TWM322234U - Electronic clinical thermometer with capability of measuring temperature precisely - Google Patents

Electronic clinical thermometer with capability of measuring temperature precisely Download PDF

Info

Publication number
TWM322234U
TWM322234U TW95222425U TW95222425U TWM322234U TW M322234 U TWM322234 U TW M322234U TW 95222425 U TW95222425 U TW 95222425U TW 95222425 U TW95222425 U TW 95222425U TW M322234 U TWM322234 U TW M322234U
Authority
TW
Taiwan
Prior art keywords
temperature
value
sampling frequency
sampling
time
Prior art date
Application number
TW95222425U
Other languages
Chinese (zh)
Inventor
Chih-Wei Hsieh
Original Assignee
Actherm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actherm Inc filed Critical Actherm Inc
Priority to TW95222425U priority Critical patent/TWM322234U/en
Publication of TWM322234U publication Critical patent/TWM322234U/en

Links

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

M322234 八、新型說明: 【新型所屬之技術領域】 本新型係有關於—種可精確測量溫度之電子體溫計,特別是 才曰種以人體之心簡率為基礎,使溫度之測量更為快速、準確 之體溫計。 【先前技術】 按;目前,在對體溫的測量中,存在著多種多樣的溫度計, 但最為主要的有水銀體溫計與電子數位式體溫計。 水銀體溫相量體溫是细熱脹冷縮原理測量體溫 ,該類體 ^計使用賴管封I ’測溫紐採躲,由於其玻辭體易碎且 &有果目此其*全性比較差。電子數位式體溫計總體可以分為 兩大類·種;^基於紅外線測量方法的紅外線體溫計,另一種是 基於熱傳導方式的電子體溫計。紅外線體溫計可以測量人體的耳 木口Η立的體溫’測量速度快,在一秒鐘即可獲得結果,且可以餘 存多次體溫資料,親溫計衫個控制触,可以絲開機、剛 溫、保存資料、查看資料、關機等功能;其工作過程為:按下剛 溫控制縫,紅外賴取溫度信號經處理並轉為數位信號送往液 =顯示器顯示溫度值;電子體溫計採用直接熱傳導方法測量體 /皿’適合傳_體溫測量方式:在口腔、腋下、直麟人體進行 體溫測量,該體溫計-般只設-個測溫她,按下測溫控制紐就 啟動測溫控制器工作,控制器將以固定的頻率採集測溫頭的溫声 信號,並將溫度錢讎域健觀錄溫度值^ M322234 而目則所採用的電子數位式體溫計在完成對體溫的測量工作 時’-般都具有對所涉及測得的體溫資料進行分析的功能。 如目前存在的—些熱傳導式電子體溫計,由於其細器之電 阻值U變化I福敏銳,且在人體量測的體溫範圍内—般呈線 性關係。-般而言,這些電子體溫計制人_溫時,量測頻率 為-秒鐘取樣-次,當制H與人體溫度_熱平衡時,則在其 液晶顯示幕上顯示溫度值。 仁實質上人與-些動物疋恒溫的,如在人體中,肌肉產生 的熱能是隨著猶⑽、祕_人體各組_。心臟㈣賴率收 縮將。至内的血液送出’心臟舒張時,Α液則從循環系統進入 、房因此血液進人動脈系統是―陣—陣的’熱能的補償也是隨 著心臟的收縮與舒張,經由循環純的血液傳遞。當使用體溫計 進行量測時’體溫計與量測部位接觸的瞬間,表面皮膚熱能會被 體溫計的_部位帶走,導致接聰_的血管收縮,補償該接 觸範圍_熱制由錢送達,送達財式是藉由罐收縮與舒 張陣-陣的,根據醫學統計,一般健康的成年人平均心跳約 為每分鐘72次。使用習職術的電子體溫計其溫度取樣頻率為一 秒鐘取樣-次,而且對達到熱平衡蚊義是在測溫的過程中,連 續4或8秒_獲取溫度值變化的總和小於或料Q. rc ; 一秒 鐘取樣-次與經由心跳頻率傳送的熱能補償頻率不同步,導致取 得的溫度值她不同,可歧波段的高點,也可能是低點,特別 是在接近熱平衡點時,在不_位取得的溫度值對判斷是否達到 M322234 ^平衡_最大’經相誤取·位的溫度值而提早送出測 里束=口就以至&成在醫學臨床試驗中和水銀體溫計比較 後,測Η值偏低的結果。因此,如果這喃電子體溫計能以心臟 跳動辭作為溫度取樣頻率,如此—來,電子體溫計的溫度取樣 頻率就和錢傳賴㈣補償頻相步,溫度賴償穩定測量 結果必然:更精確、更可靠。同時,如果將在相同相位中所獲取的 溫度信號轉換的溫度值經由特定的公式或演算法計算後,即可以 • 得到一個有效的溫度預測值,做為預測式體溫量測的預測結果, 還可以大量減少量測時間。 於疋本創作人為了 k供一種測量溫度更精確、更可靠的電子 體溫計,乃以多年從事體溫計產品設計開發之實務經驗,經由多 方探討與無數次之實際實驗製作,故有本新型之產生。 【新型内容】 本新型之目的在於提供一種測量溫度更精確、更穩定可靠的 φ 電子體溫計。 為實現上述目的,本新型所採用的技術方案為: 一種可精確測量溫度之電子體溫計,包括用於獲取溫度信號 的溫度感應元件及進行溫度信號處理的溫度計算裝置,其中,溫 度計算裝置係供將溫度信號以第一取樣頻率取樣,並判斷升溫之 時間點,再以第二取樣頻率取樣,並計算出量測之體溫;藉由第 一取樣頻率結合第二取樣頻率來將溫度感應元件所獲取的溫度信 號轉換為溫度值,進行準確量測人體體溫,其中第一取樣頻率高 M322234 於第一取樣頻率。 +本新型取樣作動方式可為丨.第—取樣鮮是至少為2〇赫兹 的高頻,在開機後至第二取樣頻率開始工作前採用; 期為芸纖秒/次的低頻。 —取樣週 ▲本新型取樣作動方式可為2.第—取樣辭是至少為2〇赫兹 的高頻,在開機後至第二取樣頻率開始工作前採用;第二取樣頻 率值為透過估算後的近似脈搏頻率。 7, 本新型取樣作動方式可為3·電子體溫計開機時,以第一取樣 =,行温度料,從第二次侧財起,觸於 二的t度達特定值時,如〇·2攝氏度以上,m樣 頻率進订下一次溫度量測。 本新型取樣作動方式可為4.第二取樣頻率值為 辭,娜梅输物_撕之3 反曲闕_差’以其峨當作第二取樣頻率值。 本新型取樣作動方式可為5第_ 近似脈搏頻率,其估算方法為==羡辭值為透過估算後的 第收曲點的時間差,除以W後辨間齡曲線之第一至 其舰當作第二取樣醉值。 4A於1的正整數,以 本新型取樣作動方式可為6. 頻率進行溫度制,當估料 ϋ機時’料-取樣 頻率進行下-次溫度量測。-取樣辭健,如第二取樣 如前述之取樣作動方式 換為第二取樣鮮後所取得之特 M322234 定個值或切換為第二取樣頻率後所取得及未切換之第一取樣頻率 所取得之特疋個值,經由特定的公式或演算法計算後得到一預測 • 值做為量測結果,以減少量測時間。 本新型之溫度感應元件包含溫度感測器,如溫敏電阻。 與t用技術相比,習用的電子體溫計其溫度取樣頻率為一秒 釦取樣一次,而且對達到熱平衡的定義是··在測溫的過程中連續4 或8秒鐘内獲取溫度值變化的總和小於或等於〇·代。以_秒鐘取 • 樣一次的頻率與經由心跳頻率傳送的熱能麵頻率不同步,導致 取知的溫度值相位不同,可能是波段的高點,也可能是低點,特 別疋在接近熱平衡點時,在不同相位取得的溫度值對判斷是否達 到熱平衡的影響最大,經常因誤取不同她的溫度值而提早送出 測里結束純就’以至造成在醫學臨床試驗巾和水銀體溫計比較 後’測4值偏低的結果。本新型對上述習用技術的缺失提出改進 方法’由於本新型包含溫度感應元件及溫度計算裝置,藉由溫度 _ 4减置啸高之第—取樣頻轉轉,確實掌槪賴始攸升 寺點及/皿度值’之後再結合近似或估算而得,以近於心跳的脈搏 頻率做為第二取樣頻率,來將溫度錢元件所獲取號轉換為 ,皿度值,其中第-取樣頻率高於第二取樣頻率。因為,當使用體 ⑽相灯卿’體溫計與制部位細的_,皮膚表面的熱 月匕會被體溫什的感測部位帶走,導致接觸範圍内的企管收縮,為 補仏該接觸範圍内的熱能,係藉由心臟收縮與舒張所運送的金液 一陣-陣的概熱能。根據醫學統計…般健康誠年人平均心 M322234 跳約為每分鐘72次。本新型電子體溫相續跳動頻率作為溫度 取_率’如此—來’溫度輯頻魏和錢傳送熱能的補償頻 率同步,溫度的補償穩定,測量結果必然更精確、更可靠。如前 所述再將溫度感應元件所獲取的信號轉換的溫度值經由特定的公 式或演算料算後,卩卩可輯速制—個溫度翻值,做為删 式體溫量測的預測結果,大幅減少量測時間。 以下僅藉由具體實施例,且佐以圖式作詳細之說明,俾使 貴審查委員能對於本新型之各項功能、特點,有更進一步之了解 與認識。 【實施方式】 本新型的電子體溫計核心思想是從生理考慮為出發點,以心 臟跳動作為取樣頻率,進行更精確、更穩定可靠的溫度測量。 第一實施例如圖1所示,為本新型的一種電子體溫計的基本 機構方塊圖,其主要包括:溫度感應元件η包含用來感測溫度信 號的溫度感測器12及將感測的溫度信號轉換為數位訊號之類比 數位轉換器或電阻頻率轉換器13、結合溫度信號和心跳頻率進行 分析處理的溫度計算裝置14、顯示溫度和/或心跳頻率的液晶顯 示器15、表示測量到的溫度值已趨穩定的蜂鳴器16及開關17。 其中,溫度感測器12為溫敏電阻或其他的熱換能器。 其中,溫度計算裝置14係供將溫度信號以第一取樣頻率取 樣’並判斷升溫之時間點,再以第二取樣頻率取樣,並計算出量 測之體溫;其中第一取樣頻率高於第二取樣頻率;於判定升溫 M322234 後’第二取樣頻率係為心跳之頻率,其取樣頻率約為72次/分。 電子體溫計用於臨床醫療或居家照護上時,可以將溫度感測 器12放置於人體的口、腋下或者直腸内,以感測溫度的變化,開 關17打開後,溫度感測器12感測溫度並轉換為類比的電子訊號, 該電子訊號經由類比數位轉換器或電阻頻率轉換器13使得類比 訊號轉換成數位訊號,數位訊號輸入到溫度計算裝置14,經過溫 度計算裝置14的處理將結果傳至液晶顯示器15顯示,並通過蜂 鳴器16發出聲音表示測量到的溫度值已趨穩定。 但為得到更精確、更可靠的溫度測量值,本實施例的電子體 溫計的溫度計算裝置14根據心臟的跳動頻率進行取樣及處理,溫 度计鼻裝置14對溫度信號進行取樣與處理可以通過兩種方式實 現,具體運作如下的描述: 如圖2所示,為本實施例電子體溫計工作的程式流程圖,主 要包括以下步驟: 步驟201,按下開關π,啟動,以使電子體溫計的内部電路 導通; 步驟202,溫度計算裝置14進行初始化; 步驟203,電子體溫計感測到的是外部的環境溫度,溫度感 測器12感測溫度並轉換為類比的電子訊號,該電子訊號經由類比 數位轉換器或電阻頻率轉換器13使得類比訊號轉換成數位訊 號,數位訊號輸入到溫度計算裝置14,由於電子體溫計一直放置 於空氣中,所以溫度感測器12始終是處於與外部的環境溫度保持 11 M322234 熱平衡狀態。 - β卩如®13所不,為溫度感測器12感測的溫度值與時間的關係 ' ®,在® 3中’溫度計算裝置14可以第-取樣頻率取樣,該第一 取樣頻率等於1G赫兹,為圖3中第〇秒〜第⑼的取樣頻率,取 樣頻率愈快’愈成準確反應升溫的時間點。 溫度計异裝置14處理的溫度值為環境溫舰並輸出到液晶 顯示器15顯示。 • 參驟204,溫度計算裝i 14判斷溫度是否升高,如果判定有 升溫,則使用第二取樣辭作為取_率,即時反應溫度變化; 如果沒有升溫,溫度計算裝置14 _以第—取樣鮮取樣,直到 自動關機為止; 判斷/皿度疋否升南,主要是判斷在一定時間内,溫度的變化 值疋否大於預置的預設值,如上述以頻率1〇赫兹取樣,每十分之 心升/皿同於預置的預設值時,如〇· H,此時即判定開始升溫。 • 步驟205 ’當判定為升溫時,即溫度感測器12從時間t開始 接觸舰,則溫度12 _溫度並轉換為類比㈣子訊號, 該電子减經由類比數位轉換器或電阻頻率轉換器13使得類比 的電子减轉換成數位賴;,數位峨輸人到溫度計算裝置Μ。 /因=溫度感測器12接觸熱源時,並不是立刻就與熱源達到熱 平衡狀I而疋有-個升溫的過程,即如圖3所示從第t秒〜第 25秒之間為一個升溫階段。 升服條件確立後,取樣頻率改為如圖3第七秒〜第秒的取 M322234 樣頻率,即以第二取樣頻率進行取樣,量測到的升溫曲線就和圖 3所表示的一樣,由於心臟收縮,血液輸送熱能,即可量測到一 . 波波熱能所代表的心跳頻率,得到如圖3中曲線21所表示的溫产 隨時間的變化曲線,而曲線22是溫度計算裝置u根據第二取樣 頻率計算出來的溫度隨時間的變化曲線。 根據醫學統計,—般健康的成年人平均心跳約為72次/分 鐘,頻率為1. 2赫兹,所以升溫後,第三取樣頻率可以為心跳l 2 • 赫兹作為電子體溫計取樣頻率,因為這個取樣頻率與心跳頻率同 步’電子體溫計量測溫度時,在每個時間點取得與心跳頻率一致 的熱能補償同-相位,如此量測得到的溫度綺曲線更為穩定。 判斷溫度舆時間關係曲線圖3中的溫度是否達到峰值,可以 通過如圖5的方法達成。 如圖5所示’ μ來判_血騎著心臟收縮的流動所引起 的熱補償溫度與時間曲線圖中,量測溫度是否到達峰值的步驟過 • 程圖,其主要步驟包括: 步驟50卜峰值判斷開始; 步驟502,溫度計算裝置14對溫度與時間的曲線進行求導, 即:M322234 VIII. New Description: [New Technology Field] This new type is about an electronic thermometer that can accurately measure temperature. In particular, it is based on the human body's heart rate, which makes the temperature measurement faster. Accurate thermometer. [Prior Art] Press; At present, there are various thermometers in the measurement of body temperature, but the most important ones are mercury thermometers and electronic digital thermometers. Mercury body temperature phasor body temperature is the principle of fine thermal expansion and contraction to measure body temperature. This type of body is used to measure the temperature of the tube. Relatively poor. Electronic digital thermometers can be divided into two major categories: ^ infrared thermometers based on infrared measurement methods, and electronic thermometers based on thermal conduction. Infrared thermometer can measure the body temperature of the human ear. The measurement speed is fast, the result can be obtained in one second, and the body temperature data can be saved for a long time. The thermostat can control the touch, and the wire can be turned on and just warm. The functions of saving data, viewing data, shutting down, etc.; the working process is: press the temperature control slit, the infrared temperature signal is processed and converted into a digital signal to the liquid = display display temperature value; the electronic thermometer is measured by direct heat conduction method Body / dish 'suitable for transmission _ body temperature measurement method: in the mouth, underarms, straight Lin body temperature measurement, the thermometer - generally only set a temperature to measure her, press the temperature control button to start the temperature controller work, The controller will collect the temperature-acoustic signal of the temperature measuring head at a fixed frequency, and will record the temperature value of the temperature and the temperature value of the M322234. The electronic digital thermometer used by the target is used to complete the measurement of the body temperature. Both have the function of analyzing the measured body temperature data. For example, some heat-conducting electronic thermometers exist because of the change in the resistance value U of the thin device, which is sharp and has a linear relationship within the body temperature range measured by the human body. In general, these electronic thermometers produce _ warm time, the measurement frequency is - second sampling - times, when H and body temperature _ heat balance, the temperature value is displayed on the liquid crystal display. Ren is essentially a person and some animals are kept at a constant temperature. For example, in the human body, the heat generated by the muscles is along with the group of _ (10), secret _ human body _. The heart (four) rate will shrink. When the blood is sent out, when the heart is dilated, the sputum enters from the circulatory system, so the blood enters the arterial system. The compensation for the thermal energy is also the contraction and relaxation of the heart, which is transmitted through the circulation of pure blood. . When using a thermometer to measure the moment when the thermometer is in contact with the measuring part, the surface skin heat energy will be taken away by the _ part of the thermometer, resulting in the contraction of the blood vessels of the tongs, compensating for the contact range _ heat system is delivered by money, and the money is delivered. According to medical statistics, the average heart rate of a generally healthy adult is about 72 beats per minute. Using the electronic thermometer of the alumni, the temperature sampling frequency is one second sampling-time, and the heat balance is reached during the temperature measurement process, and the total of the change of the temperature value is less than or equal to Q. Rc ; one second sampling - the frequency is not synchronized with the thermal energy compensation frequency transmitted through the heartbeat frequency, resulting in different temperature values, the high point of the disambiguation band, or the low point, especially when approaching the thermal equilibrium point, The temperature value obtained by the _ bit is judged whether it reaches the temperature value of the M322234 ^balance _ maximum 'phase error misplaced bit and is sent out early to the test beam = mouth and then into the medical clinical trial and after comparison with the mercury thermometer The result of measuring the low value of the enthalpy. Therefore, if the electronic thermometer can use the heartbeat as the temperature sampling frequency, so that the temperature sampling frequency of the electronic thermometer and the frequency compensation step (4) compensation frequency, the temperature measurement is stable and the measurement result is inevitable: more accurate and more reliable. At the same time, if the temperature value converted by the temperature signal acquired in the same phase is calculated by a specific formula or algorithm, it is possible to obtain an effective temperature prediction value as a prediction result of the predicted body temperature measurement, and The measurement time can be greatly reduced. In order to provide a more accurate and reliable electronic thermometer for measuring the temperature, Yu Shun's creator has been working on the design and development of thermometers for many years. Through many discussions and countless actual experimental productions, this new type has emerged. [New content] The purpose of this new model is to provide a φ electronic thermometer that can measure temperature more accurately, more stably and reliably. In order to achieve the above object, the technical solution adopted by the present invention is: an electronic thermometer capable of accurately measuring temperature, comprising a temperature sensing element for acquiring a temperature signal and a temperature calculating device for performing temperature signal processing, wherein the temperature calculating device is provided The temperature signal is sampled at the first sampling frequency, and the time point of the temperature rise is determined, and then the second sampling frequency is sampled, and the measured body temperature is calculated; and the temperature is sensed by combining the first sampling frequency with the second sampling frequency. The acquired temperature signal is converted into a temperature value to accurately measure the body temperature of the human body, wherein the first sampling frequency is high M322234 at the first sampling frequency. + The new sampling operation mode can be 丨. The first sampling is a high frequency of at least 2 Hz, and is used before starting to work until the second sampling frequency starts; the period is the low frequency of the second fiber. —Sampling week ▲The new sampling operation mode can be 2. The first sampling word is a high frequency of at least 2 Hz, which is used before starting to work until the second sampling frequency starts; the second sampling frequency value is estimated after passing through the estimation. Approximate pulse rate. 7, the new sampling operation mode can be 3 · electronic thermometer when starting, with the first sampling =, line temperature material, from the second side of the money, touch the second t degree to a specific value, such as 〇 · 2 degrees Celsius Above, the m-like frequency is ordered for the next temperature measurement. The novel sampling operation mode may be 4. The second sampling frequency value is a word, and the Nami input _ tearing 3 recursive 阙 _ difference ' is used as the second sampling frequency value. The new sampling action mode can be 5 _ approximate pulse frequency, and the estimation method is == 羡 值为 值为 透过 透过 透过 透过 透过 估算 估算 估算 估算 估算 估算 估算 估算 估算 估算 估算 估算 估算 估算 估算 估算 估算 估算 估算 估算 估算 估算 估算Take the second sample drunk value. The positive integer of 4A is 1, and the new sampling operation mode can be 6. Frequency is used for temperature system, and when the machine is estimated to be down, the material-sampling frequency is subjected to the next-time temperature measurement. - sampling the health, if the second sampling is obtained by changing the sampling operation mode to the second sampling frequency obtained by the second sampling frequency or the first sampling frequency obtained after switching to the second sampling frequency A special value is calculated by a specific formula or algorithm to obtain a prediction value as a measurement result to reduce the measurement time. The novel temperature sensing element comprises a temperature sensor such as a temperature sensitive resistor. Compared with the technology of t, the conventional electronic thermometer has a temperature sampling frequency of one second, and the definition of the heat balance is: · the sum of the temperature value changes in 4 or 8 seconds in the process of temperature measurement. Less than or equal to 〇· generation. The frequency of taking _ seconds and the frequency of the thermal energy plane transmitted through the heartbeat frequency are not synchronized, resulting in different phase values of the known temperature, which may be the high point or the low point of the band, especially near the thermal equilibrium point. At the same time, the temperature values obtained at different phases have the greatest influence on judging whether or not the heat balance is reached. Often, due to the misplacement of different temperature values, the early delivery of the test ends is pure enough to cause a comparison between the medical clinical test towel and the mercury thermometer. The result of 4 low values. The present invention proposes an improved method for the lack of the above-mentioned conventional technology. Since the present invention includes a temperature sensing element and a temperature calculating device, the temperature-_4 is reduced by the first-sampling frequency of the screaming height, and the palm of the temple is indeed taken. And / the value of the dish is combined with the approximation or estimation, and the pulse frequency close to the heartbeat is used as the second sampling frequency to convert the obtained number of the temperature component into a dish value, wherein the first-sampling frequency is higher than Second sampling frequency. Because, when using the body (10) phase lamp Qing's thermometer and the thin part of the system, the hot moon sputum on the skin surface will be taken away by the sensing part of the body temperature, resulting in the contraction of the enterprise within the contact range, which is within the contact range of the contact area. The heat energy is the thermal energy of the gold liquid transported by the contraction and relaxation of the heart. According to medical statistics, the average health of the average person is M322234 and the jump is about 72 times per minute. The novel electronic body temperature continuous hopping frequency is taken as the temperature _ rate'. Thus, the compensation frequency of the heat frequency and the heat transfer energy is synchronized, the temperature compensation is stable, and the measurement result is necessarily more accurate and reliable. As described above, the temperature value of the signal converted by the temperature sensing element is calculated by a specific formula or calculation, and then the temperature can be adjusted to a temperature value as a prediction result of the body temperature measurement. Significantly reduce measurement time. The following is only a detailed description of the specific embodiments, and the detailed description of the drawings will enable the reviewing committee to have a better understanding and understanding of the functions and features of the present invention. [Embodiment] The core idea of the novel electronic thermometer is based on physiological considerations, and the heartbeat jump is used as the sampling frequency to perform more accurate, more stable and reliable temperature measurement. The first embodiment is shown in FIG. 1 , which is a block diagram of a basic mechanism of an electronic thermometer according to the present invention. The method mainly includes: the temperature sensing element η includes a temperature sensor 12 for sensing a temperature signal and a temperature signal to be sensed. An analog digital converter or a resistance frequency converter 13 converted into a digital signal, a temperature calculation device 14 that performs analysis processing in combination with a temperature signal and a heartbeat frequency, and a liquid crystal display 15 that displays temperature and/or heart rate, indicating that the measured temperature value has been Stable buzzer 16 and switch 17. The temperature sensor 12 is a temperature sensitive resistor or other thermal transducer. Wherein, the temperature calculation device 14 is configured to sample the temperature signal at the first sampling frequency and determine the time point of the temperature rise, and then sample at the second sampling frequency, and calculate the measured body temperature; wherein the first sampling frequency is higher than the second Sampling frequency; after determining the temperature rise M322234, the second sampling frequency is the frequency of the heartbeat, and the sampling frequency is about 72 beats/min. When the electronic thermometer is used for clinical medical treatment or home care, the temperature sensor 12 can be placed in the mouth, underarm or rectum of the human body to sense the change of temperature. After the switch 17 is turned on, the temperature sensor 12 senses The temperature is converted into an analog electronic signal, and the electronic signal is converted into a digital signal by an analog digital converter or a resistance frequency converter 13, and the digital signal is input to the temperature calculating device 14, and the result is transmitted by the temperature calculating device 14. The display to the liquid crystal display 15 and the sound emitted by the buzzer 16 indicate that the measured temperature value has stabilized. However, in order to obtain a more accurate and reliable temperature measurement value, the temperature calculation device 14 of the electronic thermometer of the present embodiment performs sampling and processing according to the beating frequency of the heart, and the thermometer nose device 14 samples and processes the temperature signal in two ways. The specific operation is as follows: As shown in FIG. 2, the flow chart of the operation of the electronic thermometer of the present embodiment mainly includes the following steps: Step 201: Pressing the switch π to start, so that the internal circuit of the electronic thermometer is turned on; Step 202, the temperature calculation device 14 performs initialization; Step 203, the electronic thermometer senses an external ambient temperature, and the temperature sensor 12 senses the temperature and converts it into an analog electronic signal, and the electronic signal is via an analog digital converter or The resistance frequency converter 13 converts the analog signal into a digital signal, and the digital signal is input to the temperature calculation device 14. Since the electronic thermometer is always placed in the air, the temperature sensor 12 is always in thermal equilibrium with the external ambient temperature of 11 M322234. . - β卩如1313, is the temperature value sensed by the temperature sensor 12 versus time' ®, in the ® 3 temperature calculation device 14 can sample at the first sampling frequency, the first sampling frequency is equal to 1G Hertz, for the sampling frequency of the second to the (9) in Fig. 3, the faster the sampling frequency, the more accurate the temperature is raised. The temperature value processed by the thermometer different device 14 is an ambient temperature ship and is output to the liquid crystal display 15 for display. • In step 204, the temperature calculation device i 14 determines whether the temperature is raised. If it is determined that the temperature is raised, the second sampling word is used as the take-up rate, and the reaction temperature changes immediately; if there is no temperature rise, the temperature calculation device 14_ takes the first sampling Sampling freshly until it is automatically turned off; Judging/difficulty is not up, mainly to judge whether the temperature change value is greater than the preset preset value within a certain period of time, such as sampling at a frequency of 1 Hz, every tenth When the heart rise/dish is the same as the preset preset value, such as 〇·H, it is determined that the temperature rise starts. • Step 205 'When it is determined that the temperature rises, that is, the temperature sensor 12 contacts the ship from time t, the temperature is 12 _ temperature and converted into an analog (four) sub-signal, which is reduced by an analog-to-digital converter or a resistance frequency converter 13 The analog electronic reduction is converted into a digital position; the digital input is input to the temperature calculation device. / Because the temperature sensor 12 contacts the heat source, it does not immediately reach the thermal equilibrium with the heat source I and has a temperature rising process, that is, as shown in Fig. 3, from the t second to the 25th second is a temperature rise stage. After the condition of the service is established, the sampling frequency is changed to the M322234-like frequency as shown in Fig. 3 from the seventh second to the second, that is, the sampling is performed at the second sampling frequency, and the measured temperature rise curve is the same as that shown in Fig. 3, The heart contraction, the blood transports the heat energy, and the heartbeat frequency represented by the wave heat energy is measured, and the temperature change curve as shown by the curve 21 in FIG. 3 is obtained, and the curve 22 is the temperature calculation device u according to The temperature versus time curve calculated by the second sampling frequency. According to medical statistics, the average heart rate of a generally healthy adult is about 72 beats per minute, and the frequency is 1.2 Hz. Therefore, after warming up, the third sampling frequency can be heartbeat l 2 • Hertz is used as the sampling frequency of the electronic thermometer because this sampling The frequency is synchronized with the heartbeat frequency. When the temperature is measured by the electronic body temperature, the thermal energy compensating the same phase as the heartbeat frequency is obtained at each time point, and the temperature 绮 curve thus measured is more stable. Judging whether the temperature in Fig. 3 reaches the peak value in the temperature 舆 time relationship can be achieved by the method of Fig. 5. In the thermal compensation temperature and time graph caused by the flow of the contraction of the blood as shown in Fig. 5, the step of measuring whether the temperature reaches the peak or not, the main steps include: Step 50 The peak determination begins; in step 502, the temperature calculation device 14 derives a curve of temperature versus time, namely:

