TWM406322U - Light receiving and emitting device - Google Patents

Light receiving and emitting device Download PDF

Info

Publication number
TWM406322U
TWM406322U TW99225719U TW99225719U TWM406322U TW M406322 U TWM406322 U TW M406322U TW 99225719 U TW99225719 U TW 99225719U TW 99225719 U TW99225719 U TW 99225719U TW M406322 U TWM406322 U TW M406322U
Authority
TW
Taiwan
Prior art keywords
optical transceiver
light
transceiver component
housing
disposed
Prior art date
Application number
TW99225719U
Other languages
Chinese (zh)
Inventor
Shu-Ting Yeh
Original Assignee
Ampak Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ampak Technology Inc filed Critical Ampak Technology Inc
Priority to TW99225719U priority Critical patent/TWM406322U/en
Publication of TWM406322U publication Critical patent/TWM406322U/en

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

A light receiving and emitting device including a housing, an optical detector, a light emitting unit, a power detector, and a refractive unit is provided. The housing has a through hole. The optical detector is disposed inside the housing and adapted to receive a received beam from outside the housing and through the through hole. The light emitting unit is disposed inside the housing and adapted to emit an emitted beam. A part of the emitted beam is adapted to be transmitted out of the housing through the through hole. The power detector is disposed inside the housing and on a transmission path of another part of the emitted beam for monitoring intensity of the emitted beam. The refractive unit is disposed on the power detector and on the transmission path of the another part of the emitted beam between the light emitting unit and the power detector.

