TWM410863U - Precision type micro-optical device and solar panel structure thereof - Google Patents

Precision type micro-optical device and solar panel structure thereof Download PDF

Info

Publication number
TWM410863U
TWM410863U TW100202444U TW100202444U TWM410863U TW M410863 U TWM410863 U TW M410863U TW 100202444 U TW100202444 U TW 100202444U TW 100202444 U TW100202444 U TW 100202444U TW M410863 U TWM410863 U TW M410863U
Authority
TW
Taiwan
Prior art keywords
light
internal reflection
total internal
optical device
solar panel
Prior art date
Application number
TW100202444U
Other languages
Chinese (zh)
Inventor
zong-han Dong
Original Assignee
Simple Energy Corp
zong-han Dong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Simple Energy Corp, zong-han Dong filed Critical Simple Energy Corp
Priority to TW100202444U priority Critical patent/TWM410863U/en
Publication of TWM410863U publication Critical patent/TWM410863U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Photovoltaic Devices (AREA)

Description

M410863 五、新型說明: 【新型所屬之技術領域】 &本創作係有關一種光學裝置及其太陽能板結構, 伯-種精準型之微型化光學裝置及其太陽能板結構。 【先前技術】 ―-種傳統的太陽能板係固定在—固定位置及角 :定架上’因此’其僅能接收固定角度之太陽光,:: 光= = =動時,陽 二太陽_模組無法有效地接 益;法充分發揮其應有效 法滿足:般用電白=“電模_效率/總發電量無 2一種傳統的太陽能板則是安裝於可動的固定芊 …可利用自動導向光源或追光的控制器控制固定竿 的轉動、升降等作動,使太陽能板盡可能的朝向太 以使太陽能板接收不同角度的太陽光。例如 =發電模組可利用追光控制器之光感測器, 置於不同位置之光感測器於受光時產生之電位差貞再: 片的運算控制固定架/太陽能板的偏轉。然而, 处的追日型太陽能發電模組f要非常精密 件(例如舰馬達減速機、物:: 故Α肖升㈣綠、純結構及滑移結構等等), 故其整體成本相當高,且由於上述各組件的體積二寺)造 3/15 成生產端'運送過裎相當大的材料及成 商業上的應用。 本支出, 敌不利於 西此M410863 V. New description: [New technology field] & This creation is about an optical device and its solar panel structure, a precision-type miniaturized optical device and its solar panel structure. [Prior Art] ―- A traditional solar panel is fixed in a fixed position and angle: on the shelf, so it can only receive a fixed angle of sunlight, :: Light = = = When moving, Yang 2 Sun _ Module Can not effectively benefit; the law fully exerts its effective method to meet: general electricity white = "electric mode _ efficiency / total power generation no 2 a traditional solar panel is installed in the movable fixed 芊 ... can use automatic guiding light source Or the chasing controller controls the rotation, lifting and the like of the fixed crucible, so that the solar panel is oriented as far as possible so that the solar panel receives sunlight of different angles. For example, the power generation module can utilize the light sensing of the tracking controller. The potential difference generated by the light sensor placed at different positions when receiving light: The operation of the piece controls the deflection of the holder/solar panel. However, the solar-powered module f is very precise (for example Ship motor reducer, object:: Therefore, Xiao Sheng (four) green, pure structure and slip structure, etc., so the overall cost is quite high, and because of the volume of the above components, the 3" build 3' Transported through the prime minister Application on large commercial materials and to this expenditure, this enemy is not conducive to the West

【新型内容J 本作#目W之—,在於提供—種精[New content J is made #目W - is to provide - kind of fine

=:太:,。當本創作的精準型之 入於市光% ’其可將不同人射方向的太陽光線慈 二内反射後形成平行光束,再藉甴聚光树、導光元件等 =將其聚集或導引至預定的位置,故太陽能板結構不需 退者太陽的移動而調整其角度,故可大幅簡化傳統追日型 场能發電模組的構件,同時達到與追日型太陽能發電模 組相當的效率。再者’藉由凸透鏡與全内反射單元的排 列,使光學裝置不需大尺寸就可使光線達到垂直射出的效 果。=: Too:,. When the precise type of this creation is in the city light%, it can reflect the sun rays of different people in the direction of the sun to form a parallel beam, and then gather or guide them by means of concentrating trees, light guiding elements, etc. To the predetermined position, the solar panel structure does not need to retreat the sun to adjust its angle, so it can greatly simplify the components of the traditional solar-powered field power module, and achieve the efficiency equivalent to the solar-powered solar module. . Furthermore, by the arrangement of the convex lens and the total internal reflection unit, the optical device can achieve the effect of vertical light emission without requiring a large size.

本創作Λ把例係提供一種精準型之微型化光學裝 置,係包含:多個全内反射單元,其中每一該全内反射單 f具有一第一光線口及一第二光線口;以及多個分別對應 二王内反射單元之凸透鏡,每一該凸透鏡的上表面更具 有多個聚光凸透鏡,其中每一該全内反射單元之第—光線 口係位於其所對應之該凸透鏡的聚焦位置。 另、本創作實施例更提供一種太陽能板結構,係包含:— ♦光元件,其具有一入射面及一與該入射面相對的聚光結 4/15 M410863 酸甲醋(PMMA),但不以此為限’再以塑料 型全内反射單元i1及凸透鏡丄2,每,方法成 度:形之凸透鏡,但不以此為限;由於全内 使由第一光線口111進2= 千古1之光餘多次全反射,並由第二域π丄工2 Ρ直射出本創作之精準型之微型化光學裝置b f用於集光領域時,各個角度之総可經由凸透鏡12^ =聚:於聚焦位置F,並經由第-光線口…= 反射切口 U1為光線入口)’接著,光線在全内 射出:Γ二木1Γ部經過多次的全反射而形成實質地垂直 * —光線口112的光線,在本具體實施例中,射 為平:度約在1,5度以内’然而前述角度範圍僅 ·' ° ,亚非用於限制本創作,換言之,本創作之精 ㈣化光學裝置1在不同的應用領域中,射出的光 >•泉並不文丽述角度之限制。 另外’當本創作之精準型之微型化光學裝置]反向運 ^,平行光由第二光線口 1 1 2進人全内反射單元i 取隹而,線在全内反射單元11内部經過多次的全反射而 ,、、、於第光線口 1 1 1,聚焦後的光線再經過凸透鏡 2的=㈣歧角射出的光線。 ^ ^考圖1A所示,本創作之全内反射單元1 1更包 又置於。亥第一光線口 1 1 2之全内反射延伸段1 1 及輔=凸透叙工工4 ’全内反射延伸段η 3可延長全 反射單兀11的縱向長度,使光線可經過更多次的全反 7/15 M410863 射,使光線更為垂直地射出;而輔助凸透鏡1 1 4係再次 將由第一光線口 1 1 2射出的光線進行調整,以獲得較佳 的垂直光線。換言之,本創作可選擇性地以全内反射延伸 #又1 1 3及輔助凸透鏡1 1 4進行光線垂直度的調整。 以下將說明本創作之精準型之微型化光學裝置丄應 用於集光而太陽能板結構的功效。請參考圖2及圖1A, 其為上述第一實施例之精準型之微型化光學裝置丄應用 於第-種太陽能板結構的示意圖,其中,該太陽能板結構 具有一聚光元件1 〇,而精準型之微型化光學裝置 於聚光元件1 〇上;具體而言,聚光元件工〇具有一入射 面1 0 1及-與該入射面i 〇工相對的聚光結構面工〇 2^而精準型之微型化光學裝置^利用貼附的方式固定 於該聚光元件1〇之入射面工〇 ^ 光學裝置^的該些辅助凸透鏡114與聚光4 ^之匕 入射面1 〇 1之間所形成之空間可塗佈有黏踢層3 〇,以 f精準型之微型化光學裝置1固定於聚光元件丄〇之入 ::i 〇〗1 i另外’在另一種實施態樣中,聚光元件1 〇 成I之4型化光學裝置1亦可利用塑料成型方法而 =卜’該聚光元件丄0可為一種罪埋爾(Fresnel)透 多個非it光疋件10的聚光結構面10 2可形成一組之 同心圓部分透鏡(segmentaiie刪)之菲這 爾透鏡結構,以提供聚光的效果。 2 4述之太陽能板結構制於-太陽能發電裝 ",各個不同入射角度之光線可經過精準型之微型化光 8/15 成平行光束(請參考前文所述之内容),以 C结構面102的聚光效果而聚集:一= 相二光線可匯聚於一太陽能晶片㈤υ 2 〇上。故, 式的太陽能發電模組,本創作可利用精準型之 :土光孥裝置1將不同角度的太陽光導引成可被 =10聚集的平行光束,以大幅提高太陽能的利科; ==r;、?°Iartrackings—^ 1作不而複雜的機械、電子構件即可達到相来員 =域追縱光線,,的效果,更可大幅提高太陽能發電的應用 方面,叫茶考圖3,其為上述第一實施例之精準 微f化光學裝置1應用於第二種太陽能板結構的示 思圖’其中,該太陽能板結構具有一導光元Η 〇 '而 精準型之微型化光學裝置工係設於導光元件1^上;且 體而言,導光元件i 〇 -具有—人射面i Q U —與該二 于面1 0 1相對的導光面1 〇 3 ’而精準型之微型化光學 裝置1可利用貼附的方式固定於該導光元件丄之入 射面1 0 1,例如精準型之微型化光學裝置丄的該些辅助 凸透鏡1 1 4與導光兀件丄Q -之人射◦丄之間所 形成之空間可㈣有黏勝層3 〇 ’以將精準型之微型化光 學裝置1固定於導Q,之人射^ Q丄;另外, 該導光元件1 〇 一可包括至少一個導光板(light guide Plate),以提供導引光線與聚光的效果。 因此,當别述之太陽能板結構應用於一太陽能發電裝 9/15 M410863 置時,各個不同入射角度之光線可經過精準型之微型化光 學裝置1而形成平行光束(請參考前文所述之内容),以 垂直射向導光元件i f之入射面! 〇工,而該此平行光 束可經由導光面! 03的多次折射而被導引、聚华於一預 定位置,例如光線可側向地匯聚於一位於、 太龍晶片(ceH) 20上,以進行太陽能發電的效果。 綜上所述,本創作之精準型之微型化光學裝置丄可用 =集光’以收集各種角度人射之太陽光,以提高太陽能發 -的效率;再者,由於全内反射單元工工與凸透鏡丄2的 配合’使本創作之精準型之微型化光學裝置的尺寸相當輕 故可適用於平板式絲來可捲曲式的太陽能發^領 域,如:梦晶、薄膜、CIGS、染料敏化等等的太陽能技術。 除此之外,上述用於集光之.精準型之微型化光學裝置上亦 可用於照明,如LED照明之集光,並難錢輸出角度, 或是取代車燈的二次光學集光器;或是用於裝潢,如可將 屋外光線引人,但具不透明性的窗戶應用、溫室屋頂應 用’以全天收光給予植物均勻的光線、建築物透明屋頂或 天井應S ’以全天收光給予室内均勻的光線等等。 更方面由於光的可逆性,本創作之精準型之微型 化光學裝置1可反向運用’亦即將第二光線口工工2為光 線入:’以將平行_為泛角度輸出光線之應用。 紅上所述,本創作至少具有下列諸項優點: 1、本創作的光學裝置可利用全内反射單元的全内反射效 果一將不同入射方向的太陽光線經多次全反射而形成 平行光束(應用於集光),而平行光束可藉由聚光元 10/15 M410863 结之^ 聚#,故可使各種人射角度的太陽光 均可被應用於發電裝置。因此,本創作的集 ^裝1可應用於目前現有的太陽能發電裝置,例如將 光元件、導光元件或其他光學元件上,即 可大幅提昇太陽能發電的效率。更由於本創作利用全 =反射單儿與凸透鏡的配合’使光學裝置的整體尺寸 :成小型化,更符合平板型或撓面形態的太陽能應 用。 相車又於傳統的固定式太陽能發電模組僅能利用單一入 2方向的太陽光線,本創作所提出之太陽能板結構可 ^车的,,擷取,,、接收不同人射方向的太陽光線,以 敌咼太陽能發電的效率。 於傳的4_日型太陽能發電模組,本創作不需利 Z複雜的傳動機構、電控系統等組件,故 =成本、運輪與__題,並可縮小太陽能^ 杈組之整體體積。 4 集光應用’本創作之光學裝置可將平行光轉為 ’乏角度輪出之光線。 本創你上為本創作之較佳可行實施例’非因此偶限 所為之ΐ效:化故舉凡運用本創作說明書及圖示内容 寺效技術愛化,均包含於本創作之範圍内。 【圖式簡單說明】 的示意圖 圖1^為本創作第—實施例之精準型之微型化光學裝置 已、圖〇 11/15 M410863 圖1A ir'為本創作第二實施例之精準型之微型化光學農 應用於集光之示意圖。 圖2係為本創作之太陽能板結構的示意圖。 圖3係為本創作之另一態樣的太陽能板結構之示意圖。 【主要元件符號說明】 11010 精準型之微型化光學裝置 聚光元件 導光元件 1 〇 110 2 10 3 全内反射單元 111 入射面 聚光結構面 導光面 凸透鏡The present invention provides an accurate miniaturized optical device comprising: a plurality of total internal reflection units, wherein each of the total internal reflection single f has a first light port and a second light port; a convex lens corresponding to each of the two internal reflection units, each of the convex lenses has a plurality of condensing convex lenses, wherein each of the total internal reflection units has a first light ray at a focus position of the corresponding convex lens . In addition, the present embodiment further provides a solar panel structure, comprising: - an optical component having an incident surface and a concentrated light junction 4/15 M410863 acid methyl vinegar (PMMA) opposite to the incident surface, but not In this case, the plastic-type total internal reflection unit i1 and the convex lens 丄2 are used, respectively, in the form of a convex lens, but not limited thereto; since the whole light is made by the first light port 111 2 = The light of 1 is totally totally reflected, and the second domain π is completed 2 Ρ directly out of the precise miniaturized optical device bf of the present invention. When the bf is used in the field of collecting light, the angles of each angle can be condensed through the convex lens 12^= : at the focus position F, and via the first-ray port...=reflection slit U1 is the light entrance)' Then, the light is emitted in the whole: the second part of the Γ二木 is totally reflected by the multiple reflections to form a substantially vertical *-ray port The light of 112, in this embodiment, is shot flat: the degree is within about 1,5 degrees. However, the aforementioned range of angles is only '°, and Asia and Africa are used to limit the creation, in other words, the essence of the creation (four) optics The device 1 is in different application fields, and the light emitted by the device is not Wenli The limitation of the angle. In addition, 'the precise miniaturized optical device of this creation' is reversed, and the parallel light is taken from the second light port 1 1 2 into the total internal reflection unit i, and the line passes through the internal total reflection unit 11 The total reflection of the second, then, at the first light port 1 1 1, the focused light then passes through the light of the convex lens 2 at the (four) angle of intersection. ^ ^ As shown in Fig. 1A, the total internal reflection unit 1 1 of the present invention is further placed and placed. The first inner light opening 1 1 2 total internal reflection extension 1 1 and the auxiliary = convex transparent engineering 4 'total internal reflection extension η 3 can extend the longitudinal length of the total reflection single turn 11 so that the light can pass more The secondary all-reflection 7/15 M410863 shoots the light more vertically; and the auxiliary convex lens 1 14 again adjusts the light emitted by the first light port 112 to obtain better vertical light. In other words, the present invention selectively adjusts the verticality of the light with the total internal reflection extension #又一1 1 3 and the auxiliary convex lens 1 1 4 . The precise miniaturized optics of this creation will be described below for the efficacy of the solar panel structure. Please refer to FIG. 2 and FIG. 1A , which are schematic diagrams of the precise miniaturized optical device of the first embodiment applied to the first solar panel structure, wherein the solar panel structure has a concentrating element 1 〇 The precise miniaturized optical device is disposed on the concentrating element 1 ;; specifically, the concentrating element process has an incident surface 1 0 1 and a concentrating structure surface opposite to the incident surface i 〇 2^ The precise miniaturized optical device is fixed to the incident surface of the concentrating element 1 by the attaching method, the auxiliary convex lens 114 of the optical device, and the incident surface 1 〇1 of the condensing light. The space formed between the two can be coated with a sticky layer of 3 〇, and the miniaturized optical device 1 of the f-type precision is fixed to the concentrating element::i 〇〗 1 i in another embodiment The concentrating element 1 can also be formed by a plastic molding method. The concentrating element 丄0 can be a sinful Fresnel through a plurality of non-it optical elements 10. The concentrating structural surface 10 2 can form a set of concentric circular partial lenses (segmentaiie deleted) Lens structure to provide a concentrated effect. 2 4 The solar panel structure is made in - solar power generation ", the light of different incident angles can be accurately polarized light 8/15 into parallel beams (please refer to the above), to the C structure surface The concentrating effect of 102 is gathered: one = phase two rays can be concentrated on one solar chip (five) υ 2 〇. Therefore, the solar power module of this type can use the precise type: the earthlight 孥 device 1 guides the sunlight of different angles into a parallel beam that can be gathered by =1, to greatly improve the solar energy of the branch; == r;,?Iartrackings-^ 1 can not be complicated mechanical and electronic components can achieve the effect of the field = domain tracking light, and can greatly improve the application of solar power, called tea test 3, It is a schematic diagram of the precise micro-finning optical device 1 of the first embodiment applied to the second solar panel structure, wherein the solar panel structure has a light guide Η 而 and the precise miniaturized optical device The system is disposed on the light guiding element 1^; and the light guiding element i 〇 has a human face i QU — a light guiding surface 1 〇 3 ′ opposite to the second surface 1 0 1 and is precise The miniaturized optical device 1 can be attached to the incident surface 1 0 of the light guiding element 贴 by attaching, for example, the auxiliary convex lens 1 1 4 and the light guiding element 丄Q of the precise miniaturized optical device 丄- The space formed between the shots of the people can be (4) There is a sticky layer 3 〇' The precision miniaturized optical device 1 is fixed to the Q, and the human light guide element 1 can include at least one light guide plate to provide guiding light and concentrating light. Effect. Therefore, when the solar panel structure described above is applied to a solar power generating device 9/15 M410863, light of different incident angles can be formed into a parallel beam by the precise miniaturized optical device 1 (refer to the foregoing) ), to guide the incident surface of the light element if it is vertical! Completion, and this parallel beam can pass through the light guide! The multiple refraction of 03 is guided and concentrated at a predetermined position, for example, light can be laterally concentrated on a terahertz wafer (ceH) 20 for solar power generation. In summary, the precise miniaturized optical device of this creation can be used to collect sunlight from various angles to improve the efficiency of solar energy generation. Moreover, due to the internal reflection unit The cooperation of the convex lens 丄2 makes the precision of the miniaturized optical device of this creation relatively small, so it can be applied to the flat wire to be able to curl the solar energy field, such as: dream crystal, film, CIGS, dye sensitization Solar technology, etc. In addition, the above-mentioned precision miniaturized optical device for collecting light can also be used for illumination, such as LED lighting, and it is difficult to output angle, or replace the secondary optical concentrator of the lamp. Or for decorating, such as to make the light outside the house attractive, but the opaque window application, greenhouse roof application 'to give the plant even light all day, the transparent roof of the building or the patio should be S' to all day Receiving light gives even light in the room and so on. On the other hand, due to the reversibility of light, the precise miniaturized optical device 1 of the present invention can be used in the reverse direction, that is, the second optical porter 2 is used for the light input: 'to output the light in a parallel direction. Red, the creation has at least the following advantages: 1. The optical device of the present invention can utilize the total internal reflection effect of the total internal reflection unit to form a parallel beam by repeatedly reflecting the solar rays of different incident directions. It is applied to the collecting light, and the parallel beam can be used by the concentrating element 10/15 M410863, so that the sunlight of various angles can be applied to the power generating device. Therefore, the assembly 1 of the present invention can be applied to existing solar power generation devices, such as optical components, light guiding components or other optical components, which can greatly improve the efficiency of solar power generation. Moreover, the present invention utilizes the full-reflection unit and the convex lens to make the overall size of the optical device: miniaturized, more suitable for solar applications in flat or curved form. Phase-car and traditional fixed-type solar power modules can only use the sun light in a single direction. The solar panel structure proposed by this creation can control the sun rays of different people. To the efficiency of enemy solar power generation. Yu Chuan's 4_day solar power module, this creation does not need Z complex transmission mechanism, electronic control system and other components, so = cost, transport wheel and __ questions, and can reduce the overall volume of solar energy . 4 Light-collecting applications The optical device of this creation converts parallel light into light that is rounded out of the angle. This is a better and feasible embodiment of your creation. It is not the result of this limitation. The use of this manual and the content of the illustrations is all included in the scope of this creation. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a precise type of miniaturized optical device according to the first embodiment of the present invention, and FIG. 11/15 M410863. FIG. 1A ir' is a miniature of the precise embodiment of the second embodiment. A schematic diagram of the use of chemical optics in collecting light. Figure 2 is a schematic view of the solar panel structure of the present invention. Fig. 3 is a schematic view showing the structure of a solar panel according to another aspect of the creation. [Main component symbol description] 11010 Precision miniaturized optical device Concentrating component Light guiding component 1 〇 110 2 10 3 Total internal reflection unit 111 Incidence surface Concentrating structure surface Light guiding surface Convex lens

第一光線σ 第二光線σ 全内反射延伸段 辅助凸透鏡 聚光凸透鏡First ray σ second ray σ total internal reflection extension auxiliary convex lens condensed convex lens

2 〇 3 0 F 散熱板 太陽能晶片 黏膠層 聚焦位置 12/152 〇 3 0 F Heat sink Solar chip Adhesive layer Focus position 12/15

Claims (1)

100, 6. 〇1: Ac σ -r /: 六 2 4 】00年06月〇i s修正替換頁 申請專利範圍: L—一 、一種精準型之微型化光學裝置,係包含. 多個全内反射單元’其中每―該全:】: 第一光線口及一第二光線口;以及烏丁凡具有一 多:分別對應該些全内反射單元之凸透鏡 透鏡的上表面更具有多個聚光中1 全内反射單元之第—光線 凸透鏡的聚焦位置。 、〜^應之缠 範圍第1項所述之精準型之微型化光學裝 *其中母-該全内反射單元更包括— =裝 光線口之全内反射延伸段。 …亥弟一 ===項所述之精準型之微型化光學裝 -種;陽::二射延伸段更具有-輔助凸透鏡。 樘太%旎板結構,係包含: 入射*及-與該入射*相對的 ::聚其光:之該入射面的精準型之微型化光 多::内反射單元,其中每一該全内反射單元具有 夕—弟—光線口及一第二光線口;以及 夕们刀別對應該些全内反射單元之凸透鏡,每—哼 :透鏡的上表面更具有多個聚光凸透鏡,其中^ 5亥全内反射單元之第一光線口係位於其所 應之該凸透鏡的聚焦位置;. 猎此’該精準型之微型化光學裝置的該些全内反射 13/15 - J410863 5 Hi儀 單元、該些凸透鏡係將不同角度 於該入射面,再經由該聚光元件的該聚光結構面 將光線聚集於一預定位置。 如申請專利範圍第4項所述之太陽能板結構,其中每 一該全内反射單元更包括一設置於該第二光線口之 全内反射延伸段。 6、 如申請專利範圍第5項所述之太陽能板結構,其中該 全内反射延伸段更具有一輔助凸透鏡。 Λ100, 6. 〇1: Ac σ -r /: 6 2 4 】 00 00 〇is correction replacement page application patent range: L—one, a precise type of miniaturized optical device, including. The reflection unit 'each of the:: the first light port and the second light port; and the Udine has a plurality of: the upper surface of the convex lens lens corresponding to the total internal reflection unit respectively has a plurality of light collecting The focus position of the first lenticular lens of the middle 1 total internal reflection unit. , ~ ^ should be wrapped in the scope of the precision of the miniaturized optical device described in item 1. * The mother - the total internal reflection unit further includes - = the total internal reflection extension of the light port. ...Hai Diyi === The precise miniaturized optical device described in the item = Yang;: The two-shot extension has an auxiliary lens.樘太% 旎 结构 structure, including: Incident * and - opposite to the incident *:: concentrating its light: the precise type of miniaturized light of the incident surface:: internal reflection unit, each of which is internally The reflecting unit has a Xi-di-ray port and a second light port; and a convex lens corresponding to the total internal reflection unit, and each of the upper surface of the lens has a plurality of collecting convex lenses, wherein The first light port of the holographic internal reflection unit is located at the focus position of the convex lens which it is required for. The hunting of the precision internal miniaturized optical device of the total internal reflection 13/15 - J410863 5 Hi unit, The convex lenses are arranged at different angles to the incident surface, and then the light is concentrated at a predetermined position via the concentrating structural surface of the concentrating element. The solar panel structure of claim 4, wherein each of the total internal reflection units further comprises a total internal reflection extension disposed on the second aperture. 6. The solar panel structure of claim 5, wherein the total internal reflection extension further comprises an auxiliary convex lens. Λ 7、 如申請專利範圍第6項所述之太陽能板結構,更呈有 J黏膠層,該黏膠層係填入該聚光元件之該入射:與 該辅助凸透鏡之間所形成之空間。 3 種太陽能板結構,係包含: -導光元件’其具有—人射面及—與該人射面相對應 的導光面;以及 的精準型之微型化光 一設於該導光元件之該入射面 學裝置,其包括:7. The solar panel structure of claim 6, further comprising a J adhesive layer, the adhesive layer filling the incident of the concentrating element: a space formed between the auxiliary convex lens and the auxiliary convex lens. The three solar panel structures comprise: - a light guiding element having a human face and a light guiding surface corresponding to the human emitting surface; and a precise type of miniaturized light disposed at the incident of the light guiding element a facial device comprising: 多個f内反射料,其中每―該全内反射單元具有 一第一光線口及一第二光線口;以及 多個分別對應該些全内反射單元之凸透鏡,每一該 凸透鏡的上表面更具有多個聚光凸透鏡,盆令每 一該全内反射單元之第—光線口係位於其 '所對 應之該凸透鏡的聚焦位置; 藉,’該精準型之微魏光學裝置㈣些全内 鏡係將不同角度的入射光線垂直 於该入射面,再經由該導光元件的該導光面將光 14/15 M410863 線導W於一預定位置。 丨如申$專利範圍第8項所述之太陽能板結構, ::全内反射單元更包括-設置於該第二光線口: 全内反射延伸段。 布尤‘·果口之 0、 如申請專利範圍第g 1 β 兮入肉g 4·+ 、斤地之太知能板結構,盆中 。亥王内反射延伸段更具有—伽 ”中 1、 如申請專利範圍第丄 見。 具有一对# Μ 、 W之太陽能板結構,g /、有雜層,该黏踢層係填入 口他- 面與该輔助凸透鏡之間所形 办·兀牛之遠入射 尺〈至間。 15/15a plurality of f internal reflection materials, wherein each of the total internal reflection units has a first light port and a second light port; and a plurality of convex lenses respectively corresponding to the total internal reflection units, and the upper surface of each of the convex lenses is further Having a plurality of condensing convex lenses, the first ray of each of the total internal reflection units is located at a focus position of the convex lens corresponding to the 'corresponding lens; l, 'the precise type of micro-wei optical device (four) some full endoscope The incident light rays at different angles are perpendicular to the incident surface, and the light 14/15 M410863 is guided to a predetermined position via the light guiding surface of the light guiding element. For example, the solar panel structure described in claim 8 of the patent scope, the full internal reflection unit further includes a second light port: a total internal reflection extension. Buju ‘· Fruit mouth 0, such as the scope of application for the first g 1 β into the meat g 4 · +, the squatting of the structure of the plate, in the basin. The inner reflection reflection section of the Haiwang has a gamma, as in the scope of the patent application. There is a pair of # Μ, W solar panel structure, g /, with a hetero layer, the sticky layer is filled with him - Between the surface and the auxiliary convex lens, the far-incident ruler of the yak is <to the middle. 15/15
TW100202444U 2011-02-01 2011-02-01 Precision type micro-optical device and solar panel structure thereof TWM410863U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100202444U TWM410863U (en) 2011-02-01 2011-02-01 Precision type micro-optical device and solar panel structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100202444U TWM410863U (en) 2011-02-01 2011-02-01 Precision type micro-optical device and solar panel structure thereof

Publications (1)

Publication Number Publication Date
TWM410863U true TWM410863U (en) 2011-09-01

Family

ID=46418198

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100202444U TWM410863U (en) 2011-02-01 2011-02-01 Precision type micro-optical device and solar panel structure thereof

Country Status (1)

Country Link
TW (1) TWM410863U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102444270A (en) * 2011-10-28 2012-05-09 科达集团股份有限公司 Sleeve joint oblique key type support bracket
TWI462317B (en) * 2012-06-22 2014-11-21 Univ Nat Taiwan Science Tech Structure and fabricating method of a light-concentraing film applied to a solar panel
US9568159B2 (en) 2012-09-26 2017-02-14 Coretronic Corporation Vehicle illumination apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102444270A (en) * 2011-10-28 2012-05-09 科达集团股份有限公司 Sleeve joint oblique key type support bracket
TWI462317B (en) * 2012-06-22 2014-11-21 Univ Nat Taiwan Science Tech Structure and fabricating method of a light-concentraing film applied to a solar panel
US9568159B2 (en) 2012-09-26 2017-02-14 Coretronic Corporation Vehicle illumination apparatus

Similar Documents

Publication Publication Date Title
Ullah et al. Highly concentrated optical fiber-based daylighting systems for multi-floor office buildings
Hallas et al. Two-axis solar tracking accomplished through small lateral translations
Sellami et al. Optical characterisation and optimisation of a static Window Integrated Concentrating Photovoltaic system
CN102208473B (en) Low-power concentrating power generation module of solar power generation
Wu et al. Photothermal/day lighting performance analysis of a multifunctional solid compound parabolic concentrator for an active solar greenhouse roof
CN204313212U (en) A kind of sunlight optical fibre illuminator
CN101170291A (en) A solar device with parallel refraction lens
US20140048117A1 (en) Solar energy systems using external reflectors
Kumar et al. Efficient sunlight harvesting with combined system of large Fresnel lens segmented mirror reflectors and compound parabolic concentrator without tracking sun for indoor daylight illumination
TWM410863U (en) Precision type micro-optical device and solar panel structure thereof
Yamada et al. Development of silicone-encapsulated CPV module based on LED package technology
CN105210704A (en) A kind of plant incubator system
Lv et al. Design method of a planar solar concentrator for natural illumination
CN100368831C (en) Mask sheet with solar energy collection and solar device therefor
CN203231236U (en) Concentrated solar light-guide combined lighting device
CN102356345A (en) Solar condensing device
TWI510733B (en) Indoor illuminating device using directed sunlight
Wang et al. Development and testing of a fluorescent fiber solar concentrator for remote daylighting
RU2659319C1 (en) Fixed solar radiation concentrator with optical method of alignment
TWI537533B (en) Side-irradiated concentrated photovoltaic system
CN201993518U (en) Miniature precision optical device and solar panel thereof
TWI405928B (en) A illumination system guided by a light fiber through solar beams
CN202472104U (en) Sunlight collector
TWM358263U (en) Prism array and joint thereof
Liu et al. A lens-to-channel waveguide solar concentrator

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees