五、新型說明: 【新型所屬之技術領域】 本創作是有關於-種光學元件,且特別是有關於一種 光收發元件。 【先前技術】 隨著通況技術的進步’時下的通訊方式已不限於使用 a 電訊號來實現,而近年來域通訊技術更是逐漸趨於成 « 熟。由於光在光射的傳遞速率遠高於電子在導線中的傳 遞速率’因此光纖通訊可大幅的提升倾傳輸的速率,進 而提升了網路中下載或上傳的速率。 在習知雙向光通訊系統中’系統端與使用者端各具有 一雙向光次模組(bidirectional optical subassembly, BOSA),而兩個雙向光次模組之間以光纖連接。當使用 者端欲傳遞訊號至系統端時,使用者端的雙向光次模組中 的光收發元件會將使用者端的電訊號轉換為光訊號,而此 光sfl號經由光纖傳遞至系統端的雙向光次模組。系統端的 馨 雙向光次模組中的光收發元件在接收了此光訊號後,會將 ‘ 此光訊號轉換為電訊號,而供系統端作處理。反之,當系 統端欲傳遞訊號至使用者端時,系統端的雙向光次模組中 的光收發元件會將系統端的電訊號轉換為光訊號,而此光 訊號經由光纖傳遞至使用者端的雙向光次模組。使用者端 的雙向光次模組中的光收發元件在接收了此光訊號後,會 將此光訊號轉換為電訊號’而供使用者端作處理。如此一 4 M406321 來,便能夠達成系統端與使用者端的雙向光通訊。 由於時下的電子裝置朝向小型化發展,因此光收發元 件的内部結構之簡化及體積之縮小便成為設計光收發元件 的重要課題。 【新型内容】 . 本創作提供一種光收發元件,可具有較簡化的結構與 • 較小的體積,且有助於使製程容易化及降低製作成本。” 本創作之一實施例提出一種光收發元件,包括一外 殼、一光偵測器、一發光單元、一功率偵測器及一光傳遞 單兀。外殼具有一通孔。光偵測器配置於外殼内,且適於 接收來自外殼外且經由通孔進入的一接收光束。發光單元 配置於外殼内,且適於發出一發射光束,其中發射光束的 一部分適於經由通孔傳遞至外殼之外。功率偵測器配置於 外殼内,且位於發射光束的另一部分之傳遞路徑上,以監 控發射光束的光強度。光傳遞單元配置於功率偵測器上, 鲁且覆蓋發光單元之發出發射光束的此另一部分之一端,並 暴露出發光單元之發出發射光束的此部分之一端,其中來 自發光單元的發射光束的此另一部分在光傳遞單元中傳遞 至功率偵測器。光傳遞單元具有一反射曲面,且反射曲面 適於將來自發光單元之發射光束的另一部分反射至功率偵 測器。 在本創作之貫施例之光收發元件令,由於採用了光傳 遞單元以使發射光束的另一部分被反射曲面反射至功率偵 5 測态,因此功率偵測器的擺設方向與位置可以較有彈性, 而不限=將功率偵測器以直立的方式擺設。如此—來,便 有助於簡化功麵測n的組裝製程,亦有助於使光收發元 件的整體體積縮小。 —為讓本創作之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 圖1為本創作之一實施例之光收發元件的剖面示意 圖。請參照圖1 ’本實施例之光收發元件1〇〇包括一外殼 110、一光偵測器120、一發光單元130、一功率憤測器140 及一光傳遞單元150。外殼11〇具有一通孔lu。在本實施 例中,外殼110包括一基座丨12及一上蓋114,其中基座 112例如為電晶體外形頭(transist〇r 〇utHne header, TO-header) ’而上蓋114例如為電晶體外型罐(transist〇r outline can,TO-can)。在本實施例中,通孔in位於上蓋 114 上。 光4貞測器120配置於外殼11 〇内,且適於接收來自外 殼110外且經由通孔111進入的一接收光束52。在本實施 例中,光偵測器120配置於基座112上,且光偵測器120 例如為一光電二極體(photodiode )。具體而言,光偵測 器120適於接收來自通孔111上方的一光纖50中的接收光 束52,並在偵測該接收光束52後將該接收光束52所包含 的光訊號轉換成電訊號。在本實施例中,光收發元件100 M406321 更包括一轉阻放大器160,配置於外殼110内,且電性連 接至光偵測器120。轉阻放大器160可配置於基座112上, 且適於將光偵測器52所傳來的電訊號放大,以利於判讀。 發光單元130配置於外殼110内,且適於發出一發射 光束132’其中發射光束132的一第一部分132a適於經由 .. 通孔111傳遞至外殼110之外。發光單元130例如為一雷 射二極體(laser diode,LD)。 _ 功率偵測器140配置於外殼110内,且位於發射光束 132的一第二部分132b之傳遞路徑上,以監控發射光束132 的光強度。在本實施例中,功率镇測器140例如為一光電 二極體。光傳遞單元150配置於功率偵測器140上,且覆 蓋發光單元130之發出發射光束132的第二部分132b之一 第一端136a,並暴露出發光單元13〇之發出發射光束132 的第一部分132a之一第二端136b。來自發光單元130的 發射光束132之第二部分132b在光傳遞單元150中傳遞至 功率偵測器140。光傳遞單元150具有一反射曲面152,反 • 射曲面152適於將來自發光單元130之發射光束132的第 . 二部分132b反射至功率偵測器14〇。在本實施例中,反射 曲面15 2例如為"一彎曲凸面。 在本實施例之光收發元件100中,由於採用了光傳遞 單元150以使發射光束丨32的第二部分132b被反射曲面 152反射至功率制器14〇’因此功率偵測器⑽的擺設方 向與位置可以較有彈性,而不限於將功率债測器14〇以直 立的方式擺設。如此-來,便有助於簡化功率偵測器14〇 7 M406321 的組裝製程,亦有助於使光收發元件100的整體體積縮小。 發光單元130與功率偵測器140配置於基座112上。 在本實施例中,光收發元件100更包括一承載台170,配 置於外殼110内,且具有一承載面172,其中發光單元130 與功率偵測器140皆配置於承載面172上,而承載台170 配置於基座112上。此外’在本實抱例中,發光單元13〇 為一側面發光型雷射二極體,且發光單元130的發光層134 與功率偵測器140的吸光層142實質上平行。換言之,由 於光傳遞單元150的反射曲面152使發射光束132的第二 部分132b反射的作用,功率偵測器140可以像發光單元 130那樣水平地平貼於承載面172上,而不須使功率價測 器140垂直配置而使吸光層142垂直於發光層134擺放。 如此一來’便可以簡化光收發元件100的組裝製程,進而 降低程本。另外’由於功率偵測器丨4〇與發光單元13〇皆 平貼於承載台170上,因此光收發元件1〇〇可以不須採用 另一個承載台來垂直貼附功率偵測器丨4〇,如此除了可簡 化製程、降低成本之外,亦可縮小光收發元件1〇()的體積。 在本實施例中,光傳遞單元150的材質例如為透明膠 體。然而,在其他實施例中,光傳遞單元15〇的材質亦可 以是玻璃或其他透明材質。由於光傳遞單元15〇的折射率 大於空氣,因此在光傳遞單元15〇中傳遞的發射光束^32 之第二部分132易於被反射曲面152反射,甚至是發生全 反射。如此一來,便可有較多比例的發射光束132之第二 部分132被反射至功率偵測器14〇 M406321 在本實施例中,光收發元件100更包括一波長分離多 工器(wavelength division multiplexer, WDM) 180,配置 於發光單元130與通孔111之間的發射光束132的第一部 分132a之傳遞路徑上,且配置於光偵測器120與通孔in 之間的接收光束52的傳遞路徑上。發射光束132的波長不 同於接收光束52的波長,且波長分離多工器180根據波長 的不同而將發射光束132的第一部分132a之傳遞路徑與接 收光束52的傳遞路徑分離。 具體而言’波長分離多工器180例如為一分色鏡 (dichroicmirror),分色鏡適於讓來自通孔hi的接收光 束52穿透而傳遞至光彳貞測器120 ’且適於將來自發光單元 130的發射光束132的第一部分132a反射至通孔ill。然 而,在其他實施例中’分色鏡亦可以是將接收光束52反射 至光偵測器120’且讓發射光束132的第一部分132a穿透 而傳遞至通孔111。在本實施例中,波長分離多工器18〇 可藉由一支撐單元230配置於基座112上。 在本實施例中,光收發元件1〇〇更包括一透鏡190, 配置於通孔111中,以將發射光束132的第一部分132a 會聚於光纖50中,且將接收光束52會聚於波長分離多工 器180上。此外’在本實施例中,光收發元件1〇〇更包括 複數個導腳210,這些導腳210分別電性連接至發光單元 130、光偵測器120及功率偵測器140。此外,這些導腳21〇 可電性連接至系統端或使用者端,其中系統端或使用者端 例如為電腦系統、伺服器、路由器(r〇uter )或其他網路系 9 M406321 統中的展置。舉例而言,系統端與使用者端可各具有一光 收發元件100,而兩光收發元件1〇〇之間以光纖5〇連接。 光偵測器120在偵測到接收光束52後可將接收光束52所 包含的光訊號轉換為電訊號,而電訊號經由導腳21〇傳遞 至這個光收發元件1〇〇所連接的系統端或使用者端,而完 ,訊號之接收。另一方面,系統端或使用者端可發出電訊 唬而傳遞至其所連接的光收發元件1〇〇,例如是使電訊號 經由導腳210傳遞至發光單元13(^發光單元13〇將電訊 唬轉換為發射光束132所包含的光訊號,而功率偵測器14〇 則可即時監控發射光束132的功率,以確保光訊號的正確 性。如此一來,即完成訊號之發射。因此,本實施例之光 收發元件100可達到雙向光訊號收發的功效。 在本實施例中’光收發元件1〇〇可配置於一殼體3〇 中’而光纖50的一端可藉由一固定器4〇固定於殼體3〇 上。 在本實施例中,光收發元件100更包括一濾光片220, 配置於波長分離多工器180與光偵測器120之間的接收光 束52的傳遞路徑上,且濾光片22〇適於讓具有接收光束 52的波長的光通過’並阻擋具有其他波長的光。如此一 來’可確保光偵測器120所偵測到的光訊號不受其他雜散 光(例如環境中的雜散光)的干擾。然而’在其他實施例 中,亦可將濾光片配置於光纖50與波長分離多工器180 之間的接收光束5 2的傳遞路徑及發射光束丨3 2的第一部分 132a的傳遞路徑上,此時濾光片適於使具有接收光束52 M406321 的波長與發射光束132的波長的光通過,並阻擋具有其他 波長的光。 綜上所述’在本創作之實施例之光收發元件中,由於 採用了光傳遞單元以使發射光束的第二部分被反射曲面反 射至功率偵測器’因此功率偵測器的擺設方向與位置可以 較有彈性,而不限於將功率偵測器以直立的方式擺設。如 此一來’便有助於簡化功率偵測器的組裝製程,亦有助於 使光收發元件的整體體積縮小。 雖然本創作已以實施例揭露如上,然其並非用以限定 本創作,任何所屬技術領域中具有通常知識者,在不脫離 本創作之精神和範圍内’當可作些許之更動與潤飾,故本 創作之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1為本創作之一實施例之光收發元件的剖面示意 圖。 【主要元件符號說明】 30 :殼體 40 :固定器 50 :光纖 52 :接收光束 100 :光收發元件 110 :外殼 11 M406321 111 :通孔 112 :基座 114 :上蓋 120 :光偵測器 130 :發光單元 132 :發射光束 132a :第一部分 132b :第二部分 134 :發光層 136a :第一端 136b :第二端 140 :功率偵測器 142 :吸光層 150 :光傳遞單元 152 :反射曲面 160 :轉阻放大器 170 :承載台 172 :承載面 180 :波長分離多工器 190 :透鏡 210 :導腳 220 :濾光片 230 :支撐單元 12V. New description: [New technical field] This creation is related to an optical component, and in particular to an optical transceiver component. [Prior Art] With the advancement of the state-of-the-art technology, the current communication method is not limited to the use of a signal, but in recent years, the domain communication technology has gradually become more mature. Since the transmission rate of light in the light is much higher than the transmission rate of the electrons in the wire, fiber communication can greatly increase the rate of dumping, thereby increasing the rate of downloading or uploading in the network. In the conventional two-way optical communication system, the system side and the user end each have a bidirectional optical subassembly (BOSA), and the two bidirectional optical submodules are connected by optical fibers. When the user wants to transmit the signal to the system end, the optical transceiver component in the two-way optical sub-module of the user end converts the electrical signal of the user end into an optical signal, and the optical sfl number is transmitted to the bidirectional light of the system end via the optical fiber. Secondary module. After receiving the optical signal, the optical transceiver component in the CMOS two-way optical sub-module converts the optical signal into an electrical signal for processing by the system. On the other hand, when the system side wants to transmit the signal to the user end, the optical transceiver component in the bidirectional optical sub-module of the system side converts the electrical signal of the system end into an optical signal, and the optical signal is transmitted to the bidirectional light of the user end via the optical fiber. Secondary module. After receiving the optical signal, the optical transceiver component in the two-way optical sub-module of the user end converts the optical signal into a signal signal' for processing by the user. With such a 4 M406321, two-way optical communication between the system side and the user side can be achieved. Since the current electronic devices are moving toward miniaturization, the simplification and volume reduction of the internal structure of the optical transceiver unit has become an important issue in designing optical transceiver components. [New content] This creation provides an optical transceiver component that has a simplified structure and a small size, and helps to make the process easier and reduce the manufacturing cost. An embodiment of the present invention provides an optical transceiver component, including a housing, a photodetector, an illumination unit, a power detector, and a light transmission unit. The housing has a through hole. The photodetector is configured on the optical detector. a receiving light beam from the outer casing and entering through the through hole. The light emitting unit is disposed in the outer casing and is adapted to emit an emitted light beam, wherein a part of the emitted light beam is adapted to be transmitted to the outer casing via the through hole The power detector is disposed in the outer casing and is located on a transmission path of another portion of the emitted light beam to monitor the light intensity of the emitted light beam. The light transmitting unit is disposed on the power detector and covers the emitted light beam of the light emitting unit. One end of this other portion, and exposing one end of the portion of the light emitting unit that emits the emitted light beam, wherein the other portion of the emitted light beam from the light emitting unit is transferred to the power detector in the light transmitting unit. The light transmitting unit has a Reflecting the curved surface, and the reflective curved surface is adapted to reflect another portion of the emitted light beam from the light emitting unit to the power detector. The optical transceiving component of the creation example has a light transmission unit, so that another part of the emitted light beam is reflected by the reflective curved surface to the power detection state, so that the direction and position of the power detector can be more flexible. Not limited to = the power detector is placed in an upright position. This will help simplify the assembly process of the surface measurement n, and also help to reduce the overall size of the optical transceiver components. The above features and advantages will be more apparent and understood. The following detailed description of the embodiments will be described below with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view of an optical transceiver component according to an embodiment of the present invention. The optical transceiver component 1 of the present embodiment includes a housing 110, a photodetector 120, a light emitting unit 130, a power anger detector 140, and a light transmitting unit 150. The housing 11 has a through hole. In the present embodiment, the housing 110 includes a base 12 and an upper cover 114, wherein the base 112 is, for example, a transistor head (TO-header) and the upper cover 114 is electrically In the present embodiment, the through hole in is located on the upper cover 114. The light detector 112 is disposed in the outer casing 11 and is adapted to receive from the outer casing 110. In the present embodiment, the photodetector 120 is disposed on the susceptor 112, and the photodetector 120 is, for example, a photodiode. The photodetector 120 is adapted to receive the receiving beam 52 from an optical fiber 50 above the through hole 111, and convert the optical signal contained in the receiving beam 52 into an electrical signal after detecting the receiving beam 52. In an embodiment, the optical transceiver component 100 M406321 further includes a transimpedance amplifier 160 disposed in the housing 110 and electrically connected to the photodetector 120. The transimpedance amplifier 160 can be disposed on the pedestal 112 and is adapted to amplify the electrical signal transmitted by the photodetector 52 to facilitate interpretation. The illumination unit 130 is disposed within the housing 110 and is adapted to emit an emission beam 132' wherein a first portion 132a of the emission beam 132 is adapted to be transmitted out of the housing 110 via the through hole 111. The light emitting unit 130 is, for example, a laser diode (LD). The power detector 140 is disposed in the housing 110 and is located on a transmission path of a second portion 132b of the emitted light beam 132 to monitor the light intensity of the emitted light beam 132. In this embodiment, the power sensor 140 is, for example, a photodiode. The light transfer unit 150 is disposed on the power detector 140 and covers a first end 136a of the second portion 132b of the light emitting unit 130 that emits the light beam 132, and exposes the first portion of the light emitting unit 132 that emits the emitted light beam 132. One of the second ends 136b of 132a. The second portion 132b of the emitted light beam 132 from the illumination unit 130 is passed to the power detector 140 in the light transfer unit 150. The light transmitting unit 150 has a reflective curved surface 152 adapted to reflect the second portion 132b of the emitted light beam 132 from the light emitting unit 130 to the power detector 14A. In the present embodiment, the reflective curved surface 15 2 is, for example, a "curved convex surface. In the optical transceiver component 100 of the present embodiment, since the light transmitting unit 150 is employed to cause the second portion 132b of the emission beam 32 to be reflected by the reflective curved surface 152 to the power controller 14', the direction of the power detector (10) is set. It can be more flexible with the position, and is not limited to placing the power detector 14 in an upright manner. In this way, it helps to simplify the assembly process of the power detector 14 〇 7 M406321, and also helps to reduce the overall size of the optical transceiver component 100. The light emitting unit 130 and the power detector 140 are disposed on the base 112. In this embodiment, the optical transceiver component 100 further includes a carrier 170 disposed in the housing 110 and having a receiving surface 172. The light emitting unit 130 and the power detector 140 are disposed on the bearing surface 172, and the bearing The stage 170 is disposed on the base 112. Further, in the present embodiment, the light-emitting unit 13A is a side-emitting type laser diode, and the light-emitting layer 134 of the light-emitting unit 130 is substantially parallel to the light-absorbing layer 142 of the power detector 140. In other words, since the reflective curved surface 152 of the light transmitting unit 150 reflects the second portion 132b of the emitted light beam 132, the power detector 140 can be horizontally flattened on the carrying surface 172 like the light emitting unit 130 without having to make the power price The detector 140 is vertically disposed such that the light absorbing layer 142 is placed perpendicular to the light emitting layer 134. In this way, the assembly process of the optical transceiver component 100 can be simplified, thereby reducing the process. In addition, since the power detector 丨4〇 and the light-emitting unit 13〇 are both flat on the carrying platform 170, the optical transceiver component 1 can be vertically attached to the power detector without using another carrier. In addition to simplifying the process and reducing the cost, the volume of the optical transceiver component 1 can be reduced. In the present embodiment, the material of the light transmitting unit 150 is, for example, a transparent gel. However, in other embodiments, the material of the light transmitting unit 15A may be glass or other transparent material. Since the refractive index of the light transmitting unit 15 is larger than that of the air, the second portion 132 of the emitted light beam 32 transmitted in the light transmitting unit 15A is easily reflected by the reflective curved surface 152, even if total reflection occurs. In this way, the second portion 132 of the emission beam 132 can be reflected to the power detector 14 〇 M406321. In this embodiment, the optical transceiver component 100 further includes a wavelength division multiplexer (wavelength division) The multiplexer (WDM) 180 is disposed on the transmission path of the first portion 132a of the emission beam 132 between the light emitting unit 130 and the through hole 111, and is disposed to transmit the receiving beam 52 between the photodetector 120 and the through hole in. On the path. The wavelength of the transmitted beam 132 is different from the wavelength of the received beam 52, and the wavelength separating multiplexer 180 separates the transmission path of the first portion 132a of the emitted beam 132 from the transmission path of the received beam 52 depending on the wavelength. Specifically, the wavelength separating multiplexer 180 is, for example, a dichroic mirror, and the dichroic mirror is adapted to pass the receiving beam 52 from the through hole hi to the photodetector 120' and is adapted to The first portion 132a of the emitted light beam 132 from the light emitting unit 130 is reflected to the through hole ill. However, in other embodiments, the dichroic mirror may also reflect the received beam 52 to the photodetector 120' and pass the first portion 132a of the transmitted beam 132 to the via 111. In this embodiment, the wavelength separation multiplexer 18A can be disposed on the susceptor 112 by a supporting unit 230. In the present embodiment, the optical transceiver component 1 further includes a lens 190 disposed in the through hole 111 to concentrate the first portion 132a of the emitted light beam 132 in the optical fiber 50, and converge the received light beam 52 at a wavelength separation. On the machine 180. In the present embodiment, the optical transceiver component 1 further includes a plurality of pins 210 electrically connected to the light emitting unit 130, the photodetector 120, and the power detector 140, respectively. In addition, the lead pins 21 can be electrically connected to the system end or the user end, wherein the system end or the user end is, for example, a computer system, a server, a router (r〇uter) or other network system 9 M406321 Exhibition. For example, the system end and the user end each may have an optical transceiver component 100, and the two optical transceiver components 1〇〇 are connected by an optical fiber 5〇. The light detector 120 can convert the optical signal contained in the received light beam 52 into an electrical signal after detecting the received light beam 52, and the electrical signal is transmitted to the system end connected to the optical transceiver component 1 through the lead pin 21〇. Or the user end, and the signal is received. On the other hand, the system end or the user end can transmit a telecommunication to the optical transceiver component 1 to which it is connected, for example, to transmit the electrical signal to the light emitting unit 13 via the pin 210 (^ the light emitting unit 13 will be telecommunications) The 唬 is converted into the optical signal contained in the transmitted beam 132, and the power detector 14 可 can instantly monitor the power of the transmitted beam 132 to ensure the correctness of the optical signal. Thus, the signal is transmitted. The optical transceiver component 100 of the embodiment can achieve the function of two-way optical signal transmission and reception. In the embodiment, the optical transceiver component 1 can be disposed in a casing 3, and one end of the optical fiber 50 can be supported by a holder 4. The optical transceiver component 100 further includes a filter 220, and a transmission path of the receiving beam 52 disposed between the wavelength separating multiplexer 180 and the photodetector 120. The filter 22 is adapted to pass light having a wavelength of the received beam 52 through 'and block light having other wavelengths. Thus, the optical signal detected by the photodetector 120 is ensured to be free from other Stray light (such as the environment The interference of the stray light. However, in other embodiments, the filter may be disposed between the optical fiber 50 and the wavelength separating multiplexer 180, and the transmitting path of the receiving beam 52 and the transmitting beam 丨3 2 In the transfer path of a portion 132a, the filter is adapted to pass light having a wavelength of the received beam 52 M406321 and a wavelength of the emitted beam 132, and blocks light having other wavelengths. In summary, the implementation of the present invention In the optical transceiver component, since the light transmitting unit is used to reflect the second portion of the emitted light beam to the power detector by the reflective curved surface, the direction and position of the power detector can be more flexible, and is not limited to The power detector is placed in an upright manner. This helps to simplify the assembly process of the power detector and also helps to reduce the overall size of the optical transceiver component. Although the present application has been disclosed above by way of example, However, it is not intended to limit the creation, and any person having ordinary knowledge in the technical field can make some changes and refinements without departing from the spirit and scope of the creation. Therefore, the scope of protection of this creation is subject to the definition of the patent application scope. [Simplified illustration of the drawings] Fig. 1 is a schematic cross-sectional view of an optical transceiver component according to an embodiment of the present invention. [Description of main component symbols] 30 : housing 40 : holder 50 : optical fiber 52 : receiving light beam 100 : optical transceiver component 110 : housing 11 M406321 111 : through hole 112 : pedestal 114 : upper cover 120 : photodetector 130 : illuminating unit 132 : emitting light beam 132a The first portion 132b: the second portion 134: the light emitting layer 136a: the first end 136b: the second end 140: the power detector 142: the light absorbing layer 150: the light transmitting unit 152: the reflecting curved surface 160: the transimpedance amplifier 170: the carrying table 172: bearing surface 180: wavelength separation multiplexer 190: lens 210: lead 220: filter 230: support unit 12