Description

M406322 五、新型說明: 【新型所屬之技術領域】 且特別是有關於一種 本創作是有關於一種光學元件 光收發元件。 【先前技術】 隨著通訊技術的進步,時下的通訊方式已不限於 電訊號來實現近年來光纖軌技術更是逐漸趨 热。由於光在域巾的傳遞速率遠高於電子在導線中的 遞速率,因此光纖通訊可大幅的提升資料傳輸的速率 而提升了網路中下載或上傳的速率。 在習知雙向光通訊系統中,系統端與使用者端各具有 一雙向光次模組(bidirectional optical subassemMy, BOSA),而兩個雙向光次模組之間以光纖連接。當使用 者端欲傳遞訊號至系統端時,使用者端的雙向光次模組中 的光收發元件會將使用者端的電訊號轉換為光訊號,而此 光訊號經由光纖傳遞至系統端的雙向光次模組。系統端的 雙向光次模組中的光收發元件在接收了此光訊號後,會將 此光§孔號轉換為電訊號,而供系統端作處理。反之,當系 統端欲傳遞訊號至使用者端時,系統端的雙向光次模組中 的光收發兀件會將系統端的電訊號轉換為光訊號,而此光 訊號經由光纖傳遞至使用者端的雙向光次模組。使用者端 的雙向光次模組中的光收發元件在接收了此光訊號後,會 將此光訊號轉換為電訊號,而供使用者端作處理 〇如此一 M406322 端的雙向光通訊。 型化發展’因此光收發元 小便成為設計光收發元件 來,便能夠達成系統端與使用者 由於時下的電子裴置朝向小 件的内部結構之簡化及體積之缩 的重要課題。 【新型内容】 本=作提供-種光收發元件,可具有較簡化的結構魚 較小H且有助於使製程容易化及降低製作成本。 本創作之—實_提出—種純發元件,包括一外 殼、-光偵、測器、一發光單元、—功率債測器及—折射單 兀。外殼具有—通孔H聽配置於外殼内,且適於接 收來自外殼外且經㈣孔進人的—接收光束。發 置於外殼内’且適於發出—發射光束,其中發射光束的— 部分適於經由通孔傳遞料殼之外。神伽⑺配置 设内’且位於發射光束的另—部分之傳遞路徑上,以監 發射光束的光強度。折射單元配置於功率躺器上: 於發光單元與功㈣·之_發射光权另— 上’其中折射單元具有—折射曲面,折射曲面適於 使唤射光束的另一部分轉向而射向功率偵測器。 在本創作之實施例之光收發元件中,由於採用了 單元以使發射光束的另一部分轉向而射向功率偵測器,因 此功率偵測器的擺設方向與位置可以較有彈性, 將功率侧ϋ以直立的方式擺設。如此—來,便有^ 化功率偵測器的組裝製程’亦有助於使光收發元件的整^ 5 測6322 體積縮小。 為讓本創作之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【貫施方式】 圖1為本創作之一實施例之光收發元件的剖面示意 圖。請參照圖1,本實施例之光收發元件10()包括一外殼 110、一光偵測器120、一發光單元130、一功率偵測器14〇 及一折射單元150。外殼11〇具有一通孔1U。在本實施例 中,外殼110包括一基座112及一上蓋114,其中基座】12 例如為電晶體外形頭(transist〇r 〇utiine hea<jer, TO-header),而上蓋ι14例如為電晶體外型罐(transist〇r outline can,TO-can)。在本實施例中,通孔in位於上蓋 114 上。 光偵測器120配置於外殼11〇内,且適於接收來自外 殼110外且經由通孔111進入的一接收光束52。在本實施 例中’光偵測器120配置於基座112上,且光偵測器120 例如為一光電二極體(photodiode)。具體而言,光偵測 器120適於接收來自通孔in上方的一光纖50中的接收光 束52’並在偵測該接收光束52後將該接收光束52所包含 的光訊號轉換成電訊號。在本實施例中,光收發元件1〇〇 更包括一轉阻放大器160,配置於外殼110内,且電性連 接至光偵測器120。轉阻放大器160可配置於基座112上, 且適於將光偵測器52所傳來的電訊號放大,以利於判讀。 M406322 發光單元130配置於外殼110内,且適於發出一發射 光束132,其中發射光束132的一第一部分1323適於經由 通孔111傳遞至外殼110之外。發光單元13〇例如為一雷 射一極體(laser diode,LD)。 功率偵測器140配置於外殼110内,且位於發射光束 132的一第二部分132b之傳遞路徑上,以監控發射光束 的光強度。在本實施例中’功率偵測器14〇例如為一光電 二極體。折射單元150配置於功率偵測器14〇上,且位於 發光單元130與功率偵測器140之間的發射光束132之第 二部分132b的傳遞路徑上。折射單元15〇具有—折射曲面 152,折射曲面152適於使發射光束132的第二部分13化 轉向而射向功率偵測器140。在本實施例中,折射曲面15 例如為一彎曲凸面。 在本實施例之光收發元件1〇〇中,由於採用了 μ 元150以使發射光束132的第二部分132b轉向而射向2單 偵測器140,因此功率偵測器14〇的擺設方向與位置可, 較有彈性’而不限於將功率偵測器14〇以直立的方=以 設。如此一來,便有助於簡化功率偵測器14〇的組裝穿 亦有助於使光收發元件100的整體體積縮小。 王 發光單元130與功率偵測器14〇配置於基座ιΐ2上 在本實施例中’光收發元件1〇〇更包括一承载台17〇, 置於外殼no内,且具有一承載面172,其中發^單元’1配 與功率偵測器140皆配置於承載面172上,而承載么 配置於基座112上。此外,在本實施例中,發光單元 7 1VHU6322 為一側面發光型雷射二極體,且發光單元13〇的發光層134 與功率偵測器140的吸光層142實質上平行。換言之,由 於折射單元150使發射光束132的第二部分132b轉向的作 用,功率偵測器140可以像發光單元13〇那樣水平地平貼 於承載面172上,而不須使功率偵測器14〇垂直配置而使 及光層142垂直於發光層134擺放。如此一來,便可以簡 化光收發元件100的組裝製程,進而降低程本。另外,由 於功率偵測器140與發光單元130皆平貼於承載台17〇 上,因此光收發元件100可以不須採用另一個承載台來垂 直貼附功率偵測器14〇,如此除了可簡化製程、降低成本 之外’亦可縮小光收發元件100的體積。 在本實施例中’折射單元150的材質例如為透明膠 體。然而,在其他實施例中’折射單元15〇的材質亦可以 是玻璃或其他透明材質。在本實施例中,折射單元15〇覆 蓋功率偵測器140,且折射單元15〇具有透鏡之功用,以 將發射光束132之第二部分132b折射至功率偵測器14〇。 在本實施例中,光收發元件100更包括一波長分離多 工器(wavelength division multiplexer, WDM) 180,配置 於發光單元130與通孔111之間的發射光束132的第一部 分132a之傳遞路徑上’且配置於光偵測器120與通孔U1 之間的接收光束52的傳遞路徑上。發射光束132的波長不 同於接故光束μ ’且波長分離多工器180根據波長 的不同而將發射光束132的第一部分132a之傳遞路徑與接 收光束52的傳遞路徑分離。 M406322 具體而言,波長分離多工器180例如為一分色鏡 (dichroicmirror) ’分色鏡適於讓來自通孔ill的接收光 束52穿透而傳遞至光偵測器丨2〇,且適於將來自發光單元 130的發射光束132的第一部分132a反射至通孔ill。然 而’在其他實施例中’分色鏡亦可以是將接收光束52反射 至光偵測器120’且讓發射光束132的第一部分132a穿透 而傳遞至通孔111。在本實施例中,波長分離多工器18〇 • 可藉由一支撐單元230配置於基座112上。 在本實施例中,光收發元件1〇〇更包括一透鏡丨9〇, 配置於通孔111中,以將發射光束132的第一部分132a 會聚於光纖50中,且將接收光束52會聚於波長分離多工 器180上。此外’在本實施例中,光收發元件1〇〇更包括 複數個導腳210,這些導腳21〇分別電性連接至發光單元 130、光偵測器120及功率偵測器。此外,這些導腳2 可電性連接至系統端或使用者端,其中系統端或使用者端 例如為電腦系統、伺服器、路由器(r〇uter)或其他網路系 鲁 統中的裝置。舉例而言,系統端與使用者端可各具有一光 收發元件100,而兩光收發元件1〇〇之間以光纖5〇連接。 光偵測器120在偵測到接收光束52後可將接收光束52所 包含的光訊號轉換為電訊號,而電訊號經由導腳21〇傳遞 至這個光收發元件1〇〇所連接的系統端或使用者端,而完 成訊號之接收。另-方面,系統端或使用者端可發出電訊 號而傳遞至其所連接的光收發元件1〇〇,例如是使電訊號 故由導腳210傳遞至發光單元13〇。發光單元13〇將電訊 9 M406322 號轉換為發射光束132所包含的光訊號,而功率偵測器i4〇 則可即時監控發射光束132的功率,以確保光訊號的正確 性。如此一來,即完成訊號之發射。因此,本實施例之光 收發元件100可達到雙向光訊號收發的功效。 在本實施例中,光收發元件100可配置於一殼體30 中’而光纖50的一端可藉由一固定器40固定於殼體30 上。 在本實施例中,光收發元件100更包括一濾光片22〇, 配置於波長分離多工器180與光偵測器120之間的接收光 束52的傳遞路徑上,且濾光片22〇適於讓具有接收光束 52的波長的光通過,並阻擋具有其他波長的光。如此一 來,可確保光偵測器120所偵測到的光訊號不受其他雜散 光(例如環境中的雜散光)的干擾,然而,在其他實施例 中,亦可將濾光片配置於光纖5〇與波長分離多工器18〇 之間的接收光束52的傳遞路徑及發射光束132的第一部分 132a的傳遞路徑上,此時濾光片適於使具有接收光束52 的波長與發射光束132的波長的光通過,並阻擋具有其他 波長的光。 氣τ'上所述,在本創作之實施例之光收發元件中,由於 採用工折射單元以使發射光束的第二部分轉向而射向功率 偵’則盗,因此功率偵測器的擺設方向與位置可以較有彈 性^不限於將料触Μ直立姑式擺設。如此一來, 便助於簡化功率偵測器的組裝製程,亦有助於使光收發 兀件的整體體積縮小。 M406322 雖然本創作已以實施例揭露如上,然其並非用以限定 本創作,任何所屬技術領域中具有通常知識者,在不脫離 本創作之精神和範圍内,當可作些許之更動與潤飾,故本 創作之保護範圍當視後附之申請專利範圍所界定者為準。 _ 【圖式簡單說明】 圖1為本創作之一實施例之光收發元件的剖面示意 • 圖。 【主要元件符號說明】 30 :殼體 40 :固定器 50 :光纖 52 :接收光束 100 :光收發元件 ' 110 :外殼 • 111 :通孔 112 :基座 114 :上蓋 120 :光偵測器 130 :發光單元 132 :發射光束 132a :第一部分 132b :第二部分 11 M406322 134 :發光層 140 :功率偵測器 142 :吸光層 150 :折射單元 152 :折射曲面 160 :轉阻放大器 170 :承載台 172 :承載面 180 :波長分離多工器 190 :透鏡 210 :導腳 220 :濾光片 230 :支撐單元M406322 V. New description: [New technology field] and especially related to one. This creation is about an optical component optical transceiver component. [Prior Art] With the advancement of communication technology, the current communication method is not limited to the electric signal to realize the fiber-optic technology in recent years. Since the transmission rate of light in the domain towel is much higher than the rate of electron transfer in the wire, the fiber communication can greatly increase the rate of data transmission and increase the rate of downloading or uploading in the network. In the conventional two-way optical communication system, the system side and the user end each have a bidirectional optical subassemMy (BOSA), and the two bidirectional optical submodules are connected by an optical fiber. When the user wants to transmit the signal to the system end, the optical transceiver component in the two-way optical sub-module of the user end converts the electrical signal of the user end into an optical signal, and the optical signal is transmitted to the two-way optical sub-system through the optical fiber. Module. After receiving the optical signal, the optical transceiver component in the bidirectional optical sub-module of the system converts the optical § hole number into an electrical signal for processing by the system. Conversely, when the system side wants to transmit the signal to the user end, the optical transceiver component in the bidirectional optical sub-module of the system side converts the electrical signal of the system end into an optical signal, and the optical signal is transmitted to the user's two-way via the optical fiber. Light sub-module. After receiving the optical signal, the optical transceiver component in the two-way optical sub-module of the user end converts the optical signal into an electrical signal for the user to handle the bidirectional optical communication of the M406322 side. Since the development of optical transceivers has become a design of optical transceiver components, it has become an important issue for the system and the user to simplify the internal structure of the electronic components and to reduce the size of the internal components. [New content] This is to provide a kind of optical transceiver component, which can have a simplified structure and a smaller H and help to make the process easier and reduce the manufacturing cost. The creation of the creation - the actual _ proposed - a pure hair component, including a shell, - light detector, detector, a lighting unit, - power debt detector and - refracting single 兀. The outer casing has a through hole H that is disposed within the outer casing and is adapted to receive a receiving beam from outside the outer casing and entering through the (four) hole. The emitter is disposed within the housing and is adapted to emit a beam of light, wherein the portion of the emitted beam is adapted to pass outside the housing via the via. The sacred (7) configuration is set within the transmission path of the other part of the transmitted beam to monitor the light intensity of the emitted beam. The refraction unit is disposed on the power recliner: in the illumination unit and the work (4), the emission light weight is another, wherein the refraction unit has a refraction surface, and the refraction surface is adapted to steer another part of the beam to the power detection Device. In the optical transceiver component of the embodiment of the present invention, since the unit is used to steer another part of the emitted light beam and is directed to the power detector, the direction and position of the power detector can be more flexible, and the power side is摆 erect in an upright manner. In this way, the assembly process of the power detector will also help to reduce the size of the optical transceiver component 6322. To make the above-described features and advantages of the present invention more comprehensible, the following detailed description of the embodiments and the accompanying drawings are set forth below. [Configuration Mode] Fig. 1 is a schematic cross-sectional view showing an optical transceiver unit according to an embodiment of the present invention. Referring to FIG. 1, the optical transceiver component 10() of the present embodiment includes a housing 110, a photodetector 120, a light emitting unit 130, a power detector 14A, and a refraction unit 150. The outer casing 11 has a through hole 1U. In this embodiment, the housing 110 includes a base 112 and an upper cover 114, wherein the base 12 is, for example, a transistor profile head (transist〇r 〇utiine hea<jer, TO-header), and the upper cover ι14 is for example Transist〇r outline can (TO-can). In the present embodiment, the through hole in is located on the upper cover 114. The photodetector 120 is disposed within the housing 11A and is adapted to receive a received beam 52 from outside the housing 110 and entering through the via 111. In this embodiment, the photodetector 120 is disposed on the susceptor 112, and the photodetector 120 is, for example, a photodiode. Specifically, the photodetector 120 is adapted to receive the received light beam 52 ′ from an optical fiber 50 above the through hole in and convert the optical signal contained in the received light beam 52 into an electrical signal after detecting the received light beam 52 . . In this embodiment, the optical transceiver component 1 further includes a transimpedance amplifier 160 disposed in the housing 110 and electrically connected to the photodetector 120. The transimpedance amplifier 160 can be disposed on the pedestal 112 and is adapted to amplify the electrical signal transmitted by the photodetector 52 to facilitate interpretation. The M406322 illumination unit 130 is disposed within the housing 110 and is adapted to emit an emission beam 132, wherein a first portion 1323 of the emission beam 132 is adapted to be transmitted out of the housing 110 via the via 111. The light emitting unit 13 is, for example, a laser diode (LD). The power detector 140 is disposed in the housing 110 and is located on a transmission path of a second portion 132b of the emitted light beam 132 to monitor the light intensity of the emitted light beam. In the present embodiment, the power detector 14 is, for example, a photodiode. The refraction unit 150 is disposed on the power detector 14A and is disposed on the transmission path of the second portion 132b of the emission beam 132 between the illumination unit 130 and the power detector 140. The refractive unit 15A has a refractive surface 152 adapted to divert the second portion 13 of the transmitted beam 132 to the power detector 140. In the present embodiment, the refractive surface 15 is, for example, a curved convex surface. In the optical transceiver component 1 of the present embodiment, since the μ element 150 is used to steer the second portion 132b of the emitted light beam 132 to the single detector 140, the direction of the power detector 14〇 is set. It is more flexible with the position, and is not limited to the power detector 14 being erected. As a result, it helps to simplify the assembly and wear of the power detector 14 and also contributes to reducing the overall size of the optical transceiver component 100. The illuminating unit 130 and the power detector 14 are disposed on the pedestal ι 2 in the present embodiment. The optical transceiver unit 1 further includes a carrying platform 17 〇 disposed in the housing no and has a carrying surface 172. The transmitter unit 1 and the power detector 140 are disposed on the carrying surface 172, and the carrier is disposed on the base 112. In addition, in this embodiment, the light-emitting unit 7 1VHU6322 is a side-emitting type laser diode, and the light-emitting layer 134 of the light-emitting unit 13A is substantially parallel to the light-absorbing layer 142 of the power detector 140. In other words, since the refraction unit 150 steers the second portion 132b of the emitted light beam 132, the power detector 140 can be horizontally affixed to the carrying surface 172 like the light emitting unit 13〇 without having to cause the power detector 14 to The vertical arrangement is such that the light layer 142 is placed perpendicular to the light emitting layer 134. In this way, the assembly process of the optical transceiver component 100 can be simplified, thereby reducing the cost. In addition, since the power detector 140 and the light emitting unit 130 are both flat on the carrying platform 17, the optical transceiver component 100 can be vertically attached to the power detector 14 without using another carrier. In addition to the process and cost reduction, the volume of the optical transceiver component 100 can also be reduced. In the present embodiment, the material of the refractive unit 150 is, for example, a transparent colloid. However, in other embodiments, the material of the refractive unit 15A may also be glass or other transparent material. In the present embodiment, the refraction unit 15 covers the power detector 140, and the refraction unit 15 has the function of a lens to refract the second portion 132b of the emitted beam 132 to the power detector 14A. In this embodiment, the optical transceiver component 100 further includes a wavelength division multiplexer (WDM) 180 disposed on the transmission path of the first portion 132a of the emission beam 132 between the light emitting unit 130 and the through hole 111. 'And disposed on the transmission path of the receiving beam 52 between the photodetector 120 and the through hole U1. The wavelength of the emitted light beam 132 is different from the pick-up beam μ' and the wavelength separating multiplexer 180 separates the transmission path of the first portion 132a of the emitted light beam 132 from the transmission path of the received light beam 52 depending on the wavelength. M406322 Specifically, the wavelength separating multiplexer 180 is, for example, a dichroic mirror. The dichroic mirror is adapted to allow the receiving beam 52 from the through hole ill to pass through to the photodetector 〇2〇, and The first portion 132a of the emitted light beam 132 from the light emitting unit 130 is reflected to the through hole ill. However, in other embodiments, the dichroic mirror may also reflect the received beam 52 to the photodetector 120' and pass the first portion 132a of the transmitted beam 132 to the via 111. In the present embodiment, the wavelength separating multiplexer 18 can be disposed on the susceptor 112 by a supporting unit 230. In this embodiment, the optical transceiver component 1 further includes a lens 丨9〇 disposed in the through hole 111 to converge the first portion 132a of the emitted light beam 132 in the optical fiber 50, and converge the received light beam 52 at the wavelength. Separating the multiplexer 180. In the present embodiment, the optical transceiver component 1 further includes a plurality of pins 210 electrically connected to the light emitting unit 130, the photodetector 120, and the power detector. In addition, these pins 2 can be electrically connected to the system side or the user end, wherein the system side or the user side is, for example, a computer system, a server, a router, or other network system. For example, the system end and the user end each may have an optical transceiver component 100, and the two optical transceiver components 1〇〇 are connected by an optical fiber 5〇. The light detector 120 can convert the optical signal contained in the received light beam 52 into an electrical signal after detecting the received light beam 52, and the electrical signal is transmitted to the system end connected to the optical transceiver component 1 through the lead pin 21〇. Or the user end, and complete the reception of the signal. Alternatively, the system or user terminal can transmit an electrical signal to the optical transceiver component 1 to which it is connected, for example, to cause the electrical signal to be transmitted from the pin 210 to the illumination unit 13A. The illumination unit 13 converts the telecommunications 9 M406322 into an optical signal contained in the transmitted beam 132, and the power detector i4〇 can instantly monitor the power of the transmitted beam 132 to ensure the correctness of the optical signal. In this way, the signal is transmitted. Therefore, the optical transceiver component 100 of the embodiment can achieve the function of two-way optical signal transmission and reception. In the present embodiment, the optical transceiver component 100 can be disposed in a housing 30 and one end of the optical fiber 50 can be fixed to the housing 30 by a holder 40. In this embodiment, the optical transceiver component 100 further includes a filter 22, disposed on the transmission path of the receiving beam 52 between the wavelength separating multiplexer 180 and the photodetector 120, and the filter 22〇 It is suitable for passing light having a wavelength of the received light beam 52 and blocking light having other wavelengths. In this way, it is ensured that the optical signal detected by the photodetector 120 is not interfered with by other stray light (for example, stray light in the environment). However, in other embodiments, the optical filter may be disposed on the filter. The transmission path of the receiving beam 52 between the optical fiber 5〇 and the wavelength separating multiplexer 18〇 and the transmission path of the first portion 132a of the emitted light beam 132, at which time the filter is adapted to have the wavelength of the receiving beam 52 and the emitted beam. Light of a wavelength of 132 passes and blocks light having other wavelengths. According to the gas τ', in the optical transceiver component of the embodiment of the present invention, since the refractive unit is used to steer the second portion of the emitted light beam and is directed to the power detection, the direction of the power detector is set. And the position can be more flexible ^ not limited to the material touch upright erect. In this way, it helps to simplify the assembly process of the power detector, and also helps to reduce the overall size of the optical transceiver. M406322 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any person having ordinary knowledge in the art can make some changes and refinements without departing from the spirit and scope of the present invention. Therefore, the scope of protection of this creation is subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view of an optical transceiver component according to an embodiment of the present invention. [Main component symbol description] 30: Housing 40: Fixer 50: Optical fiber 52: Receiving light beam 100: Optical transmitting and receiving element '110: Housing 111: Through hole 112: Base 114: Upper cover 120: Photodetector 130: Light-emitting unit 132: emitted light beam 132a: first portion 132b: second portion 11 M406322 134: light-emitting layer 140: power detector 142: light-absorbing layer 150: refractive unit 152: refractive surface 160: transimpedance amplifier 170: carrier 172: Bearing surface 180: wavelength separation multiplexer 190: lens 210: lead 220: filter 230: support unit

1212

Claims (1)

M406322 六、申請專利範圍: 1. 一種光收發元件,包括: 一外殼,具有—通孔;. 殼外=由“孔=束且適於接收來自該外 束,其光Z於該外殼内,且適於發出-發射光 殼之外;射先束的—部分適於經由該通孔傳遞至該外 的另-請殼内,且位於該發射光束 以及 上,以監控該發射光束的光強度; 單元與功率細上,且位於該發光 遞路徑上,其中該折射 2射光束之該另—部分的傳 適於使該發射光束_另」1^射曲面,該折射曲面 器。 σΡ刀轉向而射向該功率偵測 2. 如申請專利範圍第丨 括-波長分離多工器,配置於該光:發元件,更包 該發射光束的該部分之傳遞;:與親孔之間的 ===::r束的該邹 3, 如申請專利範圍第2項所述之歧發元件,其中 13 M406322 泫波長分離多工器為一分色鏡,該分色鏡適於讓來自該通 孔的該接收光束穿透而傳遞至該光偵測器,且適於將來自 s亥發光單元的該發射光束的該部分反射至該通孔。 4.如申凊專利範圍第1項所述之光收發元件,其中 °亥光4貞測器為一光電二極體。 5·如申δ青專利範圍第4項所述之光收發元件,更包 括一轉阻放大器,配置於該外殼内,且電性連接至該光電 二極體。 6.如申請專利範圍第1項所述之光收發元件,其中 邊發光單元為一雷射二極體。 7·如申請專利範圍第6項所述之光收發元件,更包 括承載台,配置於該外殼内,且具有一承載面,其中該 雷射二極體與該功率偵測器皆配置於該承載面上。 ^ 8.如申請專利範圍第7項所述之光收發元件,其中 j雷射二極體為一側面發光型雷射二極體,且該雷射二極 體的發光層與該功率偵測器的吸光層實質上平行。 9·如申請專利範圍第1項所述之光收發元件,豆中 該功率偵測器為一光電二極體。 ^ ι〇‘如申5青專利範圍第1項所述之光收發元件,其中 该折射單元的材質為透明膠體或玻璃。 u.如申請專利範圍第1項所述之光收發元件,更包 括一透鏡,配置於該通孔中。 14M406322 VI. Patent application scope: 1. An optical transceiver component comprising: a casing having a through hole; a casing outer = by "hole = bundle and adapted to receive from the outer bundle, the light Z being in the casing, And adapted to emit out of the light-emitting shell; the portion of the first beam is adapted to be transmitted through the through-hole to the outer-shell and on the emitted light beam to monitor the light intensity of the emitted light beam The unit and the power are finely located on the illuminating path, wherein the other part of the refracting beam is adapted to cause the beam to be emitted, the refracting curved surface. The σ 转向 转向 而 射 射 该 该 功率 功率 功率 功率 功率 功率 功率 功率 功率 功率 功率 功率 功率 功率 功率 功率 功率 功率 功率 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长The Zou 3 of the ===::r bundle, such as the hair-distributing component described in claim 2, wherein the 13 M406322 泫 wavelength separating multiplexer is a dichroic mirror, and the dichroic mirror is adapted to The receiving beam from the via is transmitted through to the photodetector and is adapted to reflect the portion of the emitted light beam from the s-light emitting unit to the via. 4. The optical transceiver component of claim 1, wherein the ambient light detector is a photodiode. 5. The optical transceiver component of claim 4, further comprising a transimpedance amplifier disposed in the housing and electrically connected to the photodiode. 6. The optical transceiver component of claim 1, wherein the edge light emitting unit is a laser diode. The optical transceiver component of claim 6, further comprising a carrier, disposed in the housing, and having a bearing surface, wherein the laser diode and the power detector are disposed on the Bearing surface. The optical transceiver component of claim 7, wherein the laser diode is a side-emitting laser diode, and the light-emitting layer of the laser diode and the power detection The light absorbing layers of the device are substantially parallel. 9. The optical transceiver component of claim 1, wherein the power detector is a photodiode. ^ 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The optical transceiver component of claim 1, further comprising a lens disposed in the through hole. 14
TW99225719U 2010-12-31 2010-12-31 Light receiving and emitting device TWM406322U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99225719U TWM406322U (en) 2010-12-31 2010-12-31 Light receiving and emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99225719U TWM406322U (en) 2010-12-31 2010-12-31 Light receiving and emitting device

Publications (1)

Publication Number Publication Date
TWM406322U true TWM406322U (en) 2011-06-21

Family

ID=45080123

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99225719U TWM406322U (en) 2010-12-31 2010-12-31 Light receiving and emitting device

Country Status (1)

Country Link
TW (1) TWM406322U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11683095B1 (en) 2022-02-25 2023-06-20 Shunyun Technology (Zhong Shan) Limited Box-type packaged optical transceiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11683095B1 (en) 2022-02-25 2023-06-20 Shunyun Technology (Zhong Shan) Limited Box-type packaged optical transceiver
TWI814267B (en) * 2022-02-25 2023-09-01 大陸商訊芸電子科技(中山)有限公司 Box-type packaged optical transceiver

Similar Documents

Publication Publication Date Title
US10454586B2 (en) Integrated transceiver with lightpipe coupler
JP3937911B2 (en) Optical transceiver module and optical communication system using the same
US10547385B2 (en) Transceiver module including optical sensor at a rotationally symmetric position
KR20160058868A (en) A device for simultaneous data and power transmission over an optical waveguide
JP2005315902A (en) Optical connector
JP2016503516A (en) Method and apparatus for high speed short range optical communication using micro light emitting diodes
CN106324771A (en) Optical assembly and optical module
TWM406322U (en) Light receiving and emitting device
JP4045590B2 (en) Bi-directional optical communication system
CN112639447A (en) Photodetection module and photodetection device
TWI554047B (en) Optical-electrical module
TWM406321U (en) Light receiving and emitting device
CN201955502U (en) Light transceiver component
CN201955503U (en) Light transceiver component
US11487066B2 (en) Optical transceivers with protective layers
US20090154934A1 (en) Optical Transceiver Method and Apparatus
TWI473447B (en) Light receiving and emitting device
TW201443502A (en) Optical communication module
CN111650703B (en) QSFP single-fiber bidirectional optical coupling assembly and optical module
JP2007103731A (en) Optical communication module and optical communication system
JP2005116867A (en) Optical signal transmitter
TWM497790U (en) Multi-channel optical path package structure
JP4949917B2 (en) Optical space transmission system
CN113050236A (en) Optical transceiver module
JP2010039115A (en) Optical module and manufacturing method thereof

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees