背光源的領域中。 [0003] 利用發光二極體元件做為光源的習知發光裝置中,最常 見的問題在於發光裝置的色溫(Color Temperature ) 或是色度座標值會因出光角度不同而有所偏差,亦即, 從發光裝置的不同出光角度來測量時,其輸出光線的色 溫或色度座標值會有明顯差異。而且,不同出光角度間 的色溫差異問題,在多晶封裝結構的光源中更是明顯。 這樣的缺點會降低發光二極體元件的效能表現和市場接 受度,尤其是在對光源的色溫變化較敏感的照明領域。 【新型内容】 [0004] 有鑑於此,如何改善以發光二極體元件做為光源時在不 同出光角度的色溫差異,是業界極待解決的問題。 [0005] 本說明書提供了一種發光裝置的實施例,其包含有:一 承載基板;一第一層結構,其内部包含有一或多種螢光 粉,且該第一層結構具有一第一折射率;一或多個發光 二極體元件,位於該承載基板與該第一層結構之間;一 表單编號A0101 第4頁/共26頁 第二層结構,位於該承載基板與該第一層結構之間,且 該第二層結構具有一第二折射率;以及一第三層結構, 位於該承載基板與該第二層結構之間,並包覆該一或多 個發光二極體元件,該第三層結構具有一第三折射率; 其中該第三折射率大於或等於該第二折射率,且該第二 折射率大於或等於該第一折射率。 [0006] 本說明書另提供了一種發光裝置的實施例,其包含有: 一承載基板;一第一層結構,其内部包含有一或多種螢 光粉,且該第一層結構具有一第一折射率;複數個發光 二極體元件,位於該承載基板與該第一層結構之間内; +:..ϋ'ν 々'V -/H).',. 以及一第二層結構,位於該承截基板#該滅一層結構之 間,包覆該一或多個發光二極體元件,且碎桌二層結構 具有大於或等於該第一折射率的一第二折射率。 【實施方式】 [0007] 以下將搭配本新型部分實施例的相關圖式,來說明本新 型的技術内容。在這些圖式中,可能會用相同的標號來 表示功能與結構相同或類似的元件。在通篇說明書及後 續的請求項當中所提及的「元件」一詞,包含了構件、 層構造、或區域等概念。 [0008] 在繪示圖式時,某些元件的尺寸及相對大小會被加以放 大,以使圖式的内容能清楚表達》另外,某些元件的形 狀會被簡化以方便繪示。因此,圖式中所繪示的各元件 的形狀、尺寸及相對大小,並非用以限縮本新型的專利 範圍。此外,本新型可用許多不同的形式來體現,在解 釋本新型的專利範圍時,不應限縮在本說明書所提出的 表單編號A0101 第5頁/共26頁 M410996 示例性實施例的態樣。 [0009] 在說明書及後續的申請專利範圍中使用了某些詞彙來指 稱特定的元件。所屬領域中具有通常知識者應可理解, 同樣的元件可能會用不同的名詞來稱呼。本說明書及後 續的申請專利範圍並不以名稱的差異來作為區分元件的 方式,而是以元件在功能上的差異來作為區分的基準。 在通篇說明書及後續的請求項當中所提及的「包含」係 為一開放式的用語,故應解釋成「包含但不限定於…」 。在此所使用的「及/或」的描述方式,包含所列舉的其 中之一或多個項目的任意組合。另外,除非特別指明, 否則任何單數格的用語,在本說明都同時包含複數 格的涵義。 [0010] 在通篇說明書及後續的請求項當中,若描述第一元件位 於第二元件上、在第二元件上方、連接、接合、耦接於 第二元件或與第二元件相接,則可表示第一元件直接位 在第二元件上、直接連接、直接接合、直接耦接於第二 元件,亦可表示第一元件與第二元件間有其他中介元件 存在。相對之下,若描述第一元件直接位在第二元件上 、直接連接、直接接合、直接耦接、或直接相接於第二 元件,則代表第一元件與第二元件間沒有其他中介元件 存在。 [0011] 為了說明上的方便,說明書中可能會使用一些與空間中 的相對位置有關的敘述,例如「於…上」、「在…上方 」、「於…下」、「在…下方」、「高於…」、「低於 …」、「向上」、「向下」等等,來描述圖式中的某一 表單編號A0101 第6頁/共26頁 元件的功能或是該元件與其他元件間的相對空間關係。 所屬領域中具有通常知識者應可理解,這些與空間中的 相對位置有關的欽述,不僅包含所描述的元件在圖式中 的指向關係(orientation) ’也包含了所描述的元件在 使用、運作、或組裝時的各種不同指向關係。例如,若 將圖式上下顛倒過來,則原先用「於…上」來描述的元 件,就會變成「於…下」。因此,在說明書中所使用的 「於…上」的描述方式,解釋上包含了「於…下」以及 「於…上」兩種不同的指向關係。同理,在此所使用的 「向上」一詞,解釋上包含了「向上」以及「向下」兩 種不同的指向關係。 … V? ·., [0012]請參考圖1 ’其所繪示為本新型的發先裝置10 〇的一實施 例簡化後的俯視圖。發光裝置100包含有承載基板11(), 承載基板110上包含有一或多個外凸結構U2,以形成一 容置區114。在圖1中的容置區114是由一封閉圈狀的外凸 結構112所圍成,但此僅為一實施例,而非侷限本新型的 實際實施方式。實作上,亦可在承載基板11()上設置彼此 間存在些許間隙的多個外凸結構112,來共同定義出容置 區114的範圍。 [0013]承載基板110可為金屬基板、印刷電路板、陶瓷基板、高 分子材料塑膠基板、鉛框封裝基板(Plastic Leaded Chip Carrier,PLCC)、石墨基板或其他複合材料為基 礎的基材。例如’可用有高比表面積(Specific Surface Region) 且加工容易的發泡石墨來製作承載基板 110 ’這樣不僅可降低製造的複雜度,還可使發光裝置 表單編號A0101 第7頁/共26頁 M410996 100具有更佳的散熱性能。 [0014] 以下將搭配圖2和圖3來進一步說明發光裝置100的實施方 式。 [0015] 圖2為發光裝置100的一實施例沿圖1中的A-A’方向簡化 後的剖面圖。如圖2所示,在承載基板110上方設有一透 鏡層結構120,且透鏡層結構120的内部包含有一或多種 螢光粉。透鏡層結構120内所包含的螢光粉數量、種類、 濃度、和分佈方式,可依發光裝置100的應用目的不同而 加以調整,並不侷限於特定實施方式。在製造上,可利 用射出成型或其他製造方式來製成透鏡層結構120,故其 形狀可依據設計的需要而加以控制。在未載基板110與透 鏡層結構120所形成的空間内,設置有一或多個發光二極 體元件130以及結合層結構140。 [0016] 在本實施例中,在承載基板110與結合層結構140之間, 還設置有封裝層結構150,用以包覆並保護發光二極體元 件 130。 [0017] 發光二極體元件130是用來做為發光裝置100的光源。在 組裝時,可將發光二極體元件130利用電子構件直接固晶 接合(Chip on Board,COB)或其他方式,輕接於承載 基板110上的金屬電極,使發光二極體元件130固設在承 載基板110上的外凸結構112所形成的容置區114中。等 到發光二極體元件130固設在承載基板110上後,再將流 質形式的封裝膠塗佈在承載基板110上的容置區114中, 以覆蓋住發光二極體元件130及相關的導線132並形成封 表單編號A0101 第8頁/共26頁 裝層結構150,達到保護發光二極體元件130的功能。 [0018] 之後,將承載基板110與透鏡層結構120互相對準接合。 例如,在圖2的實施例中,可將透鏡層結構120套合在承 載基板110上的外凸結構112。接下來,再將流質形式的 結合膠注入封裝層結構150與透鏡層結構120兩者間的空 間内,儘可能填滿該空間以形成結合層結構140。在形成 結合層結構140的過程中,原本存在於封裝層結構150與 透鏡層結構120之間的空氣會被逐漸排出。等結合層結構 140固化後便會將透鏡層結構120與封裝層結構150兩者 接合,而完成發光二極體元件130的封裝程序。 [0019] 透鏡層結構120、結合層結榉140、尽/或封裝層結構150 r^J- v - - - / 的材料,可用矽膠、環氧樹遍、’以及壓克力等材料的的 其中之一或是其中至少兩者混合而成。為了減少發光二 極體元件130的出光強度損失,上述三個層結構的材料會 經過適當挑選,使得封裝層結構150的折射率N3會大於或 等於結合層結構140的折射率N2,且結合層結構140的折 射率N2會大於或等於透鏡層結構120的折射率N1。 [0020] 如前所述,原本存在於封裝層結構150與透鏡層結構120 之間的空氣在組裝的過程中會被排出。因此,在封裝完 成的發光裝置100中,結合層結構140的上表面會與透鏡 層結構120的下表面接合,而結合層結構140的下表面則 會與封裝層結構150的上表面接合,不會有空氣殘留其間 而導致發光二極體元件130的整體出光效率降低的問題。 此外,由於封裝層結構150可用塗佈方式形成,故其上表 面實質上會是平面,具有製造上的便利性,且封裝層結 表單编號A0101 第9頁/共26頁 M410996 構150的上表面積會與結合層結構140的下表面積實質上 相同。 [0021] 在圖2的實施例中,透鏡層結構120的上表面是設計成具 有單一凸面122的形狀,以使發光裝置100獲得較廣的出 光角度範圍,而凸面122下方的正投影範圍内則涵蓋了全 部的發光二極體元件130。如圖所示,透鏡層結構120的 凸面122的厚度以中間部位最厚(T1大於0.1公分),並 逐漸往兩側遞減。經過測試,這樣的設計可有效提升發 光裝置100在不同出光角度間的色溫一致性,大幅改善習 知發光裝置在不同出光角度間有色溫差異存在的問題。 [0022] 實作上,圖2中所繪示的複數個發光二極體元件130,可 以是同一種出光色的發光二桂體元件,也可以包含兩種 或兩種以上不同出光色的發光二極體元件。例如,在一 實施例中,發光裝置100中的複數個發光二極體元件130 ,是由兩種不同出光色的發光二極體晶粒組合而成,例 如紅光晶粒與藍光晶粒的組合、紅光晶粒與綠光晶粒的 組合、或是綠光晶粒與藍光晶粒的组合等等。在另一實 施例中,發光裝置100中的複數個發光二極體元件130, 則同時包含了紅光晶粒、藍光晶粒、以及綠光晶粒。同 時將不同出光色的發光二極體晶粒一起在發光裝置100中 搭配使用,可有效提升發光裝置100做為照明源或背光源 時的演色性表現。 [0023] 圖3繪示發光裝置100的另一實施例沿圖1中的A-A’方向 簡化後的剖面圖。在圖3所示的實施例中,透鏡層結構 120的下表面上形成有複數個微結構324。這些微結構 表單编號A0101 第10頁/共26頁 324可以是角錐體、四面體、圓錐體、環形波浪狀、不規 則凹凸狀或是以上結構的混合。微結構324可以只設在透 鏡層結構120的凸面122下表面的局部範圍(例如中央 20~70%面積的範圍内,亦可佈滿透鏡層結構120的下表 面與結合層結構140相接部位的整個區域。 [0024] 如前所述,透鏡層結構120的厚度和厚度變化與維持發光 裝置100在不同出光角度的色溫(或色度座標值)一致性有 關。利用透鏡層結構120的下表面上的複數個微結構324 的設置,可以在不影響發光裝置100的出光色溫一致性的 情況下,減少透鏡層結構120的凸面122所需的厚度,減 少材料的使用量。亦即,要使發光裝置100的不同出光角 度的色溫(或色度座標值)實質上相同'的情況下,透鏡層 結構120的凸面122在圖3實施例中的最大厚度Τ2,會小 於在圖2實施例中的最大厚度Τ1。 [0025] 另外,發光二極體元件130可能有部分出光會與透鏡層結 構120内的螢光粉體發生碰撞產生向内散射,或是光線在 由結合層結構140進入透鏡層結構120、或由透鏡層結構 120進入空氣時發生全反射,因而影響發光二極體元件 130的出光效率。利用前述複數個微結構324的設置,也 可以有效減少上述問題,進而提升發光二極體元件130的 出光效率。 [0026] 實作上,將複數個微結構324改設置在透鏡層結構120的 上表面,或是在透鏡層結構120的上表面和下表面都設置 複數個微結構324,都能達到類似前述的功效。 表單編號Α0101 第丨1頁/共26頁 M410996 [0027] 請參考圖4,其所繪示為本新型的發光裝置100的另一實 施例簡化後的俯視圖。在本實施例中,透鏡層結構120的 上表面是設計成具有複數個凸面122的形狀,而每個凸面 122下方的正投影範圍内則分別涵蓋了數個發光二極體元 件130。以下將搭配圖5和圖6來進一步說明圖4的實施例 〇 [0028] 圖5為發光裝置100的一實施例沿圖4中的A-A’方向簡化 後的剖面圖。如圖5所示,透鏡層結構120的各凸面122的 厚度以中間部位最厚(T3大於0. 05公分),並逐漸往兩側 遞減。與前述實施例顓似,這樣的設計可使發光裝置100 的不同出光角度的色溫(或色度座標值)維持實質上相同 ,改善習知的發光裝置的輸出光線在不同出光角度間有 色溫明顯差異存在的問題。 [0029] 另外,在透鏡層結構120的上表面設計複數個凸面122的 方式,可以在不影響發光裝置100的出光色溫一致性的情 況下,減少透鏡層結構120的每個凸面122所需的厚度, 減少材料的使用量和發光裝置100的整體體積。亦即,要 使發光裝置100的不同出光角度的色溫(或色度座標值)維 持實質上相同的情況下,透鏡層結構120的凸面122在圖5 實施例中的最大厚度T3,會小於在圖2實施例中的最大厚 度T1。 [0030] 圖6繪示發光裝置10 0的另一實施例沿圖4中的A - A ’方向 簡化後的剖面圖。在圖6的實施例中,透鏡層結構120的 下表面上還形成有複數個微結構324。微結構324可以只 設在透鏡層結構120的每個凸面122所對應的下表面的局 表單編號A0101 第12頁/共26頁 部範圍(例如中央20〜70%面積的範圍内),亦可佈滿透鏡 層結構120的下表面與結合層結構140相接部位的整個區 域。 [0031] 與前述實施例顓似,利用位於透鏡層結構120的下表面的 複數個微結構324的設置,可以在不影響發光裝置100的 出光色溫一致性的情況下,減少透鏡層結構120的凸面 122所需的厚度,減少材料的使用量。亦即,要使發光裝 置100的不同出光角度的色溫(或色度座標值)維持實質上 相同的情況下,透鏡層結構120的凸面122在圖6實施例中 的最大厚度T4,會小於在圖5實施例中的最大厚度T3。同 樣地,複數個微結構324的tii'V也可升發光二極體 Ά-0 :...^· 41 Ί }* * 元件13 0的出光效率。 [0032] 實作上,將複數個微結構324改設置在透鏡層結構120的 每個凸面122的上表面,或是在透鏡層結構120的每個凸 面122的上表面和下表面都設置複數個微結構324,都能 達到類似前述的功效。 [0033] 圖7繪示發光裝置100的另一實施例簡化後的剖面圖。在 圖7的實施例中,透鏡層結構120的上表面設計成具有更 多的凸面122,且每個凸面122下方的正投影範圍内只有 一個發光二極體元件130。亦即,本實施例中的透鏡層結 構120上表面的凸面122個數,與發光二極體元件130的 個數相同。這樣的配置方式,可在不影響發光裝置100在 不同出光角度的色溫一致性的情況下,進一步降低透鏡 層結構120的凸面122所需的厚度,更能減少材料的使用 量和發光裝置100的整體體積,讓發光裝置100的製造更 表單編號A0101 第13頁/共26頁 M410996 加環保。 [0034] 在前述實施例中,結合層結構140是和透鏡層結構120及 封裝層結構150直接相接,以做為透鏡層結構120與封裝 層結構150兩者的接合媒介。在其他實施例中,亦可在結 合層結構140與透鏡層結構120之間,及/或在結合層結構 140與封裝層結構150之間,設置其他適當的透光接合媒 介。 [0035] 所屬領域中具有通常知識者應可理解,前述承載基板110 上由外凸結構112所形成的容置區114的個數、形狀、或 位置,都可依實際電路設計的需要而調整,並不侷限於 . - r"· · 前述實施例所繪示的態樣。例如,承載基¥110上也可以 有多個分開的、不同形狀及大小的容置區114。當容置區 114的個數、形狀、或位置改變時,與容置區114相對應 搭配設置的透鏡層結構120、結合層結構140以及封裝層 結構150的個數、形狀、或位置,都要跟著調整。 [0036] 在某些實施例中,亦可將結合層結構140或封裝層結構 150省略。例如,在某些實施例的組裝過程中,當發光二 極體元件130固設在承載基板110上的容置區114内後, 可以跳過塗佈封裝膠的步驟,直接將承載基板110與透鏡 層結構120互相對準接合。接著,再將流質形式的結合膠 注入承載基板110與透鏡層結構120兩者間的空間内,以 覆蓋住發光二極體元件130及相關的導線132,並儘可能 填滿該空間以形成單一結合層結構140。在形成結合層結 構140的過程中,原本存在於承載基板110與透鏡層結構 120之間的空氣會被逐漸排出。等結合層結構140固化後 表單编號A0101 第14頁/共26頁 M410996 便會將透鏡層結構120與承載基板llo兩者接合,而完成 發光二極體元件130的封裝程序。為了減少發光二極體元 件130的出光損失,上述透鏡層結構12〇和結合層結構 140的材料會經過適當挑選,使得結合層結構14〇的折射 率N2會大於或等於透鏡層結構12〇的折射率N1。 [_ X例如’在某些實施例的組裝過程中,可以先將封裝膠 - 塗佈在承載基板上的容置區114中,以覆蓋住發光二 . 極體元件130及相關的導線132以形成封裝層結構15〇。 φ 之後,再以埋入成型(insert elding)的方式,在封 裝層結構150上直接形成透鏡層結構12〇 ,而完成發光二 極體το件13〇的封裝程序。♦典實施巧冲,.遠鏡層結構 120與封裝層結構15〇間的相接部分可以實質上為平面。 為了減少發光二極體元件130的出光損失,上述透鏡層結 構120和封裝層結構15〇的材料會經過適當挑選使得封 裝層結構150的折射率N3會大於或等於透鏡層結構12〇的 折射率Nb • _]前述不同實施例中的多項技術特徵,可以互相組合,致 使發光裝置100的不同出光角度間的色溫維持實質上相同 ,並提升發光裝置100的整體出光效率。另外,亦可將前 述不同實把例中的多項技術特徵互相組合,以降低製造 過程中的材料使用量。 [0〇39]本之較佳實施例,凡依本新型申請專 利範圍所做之均等變化與修飾,皆應屬本新型之涵蓋範 圍0 表單編號A0101 第丨5頁/共26頁 M410996 【圖式簡單說明】 [0040] 圖1為本新型的發光裝置的一實施例簡化後的俯視圖。 [0041] 圖2和圖3為圖1中的發光裝置的不同實施例簡化後的剖面 圖。 [0042] 圖4為本新型的發光裝置的另一實施例簡化後的俯視圖。 [0043] 圖5和圖6為圖4中的發光裝置的不同實施例簡化後的剖面 圖。 [0044] 圖7為本新型的發光裝置的另一實施例簡化後的剖面圖。 【主要元件符號說明】 [0045] 100 發光裝置 [0046] 110 承載基板 [0047] 112 外凸結構 [0048] 114 容置區 [0049] 120 透鏡層結構 [0050] 122 凸面 [0051] 130 發光二極體元件 [0052] 132 導線 [0053] 140 結合層結構 [0054] 150 封裝層結構 [0055] 324 微結構 表單编號A0101 第16頁/共26頁V. New description: [New technology field] [0001] The present invention relates to a packaging technology for a light-emitting diode component, and more particularly to a color temperature at a different light-emitting angle when a light-emitting diode component is used as a light source. Different lighting devices. [Prior Art] [0002] Light-emitting diode (LED) components have the advantages of small size, long life, fast response, low power consumption, and environmental protection, and are gradually being widely used in lighting. In the field of equipment or backlighting. [0003] In a conventional light-emitting device using a light-emitting diode element as a light source, the most common problem is that the color temperature or the chromaticity coordinate value of the light-emitting device may vary depending on the light-emitting angle, that is, When measuring from different light-emitting angles of the illuminating device, the color temperature or chromaticity coordinate value of the output light may be significantly different. Moreover, the problem of the difference in color temperature between different light-emitting angles is more pronounced in the light source of the polycrystalline package structure. Such shortcomings can degrade the performance and market acceptance of the light-emitting diode components, especially in the field of illumination that is sensitive to changes in the color temperature of the light source. [New content] [0004] In view of this, how to improve the color temperature difference at different light-emitting angles when using a light-emitting diode element as a light source is an extremely problem to be solved in the industry. [0005] The present specification provides an embodiment of a light emitting device, comprising: a carrier substrate; a first layer structure including one or more phosphors therein, and the first layer structure has a first refractive index One or more light emitting diode elements between the carrier substrate and the first layer structure; a form number A0101, page 4 of 26, a second layer structure, located on the carrier substrate and the first layer Between the structures, the second layer structure has a second refractive index; and a third layer structure between the carrier substrate and the second layer structure and covering the one or more light emitting diode elements The third layer structure has a third refractive index; wherein the third refractive index is greater than or equal to the second refractive index, and the second refractive index is greater than or equal to the first refractive index. [0006] The present specification further provides an embodiment of a light emitting device, comprising: a carrier substrate; a first layer structure including one or more phosphors therein, and the first layer structure has a first refraction Rate; a plurality of light emitting diode elements located between the carrier substrate and the first layer structure; +:..