Hi 其中,、 ⑴ 产,I、τη為時刻七感測到的溫度,T4時刻七1感測到的溫 又、、刀斷PrW>〇且Ρη=〇是否成立,如果成立,則七時刻的溫度 13 M322234 為最大峰值,溫度計算裝置14在ΐη取樣,侧不取樣。同時,也 可以通過步驟503判斷是否存在峰值。 步驟5G3,或則,判斷h>G仏χΡη<()是否成立,如果 成立,則有峰值存在,取七時刻的溫度為最大峰值。 步驟504,確定Τη為最大峰值。 通過上述的方法可輯算溫度峰值,使電子體溫計在每一個 時間點取知每-波上升溫度的最高值,使取樣溫度穩定;由於相 ⑩ 同她’侧是在t=25之後的熱平衡階段,其取樣溫度值將不會 如圖4所不’係習用電子體溫計所測量的溫度與時間關係曲線 圖,習用電子體溫計的溫度取樣頻率為—秒取樣—次,取樣相位 不同,而造成取樣溫度值上下波動。對照使財新贱子溫度計 以心跳頻率獲取取樣溫度的方法,除了可以滿足在連續4或8秒 鐘内溫度變化的總和小於或等於〇·代的要求,使溫度量測更為 穩疋外’同時可以利用上述與心跳頻率同一相位或最高的峰值, _ 4算出同-相位或最高峰值的時間差,此時間差即代表著一次心 跳所需時間,以此時間差可以計算出患者的域速率,或者以相 鄰的兩個反曲點之間的時間差值計算出患者的心跳速率。 步驟206 ’溫度計算裝置14可以判斷溫度感測器12與其所 接觸的熱源是否達到熱平衡,如果達到熱平衡,則執行步驟2〇7 與步驟208 ; 否則,一直以第二取樣頻率即時反應溫度變化,直到可以判 斷出達到熱平衡為止。 M322234 上述判斷是否達到熱平衡,主要是依據在一定時間内,取樣 溫度的變化錢魏於預置的預設值,如果微的預設值, 就表示已經達到熱平衡。 當判斷達到熱平衡後,溫度與時間的曲線就會相對穩定,但 習用的電子體溫計由於取樣相位不同,造成取樣的溫度值上下波 動,如圖4的溫度與時間的關係曲線圖,由於實際的溫度與時間 關係曲線上下波動比較大,所以溫度計算裝置14計算得到的溫度 與時間關係曲線的波動也比較大,不糊斷在—定時間内,溫度 的變化值是否低於預置的預設值。本新型由於溫度的取樣相位相 同,特別是在時間25秒之後的熱平衡階段,其溫度與時間的關係 曲線將會比較平坦,可迅速滿足連續4或8秒鐘内溫度變化的總 和小於或4於〇· 1 C的要求,使溫度量測更為準確穩定。 步驟207,溫度計算裝置14將運算後的溫度傳送到液晶顯示 器15 ; 步驟208,溫度計算裝置14通過驅動蜂鳴器16鳴響,表示 測量到的溫度值已趨穩定。 上述主要為利用電子體溫計的基本結構方塊圖描述本新型測 量溫度的基本過程及其測量原理。 以下為本新型具體電路結構圖,描述如何實現上述測量過程 及測里;度。如圖6所不’為本新型第一實施例的具體電路結構 圖。本實把例包括開關600、溫度感應元件601、溫度計算裝置 602、液晶顯示器603與蜂鳴器604,其中溫度感應元件6〇1包括 15 M322234 振盪器605、溫度感測器606、取樣時間估算器6〇7、取樣時間控 制器608、類比數位轉換器或電阻頻率轉換器6〇9,其中溫度計算 裝置602包括量測值計數暫存器61〇、初始量測值暫存器611、資 料比較器612、最高量測值暫存器613、十六進位數值轉換器614、 顯示驅動器615、聲音驅動器616、時序產生器617,其中時序產 生器617包括溫度穩定時間計數器618。 本新型測篁溫度的具體過程如圖7所示,其主要過程包括: 步驟701 ’啟動; 電子體溫計開始運行;啟動電子體溫計的開關6〇〇,振盪器 605產生基本的系統工作頻率,驅動整個電路系統; 步驟702,初始值設定; 即將預設值置入在電路中的各個控制器中; 在電子體溫計啟動時,該初始量測值暫存器611儲存的溫度 值與最高量測值暫存H 613儲存的預置溫度可·置為零,也可 以預置為某一個特定的溫度值; 步驟703 ’量測環境溫度並顯示量測結果; 即先進行環境溫度量測,量測結果值儲存於初始量測值暫存 器611及最高量測值暫存器613,並轉換為溫度值,顯示於液晶 顯示器603上; θθ 振盪器605驅動時序產生器617,然後時序產生器617產生 各種預設的_及_㈣信雜th。 取樣時間估算器6〇7依據預設取樣頻率值決定取樣時間,_ M322234 由取樣時間控制器608,在開始量测時輪出第一次的取樣控制信 -號,則該取樣時間控制器_控制類比數位轉換ϋ或電阻頻率轉 -換器609將來自於溫度感測器606所取得的溫度信號轉變為數位 信號,進入量測值計數暫存器_計算量測結果值。 將上述的;!:顺果健存至她量顺暫存器61卜並經由 2比較II 612與已在最高量測值暫存器613裏的初始值比較, 若量測結果值大於最高制鋪存^ 613為初始值,則將量測 籲、、、》果值儲存至最高制值暫存n 613取代初始值,並輸出至溫度 預測模組。由於為第一次量測,其值必然大於初始值,故此動作 必然發生。 將里測結果健針六進絲轉換器614轉換針進位數 據,再透過顯示驅動器615驅動液晶顯示器議將溫度值顯示。 步驟704,以第一取樣頻率偵測並顯示量測結果; 即以第-取樣鮮進行下_次溫度制,量測結果值若大於 _ 之刖最南值’則將此量測結果值儲存於最高溫度記憶體並機為 溫度值,顯示於液晶顯示!I 6〇3上。本方法中,帛一取樣頻率大 於等於2赫兹以上,較佳是1〇赫兹以上之第一取樣頻率的頻率 進行溫度$測,以便於較精確的掌握體溫開始量測的時間點。 時序產生器617產生下-次取樣相關控制信號輸出。 取樣時間估算器607依據預設之第一取樣頻率決定取樣時 間,經由取樣時間控制器_,輸出取樣控制信號,控制類比數 位轉換器或電阻頻率轉換器609將來自於溫度感測器606所取得 17 M322234 的溫度錢機為她錢,秋量雕計㈣存n 610計算量 ^ 測結果值。 將上述的1測結果值經由資料比㈣612與已在最高量測值 f存n,裏的减值比較,若制結果值大於最高量測值暫存 器613裏的原儲存值,則將量測結果值館存至最高量測值暫存器 3取代原儲存值。烈彳結果值除經由資料比較器⑽與最高量 測值暫存H 613襄的原儲存值比較外,亦經由#料比較器612與 #々始量測值暫存器611的值做比較,若量測結果值較初始量測值 暫存器611的值大超過預置的預設值,例如轉換後約為G. 2攝氏 度以上,則產生-信號用以觸發時序產生器617變換取樣頻率, 如變換成為第二取樣頻率,否則即以相同頻率即第一取樣頻率 複步驟704。 將量測結果健斜六進錄值轉換器614轉換成十進位數 據’再透過顯示驅動器615驅動液晶顯示器6〇3將溫度鋪示, 瞻同時輸出域將時序產生II 617中之溫度穩定時間計數器⑽浐 零。 u 咿 若量測結果值祕最高量難暫抑613裏的存值,則 無任何後續動作。 步驟705,升溫大於預置的預設值? 若偵測到的溫度較第-次量測結果值高出預置的預設值,如 〇· 2攝氏度以上,代表體溫計已開始量測溫度,跳至步驟刊7 ;否 則表示仍然停留在環境溫度下還未開始體溫量树。 18 M322234 步驟704巾,量測結果值除經由資料比較器612與最高量測 值暫存器613裏的原儲存值比較外,亦經由資料比較器612與初 始量測值暫存器611的值做比較,若量測結果值較初始量測值^ 存器611的值大超過預置的預設值,例如轉換後約為〇· 2攝氏度 以上,則產生-信號用以觸發時序產生器617變換取樣頻率。否 則輸出信號予時序產生器617中之溫度穩定時間計數器618加計 一單位時間。 否則表示尚停雜環境溫度下制,麵—步靖環境溫度 量測的時間是否超過預置時間,如果是,則直接進入步驟71〇自 動關機,如果還未超過預置時間,則繼續進行環境溫度量測。 步驟706,大於預置的預設時間? 當在預置的時間内,如3分鐘,摘測到的溫度未上升達到預 置的預設值,如〇· 2攝氏度以上,則自動關機。 當量測結果值較初始量測值暫存器611的值未超置_ 設值時,例如轉換後約為〇. 2攝氏度,則輸出信號予時序產生器 617中之溫度穩定時間計數器618加計一單位時間。如果,時序 產生器617中之溫度穩定時間計數器618達到等同於一預設時間 時,如3分鐘,則時序產生器617產生—信號,自動關機。若時 序產生H 617中之溫度穩定時間計數n 618達到小於該預設時 間,即以相同的第一取樣頻率重複步驟7〇4動作。 步驟707,第二取樣頻率偵測並顯示量測結果; 當偵測到的溫度較第-次量測結果值高出預置的預設值,如 M322234 0.2攝氏灿上’代表體溫計已開始量糧溫為轉盥心跳同 步的溫度麵’城絲二轉辭,·二轉_可以與心 二頻率同/如以12赫兹為第二取樣頻率進行溫度量測’或該 紅取樣鮮可_職等通秒/次_率,以便使取 樣頻率與人體心關步_每次取健賴她的目的。Hi where, (1) production, I, τη is the temperature sensed at time seven, the temperature sensed at 7:00 T1, the knife break PrW> and Ρη=〇 is established, if it is established, then seven times Temperature 13 M322234 is the maximum peak value, and temperature calculation device 14 samples at ΐη without sampling on the side. At the same time, it is also possible to judge whether there is a peak by step 503. Step 5G3, or judge, whether h>G仏χΡη<() is established, if it is established, there is a peak, and the temperature at the seven times is the maximum peak. In step 504, it is determined that Τη is the maximum peak. Through the above method, the temperature peak can be calculated, so that the electronic thermometer can know the highest value of the rising temperature per wave at each time point, so that the sampling temperature is stable; because the phase 10 is the same as her 'side is the thermal equilibrium stage after t=25. The sampling temperature value will not be the temperature versus time curve measured by the conventional electronic thermometer as shown in Figure 4. The temperature sampling frequency of the conventional electronic thermometer is - second sampling - times, the sampling phase is different, and the sampling temperature is caused. The value fluctuates up and down. The method of obtaining the sampling temperature by using the Caixinzi thermometer at the heartbeat frequency, in addition to satisfying the requirement that the sum of the temperature changes in the continuous 4 or 8 seconds is less than or equal to the generation, makes the temperature measurement more stable. At the same time, the same phase or the highest peak value with the heartbeat frequency can be used, and the time difference of the same phase or the highest peak is calculated by _4, which represents the time required for a heartbeat, and the time difference can be used to calculate the patient's domain rate, or The time difference between two adjacent inflection points calculates the heart rate of the patient. Step 206 'The temperature calculation device 14 can determine whether the temperature sensor 12 is in thermal equilibrium with the heat source it is in contact with. If the heat balance is reached, steps 2〇7 and 208 are performed; otherwise, the temperature change is immediately reacted at the second sampling frequency. Until it can be judged that the heat balance is reached. M322234 The above judgment determines whether the heat balance is reached. It is mainly based on the change of the sampling temperature within a certain period of time. The value of the sampling temperature is preset to the preset value. If the preset value is slightly, it indicates that the heat balance has been reached. When it is judged that the heat balance is reached, the temperature and time curve will be relatively stable, but the conventional electronic thermometer causes the sampled temperature value to fluctuate up and down due to the different sampling phases, as shown in the graph of temperature versus time in Figure 4, due to the actual temperature. The fluctuation of the time-dependent curve is relatively large, so the fluctuation of the temperature-time curve calculated by the temperature calculating device 14 is also relatively large, and the value of the temperature change is not lower than the preset preset value. . The new sampling phase of the temperature is the same, especially in the thermal equilibrium phase after the time of 25 seconds, the temperature versus time curve will be relatively flat, and the sum of the temperature changes in the continuous 4 or 8 seconds can be quickly satisfied to be less than or less than 4 The requirements of 〇· 1 C make the temperature measurement more accurate and stable. In step 207, the temperature calculating means 14 transmits the calculated temperature to the liquid crystal display 15; in step 208, the temperature calculating means 14 sounds by driving the buzzer 16, indicating that the measured temperature value has stabilized. The above is mainly to describe the basic process of measuring temperature and its measurement principle by using the basic structure block diagram of the electronic thermometer. The following is a specific circuit diagram of the new type, describing how to achieve the above measurement process and measurement; FIG. 6 is a specific circuit configuration diagram of the first embodiment of the present invention. The actual example includes a switch 600, a temperature sensing element 601, a temperature calculating device 602, a liquid crystal display 603 and a buzzer 604, wherein the temperature sensing element 6〇1 includes a 15 M322234 oscillator 605, a temperature sensor 606, and a sampling time estimate. The device 6〇7, the sampling time controller 608, the analog digital converter or the resistance frequency converter 6〇9, wherein the temperature calculating device 602 includes the measured value counting register 61〇, the initial measured value register 611, and the data The comparator 612, the highest measured value register 613, the hexadecimal value converter 614, the display driver 615, the sound driver 616, and the timing generator 617, wherein the timing generator 617 includes a temperature stabilization time counter 618. The specific process of the new measuring temperature is shown in Fig. 7. The main processes include: Step 701 'Starting; The electronic thermometer starts running; Start the switch of the electronic thermometer 6 〇〇, the oscillator 605 generates the basic system operating frequency, drives the whole Circuit system; Step 702, initial value setting; placing the preset value into each controller in the circuit; when the electronic thermometer is started, the temperature value stored by the initial measurement value register 611 and the highest measured value are temporarily The preset temperature stored in H 613 can be set to zero, or can be preset to a specific temperature value; Step 703 'Measure the ambient temperature and display the measurement result; that is, first measure the ambient temperature, and measure the result The value is stored in the initial measured value register 611 and the highest measured value register 613, and converted into a temperature value, which is displayed on the liquid crystal display 603; the θθ oscillator 605 drives the timing generator 617, and then the timing generator 617 generates Various presets _ and _ (four) are mixed with th. The sampling time estimator 6〇7 determines the sampling time according to the preset sampling frequency value, _ M322234 is taken by the sampling time controller 608, and the first sampling control signal-number is rotated when starting the measurement, then the sampling time controller _ The analog analog digital converter or the resistive frequency converter 609 converts the temperature signal obtained from the temperature sensor 606 into a digital signal, and enters the measured value count register_calculated measurement result value. Save the above;!: succumb to her sizing register 61 and compare it with the initial value already in the highest measured value register 613 via 2 comparison II 612, if the measured result value is greater than the highest system When the storage 613 is the initial value, the measured value, the value, and the fruit value are stored to the highest value temporary storage n 613 instead of the initial value, and output to the temperature prediction module. Since the value is necessarily greater than the initial value for the first measurement, this action must occur. The result of the measurement of the needle hexadecid converter 614 is converted into a needle input data, and then the display driver 615 drives the liquid crystal display to display the temperature value. Step 704, detecting and displaying the measurement result by using the first sampling frequency; that is, performing the first-time sampling with the first-sampling frequency, and if the measurement result value is greater than _, the southernmost value is stored, the value of the measurement result is stored. At the highest temperature memory, the parallel value is displayed on the LCD display! I 6〇3. In the method, the sampling frequency of the first sampling frequency is greater than or equal to 2 Hz, preferably at a frequency of the first sampling frequency above 1 Hz, for temperature measurement, so as to accurately grasp the time point at which the body temperature starts to be measured. The timing generator 617 generates a down-time sampling related control signal output. The sampling time estimator 607 determines the sampling time according to the preset first sampling frequency, and outputs the sampling control signal via the sampling time controller_, and controls the analog digital converter or the resistance frequency converter 609 to obtain the temperature sensor 606. 17 M322234 temperature money machine for her money, autumn volume carving (four) save n 610 calculation amount ^ test result value. Comparing the above-mentioned 1 test result value with the data value ratio (4) 612 and the value of the highest measured value f, and if the result value is greater than the original stored value in the highest-valued value register 613, the amount is The result value library is stored in the highest measured value register 3 instead of the original stored value. The result value of the scorpion is compared with the original stored value of the highest measured value temporary storage H 613 经由 by the data comparator (10), and is also compared with the value of the # 量 initial measured value register 611 via the # comparator 612, If the measured result value is greater than the value of the initial measured value register 611 by more than a preset preset value, for example, about G. 2 degrees Celsius or more after the conversion, the - signal is generated to trigger the timing generator 617 to change the sampling frequency. If the transform is the second sampling frequency, otherwise step 704 is repeated at the same frequency, that is, the first sampling frequency. Converting the measurement result to the decimal data 614 and then driving the liquid crystal display through the display driver 615 to display the temperature. The simultaneous output field will generate the temperature stabilization time counter in II 617. (10) 浐 zero. u 咿 If the highest value of the measurement result is difficult to temporarily suppress the stored value in 613, there is no follow-up action. Step 705, the temperature rise is greater than the preset preset value? If the detected temperature is higher than the preset value of the first-time measurement result, such as 〇·2 degrees Celsius or above, it means that the thermometer has started measuring the temperature, skip to step 7; otherwise, it still stays in the environment. The body temperature tree has not yet started at temperature. 18 M322234 Step 704, the measured result value is compared with the original stored value in the highest measured value register 613 via the data comparator 612, and also via the value of the data comparator 612 and the initial measured value register 611. For comparison, if the measured result value is larger than the value of the initial measured value 611 by more than a preset preset value, for example, about 〇·2 degrees Celsius or more after the conversion, a -signal is generated to trigger the timing generator 617. Transform the sampling frequency. Otherwise, the output signal is supplied to the temperature stabilization time counter 618 in the timing generator 617 for one unit time. Otherwise, it means that the ambient temperature is still stopped, and the time of the surface-step ambient temperature measurement exceeds the preset time. If yes, go directly to step 71 and automatically shut down. If the preset time has not been exceeded, continue the environment. Temperature measurement. Step 706, greater than the preset preset time? When the measured temperature does not rise to the preset preset value within a preset time, such as 3 minutes, if it is above 〇 2 degrees Celsius, it will automatically shut down. When the value of the equivalent measurement result is not exceeded by the value of the initial measurement value register 611, for example, after the conversion is about 〇. 2 degrees Celsius, the output signal is added to the temperature stabilization time counter 618 in the timing generator 617. One unit time. If the temperature stabilization time counter 618 in the timing generator 617 reaches a predetermined time, such as 3 minutes, the timing generator 617 generates a signal that automatically shuts down. If the temperature stabilization time count n 618 in the timing generation H 617 reaches less than the preset time, the steps 7〇4 are repeated at the same first sampling frequency. Step 707, the second sampling frequency detects and displays the measurement result; when the detected temperature is higher than the preset value of the first measurement result, such as M322234 0.2 Celsius on the 'representing the thermometer has started The temperature of the grain is the temperature surface of the heartbeat synchronization. The city's two words, the second turn _ can be the same as the heart frequency / such as 12 Hz as the second sampling frequency for temperature measurement' or the red sampling is fresh Wait for the second/time _ rate, so that the sampling frequency and the human heart are closed _ each time take care of her purpose.

利用取樣時算㈣7域職之第二轉辭決定取樣 時間’該預設之第二取樣鮮為週鮮同於I纖秒/次的頻 率;經由取樣時間控制!| _,輸出取樣控制雜,控制類比數 位轉換器或電_率轉換^ _將來自於溫度感卿6⑽所取得 的溫度信雜變域位域,進人制值計㈣姑610計算為 數字式的量測結果值。 將上述的量測結果值經由資料比較器612與已在最高量測值 暫存器613 X的原儲存值比較,若量測結果值大於最高量測值暫 存器613裏的原儲存值,則將量測結果值儲存至高量測值暫存 器613取代原健存值。並將量測結果值經由十六進位數值轉換器 614轉換成十進位數據,再透過顯示鶴$ 615 ·驅動液晶顯示器 603將溫度值顯示。同時輸出信號將時序產生器、617巾之溫度穩 定時間計數器618歸零。 若量測結果值小於最高量測值暫存器613裏的原儲存值,則 輸出城予時序產生器617中之溫度穩定時間計數^ 618加計一 單位時間,但不輸出信號予十六進位數值轉換器614。 步驟708 ’是否已達熱平衡? 20 M322234The sampling time is used to calculate the sampling time (4). The second translation of the 7 domain position determines the sampling time. The second sampling of the preset is fresh as the frequency of I fiber seconds/time; controlled by sampling time! | _, output sampling control, control analog digital converter or electric _ rate conversion ^ _ will be from the temperature sensory 6 (10) obtained by the temperature signal domain variable domain, into the value meter (four) 610 calculated as digital The measured result value. The measured result value is compared with the original stored value of the highest measured value register 613 X via the data comparator 612, and if the measured result value is greater than the original stored value in the highest measured value register 613, Then, the measured result value is stored in the high-valued value register 613 to replace the original stored value. The measured result value is converted into decimal data via the hexadecimal value converter 614, and then displayed by the display crane $ 615. The liquid crystal display 603 is driven to display the temperature value. At the same time, the output signal resets the timing generator, 617 towel temperature stabilization time counter 618 to zero. If the measured result value is less than the original stored value in the highest measured value register 613, the temperature stabilization time count in the output timing generator 617 is incremented by one unit time, but the signal is not output to the hexadecimal value. Converter 614. Step 708 ' Has it reached thermal equilibrium? 20 M322234

時,則持續量測。 曰内,如4秒’ 8秒或16秒,量測到的溫度值 未里測到更南之溫度值,代表體溫計與受測體 衡,隨即輸出量測完成信號。若取得更高溫度值 員寺門夺如4秒’8秒或π秒内,如果最高量測值暫存器⑽ 裏_儲存值-直未被取代,職表在細設時財,皆未取得 φ 較门/皿度值此時時序產生器617會以-特定時序觸發聲音驅動 時序產生11 617巾之溫度穩定賴計數H 618制等同於- 器 616〇 如果判斷還未達到熱平衡,則重複步驟7〇6。 步驟709,液晶顯示器6〇3顯示,蜂鳴器6〇4發聲告示測量 到的溫度值已趨穩定; 液晶顯示器603持續顯示最高的量測值,在一段時間内,如 4秒8秒或16秒,右未出現更南的溫度值,則蜂鳴器604會發 生一系列的或預設的聲響,代表量測到的溫度值已趨穩定。 步驟710,自動關機; 液晶顯示器603持續顯示一段預設時間後,如1〇分鐘後,自 動關機。 上述描述的為本新型第一實施例的電路結構及工作過程,但 本新型不局限於此,還有多種實施方式,如下所述。 第一實施例如圖8所示’為本新型的另一具體電路結構圖。 其基本結構與圖6第一實施例電子體溫計的具體電路結構圖基本 21 M322234 相似。其不同在於’經由較快的第一取樣頻率獲取升溫起始點並 -計算溫度對時_拍線之第—反曲點及第二反_,然後以這 - 二航曲點時縣_數當作第二取樣頻率,進行體溫測量。 開機後,預設取樣時間控制器為第一取樣頻率,環境溫度經 由溫度感測器’轉換器及計數暫存器取得並存入最高量測值暫存 器。下-辦數暫存n的溫度量顺與最高量職暫存器經 料比較暫存器比較是否開始大量升溫。若否,計數暫存器存入最 • 高量測值暫存器―直侧到自動關機’同時斜率暫存器―821歸 零。是則得到升溫起始點時間並同時取得斜率值至斜率暫存器二 821。 〇 升溫取樣後,計數暫存器資料更新。暫存器一 817移至暫存 器二819且暫存器- 817經由資料比較暫存器更新,同時由斜率 比較暫存器取得前後解差值依序存入斜率暫存器—821及斜率 暫存器二822經由取樣時間估算器比較連續取樣的斜率差值,可 參 付到斜率第一次反曲點及第二次反曲點’並且同時由取樣時間估 算器測得關隔_至取樣時難継,使溫度取樣速度與心跳 速度同步。 或者經由較快的第-取樣頻率獲取升溫起始點並計算溫度對 時間齡曲線之第-反曲點至第_反曲點,然後以這η個反曲 點之平均時間差的倒數當作第二取樣頻率,進行體溫測量。 第二實施例的工作過程如圖9所示’其工作過程與第一實施 例的工作過程相似,具體如下所述。 22 M322234 步驟901,啟動; f子體溫計開始運行,啟動電子體溫計開關8〇ι時,振盈器 802產生基本的系統工作鮮,驅動整個電路系統。 步驟902,初始值設定; 首先進行初始蚊工作,將職值置人在魏㈣各個控制 器中。 步驟903 ,量測環境溫度並顯示量測結果; • 即先進行環境溫度量測,量測結果值儲存於初始量測值暫存 器及最咼量測值暫存器,並轉換為溫度值。 振盪器802驅動時序產生器8〇3,然後時序產生器8〇3會產 生各種預設的頻率及相關控制信號輸出。 利用取樣時間估算器804依據預設取樣頻率值決定取樣時 間’經由取樣B夺間湖器805,在開始量測時輸出第一次的取樣 控制信號,控制類比數位轉換器或電阻頻率轉換器8〇6將來自於 ❿ 賴湘’所取得的溫度信號轉縣數位信號,進入量測值 計數暫存器808計算為數字式的量測結果值。 將上述的量測結果值儲存至初始量測值暫存器8〇9,並經由 資料比較器810與已在最高量測值暫存器811裏的初始值比較, 若量測結果值大於最高量測值暫存器811裏的初始值,則將量測 結果值儲存至最高量測值暫存器811取代初始值。由於為第一次 量測’其值必然大於初始值,故此動作必然發生。 將量測結果值經由十六進位數值轉換器812轉換成十進位數 23 M322234 據’再透過顯示驅動器813驅動液晶顯示器814將溫度值顯示。 步驟904,第-取樣頻率偵測並顯示量测結果; “即以第-輯辭之解断下—魏度制,量測結果值 右大於之前最高值,則將此量測結果值儲存於最高量測值暫存器 並轉換為溫度值,顯示於液晶顯4 上。 σ 本新型以大於2赫兹以上,最好是1〇赫兹以上之第一取樣 頻率的頻率進行溫度量測,以便於較精確財握體·始量測的 時間點。 時序產生H 803產生下—次取餘馳繼號輸出。 利用取斜算㈣4健職之第_取_率決定取樣 時間’㈣取樣時間控制n 8G5,輸出取樣控制信號,控制類比 ,位轉換器或電阻辭轉換器806將來自於溫度感測器807所取 得的溫度雜觀為數健號,進人量·計崎姑_計算 量測結果值。 ^ 將上述的量罐果值經㈣料比較^ _與已在最高量測值 暫存器S11裏的顧存值比較,若量嶋果值大於最高量測值暫 存器811 X的原儲存值’則將量測結果值儲存至最高量測值暫存 器811取代原儲存值。並將量測結果值經由十六進位數值轉換器 812轉換成十進位數據,再透過顯示驅動$ 813驅動液晶顯示器 814將溫度值顯示。同時將量測結果值儲存至暫存器一 817並輸 出信號將時序產生器8〇3中之溫度穩㈣間計數器818歸零。暫 存器一 817的值再儲存至暫存器二819。 24 M322234 若量測結果值小於最高量測值暫存器8Π裏的原儲存值,則 ' 無任何後續動作。 " 步驟905,升溫大於預置的預設值? 若偵測到的溫度較第一次量測結果值高出預置的預設值,如 〇· 2攝氏度以上,代表體溫計已開始量測體溫,跳至步驟9〇7,否 則表示仍然停留在環境溫度下還未開始體溫量測。 步驟904中,量測結果值除經由資料比較器81〇與最高量測 參 值暫存器811裏的原儲存值比較外,亦經由資料比較器810與初 始量測值暫存器809的值做比較,若量測結果值較初始量測值暫 存器809的值大超過預置的預設值,例如轉換後約為〇· 2攝氏度 以上,則產生一信號用以觸發時序產生器8〇3變換取樣頻率。否 則輸出信號予時序產生器803中之溫度穩定時間計數器818加計 一單位時間。 步驟906,大於預置的預設時間? # 當偵測到的溫度在一定時間内,如3分鐘,未上升達到預置 的預設值,如0· 2攝氏度以上,則自動關機。 當量測結果值較初始量測值暫存器8〇9的值未超過預置的預 設值,例如轉換#^約為0.2攝氏度,則輸出信號予時序產生器8〇3 中之溫度穩定時間計數器818加計一單位時間。當時序產生器 803中之溫度穩定時間計數器818達到等同於一預設時間時,如 3分鐘,則時序產生器803產生一信號,自動關機。若時序產生 器803中之溫度穩定時間計數器818達到小於該預設時間,即以 25 M322234 相同頻率(第一取樣頻率)重複步驟9〇4動作。 步驟907,第-取樣頻率偵測並顯示量測結果; 當__溫度較第—次量測結果值高出預置的預設值,如 0·2攝氏度以上,代表_、、w —b 馳體一已開始里顧溫,進行溫度量測。 若量測結果值較初始量測值暫存器则的值大超過預置的預 設值,例如轉換後約為〇. 2攝氏度以上,則產生—信號用以觸發 時序產生器803以原取樣頻率產生下一次取樣相關控制信號輸 φ 出。 利用取樣時·算㈣4依據之第—轉辭決定取樣 時間’經由取樣時間控制$ 8〇5,輸出取樣控制信號,控制類比 數位轉換器或電阻頻率轉換器_將來自於溫度感測器8G7所取 得的值度心號轉變為數位信號,進入量測值計數暫存器8⑽計算 量測結果值。 將上述的量聰綠麵雜比較器81()與已在最高量測值 • 暫存器811裏的原儲存值比較,若量測結果值大於最高量測值暫 存器811 «的原儲存值,則將量測結果值儲存至最高量測值暫存 器811取代原儲存值。並將量測結果值經由十六進位數值轉換器 812轉換成十進位數據,再透過顯示驅動器驅動液晶顯示器 814將溫度值顯示。若量測結果值小於最高量测值暫存H 811裏 的原儲存值’職出信舒時序產生器謝溫度歡時間計 數器818加計一單位時間,但不輸出信號予十六進位數值轉換器 812。 26 M322234 同時將量職撕靖817糊她 生器803中之溫度穩定時間計數器818歸零。利用斜率計 器820計算暫存器- 817與暫存器二819之差值 子 暫存器一 821。之後,暫存琴一 81 子入斜率 瞥盗817的值再儲存至暫存器二819。 步驟_ ’推估出兩反曲點間時間間距,以作為之後的婦描 同時比較每單位時間溫度之變化量,利用每單位時間溫度攸 升斜率由遞減轉為遞升以估算溫度齡對咖之反曲點。由於每 次心跳時錢供輸畴來祕,之後由料界魏频溫計帶走 熱源,所以溫度之齡曲線會錢浪狀逐步上升。兩反曲點之時 間間距即為一次心跳時間。 、 存在兩種方式’其中一種為··利用斜率比較暫存器卿比較 斜率暫存器一 821與斜率暫存器二822之差值,斜率暫存器一 821 的值儲存至斜率暫存器二822。At the time, the measurement is continued. In the crucible, such as 4 seconds' 8 seconds or 16 seconds, the measured temperature value does not measure the souther temperature value, which represents the thermometer and the measured balance, and then outputs the measurement completion signal. If the higher temperature value is obtained, the gate of the temple is 4 seconds '8 seconds or π seconds. If the highest measured value register (10) is not replaced by the stored value, the job list is not obtained. φ Comparing the gate/diffuser value At this time, the timing generator 617 triggers the sound driving timing with a specific timing to generate a temperature stability of 11 617. The H 618 system is equivalent to - 616. If it is judged that the heat balance has not been reached, the steps are repeated. 7〇6. Step 709, the liquid crystal display 6〇3 is displayed, the buzzer 6〇4 sounds that the measured temperature value has stabilized; the liquid crystal display 603 continuously displays the highest measured value, such as 4 seconds, 8 seconds or 16 for a period of time. In seconds, the souther temperature value does not appear on the right, and the buzzer 604 will generate a series or preset sound, indicating that the measured temperature value has stabilized. Step 710, the automatic shutdown; after the liquid crystal display 603 continues to display for a preset period of time, such as 1 minute, the automatic shutdown. The above describes the circuit structure and operation of the first embodiment of the present invention, but the present invention is not limited thereto, and various embodiments are also described below. The first embodiment is shown in Fig. 8 as another specific circuit configuration diagram of the present invention. The basic structure is similar to the specific circuit structure diagram of the electronic thermometer of Fig. 6 which is basically 21 M322234. The difference is that 'the temperature rise starting point is obtained via the faster first sampling frequency and - the temperature is opposite to the time - the first of the beat line - the inflection point and the second inverse _, and then the county _ number The body temperature measurement is performed as the second sampling frequency. After power-on, the preset sampling time controller is the first sampling frequency, and the ambient temperature is obtained by the temperature sensor 'converter and the counting register and stored in the highest measured value register. The temperature of the lower-running temporary storage n is compared with the highest-volume temporary register compared with the temporary register to see if a large amount of temperature rises. If not, the count register is stored in the most high-value register register - straight to auto-shutdown and the slope register -821 is reset to zero. Yes, the temperature rise start point time is obtained and the slope value is simultaneously obtained to the slope register 2 821.计数 After the temperature is sampled, the register data is updated. The register one 817 is moved to the register 2 819 and the register - 817 is updated by the data comparison register, and the difference between the front and back solutions obtained by the slope comparison register is sequentially stored in the slope register - 821 and the slope. The register two 822 compares the slope difference of the continuous sampling by the sampling time estimator, and can participate in the first inflection point and the second inflection point of the slope and is simultaneously measured by the sampling time estimator. It is difficult to sample, so that the temperature sampling speed is synchronized with the heart rate. Or obtaining the temperature rise starting point via the faster first sampling frequency and calculating the first to the inflection point of the temperature versus time age curve, and then using the reciprocal of the average time difference of the η inflection points as the first Two sampling frequencies for body temperature measurement. The working process of the second embodiment is as shown in Fig. 9. The working process is similar to that of the first embodiment, as described below. 22 M322234 Step 901, start; f sub-thermometer starts running, when the electronic thermometer switch is started 8 〇, the vibrator 802 generates basic system work and drives the entire circuit system. Step 902, initial value setting; firstly, the initial mosquito work is performed, and the job value is placed in each controller of Wei (4). Step 903, measuring the ambient temperature and displaying the measurement result; • first performing the ambient temperature measurement, and the measurement result value is stored in the initial measurement value register and the last measurement value register, and is converted into a temperature value. . The oscillator 802 drives the timing generator 8〇3, and then the timing generator 8〇3 produces various preset frequencies and associated control signal outputs. The sampling time estimator 804 determines the sampling time according to the preset sampling frequency value. The sampling control signal is outputted via the sampling B, and the first sampling control signal is output at the beginning of the measurement, and the analog digital converter or the resistance frequency converter 8 is controlled. 〇6 converts the temperature signal obtained from 赖 赖湘 into the county digital signal, and enters the measurement value counting register 808 to calculate the digital measurement result value. The above measured result value is stored in the initial measured value register 8〇9, and compared with the initial value already in the highest measured value register 811 via the data comparator 810, if the measured result value is greater than the highest value The initial value in the measured value register 811 is stored in the highest measured value register 811 instead of the initial value. Since the value is necessarily greater than the initial value for the first measurement, this action necessarily occurs. The measured result value is converted to a decimal number via the hexadecimal value converter 812. 23 M322234 The temperature value is displayed by driving the liquid crystal display 814 through the display driver 813. Step 904, the first-sampling frequency detects and displays the measurement result; "that is, according to the first-series resolving--Wei system, the measurement result value is greater than the previous highest value, and the measurement result value is stored in The highest measured value register is converted to a temperature value and displayed on liquid crystal display 4. σ This new type measures the temperature at a frequency greater than 2 Hz, preferably above the first sampling frequency above 1 Hz, to facilitate The time point of the more accurate financial body and the initial measurement. The timing generation H 803 generates the next-time acquisition of the continuation of the continuation. The slash calculation (4) 4 _ _ rate of the health job determines the sampling time ' (four) sampling time control n 8G5, output sampling control signal, control analogy, bit converter or resistance word converter 806 will take the temperature from the temperature sensor 807 to obtain a number of health, enter the amount of people, calculate the measurement results ^ Compare the fruit value of the above-mentioned measuring tank by (4) comparison ^ _ with the stored value in the highest measured value register S11, if the measured value is greater than the original value of the highest measured value register 811 X Store the value 'to store the measured result value to the highest measured value register 81 1 replaces the original stored value, and converts the measured result value into decimal data via the hexadecimal value converter 812, and then drives the liquid crystal display 814 to display the temperature value through the display drive $813. At the same time, the measured result value is stored to the temporary value. The buffer one 817 and the output signal resets the temperature stable (four) counter 818 in the timing generator 8〇3 to zero. The value of the register one 817 is further stored to the register two 819. 24 M322234 If the measurement result value is less than the highest If the original stored value in the value register is 8 Π, then there is no follow-up action. " Step 905, the temperature rise is greater than the preset preset value? If the detected temperature is higher than the first measurement result value The preset preset value, such as 〇·2 degrees Celsius or above, means that the thermometer has started to measure the body temperature, skip to step 9〇7, otherwise it means that the body temperature measurement has not started yet at the ambient temperature. In step 904, the measurement is performed. The result value is compared with the original stored value in the highest measured value register 811 via the data comparator 81, and is also compared with the value of the initial measured value register 809 via the data comparator 810. Result value is lower than the initial value The value of the register 809 is greater than a preset preset value, for example, about 〇·2 degrees Celsius or more after the conversion, and a signal is generated to trigger the timing generator 8〇3 to convert the sampling frequency. Otherwise, the output signal is sent to the timing generator. The temperature stabilization time counter 818 in 803 adds one unit time. Step 906, which is greater than the preset preset time? # When the detected temperature is within a certain time, such as 3 minutes, it does not rise to reach the preset preset value. If it is above 0·2 degrees Celsius, it will automatically shut down. The value of the equivalent measurement result is less than the preset preset value of the initial measurement value register 8〇9, for example, the conversion #^ is about 0.2 degrees Celsius, then the output signal The temperature stabilization time counter 818 in the timing generator 8〇3 is incremented by one unit time. When the temperature stabilization time counter 818 in the timing generator 803 reaches the equivalent of a predetermined time, such as 3 minutes, the timing generator 803 generates a signal to automatically shut down. If the temperature stabilization time counter 818 in the timing generator 803 reaches less than the preset time, the step 9〇4 is repeated at the same frequency (the first sampling frequency) of 25 M322234. Step 907, the first sampling frequency detects and displays the measurement result; when the __ temperature is higher than the preset value of the first measurement, a preset preset value, such as above 0·2 degrees Celsius, represents _, w-b Chichi has started to measure temperature and conduct temperature measurement. If the value of the measurement result is greater than the value of the initial measurement register, the preset value is exceeded, for example, about 摄. 2 degrees Celsius or more after the conversion, the signal is generated to trigger the timing generator 803 to perform the original sampling. The frequency produces the next sampling related control signal output φ. When using sampling, calculate (4) 4 according to the first - the conversion determines the sampling time 'via the sampling time control $ 8 〇 5, output the sampling control signal, control analog digital converter or resistance frequency converter _ will come from the temperature sensor 8G7 The obtained value heart number is converted into a digital signal, and the measured value count register 8 (10) is entered to calculate the measurement result value. Comparing the above-mentioned quantity of the Cong Green surface noise comparator 81 () with the original stored value in the highest measurement value register 811, if the measurement result value is greater than the original storage value of the highest measurement value register 811 « The value is stored in the highest measured value register 811 instead of the original stored value. The measured result value is converted into decimal data via the hexadecimal value converter 812, and the temperature value is displayed by driving the liquid crystal display 814 through the display driver. If the measured result value is less than the original stored value in the temporary value H 811 of the highest measured value, the duty time counter generator 818 adds one unit time, but does not output a signal to the hexadecimal value converter 812 . 26 M322234 At the same time, the temperature stabilization time counter 818 in the 803 is returned to zero. The slope counter 820 is used to calculate the difference between the register - 817 and the register 819. The sub-register 821. After that, the value of the sneak peek 817 is temporarily stored and stored in the register 819. Step _ 'Evaluate the time interval between the two recursive points, as a subsequent gestation while comparing the change in temperature per unit time, using the temperature ramp up per unit time from declining to increasing to estimate the temperature age Recurve point. Because each time the heartbeat is used for the secrets of the domain, the temperature band will gradually increase as the temperature of the age band takes away the heat source. The time interval between the two inflection points is one heartbeat time. There are two ways, one of which is to use the slope comparison register to compare the difference between the slope register 821 and the slope register 822, and the value of the slope register 821 is stored to the slope register. Two 822.

時間間距; 重複步驟907,步驟9〇8步驟,若發現斜率由遞減轉為遞增, 則汁為第一反曲點,啟動反曲點時距估算器犯4。 重複907 ’步驟9〇8步驟,再次發現斜率由遞減轉為遞增時, 則十為第一反曲點,此時產生一信號用以觸發時序產生器803變 換以此一反曲點時間差之倒數為第二取樣頻率。產生下一次取樣 相關控制信號輸出。 另一種方式為:利用斜率比較暫存器823比較斜率暫存器一 821與斜率暫存器二822之差值,斜率暫存器-821 _儲存至 27 M322234 斜率暫存器二822。 重複步驟907,步驟908步驟,若發現斜率由遞減轉為遞增, 則计為第一反曲點,啟動反曲點時距估算器824。 重複步驟907,步,驟908,再次發現斜率由遞減轉為遞增,則 汁為第一反曲點。溫度測量過程中經由血液傳送的熱補償,是一 波-波的,使取樣溫度值對時_線的斜率重複出現上述遞減遞 增的現象,因而形成並且可取得11個反曲點。 完成後,產生一信號用以觸發時序產生器8〇3變換為以此η 反曲點平均時間差之倒數為第二取樣頻率。產生下—次取樣相關 控制信號輸出。 步驟909,第二取樣頻率偵測並顯示量測結果; 將刖述什算所得兩反曲點時間差作為之後的掃描時間間距, 以便使取樣頻率與人體頻同步制每次取值皆為同向位元的目 的。理淪上,此時間差即為每次心跳的時間差。 利用取樣時職算H _依據帛二雜鮮決定取樣時間, 虼由取樣時’制H 8G5,輸出取樣控制信號,控細貞比數位轉 換器或電阻頻率轉換器(RFC或ADC) 806將來自於溫度感測器807 所取得的溫度信號轉變為數位信號,進入量測值計數暫存器808 計算為數字式的量測結果值。 將上述的量測結果值經由資料比較器810與已在最高量測值 暫存器811 |的原儲存值比較,若量測結果值大於最高量測值暫 存器811裏的原儲存值,則將量測結果值儲存至最高量測值暫存 28 M322234 器811取代原儲存值。並將量測結果值經由十六進位數值轉換器 812轉換成十進位數據,再透過顯示驅動器⑽驅動液晶顯示器 814將,皿度值顯不。同時輸出信號將時序產生器腦中之溫度穩 定時間計數器818歸零。 u 右里測結果值小於最高量測值暫存器8ΐι裏的原儲存值,則Time interval; Step 907, step 9〇8 is repeated. If the slope is found to be changed from decreasing to increasing, the juice is the first inflection point, and the distance estimator is 4 when the inflection point is initiated. Repeating step 907 'Step 9〇8, again finding that the slope is changed from decreasing to increasing, then ten is the first inflection point, and a signal is generated to trigger the timing generator 803 to convert the reciprocal of the time difference of the inflection point. Is the second sampling frequency. The next sampling related control signal output is generated. Alternatively, the slope compare register 823 compares the difference between the slope register 821 and the slope register 822, and the slope register -821 _ is stored to 27 M322234 slope register 822. Step 907, step 908 is repeated, and if the slope is found to be changed from decrement to increment, it is counted as the first inflection point, and the inflection point time interval estimator 824 is started. Step 907, step 908 is repeated, and it is found again that the slope is changed from decreasing to increasing, and the juice is the first inflection point. The thermal compensation transmitted through the blood during the temperature measurement is a wave-wave, which causes the sampling temperature value to repeat the above-described decreasing and decreasing phenomenon with respect to the slope of the time_line, thus forming and obtaining 11 inflection points. After completion, a signal is generated for triggering the timing generator 8〇3 to convert to the second sampling frequency by the reciprocal of the average time difference of the η inflection point. The next-time sampling related control signal output is generated. Step 909, the second sampling frequency detects and displays the measurement result; the time difference between the obtained two inflection points is used as the subsequent scanning time interval, so that the sampling frequency is synchronized with the human body frequency, and each value is the same direction. The purpose of the bit. In theory, this time difference is the time difference between each heartbeat. Using the sampling time H _ depends on the second sampling time to determine the sampling time, 虼 by sampling when making H 8G5, output sampling control signal, control fine ratio digital converter or resistance frequency converter (RFC or ADC) 806 will come from The temperature signal obtained by the temperature sensor 807 is converted into a digital signal, and the input measurement value count register 808 is calculated as a digital measurement result value. The measured result value is compared with the original stored value of the highest measured value register 811 | via the data comparator 810, and if the measured result value is greater than the original stored value in the highest measured value register 811, The measured result value is stored to the highest measured value temporary storage 28 M322234 811 instead of the original stored value. The measured result value is converted into decimal data by the hexadecimal value converter 812, and then the liquid crystal display 814 is driven by the display driver (10) to display the value of the dish. At the same time, the output signal zeros the temperature stabilization time counter 818 in the brain of the timing generator. u The value of the right measurement is less than the original stored value of the highest measured value register 8 ΐι, then

2紅舒時序產生器8G3中之溫度穩定時間計數器⑽加計一 單位時間’但不輸出信號予十六進位數轉換器肌 步驟910,是否已達熱平衡; ^判斷在一段時間内,如4秒,8秒或16秒,量測到的溫度值 疋否_上升,若未量_更高之溫度值,代祕溫計與受測體 溫度^於龄衡’隨即輸出制完成錄。若取得更高溫度值 則持續量測。 二時序產生器803中之溫度穩树間計數㈣818達到等同於一 預二,時’如4秒’ 8秒或16秒’代表在此預設時間中,皆未 取得較高溫度值’此時時序產生_會以一時序觸發發聲 驅動器815。 …私年 步驟911液晶顯示器顯示,蜂鳴器發聲; 液曰曰,、、、頁不器814持續顯示最高的量測值,在一段時間内,如 4秒叫秒或16秒,若未出現更高的溫度值,則蜂鳴器816會發 生-系列的聲響’代表量測刺溫度值已趨穩定。 液晶顯不器814則持續顯示最高的量測值。發聲驅動器仍 驅動蜂鳴器816產生預設的聲響。 29 M322234 步驟912自動關機; 液晶顯示器814持續顯示一段預設時間後,如1〇分鐘後,自 動關機。 第三實施例,如圖10所示,為本新型第三實施例的具體電路 結構圖。其卫作過程如圖11所示,具體如下所述。 步驟121,啟動; 電子體溫計開始運行,啟動電子體溫計開關1〇1時,振盪器 102產生基本的系統工作頻率,驅動整個電路系統。 步驟122初始值設定; 首先進行初始設定工作,將預設值置入在電路中的各個控制 器中。 步驟123,量測環境溫度並顯示量測結果; 進仃環境溫度量測,量測結果值儲存於初始量測值暫存器及 最高量測值暫存H,並轉換為溫度麵示。 振盪器102驅動時序產生器1〇3,然後時序產生器1〇3會產 生各種預設賴率及侧控制信號輸出。 利用取樣時間估算器1〇4依據預設取樣頻率值決定取樣時 間’經由取樣時間控制n 105,在開始量測時輸出第一次的取樣 控制信號,控制類比數位轉換器或電_率轉換器⑽將來自於 溫度感測II 1G7所取得的溫度健轉變紐_號,進入量测值 計數暫存器108計算為數字式的量測結果值。 將上述的量聰果值儲存至初始量測值暫存器⑽並輸出至 M322234 溫度酬模組m,並經㈣料比較^ UG與已在最高量測 存器in裏的秘值比較’若量測、絲献於最高量嫩暫存器 111裏的初始值’聽量·果值儲存至最高量職暫存器⑴ 取代初始值。由於為第—次量測,其值必然大於初始值,故此動 作必然發生。 將量測結果值經由十六進位數值轉換器112轉換成十進位數 據,再透過顯示驅動器113驅動液晶顯示器114將溫度值顯示。 # 步驟124第-取樣頻率偵測並顯示量測結果; 以第-取樣頻率之頻率進行下一次溫度量測,量測結果值若 大於之前最高值,麟此_絲_存於最高量峨暫存器並 轉換為溫度值,顯示於液晶顯示器Π4上。 本實施方式以大於2赫兹以上,最好是10赫兹以上之第一 取樣頻率_轉行溫度制,讀於鋪翻掌_溫開始量 • _時間點。時序產生器103產生下-次取樣相關控制信號輸出。 利用取樣時祕㈣1Q4依據預設之第-取樣鮮決定取樣 時間,經由取樣時間控制H 105,輸出取樣控制信號,控制類比 ,位轉換器或電阻鮮轉換器⑽將來自於溫度感湘册所取 巧的恤紅就轉變為數位信號,進入量測值計數暫存器⑽計算 量測結果值。 σ 將上述的量測結果值經由資料比較器110與已在最高量測值 暫存器111襄的原儲存值比較,若量測結果值大於最高量測值暫 存器111裏的原儲存值,則將量測結果值儲存至最高量測值暫存 31 M322234 器111取代原儲存值。並將量測結果值經由十六進位數值轉換器 112轉換成十進位數據,再透過顯示驅動器113驅動液晶顯示器 114將溫度值顯示,同時輸出信號將時序產生器103中之溫度穩 定時間計數器115歸零。 若量測結果值小於最高量測值暫存器111裏的原儲存值,則 無任何後續動作。 步驟125,升溫大於預置的預設值? 若偵測到的溫度較第一次量測結果值高出預置的預設值,如 0. 2攝氏度以上,代表體溫計已開始量測體溫,跳至步驟127,否 則表示仍然停留在環境溫度下,還未開始體溫量測。 步驟124中’量測結果值除經由資料比較器11〇與最高量測 值暫存器111裏的原健存值比較外,亦經由資料比較$ 11〇與初 始量測值暫存H 109 做比較,若量漸果錄減量測值暫 存器109的值大超過預置的預設值,例如轉換後約為〇. 2攝氏度 以上,則產生一信號用以觸發時序產生器103變換取樣頻率。否 則輸出信號予時序產生器⑽中之溫度穩定時間計數器115加計 一單位時間。 步驟126,大於預置的預設時間? 當偵測到的溫度在-定時_,如3分鐘,未上升達到預置 的預设值’如0.2攝氏度以上,則自動關機。 當量測結果值較初始量測值暫存器1〇9的值未超過預置的預 設值’例如轉換後約為〇. 2攝氏度,則輸出信號予時序產生器103 32 M322234 中之溫度穩定時間計數器115加計—單位時間。當時序產生器 103中之溫度穩定時間計數n 115達到等同於一預設時間時,如 3分鐘,則時序產生n 1G3產生—信號,自動關機。辦序產生 器103中之溫度穩定時間計數器115達到小於該預設時間,即以 相同的第一取樣頻率重複步驟丨24動作。 步驟127第二取樣頻率_並顯示量測結果; 當债測到的溫度較第—次量聰果值高出預置的預設值,如 〇.2攝氏m ’代表體溫計已開始量繼溫,為轉與心跳同 步的溫度補償,切換為另—取樣頻率,此一取樣頻率宜接近心跳 頻率,如一分鐘七十二次。 本實把方式以1· 2赫茲之第二取樣頻率麵率進行溫度量 測,以便使取樣鮮與人體心朗步_每次取鮮為同向位元 的目的。 若篁測結果健初始量測值暫存器⑽的值大超過預置的預 設值,例如轉換後約為G· 2攝氏紅上,職生—錢用以觸發 夺序產生II 103變換取樣鮮產生下_次取樣侧控制信號輸 利用取樣時間轉器1〇4依據預設之第二取樣頻率決定取樣 =取樣時間控制H 1G5,輸出取樣控制信號,控制類比 1位轉換减電阻頻率轉換H 1〇6將來自於溫度感測器1G7所取 Z溫度信號轉變為數位信號,進入量測值計數暫存器伽計算 為數字式的量測结果值。 33 M322234 將上述的量測結果值輸出至溫度預測模組118並經由資料比 較器110與已在最高量測值暫存器1U裏的原儲存值比較,若量 測結果值大於最高量測值暫存器ln裏的原儲存值,則將量測結 果值儲存至最高量測值暫存器U1取代原儲存值。並將量測結果 值經由十六進位數值轉換器112轉換成十進位數據,再透過顯示 驅動器113驅動液晶顯示器114將溫度值顯示,同時輸出信號將 時序產生器103中之溫度穩定時間計數器115歸零。 • 若量測結果值小於最高量測值暫存器m裏的原儲存值,則 輸出信號予時序產生器103中之溫度穩定時間計數器115加計一 單位時間’但不輸出信號予十六進位數值轉換器112。 步驟128 ;將偵測到的環境溫度及步驟127所取得之特定幾 個量測結果值當作輸入,利用特定的公式或演算法計算以取得預 測值,用以預測最終實際量測結果值。 將步驟123所取得之初始溫度值及步驟127所取得之特定幾 • 個量測結果值當作輸入,並使用特定的公式或演算法計算,以預 測量測長時間後之最終結果值,用以減少量測時間。 溫度預測模組118内建預設之公式或演算法,將步驟123及 步驟127輸入之值加以運算,以得到之估計值。 步驟129,是否已計算出合理的預測值? 利用預設的邏輯或模式用以判定溫度爬升情形或預測結果值 是否合理。 溫度預測模組118内亦建有可用以判斷預測值是否合理之模 34 M322234 組’若判斷後屬合理’則輸出一信號予時序產生器1〇3,時序產 生器103再以一特定時序觸發發聲驅動器U6。進入步驟13〇。 若經判斷輸入值或預測結果值不合理,則重複步驟127,步 驟 128 〇 步驟130,液晶顯示器顯示,蜂鳴器發聲; 量測結果已完成,蜂鳴器117會發生一系列的聲響。液晶顯 不器114則持續顯示最高的量測值。發聲驅動器116驅動蜂鳴器 117產生預設的聲響。 步驟131,自動關機; 液晶顯不器114持續顯示一段預設時間後,如1〇分鐘後,自 動關機。 第四實%例如圖12所示,為本新型第四實施例的具體電路結 構圖。其工作雜如圖13所示,具體如下所述。 步驟151,啟動; 電子體溫計開始運行,啟動電子體溫計開關141時,振盪器 142產生基本的系統工作頻率,驅動整個電路系統。 步驟152,初始值設定; 首先進行初始設定工作,將預設值置入在電路中的各個控制 器中。 步驟153,量測環境溫度並顯示量測結果; 進行環境溫度量測,量測結果值儲存於初始量測值暫存器及 最高量測值暫存器,並轉換為溫度值並顯示。 35 M322234 振盈器142驅動時序產生器143,然後時序產生器143會產 生各種預汉的頻率及相關控制信號輸出。 利用取樣時間估算器144依據預設取樣頻率值決定取樣時 間,經由取樣時間控制器145,在開始量測時輸出第一次的取樣 控制#號’控制類比數位轉換器或電阻頻率轉換器146將來自於 溫度感測器147所取得的溫度信號轉變為數位信號,進入量測值 計數暫存H 148計算為數字式的制結果值。 將上述的量測結果值儲存至初始量測值暫存器141〇並輸出 至溫度預繼組U9,並經由資料比較H 1411與已在最高量測 值暫存器1412裏的初始值比較,若制絲值大於最高量測值 暫存器1412裏的初始值,則將量測結果值儲存至最高量測值暫 存器1412取代初始值。由於為第—次量測,其值必然大於初始 值,故此動作必然發生。 將量測結果健由十六進位數鋪換器1413賴成十進位 數據,再透賴轉動H 1414驅驗騎4 1415將溫度健 不。 步驟154,第—取樣頻率偵測並顯示量測結果; 以第-取樣頻率之頻率進行下一次溫度量測,量測結果值若 大於之前最高值,麟此量_緣值齡於最高#難暫存器並 轉換為溫度值,顯示於液晶顯示器14丨5上。 本實施例以大於2赫兹以上,帛好是1〇赫兹以上之第一取 樣頻率的鮮繼綱,崎順辦_溫_測 36 M322234 的時間點。時序產生器143產生下—次取樣糊控制信號輪出。 利用取樣時料144域職之第―取樣辭決定取樣 寺1、、星由取樣時間控制器145,輸出取樣控制信號,控制類比 數位轉換器或電阻頻率轉換器146將來自於溫度感測器147所取 得的溫度信號轉變為數位信號,進入量測值計數暫存器148計算 量測結果值。 將上述的量測結果值經由資料比較器1411與已在最高量測 值暫存器1412裏的原儲存值比較,若制結果值大於最高量測 值暫存H 1412㈣尉輸i,麟制絲健存至最高量測 值暫存器1412取代原儲存值。並將制絲值經由十六進位數 值轉換器1413轉換成十驗數據,再透職示鷄器1414驅動 液晶顯不器1415將溫度值顯示。同時將量測結果值儲存至暫存 器丨416並輸出信號將時序產生器143中之溫度穩定時間計數 器1417歸零。暫存器一 1416的值再儲存至暫存器二丨418。 若量測結果值小於最高量測值暫存器1412裏的原儲存值, 則無任何後續動作。 步驟155,升溫大於預置的預設值? 若偵測到的溫度較第一次量測結果值高出預置的預設值,如 〇· 2攝氏度以上,代表體溫計已開始量測體溫,跳至步驟157,否 則表示仍然停留在環境溫度下,還未開始體溫量測。2 The temperature stabilization time counter (10) in the red-shut timing generator 8G3 adds one unit time 'but does not output a signal to the hexadecimal converter muscle step 910, whether it has reached thermal equilibrium; ^ judged for a period of time, such as 4 seconds, 8 seconds or 16 seconds, the measured temperature value 疋 no _ rise, if not the _ higher temperature value, the generation of the thermometer and the measured body temperature ^ age balance 'the output system is completed. If a higher temperature value is obtained, the measurement is continued. The temperature stable tree count in the second timing generator 803 (four) 818 is equal to a pre-two, when '4 seconds' 8 seconds or 16 seconds 'represents that no higher temperature value is obtained in this preset time' The timing generation_ triggers the sounding driver 815 at a timing. ... private year step 911 LCD display, buzzer sounds; liquid helium,,,, page 814 continues to display the highest measured value, in a period of time, such as 4 seconds called seconds or 16 seconds, if not At higher temperature values, the buzzer 816 will occur - the series of sounds 'represents the measured thorn temperature value has stabilized. The liquid crystal display 814 continues to display the highest measured value. The audible driver still drives the buzzer 816 to produce a preset sound. 29 M322234 Step 912 is automatically turned off; after the LCD monitor 814 continues to display for a preset period of time, such as 1 minute, it automatically shuts down. The third embodiment, as shown in Fig. 10, is a specific circuit configuration diagram of the third embodiment of the present invention. The manufacturing process is shown in Figure 11, as described below. Step 121, starting; the electronic thermometer starts to run, and when the electronic thermometer switch 1〇1 is activated, the oscillator 102 generates a basic system operating frequency to drive the entire circuit system. Step 122 initial value setting; First, the initial setting work is performed, and the preset values are placed in the respective controllers in the circuit. In step 123, the ambient temperature is measured and the measurement result is displayed; the inlet environmental temperature measurement is performed, and the measurement result value is stored in the initial measurement value register and the highest measurement value temporary storage H, and is converted into a temperature display. The oscillator 102 drives the timing generator 1〇3, and then the timing generator 1〇3 produces various preset rates and side control signal outputs. Using the sampling time estimator 1〇4 to determine the sampling time according to the preset sampling frequency value 'via the sampling time control n 105, output the first sampling control signal at the beginning of the measurement, control the analog digital converter or the electric_rate converter (10) The temperature change transition value obtained from the temperature sensing II 1G7 is entered into the measured value count register 108 to be a digital measurement result value. The above-mentioned quantity of the fruit value is stored in the initial measurement value register (10) and output to the M322234 temperature compensation module m, and compared with the secret value of the highest amount of the memory in the (4) comparison ^ UG The initial value 'the amount of the listener and the fruit value stored in the highest volume register 111 is stored in the highest volume register (1) instead of the initial value. Since it is the first-order measurement, its value must be greater than the initial value, so this action must occur. The measured result value is converted into decimal input data via the hexadecimal value converter 112, and the liquid crystal display 114 is driven by the display driver 113 to display the temperature value. #步124The first sampling frequency detects and displays the measurement result; the next temperature measurement is performed at the frequency of the first sampling frequency, and if the measurement result value is greater than the previous highest value, the _ wire_ is stored in the highest amount The memory is converted to a temperature value and displayed on the liquid crystal display Π4. The present embodiment is read at the first sampling frequency _ switching temperature of more than 2 Hz, preferably 10 Hz or more, and is read at the sag start temperature _ time point. The timing generator 103 generates a down-time sampling correlation control signal output. Using sampling time secret (4) 1Q4 according to the preset first-sampling fresh decision sampling time, control sampling H 105 via sampling time, output sampling control signal, control analogy, bit converter or resistance fresh converter (10) will come from the sense of temperature The reddish color is converted into a digital signal, and the measured value count register (10) is entered to calculate the measured result value. σ compares the above-mentioned measured result value with the original stored value of the highest measured value register 111 via the data comparator 110, and if the measured result value is greater than the original stored value in the highest measured value register 111 , the measured result value is stored to the highest measured value temporary storage 31 M322234 111 replaces the original stored value. The measured result value is converted into decimal data via the hexadecimal value converter 112, and the liquid crystal display 114 is driven to display the temperature value through the display driver 113, and the output signal returns the temperature stabilization time counter 115 in the timing generator 103. zero. If the measured result value is less than the original stored value in the highest measured value register 111, then there is no subsequent action. In step 125, the temperature rise is greater than the preset preset value? If the detected temperature is higher than the preset value of the first measurement, such as above 0.2 degrees Celsius, it means that the thermometer has started to measure the body temperature, skip to step 127, otherwise it means that it still stays at the ambient temperature. Next, the body temperature measurement has not yet started. In step 124, the measurement result value is compared with the original health value in the highest value measurement register 111 via the data comparator 11 and the data is compared with the initial measurement value H 109 . In comparison, if the value of the amount-of-measurement reduction value register 109 is greater than a preset preset value, for example, about 2 degrees Celsius or more after the conversion, a signal is generated to trigger the timing generator 103 to change the sampling frequency. . Otherwise, the output signal is applied to the temperature stabilization time counter 115 in the timing generator (10) for one unit time. Step 126, greater than the preset preset time? When the detected temperature is in -time_, such as 3 minutes, it does not rise to the preset preset value, such as above 0.2 degrees Celsius, it will automatically shut down. The value of the equivalent measurement result is less than the preset preset value of the initial measurement value 1〇9. For example, after the conversion is about 〇. 2 degrees Celsius, the output signal is output to the temperature in the timing generator 103 32 M322234. The settling time counter 115 is added - unit time. When the temperature stabilization time count n 115 in the timing generator 103 reaches the same as a predetermined time, such as 3 minutes, the timing generates n 1G3 to generate a signal, which automatically shuts down. The temperature stabilization time counter 115 in the sequence generator 103 reaches less than the preset time, i.e., the step 丨24 is repeated at the same first sampling frequency. Step 127, the second sampling frequency _ and display the measurement result; when the temperature measured by the debt is higher than the first-order amount of the fruit value, the preset preset value, such as 〇.2 degrees Celsius, represents that the thermometer has started to measure the temperature. In order to synchronize the temperature compensation with the heartbeat, switch to another sampling frequency, which should be close to the heartbeat frequency, such as seventy-two times a minute. In this way, the temperature measurement is performed at a second sampling frequency face rate of 1.25 Hz, so that the sampling is fresh and the human heart is stepped _ each time the fresh-keeping is the same direction. If the value of the initial measurement value register (10) exceeds the preset preset value, for example, about G·2 Celsius red after the conversion, the employee-money is used to trigger the acquisition to generate the II 103 conversion sampling. Fresh generation _ sub-sampling side control signal transmission using sampling time converter 1 〇 4 according to the preset second sampling frequency to determine sampling = sampling time control H 1G5, output sampling control signal, control analog 1 bit conversion reduction resistance frequency conversion H 1〇6 converts the Z temperature signal from the temperature sensor 1G7 into a digital signal, and enters the measurement value count register gamma to calculate the digital measurement result value. 33 M322234 The above measurement result value is output to the temperature prediction module 118 and compared with the original stored value in the highest measurement value register 1U via the data comparator 110, if the measurement result value is greater than the highest measurement value The original stored value in the register ln is stored in the highest measured value register U1 instead of the original stored value. The measured result value is converted into decimal data via the hexadecimal value converter 112, and the liquid crystal display 114 is driven to display the temperature value through the display driver 113, and the output signal returns the temperature stabilization time counter 115 in the timing generator 103. zero. • If the measured result value is less than the original stored value in the highest measured value register m, the output signal is supplied to the temperature stabilization time counter 115 in the timing generator 103 for one unit time 'but no output signal to the hexadecimal value Converter 112. Step 128: The detected ambient temperature and the specific measurement result obtained in step 127 are taken as inputs, and are calculated by using a specific formula or algorithm to obtain a predicted value for predicting the final actual measurement result value. The initial temperature value obtained in step 123 and the specific measurement result obtained in step 127 are taken as inputs, and are calculated using a specific formula or algorithm to predict the final result value after a long time measurement. To reduce the measurement time. The temperature prediction module 118 has a preset formula or algorithm built in, and the values input in steps 123 and 127 are calculated to obtain an estimated value. Step 129, has a reasonable predicted value been calculated? Use preset logic or mode to determine if the temperature climb or predicted value is reasonable. The temperature prediction module 118 also has a modulo 34 for determining whether the predicted value is reasonable. The M322234 group 'If it is judged to be reasonable', a signal is output to the timing generator 1〇3, and the timing generator 103 is triggered by a specific timing. Sound driver U6. Go to step 13〇. If it is judged that the input value or the predicted result value is unreasonable, step 127 is repeated, step 128 〇 step 130, the liquid crystal display indicates that the buzzer sounds; the measurement result is completed, and the buzzer 117 generates a series of sounds. The liquid crystal display 114 continues to display the highest measured value. The utterance driver 116 drives the buzzer 117 to generate a preset sound. In step 131, the system automatically shuts down; after the liquid crystal display device 114 continues to display for a preset period of time, for example, after 1 minute, it automatically shuts down. The fourth real % is shown in Fig. 12, which is a specific circuit configuration diagram of the fourth embodiment of the present invention. Its work is shown in Figure 13, as described below. Step 151, start; the electronic thermometer starts to run, and when the electronic thermometer switch 141 is activated, the oscillator 142 generates a basic system operating frequency to drive the entire circuit system. Step 152, the initial value setting; first, the initial setting work is performed, and the preset value is placed in each controller in the circuit. Step 153: Measure the ambient temperature and display the measurement result; perform the ambient temperature measurement, and the measurement result value is stored in the initial measurement value register and the highest measurement value register, and is converted into a temperature value and displayed. The 35 M322234 oscillator 142 drives the timing generator 143, which then produces various predicted frequencies and associated control signal outputs. The sampling time estimator 144 determines the sampling time according to the preset sampling frequency value, and outputs the first sampling control # number 'control analog digital converter or resistance frequency converter 146 at the beginning of the measurement via the sampling time controller 145. The temperature signal obtained from the temperature sensor 147 is converted into a digital signal, and the entered measurement value count temporary storage H 148 is calculated as a digital result value. The above-mentioned measurement result value is stored in the initial measurement value register 141〇 and output to the temperature pre-processing group U9, and compared with the initial value already in the highest-measurement value register 1412 via the data comparison H 1411, If the spinning value is greater than the initial value in the highest measured value register 1412, the measured result value is stored to the highest measured value register 1412 in place of the initial value. Since it is the first-order measurement, its value must be greater than the initial value, so this action must occur. The measurement result is calculated by the hexadecimal register 1413 as the decimal data, and then the rotation of H 1414 is used to drive the ride 4 1415 to keep the temperature healthy. Step 154, the first sampling frequency detects and displays the measurement result; the next temperature measurement is performed at the frequency of the first sampling frequency, and if the measurement result value is greater than the previous highest value, the amount of the edge value is the highest in the age # The register is converted to a temperature value and displayed on the liquid crystal display 14丨5. In this embodiment, the time is greater than 2 Hz, and the first sampling frequency above 1 Hz is better than that of the first sampling frequency of 〇 办 _ _ _ 36 M322234. The timing generator 143 generates a down-time sampling paste control signal rotation. The sampling time control unit 145 is outputted by the sampling time of the sampling time, and the sampling time control controller 145 outputs a sampling control signal, and the analog analog digital converter or the resistance frequency converter 146 is controlled by the temperature sensor 147. The obtained temperature signal is converted into a digital signal, and the measured value count register 148 is input to calculate the measured result value. The above-mentioned measurement result value is compared with the original stored value in the highest-measurement value register 1412 via the data comparator 1411, and if the result value is greater than the highest-measurement value, the temporary storage H 1412 (four) 尉 input i, the lining silk The health to the highest measured value register 1412 replaces the original stored value. The yarn value is converted into the ten-test data via the hexadecimal value converter 1413, and the liquid crystal display unit 1414 drives the liquid crystal display unit 1415 to display the temperature value. At the same time, the measured result value is stored in the scratchpad 416 and the output signal resets the temperature stabilization time counter 1417 in the timing generator 143 to zero. The value of register 1416 is then stored in register 418. If the measured result value is less than the original stored value in the highest measured value register 1412, then there is no subsequent action. In step 155, the temperature rise is greater than the preset preset value? If the detected temperature is higher than the preset value of the first measurement, such as 〇·2 degrees Celsius or above, it means that the thermometer has started to measure the body temperature, skip to step 157, otherwise it means that it still stays at the ambient temperature. Next, the body temperature measurement has not yet started.

步驟154中,量測結果值除經由資料比較器ι41ι與最高量 測值暫存器1412裏的原儲存值比較外,亦經由資料比較器14H 37 M322234 與初始量測值暫存器1410的值做比較,若量測結果值較初#旦則 值暫存器1410的值大超過預置的預設值,例如轉換後約為〇之攝 氏度以上,則產生一信號用以觸發時序產生器143變換取樣頻 率。否則輸出信號予時序產生器143中之溫度穩定時間計數器 1417加計一單位時間。 ϋ 步驟156,大於預置的預設時間? 當偵測到的溫度在一定時間内,如3分鐘,未上升達到預置 的預設值,如0· 2攝氏度以上,則自動關機。 當量測結果值較初始量測值暫存器141〇的值未超過預置的 預設值,例如轉換後約為〇· 2攝氏度,則輸出信號予時序產生器 143中之溫度穩疋時間計數器1417加計一單位時間。當時序產生 器143中之溫度穩定時間計數器1417達到等同於一預設時間 時,如3分鐘,則時序產生器143產生一信號,自動關機。若時 序產生器143中之溫度穩定時間計數器1417達到小於該預設時 間,即以相同頻率(第一取樣頻率)重複步驟154動作。 步驟157 ’第一取樣頻率偵測並顯示量測結果; 當偵測到的溫度較第一次量測結果值高出預置的預設值,如 〇· 2攝氏度以上,代表體溫計已開始量測體溫,進行溫度量測。 若量測結果值較初始量測值暫存器141〇的值大超過預置的 預設值,例如轉換後約為〇· 2攝氏度以上,則產生一信號用以觸 毛時序產生器143以原取樣頻率產生下一次取樣相關控制信號輸 出。 38 M322234 利用取樣__ 144域預設H樣辭決定取樣 時間,經由取樣時間控制器145,輪出取樣控制信號,控制類比 數位轉換贼電阻頻率轉換器146將來自於溫度感測器147所取 得的溫度信號轉變為數位信號,進入量測值計數暫存器148計算 為數字式的量測結果值。 將上述的侧結果健由:#·較^ 1411與已在最高量測 值暫存器1412裏的原儲存值比較,若量測結果值大於最高量測 值暫存器1412裏的原儲存值,則將量測結果值儲存至最高量測 值暫存器1412取代原儲存值。並將量測結果值經由十六進位數 鋪換II 1413轉換成十進位數據,再透過顯示驅動器i4i4驅動 液晶顯示器將溫度鋪示。若量測結果值小於最高量測值 暫存器1412襄的原儲存值,則輸出信號予時序產生器143中之 溫度穩定時間計數器窗加計一單位時間,但不輸出信號予十 六進位數值轉換器丨413。 同時將量測結果值儲存至暫存器一刚並輸出信號將時序 產生器143中之溫度穩定時間計數H 1417歸零。彻斜率計算 暫存器1419計算暫存器一 1416與暫存器二刚之差值,差值 存入斜率暫钟-丨。之後,暫存^ I·雜再儲存至暫 存器二1418。 步驟脱推估出兩反曲點間時間間距,以作為之後的掃描時 間間距; 同時比較每單位時間溫度之變化量,利用每單位時間溫度爬 39 M322234 升斜率由遞減轉為遞相估算溫度 次心跳時血液供輸時帶來熱源’之後由於外;環境= =即Γ仅爬升曲線會成波浪狀逐步上升。兩反曲二二 間距即為一次心跳時間。 ] ’、甲’有兩種方式,其一為··利用斜率比較暫存器⑽比 祕率暫存器-刚與斜率暫存器二1422之差值,斜率暫存器 一 1420的值儲存至斜率暫存器二1422。 σ 、重複步驟157,步驟158,若發現斜率由遞減轉為遞增,則計 為第一反曲點,啟動反曲點時距估算器1423。 重複二驟157,步驟158,再次發現斜率由遞減轉為遞增(反 曲點後斜率纽遞增,再轉為遞減,之後再遞增),則計為第二反 曲點此時產生—信麵以觸發時序產生H 143賴以此二反曲 點時間差之触(稱為第二取樣鮮)為取樣鮮。產生下一次取 樣相關控制信號輪出。 另種方式為··利用斜率比較暫存器1421比較斜率暫存器 1420與斜率暫存器二1422之差值,斜率暫存器一 1420的值 儲存至斜率暫存器二1422。 重複步驟157,步驟158步驟,若發現斜率由遞減轉為遞增, 、J十為第反曲點,啟動反曲點時距估算器1423。 重複步驟157,步驟158步驟,再次發現斜率由遞減轉為遞 '曰(反曲點後斜率會先遞增,再轉為遞減,之後再遞增),則計為 第二反曲點。重複取預設之η個反曲點。 M322234 完成後,產生一信號用以觸發時序產生器143變換為以此η 反曲點平均時間差之倒數為第二取樣頻率。產生下_次取樣相關 控制4¾號輸出。 步驟159,第二取樣頻率偵測並顯示量測結果; 將前述計算所得敝曲科間差作為之後的触時間間距, 以便使取樣頻率與人體心跳同步_每次取值皆為同相位的目 的。理論上,此時間差即為每次心跳的時間差。 利用取樣時間估算H 144依據第二取樣頻率決定取樣時間, 、、星由取樣咖控制m輸丨取樣控制信號,控細貞比數位轉 換器或電阻辭轉㈣146將來自於溫度細^⑷所取得的溫 度信號轉㈣數健號’進人制值計㈣存^ 148計算為數字 式的量測結果值。 將上述的量測結果值輸出至溫度預測模組149並經由資料比 ,器1411與已在最高量測值暫存器1412裏的原儲存值比較若 量測結果值大於最高量測值暫存器1412裏的存值,則將量 測結果值齡至最高麵健存器1412取代·存值。並將量 測結果值經由十六進位數值轉換器1413轉換成十進位數據,再 透過顯示驅動器1414驅動液晶顯示器·將溫度值顯示。同時 輸出=號將時序產生器143中之溫度穩定時間計數器i4i7歸零。 若量測結果值小於最高量測值暫存器Ul2裏 則輸出信號予時序產生器143中之溫度穩定時間計數器贿加 计一單位_,但不輪出健升六進位數值轉換H 1413。 M322234 步驟腦將__環溫及步驟159所取得之特定幾個量測 結果值當作輸入,利用特定的公式或演算法計算以取得預測值, 用以預測最終實際量測結果值; “ 將步驟153所取得之初始溫度值及步驟159所取得之特定幾 個量測結果值當倾人,並使用特定的公式或演算法計算,以預 測量測長時間後之最終結果值,用以減少量測時間。 溫度預麵組149内建預設之公式或演算法,將步驟153及 φ 步驟159輸入之值力口以運算,以得到之估計值。 步驟1611是否已計算出合理的預測值? 利用預設的邏輯或模式用關定溫度爬升情形翻測結果值 是否合理。 溫度預測模組149内亦建有可用關斷酬值是否合理之模 組:右判斷後屬合理,則輸出一信號予時序產生器,時序產 生器143再以一特定時序觸發發聲驅動器1424。進入步驟we。 經判斷輸入值或預測結果值不合理,則重複步驟159,步 驟 1610。 步驟1612 ’液晶顯示賊示,蜂鳴器發聲; 量測結果已完成,蜂鳴器1425會發生一系列的聲響。 液晶顯不器1415則持續顯示最高的量測值。發聲驅動器 1424驅動蜂喝器1425產生預設的聲響。 步驟1613,自動關機; 液晶顯示器1415持續顯示一段預設時間後,如1〇分鐘後, 42 M322234 自動關機。 雖然本新型已參照當前的較佳實施例進行了描述,但本技術 領域的普通技術人員應當知道,上述實施例僅用來說明本新型, 並非用來限制本新型的保護範圍,任何在本新型的精神和原則範 圍之内,所做的任何修飾、等效替換、改進等,均應包含在本新 型的權利保護範圍之内。 鲁 【圖式簡單說明】 圖1為本新型較佳第一實施方式的電子體溫計的基本結構方 塊圖。 圖2為本新型較佳第一實施方式的電子體溫計的基本測量溫 度的流程圖。 圖3為本新型較佳第一實施方式的電子體溫計所測量的溫度 與時間關係曲線圖。 • 圖4為習用技術的電子體溫計所測量的溫度與時間關係曲線 圖。 圖5為本新型較佳第一實施方式的電子體溫計判斷最大峰值 的步驟流程圖。 圖6為本新型較佳第一實施方式的電子體溫計的電路結構 圖。 圖7為本新型較佳第一實施方式的電子體溫計的具體測量溫 度的流程圖。 43 M322234 圖8為本新型較佳第二實施方式的電子體溫計的電路結構 圖。 圖9為本新型|父佳第—實施方式的電子體溫計的具體測量溫 度的流程圖。 圖10為本新型較佳第三實施方式的電子體溫計的電路結構 圖。 圖11為本新型較佳第三實施方式的電子體溫計的具體測量 溫度的流程圖。 圖12為本新型較佳第四實施方式的電子體溫計的電路結構 圖。 圖13為本新型較佳第四實施方式的電子體溫計的具體測量 溫度的流程圖。 【主要元件符號說明】 11· · · ·溫度感應元件 12…溫度感測器 13· ···類比數位轉換器或電阻頻率轉換器 14· · · ·溫度什鼻裝置 15....液晶顯不 16····蜂鳴器 Π·..·開關 44In step 154, the measured result value is compared with the original stored value in the highest measured value register 1412 via the data comparator ι41ι, and also via the data comparator 14H 37 M322234 and the initial measured value register 1410. For comparison, if the value of the measurement result is greater than the value of the value register 1410 before the preset value, for example, about 摄 Celsius or more after the conversion, a signal is generated to trigger the timing generator 143. Transform the sampling frequency. Otherwise, the output signal is supplied to the temperature stabilization time counter 1417 in the timing generator 143 for one unit time. ϋ Step 156, greater than the preset preset time? When the detected temperature is within a certain period of time, such as 3 minutes, it does not rise to the preset preset value, such as 0. 2 degrees Celsius or above, it will automatically shut down. The value of the equivalent measurement result is less than the preset preset value, for example, about 〇 2 degrees Celsius after the conversion, and the output signal is sent to the temperature stabilization time in the timing generator 143. The counter 1417 adds one unit time. When the temperature stabilization time counter 1417 in the timing generator 143 reaches the equivalent of a predetermined time, such as 3 minutes, the timing generator 143 generates a signal to automatically shut down. If the temperature stabilization time counter 1417 in the timing generator 143 reaches less than the preset time, the operation of step 154 is repeated at the same frequency (first sampling frequency). Step 157 'The first sampling frequency detects and displays the measurement result; when the detected temperature is higher than the preset value of the first measurement, a preset preset value, such as 〇·2 degrees Celsius or more, indicates that the thermometer has started. The body temperature is measured and the temperature is measured. If the measured result value is greater than the value of the initial measured value register 141〇 by more than a preset preset value, for example, about 〇·2 degrees Celsius or more after the conversion, a signal is generated for the haptic timing generator 143 to The original sampling frequency produces the next sampling related control signal output. 38 M322234 determines the sampling time by using the sampling __ 144 field preset H sample, and rotates the sampling control signal via the sampling time controller 145 to control the analog digital conversion thief resistance frequency converter 146 to be obtained from the temperature sensor 147. The temperature signal is converted to a digital signal, and the incoming measurement count register 148 is calculated as a digital measurement result value. The above-mentioned side result is: #·更^ 1411 is compared with the original stored value in the highest measured value register 1412, if the measured result value is greater than the original stored value in the highest measured value register 1412 Then, the measured result value is stored to the highest measured value register 1412 instead of the original stored value. The measured result value is converted into decimal data by the hexadecimal numbering II 1413, and then the liquid crystal display is driven by the display driver i4i4 to display the temperature. If the measured result value is less than the original stored value of the highest measured value register 1412, the output signal is added to the temperature stabilization time counter window in the timing generator 143 for one unit time, but the output signal is not converted to the hexadecimal value conversion.丨 413. At the same time, the measurement result value is stored in the register and the output signal is reset to the temperature stabilization time count H 1417 in the timing generator 143. The full slope calculation 1419 calculates the difference between the register 1416 and the register, and the difference is stored in the slope temporary clock - 丨. After that, the temporary storage is stored in the register 2418. The step deduction estimates the time interval between the two inflection points as the subsequent scan time interval; simultaneously compares the change in temperature per unit time, using the temperature per unit time to climb 39 M322234 liter slope from declining to progressive estimation temperature When the blood is delivered during the heartbeat, the heat source is brought 'after the outside; the environment = = that is, only the climb curve will gradually rise in a wave shape. The two recursive two-two spacing is a heartbeat time. ] ', A' has two ways, one of which is to use the slope comparison register (10) than the secret rate register - just the difference between the slope register 2142, the slope register - 1420 value storage To the slope register 2142. σ, repeating step 157, step 158, if the slope is found to be changed from decreasing to increasing, counting the first inflection point, and starting the inflection point time estimator 1423. Repeat step two 157, step 158, and find that the slope is changed from decrement to increment (the slope is incremented after the inflection point, then converted to decrement, then incremented), then the second inflection point is generated at this time - the letter is The trigger timing produces H 143 which is the sampling of the time difference of the two inflection points (called the second sampling fresh). The next sampling-related control signal is generated. The other way is to use the slope comparison register 1421 to compare the difference between the slope register 1420 and the slope register 2142, and the value of the slope register 1420 is stored to the slope register 2142. Step 157 and step 158 are repeated. If the slope is found to be changed from decreasing to increasing, and J is the inflection point, the inversion time interval estimator 1423 is started. Repeat step 157, step 158, and find that the slope is changed from decrement to recursion '曰 (the slope will increase first, then decrease to decrement, then increase again), then count as the second inflection point. Repeat the preset n recurve points. After completion of M322234, a signal is generated for triggering timing generator 143 to convert to the reciprocal of the average time difference of the η inflection point as the second sampling frequency. Generates the next_sampling correlation control 43⁄4 output. Step 159: The second sampling frequency detects and displays the measurement result; the calculated inter-distance difference is used as the subsequent touch time interval, so that the sampling frequency is synchronized with the human heart beat _ each time is the same phase . In theory, this time difference is the time difference between each heartbeat. Using sampling time estimation H 144 determines the sampling time according to the second sampling frequency, and the star is controlled by the sampling coffee to control the sampling control signal, and the fine-tuning ratio digital converter or the resistance revolving (four) 146 will be obtained from the temperature fine ^ (4) The temperature signal turns (four) number health number 'into the value meter (four) save ^ 148 is calculated as a digital measurement result value. The measured result value is output to the temperature prediction module 149 and compared with the original stored value in the highest measured value register 1412 via the data ratio, if the measured result value is greater than the highest measured value. The stored value in the device 1412 replaces the stored value with the highest value of the result of the measurement result. The measured result value is converted into decimal data via the hexadecimal value converter 1413, and the liquid crystal display is driven by the display driver 1414 to display the temperature value. At the same time, the output = sign resets the temperature stabilization time counter i4i7 in the timing generator 143 to zero. If the measured result value is less than the highest measured value register U1, the output signal is sent to the temperature stabilization time counter in the timing generator 143 to count one unit_, but does not rotate out of the health hexadecimal value conversion H 1413. The M322234 step brain takes the __ring temperature and the specific measurement result obtained in step 159 as input, and uses a specific formula or algorithm to calculate the predicted value to predict the final actual measurement result value; The initial temperature value obtained in step 153 and the specific measurement result values obtained in step 159 are deducted and calculated using a specific formula or algorithm to predict the final result value after a long time measurement to reduce The time is measured. The temperature pre-set group 149 has a built-in preset formula or algorithm, and the values input in step 153 and φ step 159 are calculated to obtain an estimated value. Step 1611 has calculated a reasonable predicted value. Use the preset logic or mode to determine whether the value of the result is reasonable by setting the temperature climb condition. The temperature prediction module 149 also has a module that can be used to determine whether the return value is reasonable: if the right judgment is reasonable, then the output is one. The signal is sent to the timing generator, and the timing generator 143 triggers the sounding driver 1424 at a specific timing. The process proceeds to step we. After determining that the input value or the predicted result value is unreasonable, step 159 is repeated. Step 1610. Step 1612 'The liquid crystal display thief indicates that the buzzer sounds; the measurement result is completed, and a series of sounds will occur in the buzzer 1425. The liquid crystal display 1415 continuously displays the highest measurement value. The sound driver 1424 The driver bee 1425 generates a preset sound. Step 1613, automatically shuts down; after the liquid crystal display 1415 continues to display for a preset time, for example, after 1 minute, the 42 M322234 automatically shuts down. Although the present invention has been referred to the present preferred embodiment The description is made, but it should be understood by those skilled in the art that the above-described embodiments are only used to illustrate the present invention, and are not intended to limit the scope of the present invention, any of which is within the spirit and scope of the present invention. Any modifications, equivalent substitutions, improvements, etc., should be included in the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing the basic structure of an electronic thermometer according to a preferred first embodiment of the present invention. 2 is a flow chart of the basic measured temperature of the electronic thermometer according to the preferred first embodiment of the present invention. FIG. 3 is a first preferred embodiment of the present invention. Fig. 4 is a graph showing the relationship between temperature and time measured by an electronic thermometer of the prior art. Fig. 5 is a graph showing the maximum peak value of the electronic thermometer according to the preferred first embodiment of the present invention. Figure 6 is a circuit configuration diagram of an electronic thermometer according to a preferred embodiment of the present invention. Figure 7 is a flow chart showing the specific temperature measurement of the electronic thermometer according to the first preferred embodiment of the present invention. 43 M322234 Figure 8 The circuit structure diagram of the electronic thermometer according to the second preferred embodiment of the present invention is shown in Fig. 9. Fig. 9 is a flow chart showing the specific measured temperature of the electronic thermometer of the present invention. The circuit structure diagram of the electronic thermometer of the mode. Fig. 11 is a flow chart showing the specific measurement temperature of the electronic thermometer according to the third preferred embodiment of the present invention. Fig. 12 is a circuit configuration diagram of an electronic thermometer according to a fourth preferred embodiment of the present invention. Fig. 13 is a flow chart showing the specific measurement temperature of the electronic thermometer according to the fourth preferred embodiment of the present invention. [Main component symbol description] 11 · · · Temperature sensing element 12... Temperature sensor 13 · ··· Analog digital converter or resistance frequency converter 14 · · · · Temperature nasal device 15.... No 16····Buzzer Π·..·Switch 44

Claims (1)

M322234 九、申請專利範圍: 1· 一種可精確測量溫度之電子體溫計,包括 一溫度感應元件,係供置於人體,以獲取溫度信號;及 一溫度計算裝置,可以進行溫度信號處理;及 一顯示器,係供顯示體溫之數值; 其特徵在於: 溫度汁算裝置係供將溫度信號以第一取樣頻率取樣,並判斷升 • 之時間點,再以第一取樣頻率取樣,並計算出量測之體溫;以藉 由第一取樣頻率結合第二取樣頻率,來將溫度感應元件所獲取的溫 度信號轉換為溫度值。 2·如申請專利範圍第1項所述的可精確測量溫度之電子體溫計, 其中’溫度什算裝置之第一取樣頻率高於第二取樣頻率。 3·如申請專利範圍第1或2項所述的可精確測量溫度之電子體溫 計,其中,所述溫度計算裝置之第一取樣頻率是至少為2· 〇赫 _ 茲的高頻,在開機後至第二取樣頻率開始工作前採用;第二取 樣週期為芸^⑽秒/次的低頻。 4·如申請專利範圍第1或2項所述的可精確測量溫度之電子體溫 計,其中,所述溫度計算裝置之第一取樣頻率是至少為2.0赫 茲的高頻,在開機後至第二取樣頻率開始工作前採用;第二取 樣頻率值為透過估算後的近似脈搏頻率。 5·如申請專利範園第4項所述的可精確測量溫度之電子體溫計, 其中,所述溫度计算裝置之第二取樣頻率值為透過估算後的近 45 M322234 似脈搏頻率纟估异方法為計算溫度對時間攸升曲線之第一反 曲點至第二反曲點的時間差’以其倒數當作第二取樣頻率值。 6·如申w月專利範圍第4項所述的可精破測量溫度之電子體溫計, 其中,所述溫度計算裝置之第二取樣頻率值為透過估算後的近 似脈搏頻率,其估算方法為計算溫度對時間攸升曲線之第一至 第η反曲點的時間差’除以μ後,其中,n為大於i的正整 數,以其倒數當作第二取樣頻率值。 7.如申明專利範圍第4、5或6項所述的可精確測量溫度之電子體 溫計,其特徵在於:所述電子體溫計剛開機時,溫度計算裝置 以第取樣頻率進行溫度彳貞測,當估算料二取樣頻率值後, 改以第二取樣頻率進行下一次溫度量測。 8·如申明專利||圍第丨、2或3項所述的可精確測量溫度之電子體 μ计,其特徵在於:所述電子體溫計剛開機時,溫度計算裝置 以第取樣頻率進行溫度偵測,從第二次偵測溫度起,並且偵 ’則到的溫度大於前次偵測到的溫度達到特定值時,如0.2攝氏 度以上,改以第二取樣頻率進行下一次溫度量測。 9·如申請專利範圍第7或8項所述的可精確測量溫度之電子體溫 計,其特徵在於:所述溫度計算裝置以切換為第二取樣頻率後 所取得之特定個值或切換為第二取樣頻率後所取得及未切換之 第取樣頻率所取得之特定個值,經由特定的公式或演算法計 算後得到一預測值做為量測結果,以減少量測時間。 1〇·如申請專利軸第1或2項所賴可精確啦溫度之電子體溫 46 M322234 計,其特徵在於:所述的溫度感應元件包含溫度感測器,如溫 敏電阻。M322234 IX. Patent application scope: 1. An electronic thermometer capable of accurately measuring temperature, comprising a temperature sensing element for being placed in a human body to obtain a temperature signal; and a temperature calculating device capable of performing temperature signal processing; and a display The value for displaying the body temperature is characterized in that: the temperature juice calculation device is configured to sample the temperature signal at the first sampling frequency, determine the time point of the rise, and then sample at the first sampling frequency, and calculate the measurement. Body temperature; converting the temperature signal acquired by the temperature sensing element into a temperature value by combining the second sampling frequency by the first sampling frequency. 2. The electronic thermometer capable of accurately measuring temperature as recited in claim 1, wherein the first sampling frequency of the temperature measuring device is higher than the second sampling frequency. 3. The electronic thermometer capable of accurately measuring temperature according to claim 1 or 2, wherein the first sampling frequency of the temperature calculating device is a high frequency of at least 2 〇 Hz, after the power is turned on. The second sampling frequency is used before starting to work; the second sampling period is a low frequency of 芸^(10) seconds/time. 4. The electronic thermometer capable of accurately measuring temperature according to claim 1 or 2, wherein the first sampling frequency of the temperature calculating device is a high frequency of at least 2.0 Hz, and after the power-on to the second sampling The frequency is used before starting to work; the second sampling frequency value is the approximate pulse frequency after the estimation. 5. The electronic thermometer capable of accurately measuring temperature as described in claim 4, wherein the second sampling frequency value of the temperature calculating device is an estimated 45 M322234 pulse-like frequency estimation method after the estimation. The time difference of the temperature from the first inflection point to the second inflection point of the time ramp curve is calculated as the second sampling frequency value by its reciprocal. 6. The electronic thermometer capable of finely measuring the temperature according to item 4 of the patent application scope of claim 4, wherein the second sampling frequency value of the temperature calculating device is an approximate pulse frequency after the estimation, and the estimation method is calculation The time difference ′ of the temperature versus the first to the ηth inflection point of the time swell curve is divided by μ, where n is a positive integer greater than i, and the reciprocal is used as the second sampling frequency value. 7. The electronic thermometer capable of accurately measuring temperature according to claim 4, 5 or 6, wherein when the electronic thermometer is turned on, the temperature calculation device performs temperature measurement at the sampling frequency. After estimating the sampling frequency value of the material, the second sampling frequency is used to perform the next temperature measurement. 8. The electronic body micrometer capable of accurately measuring temperature as described in claim 2, 2 or 3, characterized in that: when the electronic thermometer is turned on, the temperature calculating device performs temperature detection at the sampling frequency. Test, from the second detection temperature, and the detected temperature is greater than the previous detected temperature reaches a certain value, such as above 0.2 degrees Celsius, the second sampling frequency is used for the next temperature measurement. 9. The electronic thermometer capable of accurately measuring temperature according to claim 7 or 8, wherein the temperature calculating means switches to a specific value obtained after switching to the second sampling frequency or switches to a second value. The specific value obtained by the sampling frequency obtained after the sampling frequency and the unsynchronized sampling frequency is calculated by a specific formula or algorithm to obtain a prediction value as a measurement result to reduce the measurement time. 1〇·If the patent axis 1 or 2 depends on the temperature of the electronic body temperature 46 M322234, the temperature sensing element comprises a temperature sensor, such as a temperature sensitive resistor. 4747
TW95222425U 2006-12-20 2006-12-20 Electronic clinical thermometer with capability of measuring temperature precisely TWM322234U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95222425U TWM322234U (en) 2006-12-20 2006-12-20 Electronic clinical thermometer with capability of measuring temperature precisely

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95222425U TWM322234U (en) 2006-12-20 2006-12-20 Electronic clinical thermometer with capability of measuring temperature precisely

Publications (1)

Publication Number Publication Date
TWM322234U true TWM322234U (en) 2007-11-21

Family

ID=39309320

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95222425U TWM322234U (en) 2006-12-20 2006-12-20 Electronic clinical thermometer with capability of measuring temperature precisely

Country Status (1)

Country Link
TW (1) TWM322234U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399530B (en) * 2008-07-02 2013-06-21 Terumo Corp Electronic thermometer and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399530B (en) * 2008-07-02 2013-06-21 Terumo Corp Electronic thermometer and control method thereof

Similar Documents

Publication Publication Date Title
US5398688A (en) Method, system and instrument for monitoring food intake
US5261411A (en) Thermal drift correction while continuously monitoring cardiac output
TW564167B (en) Apparatus for measurement of woman's body
BRPI0609586B1 (en) THERMOMETER AND METHOD FOR DETERMINING THE TEMPERATURE OF AN INDIVIDUAL
TWI294962B (en)
AU2005332907A1 (en) A blood pressure measuring device and a method for operating a blood pressure measuring device
FR2538108A1 (en) ELECTRONIC MEDICAL THERMOMETER AND METHOD FOR MEASURING BODY TEMPERATURE
JP2009532696A (en) Improved digital thermometer
JP6040874B2 (en) Sleep stage estimation device
JPWO2021076642A5 (en)
CN110857821A (en) Control method of electric water heater and electric water heater
TWM322234U (en) Electronic clinical thermometer with capability of measuring temperature precisely
JP6831382B2 (en) A method for evaluating the reliability of blood pressure measurement and a device for implementing it
US11375908B2 (en) Blood pressure detection signal sampling and compensation method and apparatus, and blood pressure signal collection system
JP3564942B2 (en) Blood pressure measurement device
JP3691907B2 (en) Exercise intensity measuring device
JPH11128186A (en) One-output detection device and diagnostic device for heat function
JPH0928679A (en) Apparatus for evaluating fatigue characteristic and apparatus for measuring fatigue
TW201035530A (en) Electronic thermometer and control method thereof
JP2006247193A (en) Blood pressure measurement system and method
WO2011091599A1 (en) Method for measuring blood oxygen of fingers and finger gripping oximeter
JP2009189409A (en) Bio-information measuring method and system
JP2014173770A (en) Bath water heater
JPH11113862A (en) Cardiac output detector and heart function diagnostic device
CN109932503A (en) Human body heat production-heat dissipation model, simulated experiment and its Noninvasive Blood Glucose Detection Methods

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees