五、新型說明: 【新型所屬之技術領域】 本新型是有關於一種發電系統,特別是指一種結合光 能與溫差進行發電的光電與熱電效應之複合型發電系統。 【先前技術】 由於石化能源的蘊藏量有限,但人類活動與工業發展 消耗了大量石化燃料,過度依賴石化燃料的結果除了引發 嚴重的能源危機外,使用石化燃料過程中所排放的大量二 氧化碳也對環境造成衝擊而成為環保議題,因此開發新的 替代源為未來能源主要發展重點。 雖然目前已有利用存在於自然環境中的太陽能'水力 、地熱、風力、溫差等自然現象進行發電的應用裝置與系 統。則述發電方式所用的能源雖然具有永不耗竭與不易產 生污染的特性,但仍受限於地理環境與天候不穩定、發電 效率較低等問題而存有待改善的空間。而且目前的發電系 統仍以大型集中型的電廠為主,為了改善能源的利用效率 與增加其使用的普遍性,未來使用能源的方式應可朝小型 化發展使強度相對較弱的能源也能受到利用。此外,配合 目前科技的進展所發展出的各種非碳能源的發電方式,使 原本將散失的能源再被利用,以減少能源的損失及提高能 源的利用效益,也是當前值得努力的方向。 【新型内容】 因此本新型之目#,即在提供一種能減少能源浪費 ,以增加發電效益的光電與熱電效應之複合型發電系統。 4 M397437 於是,本新型光電與熱電效應之複合型發電系統,包 合-發電模組及-與該發電模組電連接的蓄電模組。 該發電模組包括-太陽能板、一與該太陽能板相間隔 的致冷曰曰片、一夾設在該太陽能板與致冷晶片之間的集熱 單元,及一與該集熱單元相連接的發電機。 該致冷晶片包括一朝向該太陽能板的熱端面,及一與 該熱端面反向的冷端面。 亥熱單元包括相配合界定出一密閉的儲熱腔的一貼 附於該太陽能板的頂壁、—貼附於該致冷晶片的熱端面的 底土 連接在5亥頂 '底壁周緣之間的圍繞壁、一自外部 L伸進入㈣熱腔的熱交換管件,及__充填在該儲熱腔内 的儲熱液體。 該發電機為熱機型發電機,並與該集熱單元的熱交換 管件相連接。 該蓄電模組分別與該發電模組的太陽能板、致冷晶片 及該發電機電連接。 本新型的有益效果在於:利用該太陽能板、集熱單元 '熱機型發電機與致冷晶片㈣電特性與原理使不同類型 的發電元件整合為該發電模組,該太陽能板除了將光能轉 換為電能外’所吸收的熱能則被集熱單元吸收以驅動該發 電機運轉並將動能轉換為電能,該致冷晶片則藉由與該集 熱單元相貼觸所產生m而發電,最後再由該f電模也 收集不同發電元件所產生的電能,藉由這種合作互補的作 用關係改善能源的被利用率,使本新型減少熱能的散失進 5 而增加發電效益。 【實施方式】 、有關本新型之前述及其他技術内容、特點與功效,在 乂下配。參考圖式之—個較佳實施例的詳細說明中,將可 清楚的呈現。 多閱圖1、圖2與圖3’本新型光電與熱電效應之複合 型發電系統2的較佳實施例包含一發電模組3、_與該發電 模組3電連接的蓄電模組4,及—用於支撑該發電模組3的 支撐架單元5。 該發電模組3包括一太陽能板31、一與該太陽能板3ι 相間隔的致冷晶片32、—夾設在該太陽能板31與致冷晶片 32之間的集熱單元33,及一與該集熱單元相連接的發 電機34。 該太陽能板31能吸收光能與熱能,並將光能轉換為電 能。 s亥致冷晶片32包括一朝向該太陽能板31的熱端面321 ’及一與該熱端面321反向的冷端面322。 該集熱單元33包括相配合界定出一密閉的儲熱腔330 的一貼附於該太陽能板3 1的頂壁33 1、一貼附於該致冷晶 片32的熱端面321的底壁332、一連接在該頂、底壁331 、332周緣之間的圍繞壁333、一自外部延伸進入該儲熱腔 330的熱交換管件334,及一充填在該儲熱腔330内的儲熱 液體335 〇 其中,該頂壁331、底壁332與圍繞壁333都是由容易 M397437 導熱的材質所製成,該圍繞壁333並具有一覆設於其外表 面的吸熱層336 ’該吸熱層336是由吸熱材質所製成,藉此 ’使该集熱單元33能分別透過與該太陽能板31相貼附的 頂壁331與該圍繞壁333的吸熱層336吸收熱能,以加熱 該儲熱腔330内的儲熱液體335。該儲熱液體335可選用高 熱焓液體,使熱能容易被儲存。 違熱父換官件334具有相間隔且位於該儲熱腔33〇外 的一流入官段337、一流出管段338,及一連接在該流入管 铋337、流出官段338之間且位於該儲熱腔330内的吸熱管 4又339在本μ施例中,該吸熱管段339是設計成迂迴而彎 折延伸的盤管型式,但該吸熱管段339的型式不以此為限 〇 忒發電機34為熱機(heat engine)型發電機,並分別與該 集熱单元33的熱交換管件334的流入管段337、流出管段 338相連接。在本實施例中,該發電機為史特林引擎式 (他ling engine)發電機,並具有—與該錢單元33的熱交 換管件334相連通的氣室部341,—與該氣室部341相連接 的史特林引擎冑342及-與該史特林引擎部342相連接的 發弘。卩343,在该氣室部341與該熱交換管件内並有空 孔作為驅動該發電機34運轉的工作流體,溫度較低的空氣 自該氣,部341進入該熱交換管件334的流入管段337,在 :吸熱339吸收該儲熱液體335的熱能後形成溫度較 高=空氣後,再經由該流出管段338進入該氣室部341,使 X乱至邛341内的空氣產生溫差,藉此,利用空氣溫差將 7 M397437 熱月匕轉換為機械動能使該史特林引擎冑342運轉,再利用 if特林引擎部342相連接的發電㉝343將機械能轉換 忒集熱早π 33所收集的熱能除了供該發電機機34使 卜還此透過该底壁332加熱與其相貼觸的致冷晶片32 而面321,以在該致冷晶片32的熱端面3d與未受熱 的冷端面322之間造成溫^’進而藉由溫差在致冷晶片32 内形成電流達到發電的效果。 元6t^2、圖3與圖4’該蓄電模組4適於與—輸出單 :連接’並包括—分別與該太陽能板31、致冷晶片U ==34電連接的整流電路組合體41 '一與該 路、^體Μ電連接的變頻變壓單元42、一與 疋42電連接的輸出單元6,及—分㈣μ …該變頻㈣單…連接的二、:;路組合體 讲分於.丄 J畜电池43。精此’可先透 冷晶Π路t合體41整合及集中收集該太陽能板31、致 單元42轉所產生的電能’再經由該變頻變壓 一步使用,電後輸㈣該輸出單元6供進 用該輸出早元6可為雪调奸# 器。若有多餘的電能則可利用該蓄電池::以是家用電 ’當該發電模組3產生的電心::43健存備用。反之 儲存在嗜蓄 ㈣敷使用時,也可利用預先 給該==:,至該變頻變^42,再供 ,所儲存的電能也能供給該輸出單元6 讀和時 用。 以外的其他電器使 M397437 .需要補充說明的是,該變頻變壓單元42還可以斑一般 市電H)電連接,當該發電模組3產生的電能不足時,可利 用一切換開關(圖未示),將該變頻變壓單元42的供電來源 =電模組3切換為市電1。,於該發電模組3所提供的 、電源充足時,同樣可透過該切換開關切換為由該發電模組3 y 供電,藉此,使該輸出單元6能獲得穩定的供電。 , '納上t I新型光電與熱電效應之複合型發電系統2 ,可獲致下述的功效及優點,故能達到本新型的目的丫、 藉由將該太陽能板31、集熱單元33、熱機型發電機34 吳致冷晶片32整合為該發電模組3,而能有效地利用光能 與熱能配合不同發電元件的特性與原理,同時進行光電轉 換、熱電轉換與溫差發電等不同形式的發電,該太陽能板 31除了將光能轉換為電能外’所吸收的熱能被集熱單元 吸收後’透過熱電效應經由該發電機34先轉換機械動能再 轉換為電能,該致冷晶片32則藉由與該集熱單元η相貼 春 冑所產生的溫差而發電’最後再由該蓄電模組4收集該發 ‘ 1模組3所產生的電能,藉由這種合作互補的作用關係, 2原本自^散失於空氣中的熱能也能被再利用,使本新型 月b改善旎源的被利用率,並能有效提升發電效益。 ^惟以上所述者,僅為本新型之較佳實施例而已,當不 能以此限定本新型實施之範圍,即大凡依本新型申請專利 辜巳圍及新型說明内容所作之簡單的等效變化與修飾,皆仍 屬本新型專利涵蓋之範圍内。 【圖式簡單說明】 M397437 圖〗是/立體示意圖,說明本新型光電與熱電效應之 複合型發電系統的一較佳實施例; 圖2是一局部分解圖,說明該較佳實施例的一發電模 組的一太陽能板、一致冷晶片、一集熱單元及一發電機相 結合的情形; 圖3是一局部側視圖,說明該較佳實施例的發電模級 ^太陽此板、致冷晶片、集熱單元及發電機的連結關係; 一圖4疋一方塊圖,說明該較佳實施例的發電模組、〜 蓄电模組、一輪ψ@·ί· & _ J. 1* %出早兀與一市電相連接的情形。 10 M397437 m 【主要元件符號說明】 2 ..........複合型發電系統 3 ..........發電模組 31 .........太陽能板 32 .........致冷晶片 321 .......熱端面 322 .......冷端面 33 .........集熱單元 330 .......儲熱腔 33 1 .......頂壁 332 .......底壁 333 .......圍繞壁 334 .......熱交換管件 335 .......儲熱液體 吸熱層 337 338 339 34·. 341 342· 343 4… 41 ·· 42·· 43 ·· 5… 6 ··· 336 10 流入管段 流出管段 吸熱管段 發電機 氣室部 引擎部 發電部 蓄電模組 整流電路組合體 變頻變壓單元 蓄電池 支撐架單元 輸出單元 市電V. New description: [New technology field] This new type is related to a power generation system, especially a composite power generation system that combines the photoelectric energy and thermoelectric effect of generating light and temperature difference. [Prior Art] Due to the limited reserves of petrochemical energy, human activities and industrial development consume a large amount of fossil fuels. In addition to the serious energy crisis caused by excessive dependence on fossil fuels, the large amount of carbon dioxide emitted during the use of fossil fuels is also Environmental impacts have become an environmental issue, so the development of new alternative sources is the main focus of future energy development. Although there are currently applications and systems for generating electricity using natural phenomena such as solar water, geothermal heat, wind power, and temperature difference existing in the natural environment. Although the energy used in the power generation method has the characteristics of never depleting and not easily polluting, it is still limited by the geographical environment and the instability of the weather, and the low efficiency of power generation, and there is room for improvement. Moreover, the current power generation system is still dominated by large-scale centralized power plants. In order to improve the efficiency of energy use and increase the universality of its use, the way of using energy in the future should be able to be developed toward miniaturization, so that energy with relatively weak strength can also be affected. use. In addition, the various non-carbon energy generation methods developed in line with the current advances in technology have enabled the reuse of previously lost energy to reduce energy losses and improve energy utilization. It is also a current direction worthy of efforts. [New content] Therefore, the new type of #, is to provide a composite power generation system that can reduce the energy waste and increase the power generation efficiency of photovoltaic and thermoelectric effects. 4 M397437 Thus, the novel photovoltaic and thermoelectric effect hybrid power generation system comprises a power generation module and a power storage module electrically connected to the power generation module. The power generation module includes a solar panel, a cooling fin spaced from the solar panel, a heat collecting unit interposed between the solar panel and the cooling wafer, and a heat collecting unit Generator. The chilled wafer includes a hot end face facing the solar panel and a cold end face opposite the hot end face. The heat-receiving unit includes a top wall attached to the solar panel in cooperation with a sealed heat storage chamber, and a subsoil attached to the hot end surface of the refrigerant wafer is connected between the periphery of the bottom wall The surrounding wall, a heat exchange tube extending from the outer portion into the (four) heat chamber, and __ a heat storage liquid filled in the heat storage chamber. The generator is a heat generator and is connected to a heat exchange tube of the heat collecting unit. The power storage module is electrically connected to the solar panel, the cooling chip and the generator of the power generation module. The utility model has the beneficial effects of using the solar panel, the heat collecting unit 'the heat generator and the cooling chip (4) electrical characteristics and principle to integrate different types of power generating components into the power generating module, the solar panel except the light energy The heat energy absorbed by the conversion into electric energy is absorbed by the heat collecting unit to drive the generator to operate and convert the kinetic energy into electric energy, and the refrigerating wafer generates electricity by the m generated by the contact with the heat collecting unit, and finally The electric mode generated by the different power generating elements is also collected by the f electric mode, and the utilization ratio of the energy is improved by the cooperative complementary relationship, so that the new type reduces the loss of thermal energy and increases the power generation efficiency. [Embodiment] The foregoing and other technical contents, features and effects of the present invention are arranged under the arm. The detailed description of the preferred embodiment with reference to the drawings will be apparent. The preferred embodiment of the hybrid power generation system 2 of the present invention comprises a power generation module 3, a power storage module 4 electrically connected to the power generation module 3, And a support frame unit 5 for supporting the power generation module 3. The power module 3 includes a solar panel 31, a cooling chip 32 spaced apart from the solar panel 3, a heat collecting unit 33 interposed between the solar panel 31 and the cooling wafer 32, and a The generator 34 is connected to the heat collecting unit. The solar panel 31 is capable of absorbing light energy and heat energy and converting the light energy into electricity. The s-cooled wafer 32 includes a thermal end face 321 ' toward the solar panel 31 and a cold end surface 322 opposite the thermal end surface 321 . The heat collecting unit 33 includes a top wall 331 attached to the solar panel 31 and a bottom wall 332 attached to the thermal end surface 321 of the chilled wafer 32. a surrounding wall 333 connected between the top edges of the top and bottom walls 331 and 332, a heat exchange tube member 334 extending from the outside into the heat storage chamber 330, and a heat storage liquid filled in the heat storage chamber 330. 335, wherein the top wall 331, the bottom wall 332 and the surrounding wall 333 are made of a material that is easy to conduct heat by M397437, and the surrounding wall 333 has a heat absorbing layer 336 that is disposed on the outer surface thereof. It is made of a heat absorbing material, so that the heat collecting unit 33 can absorb heat energy through the top wall 331 attached to the solar panel 31 and the heat absorbing layer 336 of the surrounding wall 333, respectively, to heat the heat storage chamber. The heat storage liquid 335 in 330. The heat storage liquid 335 can be selected from a high heat enthalpy liquid to allow heat to be easily stored. The hot parent replacement member 334 has an inflow section 337, a first-stage outlet section 338 spaced apart from the heat storage chamber 33, and a connection between the inflow duct 337 and the outflow section 338. The heat absorbing tube 4 and 339 in the heat storage chamber 330 are in the present embodiment. The heat absorbing tube section 339 is a coil type which is designed to be bent and extended. However, the type of the heat absorbing tube section 339 is not limited to this. The motor 34 is a heat engine type generator and is connected to the inflow pipe section 337 and the outflow pipe section 338 of the heat exchange pipe member 334 of the heat collecting unit 33, respectively. In the present embodiment, the generator is a Sterling engine generator, and has a gas chamber portion 341 communicating with the heat exchange tube member 334 of the money unit 33, and the gas chamber portion The 341-connected Stirling engine 胄342 and the faculty connected to the Stirling engine unit 342.卩343, a hole is formed in the air chamber portion 341 and the heat exchange tube member as a working fluid for driving the generator 34, and a lower temperature air enters the inflow section of the heat exchange tube member 334 from the gas portion 341. After the heat absorption 339 absorbs the heat energy of the heat storage liquid 335 to form a higher temperature = air, the air chamber portion 338 enters the gas chamber portion 341, thereby causing a temperature difference between the X and the air in the crucible 341. The air temperature difference is used to convert 7 M397437 hot moon 为 into mechanical kinetic energy to run the Stirling engine 胄 342, and then use the power generation 33343 connected by the if-lin engine part 342 to convert the mechanical energy into the heat collection 早 33 collected. The heat energy is supplied to the generator 34 to heat the surface of the cooled wafer 32 to the surface of the cooled wafer 32 through the bottom wall 332, so as to be between the hot end face 3d of the cooled wafer 32 and the unheated cold end face 322. The effect of generating a temperature in the cooled wafer 32 by the temperature difference to achieve power generation is caused. The power storage module 4 is adapted to be connected to the output module and includes a rectifier circuit assembly 41 electrically connected to the solar panel 31 and the cooling wafer U==34, respectively. 'A frequency conversion transformer unit 42 electrically connected to the road, the body body, an output unit 6 electrically connected to the 疋42, and a minute (four) μ ... the frequency conversion (four) single ... connection of the second::; road combination body丄J livestock battery 43. This can be used to first integrate the cold crystal circuit, and then collect and concentrate the energy generated by the solar panel 31 and the unit 42. Then, the voltage is used in one step, and the power is output (4). Use this output as early as 6 to be a snow rapper. If there is excess power, the battery can be used:: It is household electricity. When the power generation module 3 generates the core: 43 hard storage. On the other hand, when stored in the memory (4), it can also be used to give the ==:, to the frequency conversion, and the stored energy can also be supplied to the output unit 6 for reading and use. Other electrical appliances other than M397437. It should be added that the variable frequency transformer unit 42 can also be electrically connected to the mains H). When the power generated by the power generating module 3 is insufficient, a switch can be used (not shown). The power supply source of the variable frequency transformer unit 42 = the electric module 3 is switched to the mains 1. When the power supply module 3 is supplied with sufficient power, the switching switch can also be switched to supply power from the power generating module 3 y , thereby enabling the output unit 6 to obtain stable power supply. , 'Nashang t I new photovoltaic and thermoelectric effect composite power generation system 2, can achieve the following effects and advantages, so can achieve the purpose of this new type, by the solar panel 31, heat collecting unit 33, heat The generator-type generator 34 Wu-cooled chip 32 is integrated into the power generation module 3, and can effectively utilize the characteristics and principles of different power generation elements by combining light energy and thermal energy, and simultaneously perform various forms such as photoelectric conversion, thermoelectric conversion, and thermoelectric power generation. In addition to converting the light energy into electrical energy, the solar panel 31 absorbs the heat energy absorbed by the heat collecting unit, and then converts the mechanical kinetic energy into electrical energy through the generator 34 through the thermoelectric effect, and the cooling wafer 32 borrows Power is generated by the temperature difference generated by the heat collecting unit η, and finally the electric energy generated by the transmitting module 1 is collected by the power storage module 4, and the cooperative relationship is complemented by the cooperation. The heat energy originally lost from the air can also be reused, so that the new moon b can improve the utilization rate of the power source and can effectively improve the power generation efficiency. However, the above is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the present invention to the simple equivalent change of the patent application and the new description. And modifications are still within the scope of this new patent. BRIEF DESCRIPTION OF THE DRAWINGS M397437 is a three-dimensional diagram illustrating a preferred embodiment of the novel photovoltaic and thermoelectric effect hybrid power generation system; FIG. 2 is a partial exploded view showing a power generation of the preferred embodiment a combination of a solar panel, a uniform cold wafer, a heat collecting unit and a generator; FIG. 3 is a partial side view showing the power generation module of the preferred embodiment, the solar panel, and the cooling wafer The connection relationship between the heat collecting unit and the generator; Fig. 4 is a block diagram showing the power generating module, the power storage module, and the rim of the preferred embodiment of the present invention. @·ί· & _ J. 1* % It is the case that it is connected to a city power. 10 M397437 m [Explanation of main component symbols] 2 ..........Composite power generation system 3 ..........Power generation module 31 .........Solar panel 32 .........cooling wafer 321 ....... hot end face 322 .......cold end face 33 ... ... heat collecting unit 330 ... .... heat storage chamber 33 1 . . . top wall 332 . . . bottom wall 333 . . . around the wall 334 ... heat exchange pipe fittings 335 .......heat storage liquid heat absorbing layer 337 338 339 34·. 341 342· 343 4... 41 ·· 42·· 43 ·· 5... 6 ··· 336 10 Inflow pipe section outflow pipe section heat pipe section generator gas Room engine department power generation unit storage module rectifier circuit assembly frequency conversion transformer unit battery support frame unit output unit mains