ϋ'ν 々'V -/H).',. and a second layer structure, located The one or more light emitting diode elements are wrapped between the two layers of the substrate, and the two-layer structure has a second refractive index greater than or equal to the first refractive index. [Embodiment] [0007] The technical contents of this new type will be described below in conjunction with the related drawings of some embodiments of the present invention. In these figures, the same reference numerals may be used to refer to the elements that are the same or similar in function. The term "component" as used throughout the specification and subsequent claims includes concepts such as components, layer construction, or regions. [0008] In the drawing, the size and relative sizes of some of the elements are enlarged so that the contents of the drawings can be clearly expressed. In addition, the shapes of some of the elements are simplified to facilitate the drawing. Therefore, the shapes, dimensions, and relative sizes of the various components illustrated in the drawings are not intended to limit the scope of the present invention. In addition, the present invention may be embodied in many different forms, and the scope of the present invention is not limited to the form of the exemplary embodiment of Form No. A0101, page 5 of the specification of M410996. [0009] Certain terms are used throughout the description and following claims to refer to particular elements. Those of ordinary skill in the art should understand that the same elements may be referred to by different nouns. The scope of this specification and the subsequent patent application do not use the difference in the name as the means for distinguishing the elements, but the difference in function of the elements as the basis for the distinction. The term "including" as used throughout the specification and subsequent claims is an open term and should be interpreted as "including but not limited to...". The description of "and/or" as used herein includes any combination of one or more of the listed items. In addition, unless otherwise specified, any singular terms are used in this description to include the meaning of the plural. [0010] Throughout the specification and subsequent claims, if the first component is described as being located on the second component, above the second component, connected, coupled, coupled to or coupled to the second component, It can be noted that the first component is directly on the second component, directly connected, directly bonded, directly coupled to the second component, and may also be represented by other intervening components between the first component and the second component. In contrast, if the first element is described as being directly on the second element, directly connected, directly bonded, directly coupled, or directly connected to the second element, there is no other intervening element between the first element and the second element. presence. [0011] For convenience of description, some descriptions relating to relative positions in space may be used in the specification, such as "on", "above", "under", "below", "above...", "below...", "up", "down", etc., to describe the function of a form number A0101 on page 6 of 26 in the drawing or the component and other The relative spatial relationship between components. It should be understood by those of ordinary skill in the art that these descriptions relating to relative positions in space include not only the orientation of the described elements in the drawings, but also the described elements in use. Various different pointing relationships during operation or assembly. For example, if the pattern is turned upside down, the element originally described by "on" will become "under". Therefore, the description of "on" used in the specification includes two different pointing relationships of "under" and "on". Similarly, the term "upward" as used herein includes two different pointing directions, "upward" and "downward". [0012] Referring to Fig. 1 ′, a simplified plan view of an embodiment of the present invention 10 〇 is shown. The light-emitting device 100 includes a carrier substrate 11 (), and the carrier substrate 110 includes one or more protruding structures U2 to form a receiving region 114. The accommodating area 114 in Fig. 1 is surrounded by a closed-loop convex structure 112, but this is merely an embodiment and is not intended to limit the actual embodiment of the present invention. In practice, a plurality of convex structures 112 having a slight gap therebetween may be disposed on the carrier substrate 11 to collectively define the range of the accommodating region 114. The carrier substrate 110 may be a metal substrate, a printed circuit board, a ceramic substrate, a high molecular material plastic substrate, a Lead Leaded Chip Carrier (PLCC), a graphite substrate or other composite material based substrate. For example, 'a foamed graphite having a high specific surface area (Specific Surface Region) and easy to process can be used to fabricate the carrier substrate 110', which not only reduces the manufacturing complexity, but also enables the light-emitting device form number A0101 page 7 of 26 M410996 100 has better heat dissipation performance. [0014] Embodiments of the light emitting device 100 will be further described below in conjunction with FIGS. 2 and 3. 2 is a simplified cross-sectional view of an embodiment of a light-emitting device 100 taken along the line A-A' of FIG. 1. As shown in FIG. 2, a lens layer structure 120 is disposed above the carrier substrate 110, and the interior of the lens layer structure 120 includes one or more phosphors. The number, type, concentration, and distribution of the phosphors contained in the lens layer structure 120 can be adjusted depending on the application purpose of the light-emitting device 100, and are not limited to the specific embodiment. In manufacturing, the lens layer structure 120 can be formed by injection molding or other manufacturing methods, so that the shape can be controlled according to the needs of the design. One or more light emitting diode elements 130 and a bonding layer structure 140 are disposed in a space formed by the unsupported substrate 110 and the lens layer structure 120. In the embodiment, between the carrier substrate 110 and the bonding layer structure 140, an encapsulation layer structure 150 is further disposed to cover and protect the LED component 130. [0017] The light emitting diode element 130 is used as a light source of the light emitting device 100. During assembly, the LED component 130 can be directly attached to the metal electrode on the carrier substrate 110 by means of a direct bond bonding (COB) or other means of the electronic component to fix the LED component 130. In the accommodating area 114 formed by the convex structure 112 on the carrier substrate 110. After the LED component 130 is fixed on the carrier substrate 110, the encapsulant in the form of a liquid is applied to the accommodating region 114 on the carrier substrate 110 to cover the LED component 130 and the associated wires. 132 and form a seal form number A0101 page 8 / a total of 26 page layer structure 150, to achieve the function of protecting the light-emitting diode element 130. [0018] Thereafter, the carrier substrate 110 and the lens layer structure 120 are aligned with each other. For example, in the embodiment of FIG. 2, the lens layer structure 120 can be nested over the convex structure 112 on the carrier substrate 110. Next, a fluid form of the bonding gel is injected into the space between the encapsulation layer structure 150 and the lens layer structure 120 to fill the space as much as possible to form the bonding layer structure 140. During the formation of the bonding layer structure 140, air originally present between the encapsulating layer structure 150 and the lens layer structure 120 is gradually discharged. After the bonding layer structure 140 is cured, the lens layer structure 120 and the encapsulation layer structure 150 are bonded to each other, and the packaging process of the LED body 130 is completed. [0019] The lens layer structure 120, the bonding layer crucible 140, and the encapsulation layer structure 150 r^J-v - - - / may be made of materials such as silicone, epoxy tree, and acrylic. One or a mixture of at least two of them. In order to reduce the light intensity loss of the light emitting diode element 130, the materials of the above three layer structures are appropriately selected such that the refractive index N3 of the package layer structure 150 is greater than or equal to the refractive index N2 of the bonding layer structure 140, and the bonding layer The refractive index N2 of the structure 140 may be greater than or equal to the refractive index N1 of the lens layer structure 120. [0020] As previously mentioned, air originally present between the encapsulation layer structure 150 and the lens layer structure 120 may be expelled during assembly. Therefore, in the packaged light-emitting device 100, the upper surface of the bonding layer structure 140 is bonded to the lower surface of the lens layer structure 120, and the lower surface of the bonding layer structure 140 is bonded to the upper surface of the package layer structure 150, There is a problem in that the air is left in the middle and the overall light-emitting efficiency of the light-emitting diode element 130 is lowered. In addition, since the encapsulation layer structure 150 can be formed by coating, the upper surface thereof is substantially planar, and has manufacturing convenience, and the encapsulation layer form form number A0101 page 9 / total 26 pages M410996 structure 150 The surface area will be substantially the same as the lower surface area of the bonding layer structure 140. [0021] In the embodiment of FIG. 2, the upper surface of the lens layer structure 120 is designed to have a single convex surface 122, so that the light-emitting device 100 obtains a wider range of light-emitting angles, and within the orthographic projection range below the convex surface 122. All of the light emitting diode elements 130 are covered. As shown, the thickness of the convex surface 122 of the lens layer structure 120 is the thickest at the intermediate portion (T1 is greater than 0.1 cm) and gradually decreases toward both sides. After testing, such a design can effectively improve the color temperature uniformity of the light-emitting device 100 between different light-emitting angles, and greatly improve the problem of the color temperature difference between the different light-emitting angles of the conventional light-emitting device. [0022] In practice, the plurality of light-emitting diode elements 130 illustrated in FIG. 2 may be the same light-emitting color two-component components, or may include two or more different light-emitting colors. Diode component. For example, in one embodiment, the plurality of light emitting diode elements 130 in the light emitting device 100 are combined by two different light emitting diode dies, such as red and blue crystal grains. Combination, combination of red and green crystal grains, or combination of green and blue crystal grains. In another embodiment, the plurality of light emitting diode elements 130 in the light emitting device 100 simultaneously include red crystal grains, blue crystal grains, and green crystal grains. At the same time, the light-emitting diode crystals of different light colors are used together in the light-emitting device 100, which can effectively improve the color rendering performance of the light-emitting device 100 as an illumination source or a backlight. 3 is a simplified cross-sectional view of another embodiment of the light emitting device 100 taken along the line A-A' in FIG. 1. In the embodiment illustrated in FIG. 3, a plurality of microstructures 324 are formed on the lower surface of lens layer structure 120. These microstructures are numbered A0101. Page 10 of 26 324 can be a pyramid, a tetrahedron, a cone, a circular undulation, an irregular embossing, or a mixture of the above structures. The microstructure 324 may be disposed only in a partial range of the lower surface of the convex surface 122 of the lens layer structure 120 (for example, in the range of 20 to 70% of the center), or may be covered with the lower surface of the lens layer structure 120 and the bonding layer structure 140. [0024] As previously mentioned, the thickness and thickness variations of the lens layer structure 120 are related to maintaining the color temperature (or chromaticity coordinate value) uniformity of the illumination device 100 at different exit angles. The arrangement of the plurality of microstructures 324 on the surface can reduce the thickness required for the convex surface 122 of the lens layer structure 120 without affecting the uniformity of the color temperature of the light-emitting device 100, thereby reducing the amount of material used. In the case where the color temperature (or chromaticity coordinate value) of the different light-emitting angles of the light-emitting device 100 is substantially the same, the maximum thickness Τ2 of the convex surface 122 of the lens layer structure 120 in the embodiment of FIG. 3 is smaller than that in the embodiment of FIG. The maximum thickness Τ1 in the middle. [0025] In addition, the light-emitting diode element 130 may have a part of the light that collides with the phosphor powder in the lens layer structure 120 to generate inward scattering or light. Total reflection occurs when entering the lens layer structure 120 by the bonding layer structure 140 or entering the air by the lens layer structure 120, thereby affecting the light extraction efficiency of the light emitting diode element 130. The setting of the plurality of microstructures 324 can also be effective. The above problem is reduced, thereby improving the light extraction efficiency of the light emitting diode element 130. [0026] In practice, a plurality of microstructures 324 are modified to be disposed on the upper surface of the lens layer structure 120, or on the upper surface of the lens layer structure 120. And a plurality of microstructures 324 are disposed on the lower surface to achieve the same effect as the foregoing. Form No. Α0101 Page 1 of 26 M410996 [0027] Please refer to FIG. 4, which illustrates the novel light-emitting device 100. A further top view of another embodiment. In the present embodiment, the upper surface of the lens layer structure 120 is designed to have a plurality of convex shapes 122, and the orthographic projections below each convex surface 122 respectively cover the number. Light-emitting diode elements 130. Embodiments of FIG. 4 will be further described below with reference to FIGS. 5 and 6. [0028] FIG. 5 is an embodiment of the light-emitting device 100 along the A-A' side of FIG. The simplified cross-sectional view. As shown in Fig. 5, the thickness of each convex surface 122 of the lens layer structure 120 is the thickest at the intermediate portion (T3 is greater than 0.05 cm), and gradually decreases toward both sides. Similar to the foregoing embodiment, Such a design can maintain the color temperature (or chromaticity coordinate value) of different light-emitting angles of the light-emitting device 100 substantially the same, and improve the problem that the output light of the conventional light-emitting device has a significant difference in color temperature between different light-emitting angles. In addition, a plurality of convex surfaces 122 are designed on the upper surface of the lens layer structure 120, so that the thickness required for each convex surface 122 of the lens layer structure 120 can be reduced without affecting the uniformity of the color temperature of the light-emitting device 100. The amount of material used and the overall volume of the light emitting device 100 are reduced. That is, in order to maintain the color temperature (or chromaticity coordinate value) of the different light-emitting angles of the light-emitting device 100 substantially the same, the maximum thickness T3 of the convex surface 122 of the lens layer structure 120 in the embodiment of FIG. 5 is smaller than that. The maximum thickness T1 in the embodiment of Fig. 2. 6 is a simplified cross-sectional view of another embodiment of the light emitting device 100 in the A-A' direction of FIG. 4. In the embodiment of Fig. 6, a plurality of microstructures 324 are also formed on the lower surface of the lens layer structure 120. The microstructure 324 may be disposed only on the lower surface of the lens layer structure 120 corresponding to the lower surface of the local form number A0101 page 12 / 26 pages (for example, the central 20 to 70% area), or The entire area of the portion where the lower surface of the lens layer structure 120 meets the bonding layer structure 140 is covered. [0031] Similarly to the foregoing embodiments, with the arrangement of the plurality of microstructures 324 located on the lower surface of the lens layer structure 120, the lens layer structure 120 can be reduced without affecting the uniformity of the color temperature of the light-emitting device 100. The thickness of the convex surface 122 is required to reduce the amount of material used. That is, in order to maintain the color temperature (or chromaticity coordinate value) of the different light-emitting angles of the light-emitting device 100 substantially the same, the maximum thickness T4 of the convex surface 122 of the lens layer structure 120 in the embodiment of FIG. 6 is smaller than that. The maximum thickness T3 in the embodiment of Fig. 5. Similarly, the tii'V of the plurality of microstructures 324 can also illuminate the LEDs Ά-0 :...^· 41 Ί }* * The light-emitting efficiency of the component 130. [0032] In practice, a plurality of microstructures 324 are disposed on the upper surface of each convex surface 122 of the lens layer structure 120, or a plurality of upper surfaces and lower surfaces of each convex surface 122 of the lens layer structure 120 are disposed. Each of the microstructures 324 can achieve similar effects as described above. 7 is a simplified cross-sectional view showing another embodiment of the light emitting device 100. In the embodiment of Fig. 7, the upper surface of lens layer structure 120 is designed to have more convex surfaces 122, and there is only one light emitting diode element 130 within the orthographic projection area below each convex surface 122. That is, the number of convex surfaces 122 on the upper surface of the lens layer structure 120 in this embodiment is the same as the number of the light emitting diode elements 130. Such a configuration can further reduce the thickness required for the convex surface 122 of the lens layer structure 120 without affecting the color temperature uniformity of the light-emitting device 100 at different light-emitting angles, and can further reduce the amount of material used and the light-emitting device 100. The overall volume allows the manufacture of the illuminating device 100 to be more form number A0101 page 13 / total 26 pages M410996 plus environmental protection. In the foregoing embodiment, the bonding layer structure 140 is directly in contact with the lens layer structure 120 and the encapsulation layer structure 150 as a bonding medium for both the lens layer structure 120 and the encapsulation layer structure 150. In other embodiments, other suitable light transmissive bonding media may be disposed between the bonding layer structure 140 and the lens layer structure 120, and/or between the bonding layer structure 140 and the encapsulation layer structure 150. [0035] It should be understood by those skilled in the art that the number, shape, or position of the accommodating area 114 formed by the convex structure 112 on the carrier substrate 110 can be adjusted according to the needs of the actual circuit design. It is not limited to - r " · · The embodiment shown in the foregoing embodiment. For example, the carrier base ¥110 may also have a plurality of separate accommodating regions 114 of different shapes and sizes. When the number, shape, or position of the accommodating area 114 is changed, the number, shape, or position of the lens layer structure 120, the bonding layer structure 140, and the encapsulating layer structure 150 corresponding to the accommodating area 114 are all matched. To follow the adjustment. [0036] In some embodiments, the bonding layer structure 140 or the encapsulation layer structure 150 may also be omitted. For example, in the assembly process of some embodiments, after the LED component 130 is fixed in the accommodating area 114 on the carrier substrate 110, the step of coating the encapsulant may be skipped, and the carrier substrate 110 may be directly The lens layer structures 120 are aligned with each other. Then, the bonding glue in the form of liquid is injected into the space between the carrier substrate 110 and the lens layer structure 120 to cover the LED component 130 and the associated wires 132, and fill the space as much as possible to form a single The layer structure 140 is bonded. During the formation of the bonding layer structure 140, air originally present between the carrier substrate 110 and the lens layer structure 120 is gradually discharged. After the bonding layer structure 140 is cured, the form number A0101, page 14 of 26, M410996 will bond the lens layer structure 120 and the carrier substrate 11o to complete the packaging process of the LED component 130. In order to reduce the light loss of the light emitting diode element 130, the materials of the lens layer structure 12 and the bonding layer structure 140 are appropriately selected such that the refractive index N2 of the bonding layer structure 14 is greater than or equal to the lens layer structure 12A. The refractive index N1. [_X, for example, in the assembly process of some embodiments, the encapsulant may be first coated in the accommodating area 114 on the carrier substrate to cover the illuminating body element 130 and the associated wire 132. An encapsulation layer structure 15〇 is formed. After φ, the lens layer structure 12A is directly formed on the package layer structure 150 by insert elding, and the package process of the light-emitting diode τ 件 13 完成 is completed. ♦ The implementation of the singularity, the interface between the far-mirror layer structure 120 and the encapsulation layer structure 15〇 may be substantially planar. In order to reduce the light loss of the light emitting diode element 130, the materials of the lens layer structure 120 and the encapsulation layer structure 15A are appropriately selected such that the refractive index N3 of the encapsulation layer structure 150 is greater than or equal to the refractive index of the lens layer structure 12A. Nb • _] A plurality of technical features in the different embodiments described above may be combined with each other such that the color temperatures between different light-emitting angles of the light-emitting device 100 are maintained substantially the same, and the overall light-emitting efficiency of the light-emitting device 100 is improved. In addition, a plurality of technical features in the different embodiments described above may be combined with each other to reduce the amount of material used in the manufacturing process. [0〇39] In the preferred embodiment of the present invention, all changes and modifications made in accordance with the scope of the present patent application should fall within the scope of the present invention. Form No. A0101 Page 5 of 26 M410996 BRIEF DESCRIPTION OF THE DRAWINGS [0040] FIG. 1 is a simplified plan view of an embodiment of a light-emitting device of the present invention. 2 and 3 are simplified cross-sectional views of different embodiments of the light emitting device of FIG. 1. 4 is a simplified plan view of another embodiment of the light-emitting device of the present invention. 5 and 6 are simplified cross-sectional views of different embodiments of the light emitting device of FIG. 4. 7 is a simplified cross-sectional view showing another embodiment of the light-emitting device of the present invention. [Main component symbol description] [0045] 100 light-emitting device [0046] 110 carrier substrate [0047] 112 convex structure [0048] 114 accommodating region [0049] 120 lens layer structure [0050] 122 convex surface [0051] 130 light-emitting two Polar Body [0052] 132 Wire [0053] 140 Bond Layer Structure [0054] 150 Package Layer Structure [0055] 324 Microstructure Form Number A0101 Page 16 of 26

Claims (1)

M410996 六、申請專利範圍: 1 . 一種發光裝置,其包含有: 一承載基板; 一第一層結構,其内部包含有一或多種螢光粉,且該第一 層結構具有一第一折射率; 一或多個發光二極體元件,位於該承載基板與該第一層結 構之間内; 一第二層結構,位於該承載基板與該第一層結構之間,且 該第二層結構具有一第二折射率;以及 一第三層結構,位於該承載基板與該第二層結構之間,並 包覆該一或多個發光二極體‘元件,該第庄層丨結構具有一第 :,:..· ·... 三折射率; 其中該第三折射率大於或等於該第二折射率,且該第二折 射率大於或等於該第一折射率。 2 .如請求項1所述的發光裝置,其中該第三層結構與該第二 層結構相接的一面實質上為平面。 3 .如請求項2所述的發光裝置,其中該第三層結構的上表面 積與該第二層結構的下表面積實質上相同。 4 .如請求項3所述的發光裝置,其中該承載基板上包含有一 或多個外凸結構,以形成一容置區,且該一或多個發光二 極體元件與該第三層結構皆位於該容置區内。 5.如請求項2所述的發光裝置,其中該承載基板上包含有一 或多個外凸結構,以形成一容置區,且該一或多個發光二 極體元件與該第三層結構皆位於該容置區内。 6 .如請求項1所述的發光裝置,其中該第一層結構的上表面 100204434 表單編號A0101 第17頁/共26頁 1002014324-0 M410996 及/或下表面具有複數個微結構。 7.如請求項1所述的發光裝置,其中該第二層結構是在該承 載基板與該第一層結構接合後,注入該第三層結構與該第 一層結構之間的空間内。 8 .如請求項1至7中任一項所述的發光裝置,其中該一或多個 發光二極體元件包含複數個發光二極體元件,且該第一層 結構的最大厚度大於0. 1公分。 9 .如請求項1至7中任一項所述的發光裝置,其中該該一或多 個發光二極體元件包含一或多個具有一第一出光色的發光 二極體元件,以及一或多個具有一第二出光色的發光二極 體元件。 10 .如請求項1至7中任一項所述的發光裝置,其中該第一層結 構具有一或多個凸面。 11 .如請求項10所述的發光裝置,其中該一或多個發光二極體 元件包含複數個發光二極體元件,且每一凸面下方的正投 影範圍内包含有一個或多個發光二極體元件。 12 如請求項10所述的發光裝置,其中該一或多個發光二極體 元件包Ί—或多個具有一第一出光色的發光二極體元件, 以及一或多個具有一第二出光色的發光二極體元件。 13 . —種發光裝置,其包含有: 一承載基板; 一第一層結構,其内部包含有一或多種螢光粉,且該第一 層結構具有一第一折射率; 複數個發光二極體元件,位於該承載基板與該第一層結構 之間内;以及 一第二層結構,位於該承載基板與該第一層結構之間,包 100204434 表單編號A0101 第18頁/共26頁 1002014324-0 M410996 覆該一或多個發光二極體元件,且該第二層結構具有大於 或等於該第一折射率的一第二折射率。 14 .如請求項13所述的發光裝置,其中該承載基板上包含有一 或多個外凸結構,以形成一容置區,且該複數個發光二極 體元件位於該容置區内。 15. 如請求項14所述的發光裝置,其中該該第一層結構的上表 面及/或下表面具有複數個微結構。 16. 如請求項13所述的發光裝置,其中該第二層結構是在該承 載基板與該第一層結構接合後,注入該承載基板與該第一 層結構所形成的空間内。 17 .如請求項13所述的發光裝置,其中該第一層結構的最大厚 度大於0.1公分。 18 .如請求項13所述的發光裝置,其中該第一層結構與該第 二層結構相接的一面實質上為平面。 19 .如請求項13至18中任一項所述的發光裝置,其中該複數 個發光二極體元件包含兩種或兩種以上不同出光色的發光 二極體元件。 20 .如請求項13至18中任一項所述的發光裝置,其中該第一 層結構具有一或多個凸面。 21 .如請求項20所述的發光裝置,其中每一凸面下方的正投影 範圍内包含有一個或多個發光二極體元件。 22 .如請求項20所述的發光裝置,其中該複數個發光二極體元 件包含一或多個具有一第一出光色的發光二極體元件,以 及一或多個具有一第二出光色的發光二極體元件。 100204434 表單編號A0101 第19頁/共26頁 1002014324-0M410996 VI. Patent Application Range: 1. A light-emitting device comprising: a carrier substrate; a first layer structure having one or more phosphors therein, and the first layer structure has a first refractive index; One or more light emitting diode elements are located between the carrier substrate and the first layer structure; a second layer structure is located between the carrier substrate and the first layer structure, and the second layer structure has a second refractive index; and a third layer structure between the carrier substrate and the second layer structure and covering the one or more light emitting diode elements, the third layer structure has a first :::.....tri-index; wherein the third index of refraction is greater than or equal to the second index of refraction, and the second index of refraction is greater than or equal to the first index of refraction. The illuminating device of claim 1, wherein a side of the third layer structure that is in contact with the second layer structure is substantially planar. 3. The illumination device of claim 2, wherein the upper surface area of the third layer structure is substantially the same as the lower surface area of the second layer structure. The illuminating device of claim 3, wherein the carrier substrate comprises one or more convex structures to form an accommodating region, and the one or more illuminating diode elements and the third layer structure They are all located in the accommodating area. 5. The illuminating device of claim 2, wherein the carrier substrate comprises one or more convex structures to form an accommodating region, and the one or more illuminating diode elements and the third layer structure They are all located in the accommodating area. 6. The light-emitting device of claim 1, wherein the upper surface of the first layer structure is 100204434, form number A0101, page 17 of 26, 1002014324-0, M410996 and/or the lower surface has a plurality of microstructures. 7. The illumination device of claim 1, wherein the second layer structure is implanted into the space between the third layer structure and the first layer structure after the carrier substrate is bonded to the first layer structure. The light-emitting device according to any one of claims 1 to 7, wherein the one or more light-emitting diode elements comprise a plurality of light-emitting diode elements, and the maximum thickness of the first layer structure is greater than 0. 1 cm. The illuminating device of any one of claims 1 to 7, wherein the one or more illuminating diode elements comprise one or more illuminating diode elements having a first illuminating color, and Or a plurality of light emitting diode elements having a second light emitting color. The illuminating device of any one of claims 1 to 7, wherein the first layer structure has one or more convex surfaces. The illuminating device of claim 10, wherein the one or more illuminating diode elements comprise a plurality of illuminating diode elements, and the orthographic projection area below each convex surface comprises one or more illuminating two Polar body component. The illuminating device of claim 10, wherein the one or more illuminating diode elements comprise - or a plurality of illuminating diode elements having a first illuminating color, and one or more having a second Light-emitting diode component. 13. A light-emitting device comprising: a carrier substrate; a first layer structure comprising one or more phosphors therein, and the first layer structure has a first refractive index; a plurality of light-emitting diodes An element located between the carrier substrate and the first layer structure; and a second layer structure between the carrier substrate and the first layer structure, package 100204434 Form No. A0101 Page 18 of 26 page 1002014324- 0 M410996 overlying the one or more light emitting diode elements, and the second layer structure has a second index of refraction greater than or equal to the first index of refraction. The illuminating device of claim 13, wherein the carrier substrate comprises one or more convex structures to form an accommodating area, and the plurality of illuminating diode elements are located in the accommodating area. 15. The illumination device of claim 14, wherein the upper surface and/or the lower surface of the first layer structure has a plurality of microstructures. 16. The illumination device of claim 13, wherein the second layer structure is implanted into the space formed by the carrier substrate and the first layer structure after the carrier substrate is bonded to the first layer structure. 17. The illumination device of claim 13, wherein the first layer structure has a maximum thickness greater than 0.1 cm. The illuminating device of claim 13, wherein the side of the first layer structure that is in contact with the second layer structure is substantially planar. The light-emitting device according to any one of claims 13 to 18, wherein the plurality of light-emitting diode elements comprise two or more light-emitting diode elements of different light-emitting colors. The illuminating device of any of claims 13 to 18, wherein the first layer structure has one or more convex surfaces. 21. The illumination device of claim 20, wherein the orthographic projection area below each convex surface comprises one or more light emitting diode elements. The illuminating device of claim 20, wherein the plurality of illuminating diode elements comprise one or more illuminating diode elements having a first illuminating color, and one or more having a second illuminating color Luminescent diode components. 100204434 Form number A0101 Page 19 of 26 1002014324-0
TW100204434U 2011-03-14 2011-03-14 Lighting apparatus TWM410996U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100204434U TWM410996U (en) 2011-03-14 2011-03-14 Lighting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100204434U TWM410996U (en) 2011-03-14 2011-03-14 Lighting apparatus

Publications (1)

Publication Number Publication Date
TWM410996U true TWM410996U (en) 2011-09-01

Family

ID=46418325

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100204434U TWM410996U (en) 2011-03-14 2011-03-14 Lighting apparatus

Country Status (1)

Country Link
TW (1) TWM410996U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557370B (en) * 2013-09-03 2016-11-11 Light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557370B (en) * 2013-09-03 2016-11-11 Light emitting device

Similar Documents

Publication Publication Date Title
KR101208174B1 (en) Optical sheet and light emitting device comprising the same
US8132934B2 (en) Light emitting device and light unit having the same
US9024341B2 (en) Refractive index tuning of wafer level package LEDs
US10461225B2 (en) Method of manufacturing light-emitting device including sealing materials with phosphor particles
CN102097572A (en) Light emitting apparatus
JP2013191872A (en) Light emitting element package
CN104976547B (en) Light emitting diode assembly and light emitting diode bulb using same
TWI441359B (en) Light-emitting diode packaging structure of low angular correlated color temperature deviation
US9379292B2 (en) LED light source packaging method, LED light source package structure and light source module
US20130181243A1 (en) Solid State Lighting Device
JP5334123B2 (en) Semiconductor light emitting device, semiconductor light emitting device assembly, and method of manufacturing semiconductor light emitting device
KR20190031450A (en) Chip scale packaging light emitting device and manufacturing method of the same
TWM454630U (en) Mixed-light LED structure
KR101752426B1 (en) Light emitting device and light emitting diode package
TWM450828U (en) LED module with separate heat-dissipation and electrical conduction paths, and related heat dissipation board
TWI473304B (en) A plurality of blue light emitting diode chips in white
TWM410996U (en) Lighting apparatus
KR100990647B1 (en) White light emitting device and white light source module using the same
TWI566439B (en) Package structure and method for fabricating the same
KR101616474B1 (en) Package for Light Emitting Device and Method for Manufacturing thereof
TWM467187U (en) White light package of a plurality of blue LED chips
TWM271252U (en) Package structure of light-emitting device
TWI392124B (en) Led device and a method for packing the same
TWI377704B (en)
KR20160050341A (en) Package for Light Emitting Device and Method for Manufacturing thereof

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees