JP4045590B2 - Bi-directional optical communication system - Google Patents

Bi-directional optical communication system Download PDF

Info

Publication number
JP4045590B2
JP4045590B2 JP2002066272A JP2002066272A JP4045590B2 JP 4045590 B2 JP4045590 B2 JP 4045590B2 JP 2002066272 A JP2002066272 A JP 2002066272A JP 2002066272 A JP2002066272 A JP 2002066272A JP 4045590 B2 JP4045590 B2 JP 4045590B2
Authority
JP
Japan
Prior art keywords
optical signal
light
wavelength
electrode
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002066272A
Other languages
Japanese (ja)
Other versions
JP2003264513A5 (en
JP2003264513A (en
Inventor
啓修 成井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002066272A priority Critical patent/JP4045590B2/en
Publication of JP2003264513A publication Critical patent/JP2003264513A/en
Publication of JP2003264513A5 publication Critical patent/JP2003264513A5/ja
Application granted granted Critical
Publication of JP4045590B2 publication Critical patent/JP4045590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一方の送受信側と他方の送受信側との間で双方向通信が可能な光通信システムに関し、更に詳細には、単芯の1本の光ファイバを介して双方向光通信が可能であり、しかも一方の送受信側及び他方の送受信側に小型の光信号送受信装置を設けた光通信システムに関するものである。
【0002】
【従来の技術】
光通信システムでは、図4に示すように、基本的には、送信側で電気信号により変調された半導体レーザ素子又は発光ダイオード等の発光素子の出射光を光信号として光ファイバを介して受信側に送信し、受信側では伝送された光信号をフォトダイオード(PD、光検出器)等の受光素子で検出して電気信号として復調している。
そして、一方の側と他方の側との間で双方向の光信号送受信を行うためには、発光素子を有する光信号送信装置及びフォトダイオードを有する光信号受信装置を双方の側にそれぞれ設け、一方の側の光信号送信装置と他方の側の光信号受信装置とを結び、他方の側の光信号送信装置と一方の側の光信号受信装置とを結ぶ2芯の光ファイバを用いて送受信を行っている。
【0003】
図5を参照し、一例を挙げて従来の双方向の光通信システムの構成を具体的に説明する。図5は従来の双方向の光通信システムの構成を示す模式図である。
従来の双方向の光通信システム10は、基本的には、図5に示すように、一方の送受信側に設けられた第1の光信号送受信装置12と、他方の送受信側に設けられた第2の光信号送受信装置14と、第1及び第2の光信号送受信装置12、14を結ぶ2芯一本、又は単芯2本の第1及び第2の光ファイバ16A、Bとから構成されている。
【0004】
第1の光信号送受信装置12は、第1の光ファイバ16Aの一方の端部に光結合され、第1の光ファイバ16Aを介して光信号を送信するGaAs系面発光型半導体レーザ装置(以下、VCSELと言う)と、VCSELを駆動する駆動装置(図示せず)とを有する第1の光信号送信装置18と、第2の光ファイバ16Bの一方の端部に光結合され、次に述べる第2の光信号送信装置24から第2の光ファイバ16Bを介して送信された光信号を受光して電気信号に変換するGaAs系フォトダイオード(以下、PDと言う)を有する第1の光信号受信装置20とを備えている。
第2の光信号受信装置14は、第1の光ファイバ16Aの他方の端部に光結合され、第1の光信号送信装置18から第1の光ファイバ16Aを介して送信された光信号を受光して電気信号に変換するGaAs系PDを有する第2の光信号受信装置22と、第2の光ファイバ16Bの他方の端部に光結合され、第2の光ファイバ16Bを介して光信号を送信するGaAs系VCSELと、VCSELを駆動する駆動装置(図示せず)とを有し、光信号を送信する第2の光信号送信装置24とを備えている。
【0005】
【発明が解決しようとする課題】
しかし、従来の双方向光通信システムでは、上述のように、2芯の光ファイバを必要とする上に、双方の側に光信号送受信装置としてVCSELとPDと並列配置することが必要であるために、光信号送受信装置が大型化する。これでは、今後発展すると思われる個人と個人と間の双方向光通信の分野に、従来の双方向光通信システムを適用することは難しい。
そこで、本発明の目的は、小型でコンパクトな光信号送受信装置により単芯の1本の光ファイバを介して双方向の光通信が可能な光通信システムを提供することである。
【0006】
【課題を解決するための手段】
本発明による双方向光通信システムは、光ファイバを介して、第1の光信号送受信装置と第2の光信号送受信装置との間で双方向通信を行う双方向光通信システムであって、
第1の光信号送受信装置は、第1の波長の光信号を出射する第1の面発光型発光素子と、吸収端波長が第1の波長より短い化合物半導体層により構成されると共に光ファイバの一端に光結合され、第1の面発光型発光素子からの第1の波長の光信号を透過して光ファイバに入射させると共に光ファイバを介して吸収端波長より短い第2の波長の光信号を受光する第1の受光素子と、第1の面発光型発光素子および第1の受光素子との間に設けられると共に光信号を透過させる窓を有する第1の共通電極とを備え、第1の面発光型発光素子は、第1基板上に、一対の多層膜反射鏡によって挟まれた発光層と、第1基板の裏面に設けられた第1の電極を有し、当該第1の電極と第1の共通電極との間で電流注入を行う構成となっており、第1の受光素子は、第2基板上に、受光層と、受光層上に設けられた第2の電極を有し、当該第2の電極と第1の共通電極との間から電流が引き出される構成となっており、第1の共通電極は、第1基板上の一対の多層膜反射鏡と第2基板の裏面との間に設けられており、第2の光信号送受信装置は、吸収端波長が第1の波長より短い化合物半導体層により構成されると共に光ファイバの他端に光結合され、光ファイバを介して入射した第1の波長の光信号を透過すると共に光ファイバに第2の波長の光信号を出射する第2の面発光型発光素子と、第2の面発光型発光素子を透過した第1の波長の光信号を受光する第2の受光素子と、第2の面発光型発光素子および第2の受光素子との間に設けられると共に光信号を透過させる窓を有する第2の共通電極とを備え、第2の面発光型発光素子は、第3基板上に、一対の多層膜反射鏡によって挟まれた発光層と、多層膜反射鏡上に設けられた第3の電極を有し、当該第3の電極と第2の共通電極との間で電流注入を行う構成となっており、第2の受光素子は、第4基板上に、受光層と、第4基板の裏面に設けられた第4の電極を有し、当該第4の電極と第2の共通電極との間から電流が引き出される構成となっており、第2の共通電極は、第3基板の裏面と第4基板上の受光層との間に設けられているものである。
【0007】
本発明による双方向光通信システムでは、第1の光信号送受信装置において、第1の面発光型発光素子から長波長(第1の波長)の光信号が出射されると、この光信号は第1の共通電極の窓および第1の受光素子を透過したのち、光ファイバを介して第2の光信号送受信装置へ伝送される。この第2の光信号送受信装置に伝送された信号は、第2の面発光型発光素子および第2の共通電極の窓を透過したのちに第2の受光素子に受光されて電気信号に変換される。
【0008】
一方、第2の光信号送受信装置において、第2の面発光型発光素子から短波長(第2の波長の光信号が出射されると、この信号は光ファイバを介して第1の光信号送受信装置へ伝送され、ここで第1の受光素子に受光されて電気信号に変換される。
【0009】
また、第1の光信号送受信装置において第1の共通電極に導通する第1のコンタクトプラグが設けられ、第2の光信号送受信装置において第2の共通電極に導通する第2のコンタクトプラグが設けられていることが好ましい。その際、例えば、第1のコンタクトプラグは第1の受光素子の層構造を貫通して設けられ、第2のコンタクトプラグは第2の面発光型発光素子の層構造を貫通して設けられているようにしてもよい。なお、第1および第2の光信号送受信装置としては、面発光型発光素子と受光素子とが一体的に光結合したモジュールを用いることが好ましい。モジュールとしては、モノリシック型のものでも、ハイブリッド型のものでもよい。
【0010】
【発明の実施の形態】
以下に、実施形態例を挙げ、添付図面を参照して、本発明の実施の形態を具体的かつ詳細に説明する。
実施形態例
本実施形態例は、本発明に係る双方向光通信システムの実施形態の一例であって、図1は本実施形態例の光通信システムの構成を示す模式図である。
本実施形態例の光通信システム30は、一方の送受信側及び他方の送受信側にそれぞれ第1の光信号送受信装置32及び第2の光信号送受信装置34を備え、第1の光信号送受信装置32と第2の光信号送受信装置34との間に設けられた単芯の1本の光ファイバ36を介して双方向の光通信を行う光通信システムである。
【0011】
第1の光信号送受信装置32は、第1の波長の光信号を出射する第1の面発光型半導体レーザ素子(以下、VCSELと言う)38と、吸収端部波長が第1の波長より短い化合物半導体で構成されて第1のVCSEL38上に光結合して設けられ、かつ光ファイバ36の一方の端部に光結合され、上記吸収端波長より短い第2の波長の光信号を受光する第1のフォトダイオード(以下、PDと言う)40とを備えている。
【0012】
第1のVCSEL38は、発振波長が1.3μm〜1.55μmのGaInNAs系VCSELであって、従って第1の波長の光信号は波長が1.3μm〜1.55μmの範囲の光信号である。
【0013】
第1のPD40は、GaAs系の化合物半導体で形成されている、GaAs系pinフォトダイオードであって、後述するように、第1のPD40の基板裏面の電極には、第1のVCSEL38から出射された光信号が通過するように円形に窓が開けられている。
第1のPD40を構成するGaAsのバンドギャップ・エネルギー(1.43eV)に相当する波長、つまり、吸収端波長は0.88μmであって、第1のVCSEL38から出射される光信号の第1の波長、つまり1.3μm〜1.55μmの範囲の波長に比べて短いので、第1のPD40は、第1のVCSEL38から出射された光信号を第1のPD40内で吸収することなく透過して光ファイバ36に入射させる一方、第1のPD40は吸収端波長より短い第2の波長、例えば0.85μmの光信号を受光する。
第1のVCSEL38と第1のPD40とは、一体的に光結合したモジュールとして構成されている。
【0014】
第2の光信号送受信装置34は、第1の波長の光信号を受光するようにInP基板上に設けられたInGaAs系化合物半導体から構成された第2のPD42と、第2のPD42上に光結合して設けられ、かつ光ファイバ36の他方の端部に光結合され、第2の波長の光信号を出射するGaAs系面発光型半導体レーザ素子からなる第2のVCSEL44とを備えている。尚、図1では、第2のPD42と第2のVCSEL44の位置関係を便宜的に上下逆さに図示している。
上述したメカニズムと同じメカニズムにより、第1の波長の光信号は、第2のVCSEL44を構成するGaAs系の化合物半導体中を吸収されることなく透過して、第2のPD42に到達して受光される。
第1のPD42と第2のVCSEL44とは、一体的に光結合したモノリシック・モジュールとして構成されている。尚、モジュールは、モノリシックに限らず、ハイブリッド型のモジュールでも良い。
【0015】
以上の構成により、本実施形態例の双方向光通信システム30では、第1の光信号送受信装置32の第1のVCSEL38から出射された光信号は、第1のPD40で吸収されることなく透過して光ファイバ36に入射し、光ファイバ36を介して第2の光信号送受信装置34に到達する。第2の光信号送受信装置34に到達した光信号は、第2のVCSEL44を透過して第2のPD42で受光される。
第2の光信号送受信装置34の第2のVCSEL44から出射された光信号は、光ファイバ36に入射し、光ファイバ36を介して第1の光信号送受信装置32に到達する。第1の光信号送受信装置32に到達した光信号は、第1のPD40で受光される。
【0016】
本実施形態例では、第1のVCSEL38をGaInNAs系の化合物半導体で構成しているが、InGaAsP系の化合物半導体で構成しても良い。
【0017】
ここで、図2及び図3を参照して、第1及び第2の光信号送受信装置32、34の構成を説明する。図2(a)及び(b)は、第1の光信号送受信装置の構成を示す断面図及び平面図であり、図3(a)及び(b)は、第2の光信号送受信装置の構成を示す断面図及び平面図である。
第1の光信号送受信装置32は、図2(a)に示すように、第1のVCSEL38と、第1のVCSEL38上に光結合して設けられた第1のPD40とを有する。
【0018】
第1のVCSEL38は、GaInNAs系の面発光型半導体レーザ素子であって、図2(a)に示すように、n−GaAs基板46と、n−GaAs基板46上に設けられた一対の多層膜反射鏡48A、Bと、一対の多層膜反射鏡48A、Bによって上下が挟まれ、活性層50を有する発光層52と、多層膜反射鏡48B上にコンタクト層54を介して設けられたp側電極56と、n−GaAs基板46の裏面に設けられたn側電極58とを備えている。また、p側電極56には、光信号を透過させる円形の窓60が設けてある。
第1のPD40は、GaAs系のpinフォトダイオードであって、図2(a)及び(b)に示すように、n−GaAs基板62上に設けられ、i層の活性層64を有するGaAs系受光層66と、受光層66上に設けられたp側電極68とを備えている。また、p側電極68には光信号を透過させる円形の窓70が設けてある。
【0019】
第1のPD40のn側電極は、第1のVCSEL38のp側電極56と共通電極になっている。更に、共通電極56には引き出し電極として、第1のPD40の層構造を貫通して共通電極56に導通するコンタクトプラグ72が層構造との間に絶縁膜74を介して設けてある。
コンタクトプラグ72に引き出しワイヤを設けることにより、第1のVCSEL38のp側電極(共通電極)56とn側電極58との間に電流を注入し、また第1のPD40のp側電極68とn側電極(共通電極)56との間から電流を引き出すことが容易に出来る。
【0020】
第2の光信号送受信装置34は、図3(a)及び(b)に示すように、第2のPD42と、第2のPD42上に光結合して設けられた第2のVCSEL44とを有する。
第2のPD42は、InGaAs系のpinフォトダイオードであって、図3(a)に示すように、n−InP基板76上に設けられ、i層の活性層78を有するInGaAs系受光層80と、受光層80上に設けられたp側電極82と、n−InP基板76の裏面に設けられたn側電極84とを備えている。また、p側電極82には光信号を透過させる円形の窓86が設けてある。
【0021】
第2のVCSEL44は、GaAs系の面発光型半導体レーザ素子であって、図3(a)及び(b)に示すように、n−GaAs基板88と、n−GaAs基板88上に設けられた一対の多層膜反射鏡90A、Bと、一対の多層膜反射鏡90A、Bによって上下が挟まれ、活性層92を有する発光層94と、多層膜反射鏡90B上にコンタクト層96を介して設けられたp側電極98とを有する。
p側電極98は、図3(b)に示すように、光信号を透過させる円形の窓100を有するリング状の電極であって、引き出し電極102に接続されている。
【0022】
第2のVCSEL44のn側電極は、第2のPD42のp側電極82と共通電極になっている。更に、共通電極82には引き出し電極として、第2のVCSEL44の層構造を貫通して共通電極82に導通するコンタクトプラグ104が層構造との間に絶縁膜106を介して設けてある。
コンタクトプラグ104に引き出しワイヤを設けることにより、第2のPD42のp側電極(共通電極)82とn側電極84との間から電流を引き出し、第2のVCSEL44のp側電極98とn側電極82(共通電極)との間に電流を注入することが容易に出来る。
【0023】
以上の構成により、本実施形態例の双方向光通信システム30は、単芯の1本の光ファイバ36を介して双方向の光通信が可能なシステムであって、光ファイバ36の両端部に設けた第1及び第2の光信号送受信装置32、34の構成をコンパクトで小型化することができる。
【0024】
【発明の効果】
本発明の双方向光通信システムによれば、一方の光信号送受信装置を、長波長用の面発光型発光素子と、光ファイバの一端と光結合した短波長用の受光素子とで構成し、かつ、他方の光信号送受信装置を、長波長用の受光素子と、光ファイバの他端と光結合した短波長用の面発光型発光素子とで構成するようにしたので、双方の光信号送受信装置を小型化することができ、かつ、単芯で1本の光ファイバのみで双方向の光通信を行うことができる。また、第1および第2の面発光型発光素子と第1および第2の受光素子との間に、窓付きの第1および第2の共通電極をそれぞれ設け、この第1および第2の共通電極を用いて第1および第2の面発光型発光素子へ電流を注入し、または第1および第2の受光素子から電流を取り出すようにしたので、双方の光信号送受信装置を小型でコンパクトなものとすることができる。
【図面の簡単な説明】
【図1】実施形態例の光通信システムの構成を示す模式図である。
【図2】図2(a)及び(b)は、それぞれ、第1の光信号送受信装置の構成を示す断面図及び平面図である。
【図3】図3(a)及び(b)は、それぞれ、第2の光信号送受信装置の構成を示す断面図及び平面図である。
【図4】光通信システムの概念を説明する図である。
【図5】従来の双方向の光通信システムの構成を示す模式図である。
【符号の説明】
10……従来の双方向の光通信システム、12……一方の側に設けられた光信号送受信装置、14……他方の側に設けられた光信号送受信装置、16……光ファイバ、18……第1の光信号送信装置、20……第1の光信号受信装置、22……第2の光信号受信装置、24……第2の光信号送信装置、30……実施形態例の光通信システム、32……第1の光信号送受信装置、34……第2の光信号送受信装置、36……光ファイバ、38……第1のVCSEL、40……第1のPD、42……第2のPD、44……第2のVCSEL、46……n−GaAs基板、48……多層膜反射鏡、50……活性層、52……発光層、54……コンタクト層、56……共通電極、58……n側電極、60……窓、62……n−GaAs基板、64……i層の活性層、66……受光層、68……p側電極、70……窓、72……コンタクトプラグ、74……絶縁膜、76……n−InP基板、78……i層の活性層、80……InGaAs系受光層、82……共通電極、84……n側電極、86……窓、88……n−GaAs基板、90……多層膜反射鏡、92……活性層、94……発光層、96……コンタクト層、98……p側電極、100……窓、102……引き出し電極、104……コンタクトプラグ、106……絶縁膜。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical communication system capable of bidirectional communication between one transmission / reception side and the other transmission / reception side. More specifically, bidirectional optical communication is possible via a single optical fiber. In addition, the present invention relates to an optical communication system in which small optical signal transmission / reception devices are provided on one transmission / reception side and the other transmission / reception side.
[0002]
[Prior art]
In an optical communication system, as shown in FIG. 4, basically, light emitted from a light emitting element such as a semiconductor laser element or a light emitting diode modulated by an electric signal on the transmission side is used as an optical signal via an optical fiber. The received light signal is detected by a light receiving element such as a photodiode (PD, photodetector) and demodulated as an electrical signal.
In order to perform bidirectional optical signal transmission / reception between one side and the other side, an optical signal transmission device having a light emitting element and an optical signal reception device having a photodiode are provided on both sides, respectively. Transmission and reception using a two-core optical fiber that connects an optical signal transmitter on one side and an optical signal receiver on the other side, and connects an optical signal transmitter on the other side and an optical signal receiver on the other side It is carried out.
[0003]
With reference to FIG. 5, the configuration of a conventional bidirectional optical communication system will be specifically described with an example. FIG. 5 is a schematic diagram showing a configuration of a conventional bidirectional optical communication system.
As shown in FIG. 5, the conventional bidirectional optical communication system 10 basically includes a first optical signal transmission / reception device 12 provided on one transmission / reception side and a first optical signal transmission / reception device 12 provided on the other transmission / reception side. 2 optical signal transmission / reception devices 14 and two single-core first and second optical fibers 16A, B connecting the first and second optical signal transmission / reception devices 12, 14. ing.
[0004]
The first optical signal transmitting / receiving device 12 is optically coupled to one end of the first optical fiber 16A, and transmits a light signal through the first optical fiber 16A (hereinafter referred to as a GaAs-based surface emitting semiconductor laser device). And a first optical signal transmission device 18 having a drive device (not shown) for driving the VCSEL and one end of the second optical fiber 16B, which will be described below. A first optical signal having a GaAs photodiode (hereinafter referred to as PD) that receives an optical signal transmitted from the second optical signal transmission device 24 via the second optical fiber 16B and converts it into an electrical signal. And a receiving device 20.
The second optical signal receiver 14 is optically coupled to the other end of the first optical fiber 16A, and receives the optical signal transmitted from the first optical signal transmitter 18 via the first optical fiber 16A. A second optical signal receiving device 22 having a GaAs-based PD that receives light and converts it into an electrical signal is optically coupled to the other end of the second optical fiber 16B, and the optical signal is transmitted through the second optical fiber 16B. And a second optical signal transmission device 24 that transmits an optical signal. The second optical signal transmission device 24 includes a GaAs-based VCSEL that transmits the optical signal and a drive device (not shown) that drives the VCSEL.
[0005]
[Problems to be solved by the invention]
However, since the conventional bidirectional optical communication system requires a two-core optical fiber as described above, it is necessary to arrange a VCSEL and a PD in parallel on both sides as an optical signal transmission / reception device. In addition, the size of the optical signal transmitter / receiver increases. Thus, it is difficult to apply a conventional bidirectional optical communication system to the field of bidirectional optical communication between individuals that is expected to develop in the future.
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical communication system capable of bidirectional optical communication via a single optical fiber by a small and compact optical signal transmitting / receiving apparatus.
[0006]
[Means for Solving the Problems]
A bidirectional optical communication system according to the present invention is a bidirectional optical communication system that performs bidirectional communication between a first optical signal transmission / reception device and a second optical signal transmission / reception device via an optical fiber,
The first optical signal transmitting / receiving apparatus includes a first surface-emitting light emitting element that emits an optical signal having a first wavelength, a compound semiconductor layer having an absorption edge wavelength shorter than the first wavelength, and an optical fiber. An optical signal having a second wavelength that is optically coupled to one end, transmits an optical signal having a first wavelength from the first surface-emitting light-emitting element, is incident on the optical fiber, and is shorter than the absorption end wavelength through the optical fiber. A first light receiving element for receiving light, and a first common electrode provided between the first surface-emitting light emitting element and the first light receiving element and having a window for transmitting an optical signal, the surface-emitting light-emitting device, the first substrate includes a light emitting layer sandwiched by a pair of multilayer-film reflective mirror, and a first electrode provided on the back surface of the first substrate, the first The current injection is performed between the electrode and the first common electrode. Light element on the second substrate, a light-receiving layer, and a second electrode provided on the light-receiving layer, constituting a current is drawn from between the second electrode and the first common electrode The first common electrode is provided between the pair of multilayer mirrors on the first substrate and the back surface of the second substrate, and the second optical signal transmitting / receiving device has an absorption edge wavelength. Is composed of a compound semiconductor layer shorter than the first wavelength, is optically coupled to the other end of the optical fiber, transmits an optical signal of the first wavelength incident through the optical fiber, and transmits the second wavelength to the optical fiber. A second surface-emitting light-emitting element that emits an optical signal, a second light-receiving element that receives an optical signal having a first wavelength that has passed through the second surface-emitting light-emitting element, and a second surface-emitting type A second light source having a window provided between the light emitting element and the second light receiving element and transmitting an optical signal; And a through electrode, a second surface-emitting light-emitting device, the third substrate, a light emitting layer sandwiched by a pair of multilayer-film reflective mirror, a third electrode provided on the multilayer mirror on The second light receiving element has a structure in which a light receiving layer, a fourth substrate, and a fourth substrate are formed on the fourth substrate , and current injection is performed between the third electrode and the second common electrode . and a fourth electrode provided on the back surface, the has a configuration in which current is drawn from between the fourth electrode and the second common electrode, a second common electrode, the third substrate It is provided between the back surface and the light receiving layer on the fourth substrate .
[0007]
In two-way optical communication system according to the invention, the first optical signal transmitting and receiving device, an optical signal having a long wavelength from the first surface-emitting light-emitting device (first wavelength) is emitted, the optical signal is first After passing through the window of the one common electrode and the first light receiving element, it is transmitted to the second optical signal transmitting / receiving device via the optical fiber. The signal transmitted to the second optical signal transmitting / receiving device passes through the window of the second surface-emitting light emitting element and the second common electrode, and then is received by the second light receiving element and converted into an electrical signal. The
[0008]
On the other hand, in the second optical signal transmission and reception equipment, the optical signals of the second surface-emitting light-emitting device or et short wavelength (second wavelength) is emitted, the signal through a first optical fiber is sent heat to the optical signal transmitting and receiving apparatus, and is converted into a first received light has been electrical signal to the light receiving element.
[0009]
The first optical signal transmitting / receiving device is provided with a first contact plug that conducts to the first common electrode, and the second optical signal transmitting / receiving device is provided with a second contact plug that conducts to the second common electrode. It is preferable that At this time, for example, the first contact plug is provided through the layer structure of the first light receiving element, and the second contact plug is provided through the layer structure of the second surface-emitting light emitting element. You may make it. As the first and second optical signal transmitting / receiving devices, it is preferable to use a module in which a surface light emitting element and a light receiving element are optically coupled together. The module may be a monolithic type or a hybrid type.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described specifically and in detail with reference to the accompanying drawings.
Embodiment Example This embodiment example is an example of an embodiment of a bidirectional optical communication system according to the present invention, and FIG. 1 is a schematic diagram showing a configuration of the optical communication system of this embodiment example. .
The optical communication system 30 of this embodiment includes a first optical signal transmission / reception device 32 and a second optical signal transmission / reception device 34 on one transmission / reception side and the other transmission / reception side, respectively. And a second optical signal transmission / reception device 34, an optical communication system that performs bidirectional optical communication via a single optical fiber 36 with a single core.
[0011]
The first optical signal transmitting / receiving device 32 includes a first surface emitting semiconductor laser element (hereinafter referred to as a VCSEL) 38 that emits an optical signal having a first wavelength, and an absorption edge wavelength shorter than the first wavelength. A compound semiconductor is provided which is optically coupled onto the first VCSEL 38 and optically coupled to one end of the optical fiber 36, and receives an optical signal having a second wavelength shorter than the absorption edge wavelength. 1 photodiode (hereinafter referred to as PD) 40.
[0012]
The first VCSEL 38 is a GaInNAs-based VCSEL having an oscillation wavelength of 1.3 μm to 1.55 μm. Therefore, the optical signal of the first wavelength is an optical signal having a wavelength in the range of 1.3 μm to 1.55 μm.
[0013]
The first PD 40 is a GaAs pin photodiode formed of a GaAs compound semiconductor. As will be described later, the first PD 40 is emitted from the first VCSEL 38 to the electrode on the back surface of the substrate of the first PD 40. A window is opened in a circle so that the optical signal passes through.
The wavelength corresponding to the band gap energy (1.43 eV) of GaAs constituting the first PD 40, that is, the absorption edge wavelength is 0.88 μm, and the first optical signal emitted from the first VCSEL 38 Since the wavelength is shorter than the wavelength in the range of 1.3 μm to 1.55 μm, the first PD 40 transmits the optical signal emitted from the first VCSEL 38 without being absorbed in the first PD 40. While entering the optical fiber 36, the first PD 40 receives an optical signal having a second wavelength shorter than the absorption edge wavelength, for example, 0.85 μm.
The first VCSEL 38 and the first PD 40 are configured as an optically coupled module.
[0014]
The second optical signal transmission / reception device 34 includes a second PD 42 made of an InGaAs-based compound semiconductor provided on an InP substrate so as to receive an optical signal having a first wavelength, and light on the second PD 42. And a second VCSEL 44 formed of a GaAs-based surface-emitting semiconductor laser element that is coupled and is optically coupled to the other end of the optical fiber 36 and emits an optical signal having a second wavelength. In FIG. 1, the positional relationship between the second PD 42 and the second VCSEL 44 is shown upside down for convenience.
By the same mechanism as described above, the optical signal of the first wavelength passes through the GaAs compound semiconductor constituting the second VCSEL 44 without being absorbed, and reaches the second PD 42 to be received. The
The first PD 42 and the second VCSEL 44 are configured as a monolithic module that is optically coupled together. The module is not limited to monolithic and may be a hybrid module.
[0015]
With the above configuration, in the bidirectional optical communication system 30 according to the present embodiment, the optical signal emitted from the first VCSEL 38 of the first optical signal transmission / reception device 32 is transmitted without being absorbed by the first PD 40. Then, the light enters the optical fiber 36 and reaches the second optical signal transmitting / receiving device 34 via the optical fiber 36. The optical signal that has reached the second optical signal transmission / reception device 34 passes through the second VCSEL 44 and is received by the second PD 42.
The optical signal emitted from the second VCSEL 44 of the second optical signal transmission / reception device 34 enters the optical fiber 36 and reaches the first optical signal transmission / reception device 32 via the optical fiber 36. The optical signal that has reached the first optical signal transmission / reception device 32 is received by the first PD 40.
[0016]
In this embodiment, the first VCSEL 38 is composed of a GaInNAs compound semiconductor, but may be composed of an InGaAsP compound semiconductor.
[0017]
Here, the configuration of the first and second optical signal transmission / reception devices 32 and 34 will be described with reference to FIGS. 2A and 2B are a cross-sectional view and a plan view showing the configuration of the first optical signal transmission / reception device, and FIGS. 3A and 3B are the configuration of the second optical signal transmission / reception device. They are sectional drawing and a top view which show.
As shown in FIG. 2A, the first optical signal transmission / reception device 32 includes a first VCSEL 38 and a first PD 40 that is optically coupled on the first VCSEL 38.
[0018]
The first VCSEL 38 is a GaInNAs-based surface emitting semiconductor laser element, and as shown in FIG. 2A, an n-GaAs substrate 46 and a pair of multilayer films provided on the n-GaAs substrate 46 A light emitting layer 52 having an active layer 50 sandwiched between the reflecting mirrors 48A and 48B and the pair of multilayer reflecting mirrors 48A and 48B, and a p-side provided on the multilayer reflecting mirror 48B via a contact layer 54 An electrode 56 and an n-side electrode 58 provided on the back surface of the n-GaAs substrate 46 are provided. The p-side electrode 56 is provided with a circular window 60 that transmits an optical signal.
The first PD 40 is a GaAs pin photodiode, as shown in FIGS. 2A and 2B, provided on an n-GaAs substrate 62 and having an i-layer active layer 64. A light receiving layer 66 and a p-side electrode 68 provided on the light receiving layer 66 are provided. The p-side electrode 68 is provided with a circular window 70 that transmits an optical signal.
[0019]
The n-side electrode of the first PD 40 is a common electrode with the p-side electrode 56 of the first VCSEL 38. Further, a contact plug 72 that penetrates the layer structure of the first PD 40 and is electrically connected to the common electrode 56 is provided between the layer structure and the common electrode 56 as an extraction electrode.
By providing a lead wire in the contact plug 72, current is injected between the p-side electrode (common electrode) 56 and the n-side electrode 58 of the first VCSEL 38, and the p-side electrode 68 and n of the first PD 40 It is possible to easily draw current from the side electrode (common electrode) 56.
[0020]
As shown in FIGS. 3A and 3B, the second optical signal transmission / reception device 34 includes a second PD 42 and a second VCSEL 44 that is optically coupled to the second PD 42. .
The second PD 42 is an InGaAs pin photodiode, and is provided on an n-InP substrate 76 and includes an InGaAs light receiving layer 80 having an i active layer 78, as shown in FIG. The p-side electrode 82 provided on the light-receiving layer 80 and the n-side electrode 84 provided on the back surface of the n-InP substrate 76 are provided. The p-side electrode 82 is provided with a circular window 86 that transmits an optical signal.
[0021]
The second VCSEL 44 is a GaAs-based surface emitting semiconductor laser element, and is provided on the n-GaAs substrate 88 and the n-GaAs substrate 88 as shown in FIGS. A pair of multilayer reflectors 90A and B, a pair of multilayer reflectors 90A and 90B sandwiched between the upper and lower layers, a light emitting layer 94 having an active layer 92, and a contact layer 96 on the multilayer reflector 90B. P-side electrode 98.
As shown in FIG. 3B, the p-side electrode 98 is a ring-shaped electrode having a circular window 100 that transmits an optical signal, and is connected to the extraction electrode 102.
[0022]
The n-side electrode of the second VCSEL 44 is a common electrode with the p-side electrode 82 of the second PD 42. Further, a contact plug 104 that penetrates the layer structure of the second VCSEL 44 and is electrically connected to the common electrode 82 is provided as an extraction electrode between the common electrode 82 and the layer structure via an insulating film 106.
By providing a lead wire in the contact plug 104, current is drawn from between the p-side electrode (common electrode) 82 and the n-side electrode 84 of the second PD 42, and the p-side electrode 98 and the n-side electrode of the second VCSEL 44 are drawn. It is easy to inject a current between the electrode 82 (common electrode).
[0023]
With the above configuration, the bidirectional optical communication system 30 according to the present embodiment is a system capable of bidirectional optical communication via a single optical fiber 36, and is provided at both ends of the optical fiber 36. The configuration of the first and second optical signal transmission / reception devices 32 and 34 provided can be compact and downsized.
[0024]
【The invention's effect】
According to the bidirectional optical communication system of the present invention, one optical signal transmission / reception device is composed of a surface emitting light emitting element for long wavelength and a light receiving element for short wavelength optically coupled to one end of an optical fiber, In addition, since the other optical signal transmission / reception device is composed of a light receiving element for long wavelength and a surface emitting light emitting element for short wavelength optically coupled to the other end of the optical fiber, both optical signal transmission / reception The apparatus can be reduced in size, and bidirectional optical communication can be performed using only a single optical fiber with a single core. A first common electrode with a window and a second common electrode are provided between the first and second surface-emitting light emitting elements and the first and second light receiving elements, respectively. Since the current is injected into the first and second surface-emitting light emitting elements using the electrodes, or the current is extracted from the first and second light receiving elements, both the optical signal transmitting and receiving apparatuses are small and compact. Can be.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a configuration of an optical communication system according to an embodiment.
FIGS. 2A and 2B are a cross-sectional view and a plan view, respectively, showing the configuration of the first optical signal transmitting / receiving apparatus.
FIGS. 3A and 3B are a cross-sectional view and a plan view, respectively, showing a configuration of a second optical signal transmitting / receiving apparatus.
FIG. 4 is a diagram illustrating the concept of an optical communication system.
FIG. 5 is a schematic diagram showing a configuration of a conventional bidirectional optical communication system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Conventional bidirectional optical communication system, 12 ... Optical signal transmission / reception apparatus provided in one side, 14 ... Optical signal transmission / reception apparatus provided in the other side, 16 ... Optical fiber, 18 ... ... 1st optical signal transmitter, 20 ... 1st optical signal receiver, 22 ... 2nd optical signal receiver, 24 ... 2nd optical signal transmitter, 30 ... Light of embodiment Communication system 32... First optical signal transmission / reception device 34... Second optical signal transmission / reception device 36 .. Optical fiber 38... First VCSEL 40. Second PD 44 44 Second VCSEL 46 n-GaAs substrate 48 multilayer reflector 50 active layer 52 light emitting layer 54 contact layer 56 contact layer 56 Common electrode, 58 ... n-side electrode, 60 ... Window, 62 ... n-GaAs substrate, 64 ... Active layer, 66... Light-receiving layer, 68... P-side electrode, 70... Window, 72 .. contact plug, 74 .. insulating film, 76 ... n-InP substrate, 78. Layer, 80... InGaAs-based light receiving layer, 82... Common electrode, 84... N-side electrode, 86. 94... Light emitting layer, 96... Contact layer, 98... P-side electrode, 100.

Claims (3)

光ファイバを介して、第1の光信号送受信装置と第2の光信号送受信装置との間で双方向通信を行う双方向光通信システムであって、
前記第1の光信号送受信装置は、
第1の波長の光信号を出射する第1の面発光型発光素子と、
吸収端波長が第1の波長より短い化合物半導体層により構成されると共に前記光ファイバの一端に光結合され、前記第1の面発光型発光素子からの第1の波長の光信号を透過して前記光ファイバに入射させると共に前記光ファイバを介して吸収端波長より短い第2の波長の光信号を受光する第1の受光素子と、
前記第1の面発光型発光素子および前記第1の受光素子との間に設けられると共に光信号を透過させる窓を有する第1の共通電極と
を備え、
前記第1の面発光型発光素子は、第1基板上に、一対の多層膜反射鏡によって挟まれた発光層と、前記第1基板の裏面に設けられた第1の電極を有し、当該第1の電極と前記第1の共通電極との間で電流注入を行う構成となっており、
前記第1の受光素子は、第2基板上に、受光層と、前記受光層上に設けられた第2の電極を有し、当該第2の電極と前記第1の共通電極との間から電流が引き出される構成となっており、
前記第1の共通電極は、前記第1基板上の一対の多層膜反射鏡と前記第2基板の裏面との間に設けられており、
前記第2の光信号送受信装置は、
吸収端波長が第1の波長より短い化合物半導体層により構成されると共に前記光ファイバの他端に光結合され、前記光ファイバを介して入射した第1の波長の光信号を透過すると共に前記光ファイバに第2の波長の光信号を出射する第2の面発光型発光素子と、
前記第2の面発光型発光素子を透過した第1の波長の光信号を受光する第2の受光素子と、
前記第2の面発光型発光素子および前記第2の受光素子との間に設けられると共に光信号を透過させる窓を有する第2の共通電極と
を備え、
前記第2の面発光型発光素子は、第3基板上に、一対の多層膜反射鏡によって挟まれた発光層と、前記多層膜反射鏡上に設けられた第3の電極を有し、当該第3の電極と前記第2の共通電極との間で電流注入を行う構成となっており、
前記第2の受光素子は、第4基板上に、受光層と、前記第4基板の裏面に設けられた第4の電極を有し、当該第4の電極と前記第2の共通電極との間から電流が引き出される構成となっており、
前記第2の共通電極は、前記第3基板の裏面と前記第4基板上の受光層との間に設けられている
ことを特徴とする双方向光通信システム。
A bidirectional optical communication system that performs bidirectional communication between a first optical signal transmission / reception device and a second optical signal transmission / reception device via an optical fiber,
The first optical signal transmission / reception device includes:
A first surface-emitting light emitting element that emits an optical signal having a first wavelength;
It is composed of a compound semiconductor layer having an absorption edge wavelength shorter than the first wavelength, is optically coupled to one end of the optical fiber, and transmits an optical signal of the first wavelength from the first surface-emitting light emitting element. A first light receiving element that is incident on the optical fiber and receives an optical signal having a second wavelength shorter than the absorption edge wavelength through the optical fiber;
A first common electrode provided between the first surface-emitting light emitting element and the first light receiving element and having a window through which an optical signal is transmitted;
The first surface-emitting light-emitting device is on the first substrate includes a light emitting layer sandwiched by a pair of multilayer-film reflective mirror, and a first electrode provided on the back surface of the first substrate, It is configured to inject current between the first electrode and the first common electrode,
The first light receiving element, on the second substrate, a light-receiving layer, and a second electrode provided on the light-receiving layer, between the between the second electrode and the first common electrode Current is drawn from the
The first common electrode is provided between a pair of multilayer mirrors on the first substrate and a back surface of the second substrate,
The second optical signal transmission / reception device includes:
The light absorption edge wavelength is composed of a compound semiconductor layer shorter than the first wavelength, is optically coupled to the other end of the optical fiber, transmits an optical signal having the first wavelength incident through the optical fiber, and transmits the light. A second surface-emitting light emitting element that emits an optical signal having a second wavelength to the fiber;
A second light receiving element for receiving an optical signal having a first wavelength transmitted through the second surface-emitting light emitting element;
A second common electrode provided between the second surface-emitting light emitting element and the second light receiving element and having a window for transmitting an optical signal;
The second surface-emitting light-emitting device, the third substrate includes a light emitting layer sandwiched by a pair of multilayer-film reflective mirror, and a third electrode provided on the multilayer mirror over, It is configured to inject current between the third electrode and the second common electrode,
The second light receiving element, the fourth substrate, and the light receiving layer, and a fourth electrode provided on the back surface of the fourth substrate, and the with the fourth electrode and the second common electrode It has a structure in which current is drawn from between the,
The bidirectional optical communication system, wherein the second common electrode is provided between a back surface of the third substrate and a light receiving layer on the fourth substrate .
前記第1の光信号送受信装置において前記第1の共通電極に導通する第1のコンタクトプラグが設けられ、前記第2の光信号送受信装置において前記第2の共通電極に導通する第2のコンタクトプラグが設けられている
ことを特徴とする請求項記載の双方向光通信システム。
A first contact plug that is electrically connected to the first common electrode is provided in the first optical signal transmitting and receiving device, and a second contact plug that is electrically connected to the second common electrode in the second optical signal transmitting and receiving device. The bidirectional optical communication system according to claim 1, wherein:
前記第1のコンタクトプラグは前記第1の受光素子の層構造を貫通して設けられ、前記第2のコンタクトプラグは前記第2の面発光型発光素子の層構造を貫通して設けられている
ことを特徴とする請求項記載の双方向光通信システム。
The first contact plug is provided through the layer structure of the first light receiving element, and the second contact plug is provided through the layer structure of the second surface-emitting light emitting element. The bidirectional optical communication system according to claim 2, wherein:
JP2002066272A 2002-03-12 2002-03-12 Bi-directional optical communication system Expired - Fee Related JP4045590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002066272A JP4045590B2 (en) 2002-03-12 2002-03-12 Bi-directional optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002066272A JP4045590B2 (en) 2002-03-12 2002-03-12 Bi-directional optical communication system

Publications (3)

Publication Number Publication Date
JP2003264513A JP2003264513A (en) 2003-09-19
JP2003264513A5 JP2003264513A5 (en) 2005-09-02
JP4045590B2 true JP4045590B2 (en) 2008-02-13

Family

ID=29198139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002066272A Expired - Fee Related JP4045590B2 (en) 2002-03-12 2002-03-12 Bi-directional optical communication system

Country Status (1)

Country Link
JP (1) JP4045590B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7369726B2 (en) * 2003-04-02 2008-05-06 Sun Microsystems, Inc. Optical communication between face-to-face semiconductor chips
JP4935090B2 (en) * 2006-01-31 2012-05-23 ソニー株式会社 Semiconductor light emitting device
US7386641B2 (en) 2006-04-18 2008-06-10 Owlink Technology, Inc. Protocol for uncompressed multimedia data transmission
JP5194469B2 (en) * 2006-09-11 2013-05-08 横河電機株式会社 Data transmission device
US8150261B2 (en) 2007-05-22 2012-04-03 Owlink Technology, Inc. Universal remote control device
US7400801B1 (en) 2007-06-19 2008-07-15 Owlink Technology, Inc. Bidirectional HDCP module using single optical fiber and waveguide combiner/splitter
JP5190038B2 (en) * 2009-08-19 2013-04-24 キヤノン株式会社 Surface emitting laser
JP5659903B2 (en) * 2011-03-29 2015-01-28 ソニー株式会社 Light emitting element / light receiving element assembly and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003264513A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
US20200310054A1 (en) Optical transceiver
US10454586B2 (en) Integrated transceiver with lightpipe coupler
US8642941B2 (en) Photonic integrated circuit with integrated optical transceiver
JP2000507399A (en) VCSEL based multi-wavelength transmitter and receiver module for serial and parallel optical links
US20090028579A1 (en) Fiber optic link having an integrated laser and photodetector chip
JP2004235190A (en) Optical semiconductor device
US7418208B2 (en) Optoelectronic transceiver for a bidirectional optical signal transmission
US6721503B1 (en) System and method for bi-directional optical communication using stacked emitters and detectors
JP4045590B2 (en) Bi-directional optical communication system
KR100734874B1 (en) Bi-directional optical module
US8463132B2 (en) Integrated laser and photodetector chip for an optical subassembly
US20070154222A1 (en) Half duplex type optical connection structure and optical device suitable for the same
WO2017171841A1 (en) Data center transmission systems
KR100858217B1 (en) Optical modulator package for bi-directional data communication
KR101478996B1 (en) Bidirectional Transceiver device
US6603584B1 (en) System and method for bi-directional optical communication
US7248616B2 (en) Bidirectional transceiver and method for driving the same
CN109991702B (en) Optical assembly with dual lens system and photodiode for monitoring
JP2005116867A (en) Optical signal transmitter
JPH0878783A (en) Optical coupler and parallel optical interconnection device
Goossen et al. 1/spl times/12 VCSEL array with optical monitoring via flip-chip bonding
JPH07122760A (en) Light-monitoring photodiode and module using thereof
JP2001223369A (en) End face incident waveguide type semiconductor photodetector and light receiving module using the same
JP2000323791A (en) Assembly of vertical resonator type surface light emitting laser and photodetection monitor and assembling method thereof
TWM406322U (en) Light receiving and emitting device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees