TWM335678U - Augmented navigation system of a moving object - Google Patents

Augmented navigation system of a moving object Download PDF

Info

Publication number
TWM335678U
TWM335678U TW96217509U TW96217509U TWM335678U TW M335678 U TWM335678 U TW M335678U TW 96217509 U TW96217509 U TW 96217509U TW 96217509 U TW96217509 U TW 96217509U TW M335678 U TWM335678 U TW M335678U
Authority
TW
Taiwan
Prior art keywords
moving object
navigation system
platform
data
central processing
Prior art date
Application number
TW96217509U
Other languages
Chinese (zh)
Inventor
Di Qiu
Feng Tian
Yuan-Yu Zhou
Original Assignee
Chiu Di
Grt Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiu Di, Grt Tech Co Ltd filed Critical Chiu Di
Priority to TW96217509U priority Critical patent/TWM335678U/en
Publication of TWM335678U publication Critical patent/TWM335678U/en

Links

Description

M335678 八、新型說明: 【新型所屬之技術領域】 本創作係關於一種導航系統,特別是,移動物體在不可見區 域内能夠被精確定位之導航系統。 【先前技術】 全球衛星定位系統(GPS)是一種已知的導航系統,其在衛星信 號可及的區域内可對移動物體進行準確的定位效果;然而在衛星 佗號不可及的區域内’例如地下室、随道,或是有干擾及遮蔽情 形,則衛星信號會失效無法進行定位。 慣性導航系統(INS)是另一種已知的導航系統,其允許自動操 作且不受地形影響。在進行起點位置初始化後,慣性導航系統可 以輸出移動物體的位置、速度、方向等訊息。然而其導航解會隨 著時間漂移,使得導航誤差增加。 是以取全球定位系統與慣性導航系統組合成一複合式導航系 統’可以利用INS的短時導航精度彌補GPS的導航誤差;此外利 用GPS的長時間導航精度彌補INS導航誤差隨時間遞增的誤差。 台灣專利第489212號(美國專利US 6167347)揭露一種定位及 ‘航方法,其耦合了一個全球定位系統(Gps)與一慣性測量單元 (IMU) ’並利用一》^爾曼濾波器(Kalman Filter)融合GPS與IMU的 信號以提高組合定位與導航系統的精度,且在且可利用IMU來輔 助術星訊號漏失。換言之,該IMU信號用以增強或補充GPS信號, 因此5亥專利的定位及導航仍是僅能適用於衛星信號可及的區域。 5 M335678 =專利us 7,117,_供—_,物體於導航系統 立的方法。當移動物體位於不可見區域時,利用單位時間 的位移量及方向計算出直線距離,並與—地圖進行媒合,藉此計 异出該移祕體的位置。細,移動物體的速度、方 化時,預估位置會有明顯誤差。 6者又 * #灣專利1284193揭露一種車輛的導航系統及修正方法,其主 要以GPS為導航的參考’配合—陀螺儀裝置取得一車行方向與角 度’且結合-電子地圖以計算出車行位置,據此達到修正嫩、的 導航誤差。然而,當GPS信號消失時應該如何進行定位與導航, 在該專利前案沒有揭露。 台灣專利125隱猶—種導織㈣角度校正方法及裝 置,其移動物_速度作為依據,且以—電子雜測得角度 校正值以校正GPS定位資料的角度,#此提高導航的精確度。然 而’該專利前案沒有教導如何在GPS谓測不到的區域執行定位及 導航。 美國專利US 6,826,477揭露-種行人的導航方法及設備。其 利用輸入行人的生理特徵(PhySi〇i〇gicai characteristics)狀態形成一 步行模式(Step Model),然後以慣性偵測裝置偵測行人的各方向加 速度、方向,以及藉GPS偵測行人的位置,並將各項資料輸入該 步行模式,進而預測出該行人的位置、速度及方向。其中步行模 式的麵值與GPS峨雛可以藉由—卡_曼滤波驗行資料融 合。然而,在該專利案中沒有教導如何在GPS偵測不到的區域執 M335678 行定位及導航。 【新型内容】 由於先前技触GPS無信?_件下無法產蚊減導航作 用’或是導航及定位的精確度不足,因此本創作提供一種創新的 方法與系統以解決先前技術的缺點。 、本創作的j的係在提供一種移動物體的精確導航系統與方 法’其具有—前端平台用以提供哪資料及慣性侧資料;一後 端平台具有-預估器以進行資料的融合與預測;—無線網路用以 使該前端平台的資料傳遞到後端平台;以及-誤差模型(_r model)配置在則端平台或後端平台,其用以讀取肥資料及慣性 偵測貝料赠立-數學模型;在移祕體進人不可見區域時,輸 入-初始值或-輸人值於騎顏型使其產生—校正值,該校正 值輸入該預估H與難侧#料融合以形成―預估位置用以對應 該移動物齡—柯聽域雜置與職雜。 〜 以下即根據本創作所揭露的目的、功效及組態,舉出較佳實 施例,並配合圖式詳細說明。 【實施方式】 縣閱第1圖,一導航系統10包含一全球定位系統接收器 (GPS receiver) 12用以接收來自至少一個人造衛星11所傳送的二 置資料。一慣性偵測裝置14用以個-移動物體的速度、距離、 方向及角度等。該移動物體包含移動的車子、移動的貨物或移動 的人等等。 M335678 該GPS接收器12與該慣性偵測裝置14分別連結一中央處理 單元16,且該GPS接收器12所接收的資料以及該慣性偵測裝置 14所偵測到資料分別傳送到該中央處理單元16。其中,該慣性偵 測裝置14 T以包含-加速度器142、-電子羅盤144及一陀螺儀 146。 一無線傳輸模組18係用以連接該中央處理單元16用以傳送 該GPS資料及該加速度器142、該羅盤144及該陀螺儀14 測的資料。 ' 該全球定位系統接收器12、該慣性偵測裝置14、該中央處理 單兀16及該無線傳輸模組18係配置在—可攜式裝置或固定式裝 置内’且將該裝置定義為一前端平台2〇。 -後端平台30係包含,號接收器32用以接收來自該前端 平台20的訊息。-誤差模型36連結該峨接收器&,且能夠讀 取該前端平台20所輸出的訊息作為參考值。 及誤差模型36係利用加速器(Accder〇meter),陀螺儀(咖〇 Meter)及電子羅盤(compass)等感測器所债測得知的某移動物體的 加速度及方㈣,織可_兩_散式解__分運算的 方式將加速度及方位㈣資訊轉換錢度和轉的資訊。 該後端平台3G每:欠騎-個_輯計算剩_對速度、 方位角和位置皆與前-個觀察點的位置有關。相鄰二個觀察點的 時間間隔可以被設定成相同,舉例而言,運算時間的區間可以是 每次GPS運算完成賴定參考時_丨秒)。在同_日_,該 8 M335678 後端平台30所計算得到的相對速度、方位角和位置與利用 感測器於良好收訊下所計算出來的目前絕對位置、速度、和方位 角比對後,即可產生一誤差修正量,而再經過統計分析模式,則進 一步得到一感測器平均誤差偏移量(ΔΧη)。 當GPS接收機進入弱或無收訊區時,該後端平台3〇利用接收 到慣性偵測裝置14之加速度|| 142,陀螺儀(GylO Me㈣146及電M335678 VIII. New description: [New technical field] This creation is about a navigation system, in particular, a navigation system in which a moving object can be accurately positioned in an invisible area. [Prior Art] The Global Positioning System (GPS) is a known navigation system that can accurately locate moving objects in areas where satellite signals are reachable; however, in areas where satellite nicknames are not available, for example ' In the basement, on the way, or in the presence of interference and obscuration, the satellite signal will fail to locate. The Inertial Navigation System (INS) is another known navigation system that allows for automatic operation and is unaffected by terrain. After initializing the starting position, the inertial navigation system can output information such as the position, speed, and direction of the moving object. However, its navigation solution drifts with time, causing navigation errors to increase. The combination of global positioning system and inertial navigation system into a composite navigation system can use the short-time navigation precision of INS to compensate GPS navigation error; in addition, the long-term navigation accuracy of GPS is used to compensate the error of INS navigation error with time. Taiwan Patent No. 489,212 (U.S. Patent No. 6,167,347) discloses a positioning and 'aircrafting method, which couples a global positioning system (Gps) with an inertial measurement unit (IMU) 'and utilizes a ^man filter (Kalman Filter) The GPS and IMU signals are combined to improve the accuracy of the combined positioning and navigation system, and the IMU can be used to assist in the loss of the star signal. In other words, the IMU signal is used to enhance or supplement the GPS signal, so the positioning and navigation of the 5H patent is still only applicable to the area where the satellite signal is reachable. 5 M335678 = Patent us 7,117, _ for -_, object in the navigation system. When the moving object is located in the invisible area, the linear distance is calculated by the displacement amount and direction of the unit time, and the map is combined with the map to calculate the position of the moving body. Fine, the speed of the moving object, the squared position, there will be obvious error in the estimated position. 6 and * #湾 patent 1284193 discloses a navigation system and a correction method for a vehicle, which mainly uses GPS as a navigation reference 'coordination-gyro device to obtain a direction and angle of a vehicle' and combines - an electronic map to calculate a vehicle Position, according to which the correction error is achieved. However, how positioning and navigation should be performed when the GPS signal disappears is not disclosed in the patent. Taiwan patent 125 隐 — 种 种 种 种 种 种 种 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四However, the patent does not teach how to perform positioning and navigation in areas that are not detected by GPS. U.S. Patent No. 6,826,477 discloses a pedestrian navigation method and apparatus. It uses a physiological model of the input pedestrian (PhySi〇i〇gicai characteristics) state to form a walking model (Step Model), and then uses the inertial detection device to detect the acceleration and direction of the pedestrian in various directions, and to detect the position of the pedestrian by GPS. The data is entered into the walking mode to predict the position, speed and direction of the pedestrian. The face value of the walking mode and the GPS smashing can be combined by the card_man filter test data. However, there is no teaching in this patent how to perform M335678 line positioning and navigation in areas not detected by GPS. [New content] This creation provides an innovative method and system to solve the shortcomings of the prior art because the previous technology touches GPS without trust, and the accuracy of navigation and positioning is insufficient. The author of this creation is to provide a precise navigation system and method for moving objects. It has a front-end platform for providing data and inertial side data; a back-end platform has an - predictor for data fusion and prediction. - the wireless network is used to transfer the data of the front-end platform to the back-end platform; and the error model (_r model) is configured on the end platform or the back-end platform for reading the fat data and the inertial detection bedding A gift-mathematical model; when the secret body enters the invisible area, the input-initial value or the input value is generated in the riding type to generate a correction value, and the correction value is input to the estimated H and the difficult side. Fusion to form the "estimated position to correspond to the age of the moving object - the misunderstanding and miscellaneous. ~ The following is a description of the preferred embodiments and the detailed description in accordance with the purpose, function and configuration disclosed in the present invention. [Embodiment] Referring to Figure 1, a navigation system 10 includes a GPS receiver 12 for receiving binary data transmitted from at least one artificial satellite 11. An inertial detecting device 14 is used for the speed, distance, direction and angle of the moving object. The moving object contains a moving car, a moving cargo or a moving person, and the like. M335678 The GPS receiver 12 and the inertial detection device 14 are respectively coupled to a central processing unit 16, and the data received by the GPS receiver 12 and the data detected by the inertial detection device 14 are respectively transmitted to the central processing unit. 16. The inertial detecting device 14T includes an accelerometer 142, an electronic compass 144, and a gyroscope 146. A wireless transmission module 18 is coupled to the central processing unit 16 for transmitting the GPS data and the accelerometer 142, the compass 144, and the data measured by the gyroscope 14. The global positioning system receiver 12, the inertial detection device 14, the central processing unit 16 and the wireless transmission module 18 are disposed in a portable device or a stationary device and define the device as a Front-end platform 2〇. The backend platform 30 includes a number receiver 32 for receiving messages from the front end platform 20. The error model 36 is coupled to the UI receiver & and is capable of reading the message output by the front end platform 20 as a reference value. And the error model 36 is an acceleration and a square of a moving object known by an accelerator, such as an accelerator, a gyroscope, and an electronic compass. The method of the __minute operation of the scatter method converts the acceleration and orientation (4) information into the information of the money and the transfer. The back-end platform 3G is: owing to the ride - the number of calculations remaining _ the speed, azimuth and position are related to the position of the previous observation point. The time interval between two adjacent observation points can be set to be the same. For example, the interval of the operation time can be _ leap seconds when the GPS operation completes the reference reference. In the same day, the relative speed, azimuth and position calculated by the 8 M335678 back-end platform 30 are compared with the current absolute position, velocity, and azimuth calculated by the sensor under good reception. Then, an error correction amount is generated, and after the statistical analysis mode, a sensor average error offset (ΔΧη) is further obtained. When the GPS receiver enters the weak or no-receiving zone, the back-end platform 3 utilizes the acceleration || 142 received by the inertial detecting device 14, the gyroscope (GylO Me (four) 146 and the electric

子羅盤144各項資料作為一初始值或-輸人值輸入該誤差模型36 以產生別述之感測器平均誤差偏移量“处),該感測器平均誤差偏 移篁與該初始值或輪入值再進入一預估器(如EKF,_職咖『, filter’ unscented 仙印 异’配合路姉繪的技巧及圖資喊的鎖路魏,财以進行漂 移位置的修正,峨顺準定位的效果。 V〜的疋’。如端平台2〇的訊息包含gps資料及慣性债 測裝置Μ的偵測資料,表示該移動物體位在Gps可摘測的區域(可 見區域),此辆誤細型%執行資料分析與數作不 輪出感測器平均誤差偏移量(ΔΧη)。 建仁不 。忒預估& 34係連結該訊號接收器%與該誤差模型%。該訊 =收Γ 32與該誤差模型%分別將前端平台2G的輸出訊息以及 為平均秩差偏移量(Δχη)傳送至該預估器、%内,且各 ;/預估恭34内進行資料融合並產生-預估位置一顯示哭38 連結該預估哭W ρ^不為38 ^ 一電子地圖39以顯示該移動物體的位置 久連動軌跡。 9 M335678 一無線網路40係位於該前端平台2〇與該後端平台邓之間, 用以使該前端平台20的輸出訊息藉該無線網路4〇傳送到該後端 ' 平台40。該無線網路牝可以是GMS網路、GPRS網路、zigbee . 網路、藍牙網路,或其組合。 . 赫閱第2 ®,本實細與前—實酬的*_在於將該誤 差模型36配置在該前端平台20内。 該誤錢型36 _麟收GPS接收n 12的定位資料以及該 • 慣性偵測裝置14的偵測資料,且依各資料產生-數學模型。 當僅有慣性_裝置14傳送侧資料至賴麵型36時, ^誤差模型36產生及輸出一感測器平均誤差偏移量(△圳。該慣 性侧裝置14的_資料與該删校正值藉該無線傳輸模組18 及無線網路40傳送到該後端平台3〇。該預估器%接收各項資料 後經融合及計算可以產生一預估位置。 Μ上_露_估11 34可以是—硬體、-軟體或是-拿刃體, • 例如以卡爾曼渡波器(KalmanFilter)來融合資料;而該後端平台3〇 可以是個人電腦(PC)或是伺服器。 - 關於―軸物體在不可紐域驗置及運祕跡的預測原理 - 如下·· ’、 . 睛參閱第3A圖’圖中顯示—移動物體以GPS進行絕對位署 的定位及其運動轨跡的描述,如P1、P2、Pm^== 域…如區域A、區域c,該Gps的定位及運動資料可以被明確 、’、、、、丁出來而在不可見區域,如區仙,因無法取得的定 M335678 位資料,所以顯示成空白區域。 > ]第3B圖’圖中顯示—移動物體以gPS進行絕對位置 的疋位與運動執跡的描述 一 2、P3...Pn),同時也顯示該慣性偵 置進行相對位置之偵測與運動執跡之描述(Q1、Q2、The sub-compass 144 data is input as an initial value or an input value to the error model 36 to generate a sensor average error offset "where", the sensor average error offset 篁 and the initial value Or enter the value and then enter a predictor (such as EKF, _ staff coffee 『, filter 'unscented 仙印 异' with the skills of the road painting and the map of the shouting of the lock Wei, for the correction of the drift position, 峨The effect of the positioning is as follows: V~疋'. If the message of the end platform 2〇 contains the gps data and the detection data of the inertial debt measuring device, the moving object is located in the Gps extractable area (visible area), This miscellaneous type % performs data analysis and the number of non-rounded sensor average error offsets (ΔΧη). Jianren does not. 忒 Estimate & 34 series link the signal receiver % with the error model %. The message=receipt 32 and the error model % respectively transmit the output message of the front end platform 2G and the average rank difference offset (Δχη) to the predictor, %, and each; Fusion and Produce - Estimated Position One Shows Cry 38 Link to the Estimate Cry W ρ^ Not for 38 ^ An electronic map 39 is used to display the position of the moving object. 9 M335678 A wireless network 40 is located between the front platform 2 and the back platform Deng to enable the output information of the front platform 20 to be borrowed. The wireless network 4 is transmitted to the backend 'platform 40. The wireless network can be a GMS network, a GPRS network, a zigbee. a network, a Bluetooth network, or a combination thereof. . The actual fineness and the front-real pay** are to arrange the error model 36 in the front end platform 20. The error money type 36 _ lining GPS receives n 12 positioning data and the detection of the inertial detecting device 14 The data is generated according to each data-mathematical model. When only the inertia_device 14 transmits the side data to the surface type 36, the error model 36 generates and outputs a sensor average error offset (Δzhen. The data and the correction value of the side device 14 are transmitted to the back-end platform 3 by the wireless transmission module 18 and the wireless network 40. The predictor % receives the data and then generates and generates a pre-mixed data. Estimate the position. Μ上_露_估计11 34 can be - hardware, - software or - take Body, • For example, KalmanFilter is used to fuse data; and the back-end platform 3〇 can be a personal computer (PC) or a server. - About the "axis object in the non-new area inspection and transport secrets The principle of prediction - as follows · ···. See the figure in Figure 3A's figure - the description of the positioning of the moving object by GPS and its motion trajectory, such as P1, P2, Pm^== domain... In the area A and the area c, the positioning and motion data of the Gps can be clearly defined, and the ', ,, and D, and the invisible area, such as the area, are displayed as blank areas because the M335678 bit data cannot be obtained. > ] Figure 3B' shows the description of the position and movement of the absolute position of the moving object in gPS. 2, P3...Pn), and also shows the relative position detection of the inertial detection. Description of the execution of the movement (Q1, Q2

m。在區域a與區域c包含gps定位資料及慣性_裝置 M、測貝料’所以顯示出二條不同但接近的曲線,且相對應的資 =點)二U合,這是因為慣性偵測裝置的偵測資料會產生偏差 里換口之’對每一個偵測位置而言,GPS資料與慣性侦測資料 間存在一誤差偏移量(ΔΧ),且滿足: P=Q+AX ⑴ 在區域B内,雖然無法取得GPS定位㈣,蚊慣性價測裝 置仍可以發揮侧魏並提供侧㈣,因此吾人以慣性摘測裝 置的偵/職料為依據’配合該誤差麵域找感靡平均誤差m. In the area a and the area c, the gps positioning data and the inertia_device M, the bedding material are displayed, so two different but close curves are displayed, and the corresponding capital=points) are combined, because the inertial detecting device The detection data will change the deviation. For each detection position, there is an error offset (ΔΧ) between the GPS data and the inertial detection data, and it satisfies: P=Q+AX (1) in area B Inside, although GPS positioning cannot be obtained (4), the mosquito inertia price measuring device can still play the side Wei and provide the side (4). Therefore, based on the detection/work material of the inertial sampling device, we use the error area to find the average error of the sensory area.

偏移篁(趣),代人方程式⑴則產生一預估位置卿祕㈣p〇邠加, EP)如下: EPn=Qn+AXn (2) 其中,η表示在不可見區域所產生之預估次序且n-丨。Δχι 係以該移動物體在進入該不可見區域前的最後一筆Gps資料及慣 Is生倘測負料為一初始值輸入到§亥§吳差模型所產生之感測器平均誤 差偏移量;當η$2 ’ EPn-1與Qn為一輸入值被輸入到該誤差模型 以產生ΔΧη。關於該誤差模型的建立方式已闡述於前面的說明内 容0 11 M335678 請參閱第4圖’關於該移動物體的定位及導航方法如下: 步驟S51係為讀取GPS資料及慣性_資料程序。其中,該 性制貧料包含該移__位置、方向、速度大小及加速度大 小專㈣,且賴_晴料可藉由—縣資料處理程序供撕 她P顚_)執行雜訊過滤相se f細· correction)及數位化(digitizatiQn)。Offset 篁 (fun), the generation equation (1) produces an estimated position secret (4) p〇邠 plus, EP) as follows: EPn = Qn + AXn (2) where η represents the estimated order produced in the invisible area And n-丨. Δχι is the average error offset of the sensor generated by the last Gps data and the inertia of the moving object before entering the invisible region as an initial value input to the §Houwu difference model; When η$2 'EPn-1 and Qn are an input value, the error model is input to generate ΔΧη. The manner in which the error model is established has been described in the previous description. 0 11 M335678 Please refer to Fig. 4'. The positioning and navigation method for the moving object is as follows: Step S51 is to read the GPS data and the inertia_data program. Among them, the nature of the poor material contains the shift __ position, direction, speed and acceleration size (four), and Lai _ clear material can be used to tear her P顚_) by the county data processing program to perform noise filtering phase se f fine · correction) and digitization (digitizatiQn).

步驟S52係為移動物體的所在區域判別程序。若可讀取到肥 貧料及慣性_資料關定該移動物體位在—可見輯,如此一 來,後端平台即可依該GPS資料顯示該移動物體的位置與運動軌 跡。若僅能讀取到慣性_資料,則判定該移動物體位在-不可 見區域,此時進入預測校正值的產生程序。 步驟S53係為產生一預測校正值的程序。其係以該移動物體Step S52 is a discrimination process for the area where the moving object is located. If the fat and the inertia are read, the data is located in the visible series, so that the back platform can display the position and motion track of the moving object according to the GPS data. If only the inertia_data can be read, it is determined that the moving object is in the -invisible area, and at this time, the generation procedure of the predicted correction value is entered. Step S53 is a program for generating a prediction correction value. The moving object

GPS資料包含該移動物體的位置觀測值、 運動狀態觀測值;該慣 在進入不可見區域前的最後—筆Gps f料及慣性偵測資料為輸入 值/初始值,且簡讀/初雑撕人賴細型射經計算而產 生一感測器平均誤差偏移量ΔΧη。 步驟S54係為移動物體在不可見區域内的位置與運動軌跡預 測程序。其係於-預估器内融合該慣性偵測資料與該預測校正值 形成-預估位置(ΕΡ)。該預估位置㈣可以顯示於—顯示器。 此外若本創作所揭露的系統隨著時間遞延仍僅讀取到慣性 偵,則貝料,黯示移動物體未離開不可見區域。該預估位置值(ΕΡ) 作為步驟S53所揭露之預測校正值程序中的輸入值並配合該誤差 12 M335678 、\ 。疋以’當該移動物體在不可見區域内,本系統可 以產生複數個難位置以表錢鶴物_位置及運動執跡。The GPS data includes the position observation value and the motion state observation value of the moving object; the last--Gps material and inertial detection data before entering the invisible area are input values/initial values, and the short reading/first tearing A sensor-averaged error offset ΔΧη is generated by calculation of the fine beam. Step S54 is a position and motion trajectory prediction procedure of the moving object in the invisible area. It is formed by integrating the inertial detection data with the prediction correction value in the -predator to form an estimated position (ΕΡ). The estimated position (4) can be displayed on the display. In addition, if the system disclosed in this creation still reads only inertia detection over time, the material indicates that the moving object has not left the invisible area. The estimated position value (ΕΡ) is the input value in the predictive correction value program disclosed in step S53 and is matched with the error 12 M335678 , \ .疋 ” When the moving object is in the invisible area, the system can generate a plurality of difficult positions to display the money and the position and movement.

因為本創作所揭露的系統與方法可以在GPS無法觀測的不可 見區域内顯示出被追_移祕體的位置與運動狀態,因此具有 精確疋位及導航的魏’而翻上可以與手持裝置結合以作為旅 仃者、登山者或救難者的導航H ;配合電子地酬成為車辆的導 航裔’再加上無線網路則可以達到為車輛的追縱與監控,而配設 5己憶體元件則可以作為行車記錄器。 以上乃本創作之較佳實_以及設計圖式,惟較佳實施例以 及设計圖賴是舉舰明,麟祕限制賴作技藝之權利範 圍’凡以均等之技藝手段、或為下述「申請專利範圍」内容所涵 蓋之權利範圍而實施者,均不脫離本創作之範疇而為申請人之權 利範圍。Because the system and method disclosed in the present invention can display the position and motion state of the secreted body in an invisible area that cannot be observed by the GPS, so that the camera can be accurately mounted and navigated. Combined with the navigation H as a traveler, climber or rescuer; with the electronic reward to become the navigation of the vehicle' plus the wireless network can achieve the vehicle's tracking and monitoring, and set up 5 memories The body element can be used as a driving recorder. The above is the better _ and the design of the creation. However, the preferred embodiment and the design diagram are the stipulations of the squad, and the stipulations of the stipulations of the stipulations of the syllabus The scope of the rights covered by the contents of the "Scope of Application for Patent Application" is not within the scope of this creation and is the scope of the applicant's rights.

模 【圖式簡單說明】 第1圖係本創作之一導航系統示意圖。 第2圖係本創作另一導航系統示意圖。 弟3A圖係本創作之導航系統顯示一移動物體在可見區域之位置 與運動狀態示意圖。 第3B圖本創作之導航系統顯示一移動物體在不可見區域之位置與 運動狀態示意圖。 第4圖係本創作之導航方法流程圖。 13 M335678 11人造衛星 14慣性偵測裝置 144羅盤 18無線傳輸模組 30後端平台 34預估器 38顯示器 【主要元件符號說明】 ίο導航系統 12全球定位系統接收器 142加速度器 146陀螺儀 16中央處理單元 20前端平台 32訊號接收器 36誤差模型 39電子地圖 40無線網路 S51讀取GPS資料及慣性偵測資料程序 S52係移動物體的所在區域判別程序 S53係產生一預測校正值的程序 S54係移動物體在不可見區域的位置與運動執跡預測程序Mode [Simple description of the diagram] Figure 1 is a schematic diagram of one of the navigation systems of this creation. Figure 2 is a schematic diagram of another navigation system of the present creation. The 3A map is a schematic diagram showing the position and motion state of a moving object in the visible region. Figure 3B shows the navigation system of the present invention showing a position and motion state of a moving object in an invisible area. Figure 4 is a flow chart of the navigation method of the present creation. 13 M335678 11 artificial satellite 14 inertial detection device 144 compass 18 wireless transmission module 30 back-end platform 34 predictor 38 display [main component symbol description] ίο navigation system 12 global positioning system receiver 142 accelerometer 146 gyroscope 16 central Processing unit 20 front end platform 32 signal receiver 36 error model 39 electronic map 40 wireless network S51 reading GPS data and inertial detection data program S52 is the moving object area determination program S53 is a program to generate a prediction correction value S54 Position and motion obstruction prediction program for moving objects in invisible areas

1414

Claims (1)

M335678 九、申請專利範圍: 1·種移動物體的精確導航系統,係用以顯示該移動物體的位 置與運動軌跡,其包含: 一剷置平台’係配置在該移動物體’其具有一中央處理單元, 一 GPS接收器與一慣性偵測裝置連結該中央處理單元,及一無線傳 輸模組連結該中央處理單元; 一後端平台,具有一訊號接收器及一顯示器分別與一預估器連 結’該訊號接收器用以接收該前置平台的輸出訊號,該預估器用以 處理來自該前置平台的輪出訊息,該顯示器用以顯示該預估器的輸 出資訊; 一無線網路,係位於該前置平台與後端平台之間,用以將該前 置平台的輸出訊號傳送到該後端平台的該訊號接收器;以及 一誤差模型,係建立在該前置平台與該後端平台之其一,且與 該中央處理單元或預估器連結。 2·如申請專利範圍第1項所述之移動物體的精確導航系統,其 中该慣性偵測裝置包含一加速度器、一電子羅盤及一陀陀儀且連結 該中央處理單元。 3·如申請專利範圍第1項所述之移動物體的精確導航系統,其 中该誤差模型係一軟體,一硬體或一韌體,用以將該GPS接收器的 疋位貧料與該慣性偵測裝置之偵測資料進行離散式數學累積及/或 積分運算。 4·如申請專利範圍第1項所述之移動物體的精確導航系統,其 15 M335678 中,該無線網路包含GSM網路、GPRS網路或Zigbee網路。 5. 如申請專利範圍第1項所述之移動物體的精確導航系統,其 中,該後端平台可以是一電腦或一伺服器。 6. 如申請專利範圍第1項所述之移動物體的精確導航系統,其 中,該預估器包含^一^^爾曼濾、波器。 16M335678 IX. Patent application scope: 1. A precise navigation system for moving objects, which is used to display the position and motion trajectory of the moving object, and includes: a shovel platform is disposed in the moving object' which has a central processing a unit, a GPS receiver and an inertial detection device coupled to the central processing unit, and a wireless transmission module coupled to the central processing unit; a back-end platform having a signal receiver and a display respectively coupled to an estimator The signal receiver is configured to receive an output signal of the front platform, the predictor is configured to process a round-out message from the front platform, and the display is used to display the output information of the predictor; Between the front platform and the back end platform, the output signal of the front platform is transmitted to the signal receiver of the back platform; and an error model is established on the front platform and the back end One of the platforms and is connected to the central processing unit or predictor. 2. The precise navigation system for a moving object according to claim 1, wherein the inertial detecting device comprises an accelerometer, an electronic compass and a gyro and is coupled to the central processing unit. 3. The precise navigation system for a moving object according to claim 1, wherein the error model is a software body, a hardware body or a firmware body for squeezing the GPS receiver with the inertia The detection device detects the data for discrete mathematical accumulation and/or integration operations. 4. The precise navigation system for a moving object as described in claim 1, wherein in the 15 M335678, the wireless network comprises a GSM network, a GPRS network or a Zigbee network. 5. The precise navigation system for a moving object according to claim 1, wherein the back end platform is a computer or a server. 6. The precise navigation system for a moving object according to claim 1, wherein the predictor comprises a filter and a wave filter. 16
TW96217509U 2007-10-19 2007-10-19 Augmented navigation system of a moving object TWM335678U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96217509U TWM335678U (en) 2007-10-19 2007-10-19 Augmented navigation system of a moving object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96217509U TWM335678U (en) 2007-10-19 2007-10-19 Augmented navigation system of a moving object

Publications (1)

Publication Number Publication Date
TWM335678U true TWM335678U (en) 2008-07-01

Family

ID=44328754

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96217509U TWM335678U (en) 2007-10-19 2007-10-19 Augmented navigation system of a moving object

Country Status (1)

Country Link
TW (1) TWM335678U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI383127B (en) * 2009-06-12 2013-01-21 Inventec Appliances Corp Method for velocity estimation in gps dead reckoning
TWI394687B (en) * 2010-05-20 2013-05-01 Nat Defence University Hand-launched unmanned aerial system
TWI417520B (en) * 2010-08-19 2013-12-01 Hon Hai Prec Ind Co Ltd Electronic device and method for detecting errors of gps of the electronic device
TWI453372B (en) * 2009-06-16 2014-09-21 Casio Computer Co Ltd Positioning device and positioning method
TWI458940B (en) * 2012-07-13 2014-11-01 Activity recording device and recording method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI383127B (en) * 2009-06-12 2013-01-21 Inventec Appliances Corp Method for velocity estimation in gps dead reckoning
TWI453372B (en) * 2009-06-16 2014-09-21 Casio Computer Co Ltd Positioning device and positioning method
TWI394687B (en) * 2010-05-20 2013-05-01 Nat Defence University Hand-launched unmanned aerial system
TWI417520B (en) * 2010-08-19 2013-12-01 Hon Hai Prec Ind Co Ltd Electronic device and method for detecting errors of gps of the electronic device
TWI458940B (en) * 2012-07-13 2014-11-01 Activity recording device and recording method thereof

Similar Documents

Publication Publication Date Title
TWI357493B (en) Augmented navigation system and method of a moving
CN101907714B (en) GPS aided positioning system and method based on multi-sensor data fusion
NL1030943C2 (en) Method for storing the position of a parked vehicle and navigation device adapted for that purpose.
US8260543B2 (en) Hidden point detection and warning method and apparatus for navigation system
US20090070038A1 (en) Navigation Device with Automatic Gps Precision Enhancement
CN101476891A (en) Accurate navigation system and method for movable object
CN106908060A (en) A kind of high accuracy indoor orientation method based on MEMS inertial sensor
CN102239387B (en) Determine equipment and the method for the feature in the path that the continuous position of the triaxial accelerometer being rigidly connected to moving meter is formed
CN104181573B (en) Big Dipper inertial navigation deep integrated navigation micro-system
JP2009526980A (en) Motion capture device and method related thereto
CN105783923A (en) Personnel positioning method based on RFID and MEMS inertial technologies
TWM335678U (en) Augmented navigation system of a moving object
CN110967010B (en) Method for non-blind area vehicle positioning system based on satellite navigation and inertial navigation
CN107576327A (en) Varistructure integrated navigation system design method based on Observable degree analysis of Beidou double
Hu et al. Fusion of vision, GPS and 3D gyro data in solving camera registration problem for direct visual navigation
US10006770B2 (en) Remote location determination system
Vavouranakis et al. Recognizing driving behaviour using smartphones
JP5994237B2 (en) Positioning device and program
JP2004085222A (en) Positioning apparatus of mobile unit, positioning method, and computer program
KR101445872B1 (en) apparatus and method for estimating position of vehicle usig driving Record
Chin et al. Interactive virtual indoor navigation system using visual recognition and pedestrian dead reckoning techniques
JP5125534B2 (en) Direction detection device and direction detection program
WO2021220416A1 (en) Position measuring device, position measuring method, and program
Kourogi et al. Pedestrian dead reckoning and its applications
JPH05312933A (en) Navigation system

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees