TWM321146U - Compound semiconductor thin film solar cell with embedded microcrystalline silicon - Google Patents

Compound semiconductor thin film solar cell with embedded microcrystalline silicon Download PDF

Info

Publication number
TWM321146U
TWM321146U TW96205638U TW96205638U TWM321146U TW M321146 U TWM321146 U TW M321146U TW 96205638 U TW96205638 U TW 96205638U TW 96205638 U TW96205638 U TW 96205638U TW M321146 U TWM321146 U TW M321146U
Authority
TW
Taiwan
Prior art keywords
compound semiconductor
microcrystalline
solar cell
thin film
layer
Prior art date
Application number
TW96205638U
Other languages
Chinese (zh)
Inventor
Uio-Pu Chiou
Ru-Yuan Yang
Min-Hang Weng
Hsin-Hsien Wu
Wen-Jauh Chen
Original Assignee
Advance Design Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Design Technology Inc filed Critical Advance Design Technology Inc
Priority to TW96205638U priority Critical patent/TWM321146U/en
Publication of TWM321146U publication Critical patent/TWM321146U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

M321146 八、新型說明: 【新型所屬之技術領域】 本新型係有關於一種化合物半導體太陽能電池,其特別有關於一 種微晶矽之化合物半導體薄膜太陽能電池,可以有效地提高其光電轉 換效率。 【先前技術】 按,目前由於能祕缺,雜界各國—麟續研發各種可行 之替代能源,而其中又以太陽能發電之太陽電池最受到矚目,太陽電 池係具有方便、取之不盡、狀科、無廢棄物、無污染、無轉 動部份、無料、可阻隔輻射熱、使用壽命長、尺寸可隨意變化、並 與建築物作結合及普及化㈣點,_社_池作為能源之取得。 在20世紀70年代,由美國貝爾實驗室首先研製出的石夕太陽能電池 逐步發胁來。隨著太陽電池之發展,如今太陽能電池有多種類型, 典型的有單轉太陽能電池、多晶敎陽能電池、非_太陽能電池、 化合物太陽能電池、染料敏化太陽能電池等。而為了降低成本,故現 今主要以雜發展非帛㈣敎陽電池為主,但其鱗上於實際應用 中仍…、過低近來’有所謂的中間能帶(咖e 結構被提 出,也就是在導帶(Conducti〇nband)與價帶(她⑽㈣之間引 進額外的㈣。理論上,如果掺雜(_猶度高到某種程度,即捧雜 原子之間的轉接近職麵度,雜軒就不能再被視為是相互獨 立的。換雜軒的能階互她合(〇吻ping),就會在導帶與價帶 6 M321146 .之間引進中間能帶。而中間能帶的引入,可以讓原本能量小於能隙的 不被吸收的光子,有機會被吸收,因而增加光電流。另一方面,為了 保持輸出電壓,一般須要採用p-i_n結構,讓中間能帶位於純質㈣如也, llayer)區域。其中又以於i層中成長所謂的微晶矽(Micr〇crystaUineSi, • c-Si:H)結構最受到矚目。微晶矽薄膜,其薄膜的載子遷移率(Carrier .mobility)比一般非晶矽質薄膜高出1〜2個數量級,而暗電導值則介於 • 10〜10 (s.cml)之間,明顯高出非晶矽薄膜3〜4個數量級。 • 傳統P-i-n薄膜型太陽能電池之應用方式,通常先沈積一p型半導體 層再以電漿增強型化學式氣相沈積製程中通入大量氫氣與矽烷做稀 釋,經由不同矽烷流量反應形成非晶矽質薄膜、及微晶矽質薄膜。並 ;將微晶矽質薄膜鑲埋於非晶矽質薄膜層中,形成一i型(本質層)半導 ’體層,最後再沈積一η型半導體層,形成一p-i_n薄膜型太陽能電池。然, 以矽基材為主之薄膜太陽能電池礙於為間接能隙之材料,其吸光效率 往往比化合辨導體如:二六族、三五族元素所製做出之太陽能電池 •來的低。化合物半導體太陽能電池因具備直接能隙材料之優點,因此 具有⑥吸光之·。但,化合物半導體太能陽電池其由於成本上的考 ,置,若要製作成大面積或堆疊型太陽能電池實在不符經濟效益。若能 運用化合物轉體高吸光之特性,並整合財紐為域成本太陽能 電池之優點,不但具有A面積細太陽能電池發展之可能,亦可改善 原有薄膜太陽能電池低效率之敎,達到低成本高效率_太陽能電 池之目標。因此,為了達到上述目標,有需要提供一種具有可提高可 見光譜光子的魏翻、並改善各項電特性賴晶較化合物半導體 7 M321146 薄膜太陽能電池’以克服先前技術的缺點。 • 【新型内容】 本創作之主要目的在提供—種具有微晶歡化合物轉體薄膜太 ^能電池’其藉由化合物半導體直接能隙的高吸光雜,不但可有效 提昇可見光譜光子的吸收細、改善太陽能電池之各項電特性,亦可 達到低成本南效率之目標。 _ 為達上述目的,本創作提出一種具有微晶矽之化合物半導體薄膜 太陽能電池,其包含—基板;-背電極;-含銅、銦、鎵、砸之化合 物半導體層,-含硫及編之化合物半導體層;一穿透導電膜;一換雜 -無元素之非4質薄膜層;—微晶♦質薄膜層;—摻雜五族元素之 多晶石夕質薄膜層;及一前電極。 根據本創作之具有微晶較化合物轉爾膜场能電池之一特 徵,其中該摻雜三族元素之非晶石夕質薄膜層可產生電洞,並可吸收短 _ 波長之光子。 娜本創作之具有微晶石夕之化合物半導體薄膜太陽能電池之一特 徵,其巾該赫五族元素之多晶树細層可產生電子,並可吸收長 波長之光子,其個独提高其可見絲之光子的吸錄、並提高太 陽能電池之光電轉換效率。 根據本創作之具有微晶狄化合物轉_膜太陽能電池之一特 徵’其中該基板係選自於金屬、不鏽鋼、含鐵、鈦等金屬或不透光之 破璃基板之^一。 8 M321146 根據本創作之具有微晶敦化合物半導體薄膜太陽能電池之一特 徵,其中該含硫及録之化合物半導體層之厚度為〇〇5皿卫微米。 根據本創狀具有微晶歡化合物轉體賊太電池之一特 徵,其中該穿透導電膜之厚度為0.5 微米。 根據本創狀具紐祕之化合物半導體舰太電池之一特 •徵’其中該掺雜三族元素之非晶石夕質薄膜層之厚度需小於15〇埃。 祕賴狀狀微晶較化合物铸體賴太電池之-特 #徵,其中該微晶石夕質薄膜層係由佔所有通入氣體的比例不大於μ%之 矽烷氣體所形成。 根據本創狀具有微晶收化合物半導體_太陽能電池之一特 ;徵,其中該微晶矽質薄膜層之厚度為2500至4500埃之間。 • μ根據本創作之具有微晶狀化合物轉體薄膜太陽能電池之一特 徵,其中該微晶矽質薄膜層之結晶尺寸為2〇至3〇奈米之間。 々根據本創狀具有微晶歡化合物半導體細太陽能電池之一特 ❿徵’其中該摻雜五族元素之多晶石夕質薄膜層之厚度需小於15〇埃。 -^根據本創作之具有微晶矽之化合物半導體薄膜太陽能電池之一特 "彳政,其中該前電極材料之厚度需小於2000埃。 為讓本創作之上述和其他目的、特徵、和優點能更明顯易懂,下 文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 雖然本創作可表現為不同形式之實施例,但附圖所示者及於下文 9 M321146 中㈣者係為本創作可之較佳實施例,並請了解本文所揭示者係考量 •為本創作之一範例,且並非意圖用以將本創作限制於圖示及/或所描述 之特定實施例中。 請參照第1圖,其所示為具有微晶石夕之化合物半導體薄膜太陽能電 池100之侧視剖面圖。該具有微晶石夕之化合物半導體薄膜太陽能電池 • 1〇〇包含一基板110 ; 一背電極120 ; —含銅、銦、鎵、硒之化合物半 •導體層13〇 ; 一含硫及鎘之化合物半導體層140 ; —穿透導電膜15〇 ; _ 一摻雜二族兀素之非晶矽質薄膜層160; —微晶矽質薄膜層17〇; 一摻 雜五族元素之多晶矽質薄膜層18〇 ;及一前電極19〇。 該背電極120形成於該基板11〇上方,其功用為將太陽電池所生之 •電力,以最少損失取出。因此希望此部分沒有整流,串流電阻低,接 、著強度高,着接性。-般歐姆電極形成法有魏法、魏法及印刷 法等。在製造高效率之太陽電池時,蒸鍍法採用之材料有鎳(Μ)、金 (An)、銀(Ag)、鈦(Ti)、把⑽)、銘(A1)、或錮(M〇)…等。 • 其中,該背電極12〇選用之材料較佳實施例係選自鉬。 * 該含銅、銦、鎵、硒之化合物半導體層130,係形成於該背電極12〇 上方。二六族化合物如銅(Οι)、銦(in)、鎵(Ga)、硒(Se)或其 化合物如二硒銦銅(CuInSe2)具有容易製成大面積薄膜的特性,加上 屬於直接能隙(Directbandgap)構造,光吸收係數極大。與傳統間接 能隙(Indirect bandgap)的矽,具有更高之吸光特性。其中該含銅、 銦、鎵、硒之化合物半導體層130可選用於蒸鍍法、電氣化學法或濕 式置換法製程之一。 M321146 該含硫及鎘之化合物半導體層140,係形成於該含銅、銦、鎵、硒 之化合物半導體層130上方,其係用於連接上電池及底電池。使用含 硫⑻及編(Cd)之化合物半導體如硫化锡(⑽),除了本身屬於 直接能隙可提高光子吸收性之外,當含銅、銦、鎵、砸之化合物半導 體層形成後,為了提高太陽電池之特性通常會先沈積一層穿透導電 膜,以利堆疊第二太陽能電池於上方。—般而言,穿透導電膜皆以賤 鍍法(Sputte〇所形成,其容易損壞含銅、銦、鎵、硒之化合物半導 體層140表面,並產生缺陷(Defect)降低原有之特性。因此,可形 成一低厚度之含硫及鎘之化合物半導體層作為其缓衝層(Buffcr layer)。其中,該含硫及鎘之化合物半導體層14〇係選自於蒸鍍法、濕 式置換法、或魏化學法製紅—。需注意的是,該含硫及録之化合 物半導體層140之厚度為〇·05至01微米。 該牙透導電膜150形成於該含硫及鎘之化合物半導體層140上方, 其穿透導電膜之目的除了提高電流之收集於雜上、以提昇光電轉換 之效率外’亦可作為堆疊二六族化合物轉體與財基材為主之薄膜 太陽此電池之晶格隨(Lattieemateh)層,以防止不同族性元素材料 相堆$後,材料内部原子不匹配(Mismatch)之現象產生。其中該 •透電膜150可遥用於常見之蒸鏟法(以叩⑽―)、錢鍍法() 製私作為主要馳方^。其材料可顧_氧化層(indium血〇疏, (stannum dioxide, Sn02) > ( Zinc oxide, ZnO ) 作為該穿透導電膜15G之材料。而該穿透導電膜15G之厚度為〇·5至工 微米之間。 11 M321146 為推雜二族元素之非晶矽質薄膜層160,係形成於該穿透導電膜 ,150上方’其係用於產生電洞,並提高可見光之短波長光子之吸收。 非曰曰石夕Λ薄膜具有較高之能隙(Band gap,Eg)約略為1.7eV,可將太 陽隙(短波長)之光子加以吸收提高轉換效率。其中, 该非晶秒質細層内摻雜三族元素,㈣⑻、銘⑷、鎵(⑻、 姻(In)、蛇(Tl)等可形成- P型半導體層。p型半導體是指在本 欲材貝中加入的雜質(Impurities )可產生多餘的電洞以電洞 鲁構成夕數載子之半導體。例如,若對本質半導體摻入三族原子的 雜貝時就石夕和鍺半導體而言,會形成多餘之電洞。電流則以電 /同為主來運作。而該摻雜三族元素之非晶石夕質薄膜層_,可透過電 •漿增強型化學式氣相沈積製程(Plasma enhanee ehemieal vapw 、d— pECVD )、健化學式氣相沈積製程(—ye vapor deposition,LPCVD)、或高溫爐管製程加職)作為主要製程 方式。在製程過程中,一般可通入石夕化合物(Silidde),如石夕烧(Silane, _紐4)及ll氣⑽啊,n2) #,射,該魏氣體含量佔所有通入 氣體需大於7%以上’其較佳實施例為大於8.4%之魏含量。 該摻雜三族元素之非晶石夕質薄膜層内摻雜之三族元素係可選 用氣體繼法、固相擴散法、或離子佈餘等製程。氣體擴散法是將 摻雜元素以氣體送人猶高溫的機板上,戦—p型半導體層。固相 擴散法(Th_al紐usion)是在機板表面堆積具有摻雜物之擴散劑, 而後在高溫下將其導入。離子佈植法(I〇n —a咖㈣是利用約 娜左右的加速電壓將2xl〇1W至德lw的摻雜物注入。盆中, 12M321146 VIII. New Description: [New Technical Field] The present invention relates to a compound semiconductor solar cell, which is particularly related to a compound semiconductor thin film solar cell of microcrystalline germanium, which can effectively improve its photoelectric conversion efficiency. [Previous technology] According to the current situation, the countries in the world will continue to develop various viable alternative energy sources, and the solar cells that generate electricity from solar power are the most attractive. The solar cell system is convenient and inexhaustible. Branch, no waste, no pollution, no rotating parts, no material, can block radiant heat, long service life, size can be changed at will, and combined with the building and popularization (4), _ community _ pool as energy. In the 1970s, the Shi Xi solar cell first developed by Bell Labs in the United States gradually threatened. With the development of solar cells, there are many types of solar cells today, typically single-turn solar cells, polycrystalline solar cells, non-solar cells, compound solar cells, dye-sensitized solar cells, and the like. In order to reduce costs, it is mainly based on the development of non-帛 (4) Fuyang batteries, but its scale is still in practical applications..., too low recently, there is a so-called intermediate energy band (the coffee e structure is proposed, that is Introduce an additional (four) between the conduction band (Conducti〇nband) and the valence band (she (10) (four). In theory, if the doping is high to some extent, that is, the turn between the heteroatoms is close to the face, Miscellaneous Xuan Xuan can no longer be regarded as independent of each other. If the energy level of the hybrid Xuan she is combined (〇 ping), the intermediate energy band will be introduced between the conduction belt and the price band 6 M321146. The introduction of the photon, which is less than the energy gap and which is not absorbed, has the opportunity to be absorbed, thus increasing the photocurrent. On the other hand, in order to maintain the output voltage, it is generally necessary to adopt the p-i_n structure to make the intermediate band in pure (4) such as, llayer) region, in which the so-called microcrystalline germanium (Micr〇crystaUineSi, • c-Si:H) structure is most noticed in the i-layer. Microcrystalline germanium film, its film carrier migration Carrier (mobility) is higher than general amorphous tantalum film 1~2 orders of magnitude, and the dark conductance value is between •10~10 (s.cml), which is obviously 3~4 orders of magnitude higher than the amorphous germanium film. • The application method of the traditional Pin thin film solar cell is usually First depositing a p-type semiconductor layer and then diluting a large amount of hydrogen and decane into a plasma-enhanced chemical vapor deposition process to form an amorphous tantalum film and a microcrystalline tantalum film through different decane flow reactions. The microcrystalline tantalum film is embedded in the amorphous tantalum film layer to form an i-type (essential layer) semiconducting body layer, and finally an n-type semiconductor layer is deposited to form a p-i_n thin film type solar cell. Thin film solar cells based on germanium substrates are inferior to the material of the indirect energy gap, and their light absorption efficiency tends to be lower than that of solar cells made of elements such as: hexagonal and tri-five elements. Semiconductor solar cells have the advantage of direct energy gap materials, so they have 6 absorbances. However, compound semiconductor solar cells can be fabricated into large-area or stacked solar cells due to cost. It is not economical. If you can use the characteristics of high-light absorption of compound and integrate the advantages of the solar cell, it will not only have the possibility of developing a small-area solar cell, but also improve the efficiency of the original thin-film solar cell.敎, to achieve the goal of low-cost and high-efficiency _ solar cells. Therefore, in order to achieve the above objectives, it is necessary to provide a film that can improve the visible spectrum of photons, and improve various electrical characteristics of the compound semiconductor 7 M321146 thin film solar cell 'To overcome the shortcomings of the prior art. · 【New content】 The main purpose of this creation is to provide a kind of high-absorption light with a direct crystal gap of a compound semiconductor. Effectively improve the absorption of photons in the visible spectrum, improve the electrical characteristics of solar cells, and achieve the goal of low cost south efficiency. _ In order to achieve the above objectives, the present invention proposes a compound semiconductor thin film solar cell having microcrystalline germanium, comprising: a substrate; a back electrode; a compound semiconductor layer containing copper, indium, gallium, germanium, - sulfur and woven a compound semiconductor layer; a penetrating conductive film; a non-element-type non-four-layer film layer; a microcrystalline ♦ film layer; a doped five-element polycrystalline stone layer; and a front electrode . According to one aspect of the present invention, there is a characteristic of a microcrystal-composite ruthenium field energy battery, wherein the doped lanthanum thin film layer of the tri-group element can generate holes and absorb photons of short _ wavelength. One of the features of the microcrystalline quartz solar cell solar cell that Naben created, its thin layer of polycrystalline tree of the five elements of the genus can generate electrons and absorb long-wavelength photons, which can improve its visible The photon conversion of the silk photon improves the photoelectric conversion efficiency of the solar cell. According to the present invention, there is a feature of a microcrystalline compound-transfer-film solar cell wherein the substrate is selected from the group consisting of metal, stainless steel, a metal such as iron or titanium, or a opaque glass substrate. 8 M321146 According to one aspect of the present invention, there is a characteristic of a microcrystalline compound semiconductor thin film solar cell, wherein the sulfur-containing and recorded compound semiconductor layer has a thickness of 〇〇5 weiwei micron. According to the present invention, there is a characteristic that the microcrystalline compound is a thief battery, wherein the thickness of the penetrating conductive film is 0.5 μm. According to the invention, one of the compound semiconductor semiconductor batteries of the present invention has a thickness of less than 15 angstroms. The microscopic crystallites are formed by a compound casting body, which is formed by a decane gas which accounts for not more than μ% of all the introduced gases. According to the present invention, there is a microcrystalline semiconductor semiconductor _ solar cell, wherein the thickness of the microcrystalline enamel film layer is between 2,500 and 4,500 angstroms. • μ according to one of the features of the present invention having a microcrystalline compound-transferred thin film solar cell having a crystal size of between 2 Å and 3 Å. 々 According to the present invention, one of the fine crystal solar cells of the microcrystalline compound semiconductor is characterized in that the thickness of the polycrystalline stone layer of the doped group of five elements is less than 15 angstroms. -^ According to the creation of a compound semiconductor thin film solar cell with microcrystalline germanium, the thickness of the front electrode material needs to be less than 2000 angstroms. The above and other objects, features, and advantages of the present invention will become more apparent and understood. [Embodiment] Although the present invention can be embodied in different forms, the figures shown in the following and the following are the preferred embodiments of the creation of the M. M321146, and please understand that the disclosure of this document is considered. • An example of the present invention and is not intended to limit the present invention to the particular embodiments illustrated and/or described. Referring to Fig. 1, there is shown a side cross-sectional view of a compound semiconductor thin film solar cell 100 having microcrystalline. The compound semiconductor thin film solar cell having a microcrystalline stone layer includes a substrate 110; a back electrode 120; a compound semiconductor layer containing copper, indium, gallium, and selenium; a conductor layer 13; a sulfur and cadmium a compound semiconductor layer 140; a transparent conductive film 15; a doped bismuth amorphous amorphous film layer 160; a microcrystalline tantalum film layer 17; a doped five-element polycrystalline tantalum film Layer 18 〇; and a front electrode 19 〇. The back electrode 120 is formed above the substrate 11A, and its function is to take out the electric power generated by the solar cell with a minimum loss. Therefore, it is hoped that this part is not rectified, the current resistance is low, the connection strength is high, and the connection is good. The general ohmic electrode formation methods include Weifa, Weifa, and printing methods. In the manufacture of high-efficiency solar cells, the materials used in the evaporation process are nickel (Μ), gold (An), silver (Ag), titanium (Ti), (10)), Ming (A1), or 锢 (M〇). )…Wait. • The preferred embodiment of the material for the back electrode 12 is selected from the group consisting of molybdenum. * The compound semiconductor layer 130 containing copper, indium, gallium, and selenium is formed over the back electrode 12A. Biquax compounds such as copper (indium), indium (in), gallium (Ga), selenium (Se) or a compound thereof such as disulphide indium copper (CuInSe2) have the characteristics of being easily formed into a large-area film, and are directly capable. The structure of the gap (Directbandgap) has a large light absorption coefficient. Compared with the traditional Indirect bandgap, it has higher absorption characteristics. The compound semiconductor layer 130 containing copper, indium, gallium, and selenium may be selected from one of an evaporation method, an electrochemistry method, or a wet replacement method. M321146 The compound semiconductor layer 140 containing sulfur and cadmium is formed on the compound semiconductor layer 130 containing copper, indium, gallium, and selenium, and is used for connecting the upper battery and the bottom battery. The use of a compound semiconductor containing sulfur (8) and (Cd) such as tin sulfide ((10)), in addition to being a direct energy gap to enhance photon absorption, when a compound semiconductor layer containing copper, indium, gallium, or antimony is formed, To improve the characteristics of a solar cell, a layer of a penetrating conductive film is usually deposited to facilitate stacking the second solar cell on top. In general, the through-conducting film is formed by a ruthenium plating method (Sputte ,, which easily damages the surface of the compound semiconductor layer 140 containing copper, indium, gallium, and selenium, and produces defects to reduce the original characteristics. Therefore, a low-thickness compound layer containing sulfur and cadmium can be formed as a buffer layer thereof, wherein the compound layer 14 containing sulfur and cadmium is selected from the group consisting of an evaporation method and a wet type replacement. The method or the Wei chemical method produces red color. It should be noted that the sulfur-containing and recorded compound semiconductor layer 140 has a thickness of 〇·05 to 01 μm. The tooth-permeable conductive film 150 is formed on the sulfur- and cadmium-containing compound semiconductor. Above the layer 140, the purpose of penetrating the conductive film is not only to increase the current collection on the impurities, but also to improve the efficiency of photoelectric conversion, and also as a thin film solar cell which is mainly composed of a stacked bi-family compound and a financial substrate. The Lattieemateh layer is used to prevent the mismatch of the internal atomic mismatch (Mismatch) of the material after the stacking of different ethnic element materials. The permeable membrane 150 can be used in the common steaming method.叩(10)―) The money plating method is the main material of the transparent conductive film 15G. The material can be used as the material of the penetrating conductive film 15G. The thickness of the penetrating conductive film 15G is between 〇·5 and micron. 11 M321146 is an amorphous tantalum film layer 160 of a dichotomous element formed on the penetrating conductive film, 150 It is used to generate holes and improve the absorption of short-wavelength photons of visible light. Non-stones have a high energy gap (Band gap, Eg) of about 1.7 eV, which can be used to make solar gap (short wavelength) photons. Absorbing and improving the conversion efficiency, wherein the amorphous second layer is doped with a tri-group element, and (4), (8), Ming (4), gallium ((8), marriage (In), snake (Tl), etc. can form a -P-type semiconductor layer. A type of semiconductor refers to a semiconductor in which impurities (Impurities) are added to generate excess holes to form a semiconductor of a carrier. For example, if the intrinsic semiconductor is doped with a group of three atoms, In the case of Shi Xi and Yan Semiconductor, there will be excess holes. The current is mainly electricity/same. To operate, the doped triad element amorphous amorphous film layer can be passed through an electro-plasma enhanced chemical vapor deposition process (Plasma enhanee ehemieal vapw, d-pECVD), a chemical chemical vapor deposition process ( - ye vapor deposition (LPCVD), or high temperature furnace control process) as the main process. In the process, generally can pass Silidde (Silidde), such as Shi Xi (Silane, _ New 4) and ll Gas (10), n2) #, shot, the Wei gas content accounts for more than 7% of all incoming gases', and its preferred embodiment is a Wei content greater than 8.4%. The tri-group element doped in the doped lanthanum thin film layer of the tri-group element may be selected from a gas-relay method, a solid-phase diffusion method, or an ion-distribution process. The gas diffusion method is a 戦-p-type semiconductor layer on a board on which a doping element is sent to a high temperature by gas. The solid phase diffusion method (Th_al Newusion) is a diffusion agent having a dopant deposited on the surface of the board, and then introduced at a high temperature. Ion implantation method (I〇n-a coffee (4) is to inject 2xl〇1W to de lw dopant using the accelerating voltage around Joona. In the pot, 12

M321146 該摻雜三族元素之非晶矽質薄膜層16〇之厚度需小於15〇埃。 S亥微晶石夕質薄膜層170,係形成於該摻雜三族元素之非晶石夕質薄膜 層160上方,其係用於提高太陽電池之電特性。其中該微晶矽質薄膜 層170可疋義為一本質(i型)半導體層。本質(i型)半導體層對於 薄膜型太陽電池之電特性影響最大,因為當電子與電洞在材料内部傳 導,如其距離過長,兩者重合機率極高,為避免此現象發生,丨層不宜 過厚,但如太薄,又易造成吸光不足。i層一般僅以非晶矽質薄膜 (a_Si:H)為主’但非晶矽質薄膜先天上最大的缺失,在於光照使用後 短時間内性能的大幅衰退,也就是所謂的sw (StaebleMVronski)效 應’其幅度約15〜观。發生原因是因為材料中部份未飽和石夕原子 (Danglingb〇nd,DB) ’因光照射,發生結構變化之故。微晶石夕質薄膜 的載子遷料比-般非轉質賴高出μ個數量級,崎電導值則 介於1〇—LWsw)之間,明顯高出傳統非晶石夕質薄膜3〜4個數量 級,故使賴祕質_可加以提高太陽能電池之轉換鱗。其中, 該微晶㈣賴m可選賴職型化學錢相沈積製喊特高 頻電衆增強型化學式氣相沈積製程作為主要製程方式。其通入之氣體 可選用魏合物纽如魏並混和缝(Hydn)gen,h)、氮氣或氨氣 (Amm_NH3)替為微晶韻_之製作氣體。現請麵第2圖, 其所示微_質薄默餘曼光譜分析圖。彻錄曼光譜分析儀 (micro Ra麵spectra)的實作量測結果揭*,其微拉曼光譜圖之峰值 出現在503ΟΠ·1為-高結晶度之微晶料薄膜。需注意的是, 石夕質薄膜層㈣之厚度為2跑_埃之間,而其結晶^二 13 M321146 至30奈米之間。 娜雜五族元素之多晶石夕質薄膜層18〇形成於該微晶石夕質薄膜層 170上方’其侧於魏較長波長之光子。?祕質雜具有較低之 能隙約鶴HV ’可將太陽光譜中較低㈣(長波長)之光子加以 吸收提高轉換效率。其中,該多晶石夕質薄膜層内摻雜五族元素,如氮 '(N)、磷(P)、錄(Sb)可形成1型半導體層。η型半導體是指 在本徵材質中加入的雜質可產生多餘的電子,以電子構成多數載 鲁子之半導體。例如,若對本質半導體掺人五族原子的雜質時,就 石夕和鍺半導體而言,會形成多餘之電子。電流則以電子為主來運 作。該摻雜五族元素之多晶石夕質薄膜層18〇可選用於可通入石夕烧之化 -學式氣相沈積製程或高溫爐管製程作為主要製程方式。 , 該摻雜五族元素之多晶矽質薄膜層180内摻雜之五族元素可選用 氣體擴散法、_擴散法、或離子注人法㈣程。氣體擴散法是將換 雜兀素以氣觀人絲高溫賴板上,形成—n型轉體層。固相擴 •散法是在機板表面堆積具有摻雜物之擴散劑,而後在高溫下將其導 入。離子怖植法是利用約5eV左右的加速電壓將2xl〇i5cm2的摻雜物 -注入。其中,該摻雜五族元素之多晶矽質薄膜層180之厚度需小於15〇 埃。 該如電極190形成於該摻雜五族元素之多晶石夕質薄膜層18〇上方, 其係為一歐姆(Ohmic contact)電極。其功用為將太陽電池所生之電 力,以最少損失取出。因此希望此部分沒有整流,串流電阻低,接著 強度高,耐焊接性。一般歐姆電極形成法有蒸鍍法、電鍍法及印刷法 M321146 等。在製造高效率之太陽電池時,蒸鍍法採用之材料有錄(Ni)、 ⑽、及銘⑽等。需注意的 疋及刖龟極190之厚度需小於20QQ埃。 製作-高鱗德合财導敎陽能電池,其基板通私金屬基板 為主,其顧之材料如不_、含鐵、含鈦或含其他金狀材料。為 • 了降低成本,並朝向大面積高效率薄膜太陽能電池之目標,使用一低 •成本之基板材料亦為—主要_。有鑑於此,本創作之基板11〇亦可 #採用低成本不透光之玻璃、或高分子作為基板。需注意的是1背带 極120、及該含銅、銦、鎵、硒之化合物半導體層m,可定義為^ 战能電池。而錄雜三族元素之非晶料薄騎⑽、該微晶石夕質 溥膜層170、及該摻雜五族元素之多晶石夕質薄膜層180可定義為第一 .太陽I $池’藉輯娜成—微晶⑦德合物半導體薄膜太陽能電池 1〇〇提昇太陽電池之轉換效率。 “上所述’本創作之微晶歡化合物半導體薄膜太陽能電池 籲100,其堆疊形成一具有高效率微晶梦之化合物半導體薄膜太陽能電 •池,不但可有效提昇可見光譜光子的吸收細、改善太陽能電池之各 項電特性,提高太陽能電池之轉換效率。 雖然本創作已以前述較佳實施例揭示,然其並非用以限定本創 作’任何熟習此技藝者,在不脫離本創作之精神和範圍内,當可作各 種之更動雜改。如±觸轉,都可以料赋的修正與變化,而M321146 The amorphous enamel film layer 16 of the doped group of elements needs to have a thickness of less than 15 Å. The S-type microcrystalline stone film 170 is formed over the amorphous trigonal element-free amorphous film layer 160 for improving the electrical characteristics of the solar cell. The microcrystalline tantalum film layer 170 can be referred to as an intrinsic (i-type) semiconductor layer. The intrinsic (i-type) semiconductor layer has the greatest influence on the electrical characteristics of the thin film type solar cell, because when the electron and the hole are conducted inside the material, if the distance is too long, the probability of the overlap is extremely high. To avoid this phenomenon, the layer of the layer is not suitable. Too thick, but if it is too thin, it is easy to cause insufficient light absorption. The i layer is generally only amorphous enamel film (a_Si:H) mainly 'but the amorphous enamel film is the biggest loss in congenital, because of the sharp decline in performance in a short time after the use of light, also known as sw (StaebleMVronski) The effect 'its amplitude is about 15 ~ view. The reason for this is because some of the unsaturated Danglingb〇nd (DB) in the material undergoes structural changes due to light. The carrier of the microcrystalline stone film is more than μ orders of magnitude higher than that of the general non-transformed film, and the zeta conductivity is between 1〇-LWsw), which is significantly higher than the traditional amorphous stone film 3~ 4 orders of magnitude, so the secret _ can be used to improve the conversion scale of solar cells. Among them, the microcrystalline (four) Lai m can be selected as the main process of the chemical vapor phase deposition process of the high-frequency electricity-enhanced chemical vapor deposition process. The gas to be introduced may be a gas produced by using a compound such as Wei and a mixture of Hydn gen, h), nitrogen or ammonia (Amm_NH3). Now look at Figure 2, which shows the micro-quality thin Murman spectrum analysis. The results of the measurement of the micro-Raspect spectrometer (micro Ra surface specra) revealed that the peak of the micro-Raman spectrum appeared at 503ΟΠ·1 as a high crystallinity microcrystalline film. It should be noted that the thickness of the Shiyue film layer (4) is between 2 runs and angstroms, and the crystal is between 2 M 13146 and 30 nm. A polycrystalline stone film layer 18 of the Nacha five elements is formed above the microcrystalline stone layer 170, which is lateral to the longer wavelength photons. ? The secret energy has a lower energy gap, about HV ’, which absorbs the lower (four) (long wavelength) photons in the solar spectrum to improve conversion efficiency. Wherein, the polycrystalline stone film layer is doped with a group C element such as nitrogen '(N), phosphorus (P), and recorded (Sb) to form a type 1 semiconductor layer. The n-type semiconductor means that impurities added to the intrinsic material generate excess electrons, and electrons constitute a majority of the semiconductors. For example, if an intrinsic semiconductor is doped with an impurity of a Group 5 atom, excess electrons are formed in the case of Shi Xihe. The current is operated mainly by electrons. The doped five-element doped stone film layer 18 〇 can be selected for use as a main process for the introduction of the Shih-Shu-chemical vapor deposition process or the high temperature furnace control process. The five-element element doped in the doped quinone-type polycrystalline enamel film layer 180 may be selected by a gas diffusion method, a diffusion method, or an ion implantation method. The gas diffusion method is to form a n-type rotating layer by replacing the halogen with a high temperature on the plate. The solid phase diffusion method is to deposit a diffusing agent with a dopant on the surface of the board, and then introduce it at a high temperature. The ion implantation method implants a dopant of 2xl〇i5cm2 with an accelerating voltage of about 5 eV. The polycrystalline enamel film layer 180 doped with a group of five elements has a thickness of less than 15 angstroms. The electrode 190 is formed over the doped penta-doped polycrystalline stone layer 18 ,, which is an Ohmic contact electrode. Its function is to take out the power generated by the solar cell with minimal loss. Therefore, it is desirable that this portion is not rectified, the cross current resistance is low, and then the strength is high and the solder resistance is high. Generally, the ohmic electrode forming method includes an evaporation method, an electroplating method, and a printing method M321146. In the manufacture of high-efficiency solar cells, the materials used in the vapor deposition method are recorded (Ni), (10), and Ming (10). Note that the thickness of the 疋 and 刖 turtle 190 should be less than 20QQ angstroms. Production - Gaoyide Dehe Financial Guide Yangyang Battery, the substrate is mainly made of private metal substrates, and its materials are not _, iron-containing, titanium-containing or other gold-like materials. In order to reduce costs and target large-area high-efficiency thin-film solar cells, the use of a low-cost substrate material is also important. In view of this, the substrate 11 of the present invention can also use a low-cost opaque glass or a polymer as a substrate. It should be noted that the 1 strap pole 120 and the compound semiconductor layer m containing copper, indium, gallium, and selenium can be defined as a battle cell. The amorphous material thin riding (10), the microcrystalline stone enamel film layer 170, and the doped five-element polycrystalline stone film 180 can be defined as the first. The pool's borrowed Nacheng-microcrystalline 7-detail semiconductor thin-film solar cell 1〇〇 enhances the conversion efficiency of solar cells. "The above-mentioned microcrystalline compound semiconductor thin film solar cell 100, which is stacked to form a compound semiconductor thin film solar cell with high efficiency micro crystal dream, can not only effectively improve the absorption and improvement of visible spectrum photons. The electrical characteristics of the solar cell improve the conversion efficiency of the solar cell. Although the present invention has been disclosed in the foregoing preferred embodiments, it is not intended to limit the present invention to anyone skilled in the art, without departing from the spirit of the present invention. Within the scope, when you can make a variety of changes, such as ± touch, you can make corrections and changes, and

不會破壞此創作的精神。因此本創作之保護範圍當視後附之申請專利 範圍所界定者為準。 S 15 M321146 【圖式簡單說明】 圖1顯示為具有微晶矽之化合物半導體薄膜太陽能電池之侧視剖 面圖;以及 圖2顯示為微晶矽質薄膜之微拉曼光譜分析圖。 【主要元件符號說明】 100具有微晶石夕之化合物半導體薄膜太陽能電池 110基板 120背電極 130含銅、銦、鎵、砸之化合物半導體層 140含硫及鎘之化合物半導體層150穿透導電膜 160推雜三族元素之非晶妙質薄膜層170微晶梦質薄膜層 180摻雜五族元素之多晶石夕質薄膜層19〇前電極Will not destroy the spirit of this creation. Therefore, the scope of protection of this creation is subject to the definition of the scope of the patent application. S 15 M321146 [Simplified Schematic] FIG. 1 is a side cross-sectional view showing a compound semiconductor thin film solar cell having microcrystalline germanium; and FIG. 2 is a micro-Raman spectral analysis diagram of a microcrystalline tantalum thin film. [Description of main components] 100 microcrystalline compound semiconductor thin film solar cell 110 substrate 120 back electrode 130 compound semiconductor layer containing copper, indium, gallium, germanium 140 compound semiconductor layer 150 containing sulfur and cadmium penetrating conductive film 160-doped tri-family amorphous thin film layer 170 microcrystalline dream film layer 180 doped five-group element polycrystalline stone film layer 19 front electrode

1616

Claims (1)

M321146 九、申請專利範圍: 1· 一種具有微晶矽之化合物半導體薄膜太陽能電池,其主要包含: —基板, 一背電極,係形成於該基板上方,其係用於取出電能; 一含銅、錮、鎵、硒之化合物半導體層,係形成於該背電極上方, _ 其係用於提高光子吸收性,以提高太陽電池之轉換效率; , 一含硫及鎘之化合物半導體層,係形成於該含銅、銦、鎵、硒之化 • 合物半導體層上方,其係用於緩衝、保護該含銅、铟、鎵、石西之化 合物半導體層之表面; • 一穿透導電膜,係形成於該含硫及鎘之化合物半導體層上方,其係 - 用於形成一晶格匹配層; 、 -摻雜三族元素之非晶判細層,係形成於該穿透導電膜上方, 係用於產生電洞,並提咼可見光之短波長光子之吸收; -微晶料_層,係形成於該掺雜三族元素之非晶料薄膜層上 魯 方,其係用於提高太陽電池之電特性; 払雜五私元素之多晶矽質薄膜層,係形成於該微晶矽質薄膜層上 方’其係用於產生電子,並提高可見光之長波長光子之吸收;以及 一前電極,係形成於該摻雜五族元素之多晶矽質薄膜層上方,其係 用於取出電能; ^ 中該摻雜二族元素之非晶矽質薄膜層、該微晶矽質薄膜層、及該 ,雜五族7〇素之多祕f薄膜層可定義為―第—太陽能電池,該背 私極及4含銅、銦、鎵、叾西之化合物半導體層,可定義為一第二 17 M321146 太陽能電池。 2.如申請專概圍第1項所述之具有微晶歡化合物半導體薄膜太 陽能電池,財該基㈣選自於金屬、不細、含鐵、鈦等金屬及 不透光之玻璃基板之一。 ^申明專利範圍第1項所述之具有微晶⑦之化合物半導體薄膜太 ► 陽能電池’其中該背電極係選自於蒸錢法、濺鍍法製程之一。 4’如申料纖圍第1項所述之具有微㈣德合物半導體薄膜太 陽能電池’其中該背電極之材料係選自鎳、金、銀、鈦、把、銘或 鉬等。 5·如申請專利範圍第1項所述之具有微晶矽之化合物半導體薄膜太 .陽能電池,其中該含銅、铟、鎵、砸之化合物半導體層係選自於蒸 鑛法、電氣化學法或濕式置換法製程之一。 6·如申請專利範圍第1項所述之具有微晶矽之化合物半導體薄膜太 ~能電池,其中該含銅、銦、鎵、砸之化合物半導體層之材料係選 自銅、銦、硒之化合物、銅、銦、鎵、硒之化合物。 7·如申請專利範圍第1項所述之具有微晶矽之化合物半導體薄膜太 18 M321146 陽肖b電池’其中该含硫及鎘之化合物半導體層係選自於蒸鍵法、濕 式置換法、或電氣化學法製程之一。 8·如申請專利範圍第1項所述之具有微晶毅化合物半導體薄膜太 陽能電池,其中該含硫及鎘之化合物半導體層之材料係選自含硫及 • 鑛之化合物如硫化鑛等。 • 9.如巾料概圍第!項所狀具有微晶⑦之化合物轉體薄膜太 陽能電池’其中該含硫及狀化合物半導體層之厚度為_至〇 ι 微米。 ι〇·如申請專利範圍第1項所述之具有微晶矽之化合物半導體薄膜太 陽能電池,其中該穿透導電膜係選自於蒸鍍法、濺鍍法製程之一。 • I1·如申請專利範圍第1項所述之具有微晶矽之化合物半導體薄膜太 . 陽能電池,其中該穿透導電膜之材料係選自係選自於銦錫氧化層、 一氣化錫、氧化鋅之一。 12·如申凊專利範圍第1項所述之具有微晶石夕之化合物半導體薄膜太 陽能電池,其中該穿透導電膜之厚度為α5至1微米。 13·如申請專利範圍第1項所述之具有微晶矽之化合物半導體薄膜太 19 M321146 陽能電池,其巾郷雜 強型化學式氣相 —貌非晶♦質薄膜層係選自於電漿增 之-。 、低壓化學式氣相沈積、或高溫爐管製程 蝴 15.t申請柄軸第1撕叙具有微祕之化合物半導體薄膜太 =電池’財娜雜三族元素之非钟賴峰雜之三族元 素係述自硼、鋁、鎵、銦、鉈之一。 他如申請補細第丨項所述之具有微祕之化合物轉體薄膜太 陽能電池,其中該掺雜三族元素之非晶判薄膜層係由佔所有通入 氣體比例大於7%之矽烷氣體所形成。 17.如申請專利範圍第1項所述之具有微晶矽之化合物半導體薄膜太 陽能電池,其中該摻雜三族元素之非晶矽質薄膜層之厚度需小於 150 埃。 18.如申請專利範圍第1項所述之具有微晶石夕之化合物半導體薄膜太 陽能電池,其中該微晶矽質薄膜層係選自於電漿增強型化學式氣相 20 .M321146 沈積製程或特高頻電漿增強型化學式氣相沈積製程之一。 «*· « 19·如申請專利範圍第1項所述之具有微晶矽之化合物半導體薄膜太 陽能電池,其中該微晶石夕質薄膜層係以混和石夕烧氣體或石夕化合物及 氫氣所形成。 -2〇·如申清專利範圍弟1項所述之具有微晶秒之化合物半導體薄膜太 • 陽能電池,其中該微晶矽質薄膜層係由佔所有通入氣體的比例不大 於8.4%之矽烷氣體所形成。 :21·如申請專纖圍第!撕述之具有微祕之化合物半導體薄膜太 - 陽能電池,其中該微晶矽質薄膜層之厚度為2500至4500埃之間。 22.如申請專利範圍第!項所述之具有微晶梦之化合物半導體薄膜太 • 陽能電池,其中該微晶石夕質薄膜層之結晶尺寸為2〇至3〇奈米之間。 赁 _ 23.如申請專利範圍第丄項所述之具_晶石夕之化合物半導體 中郷雜五族元素w嶋選自於可通入 、元乱-之姆錢相沈積縣或高溫爐管製程作為主要製 式。 、 24·如申請專利範圍第彳 ㈣1項所权具有微晶收化合物半導體薄膜太 21 M321146 陽能電池,其中該摻雜五族元素之多晶矽質薄膜層内摻雜之五族元 素係選自於氣體擴散法、固相擴散法、或離子注入法製程之一。 « 25.如申請專利範圍第1項所述之具有微晶矽之化合物半導體薄膜太 陽能電池’其中該摻雜五族元素之多晶矽質薄膜層内摻雜之五族元 ^ 素,如氮、填、坤、錄、叙之一。 • 26.如申請專利範圍帛1項所述之具有微晶石夕之化合物半導體薄膜太 陽能電池,其中該摻雜五族元素之多晶石夕質薄膜層之厚度需小於 150 埃。 ; .27.巾4翻細第i項所述之具有微祕之化合物半導體薄膜太 陽能電池’其中該前電極係選自於蒸鍍法、電鍍法及印刷法等製程 〇 28·2ί專利範圍第1項所述之具有微晶石夕之化合物半導體薄膜太 〜 7電池,其中該前電極材料係選自於錄、金、銀、鈦、把、及銘 ^明專利關第i項所述之具有微晶⑦之化合物半導體薄 %b電池’其中該前電極之厚度需小於細0埃。 22M321146 IX. Patent application scope: 1. A compound semiconductor thin film solar cell with microcrystalline germanium, which mainly comprises: a substrate, a back electrode formed on the substrate, which is used for taking out electric energy; a compound semiconductor layer of germanium, gallium, and selenium is formed over the back electrode, which is used to improve photon absorption to improve conversion efficiency of the solar cell; and a compound semiconductor layer containing sulfur and cadmium is formed in The semiconductor layer containing copper, indium, gallium, and selenium is used for buffering and protecting the surface of the compound semiconductor layer containing copper, indium, gallium, and lithus; Formed on the sulfur- and cadmium-containing compound semiconductor layer, which is used to form a lattice matching layer; and - a doped tri-element amorphous layer, formed above the penetrating conductive film For the generation of holes and for the absorption of short-wavelength photons of visible light; - a layer of microcrystalline material, formed on the amorphous film layer of the doped tri-group element, which is used to improve The electrical characteristics of the battery; a polycrystalline tantalum film layer of noisy five private elements formed above the microcrystalline tantalum film layer - which is used to generate electrons and enhance absorption of long-wavelength photons of visible light; and a front electrode, Formed on the doped quinone-based polycrystalline enamel film layer for extracting electrical energy; ^ the amorphous enamel film layer doped with the di-group element, the microcrystalline enamel film layer, and The heterogeneous f film layer of the heterogeneous group of five can be defined as a "first" solar cell, the back private electrode and a compound semiconductor layer containing copper, indium, gallium, and lanthanum, which can be defined as a second 17 M321146 solar energy. battery. 2. For the application of the microcrystalline compound semiconductor thin film solar cell described in Item 1 above, the base (4) is selected from the group consisting of metal, non-fine, iron-containing, titanium and other metals and one of the opaque glass substrates. . ^ The compound semiconductor film with microcrystalline 7 described in the first paragraph of the patent scope is a solar cell, wherein the back electrode is selected from one of the steam evaporation method and the sputtering process. 4', wherein the material of the back electrode is selected from the group consisting of nickel, gold, silver, titanium, palladium, molybdenum or molybdenum, as described in claim 1 of the invention. 5. The compound semiconductor thin film solar cell having microcrystalline germanium according to claim 1, wherein the compound semiconductor layer containing copper, indium, gallium, and antimony is selected from the group consisting of steaming and electrochemistry. One of the processes of the method of law or wet displacement. 6. The compound semiconductor thin film solar cell having microcrystalline germanium according to claim 1, wherein the material of the compound semiconductor layer containing copper, indium, gallium or germanium is selected from the group consisting of copper, indium and selenium. Compound, copper, indium, gallium, selenium compounds. 7. The compound semiconductor film having microcrystalline germanium as described in claim 1 is 18 M321146. The compound semiconductor layer containing sulfur and cadmium is selected from the group consisting of a steaming method and a wet replacement method. Or one of the electrical and chemical processes. 8. The microcrystalline solar thin film solar cell according to claim 1, wherein the material of the compound layer containing sulfur and cadmium is selected from the group consisting of sulfur-containing and ore-containing compounds such as sulfide ore. • 9. If the towel is in the first place! The compound-transferred thin film solar cell having the crystallites of the present invention has a thickness of _ to ι ι μm. The compound semiconductor thin film solar cell having microcrystalline germanium as described in claim 1, wherein the through conductive film is one selected from the group consisting of an evaporation method and a sputtering method. 1. The compound semiconductor thin film having a microcrystalline germanium as described in claim 1, wherein the material for penetrating the conductive film is selected from the group consisting of an indium tin oxide layer and a gasified tin. One of zinc oxide. 12. The compound semiconductor thin film solar cell having the microcrystalline stone according to claim 1, wherein the through conductive film has a thickness of from 5 to 1 μm. 13. The compound semiconductor film having a microcrystalline germanium as described in claim 1 is a 19 M321146 solar cell, and the film is doped with a strong chemical vapor phase-amorphous film layer selected from the group consisting of plasma Increased -. Low-pressure chemical vapor deposition, or high-temperature furnace control process 15.t application of the stem of the first tearing of the compound semiconductor film with a micro-secret too = battery 'Cai Na miscellaneous tri-family elements of the non-Zhong Feng mixed three family elements One of boron, aluminum, gallium, indium and antimony. He applied for a micro-secret compound-turned thin film solar cell as described in the supplementary item, wherein the doped tri-element amorphous film layer is composed of decane gas which accounts for more than 7% of all incoming gases. form. 17. The compound semiconductor thin film solar cell having microcrystalline germanium according to claim 1, wherein the amorphous germanium-doped amorphous germanium thin film layer has a thickness of less than 150 angstroms. 18. The compound semiconductor thin film solar cell according to claim 1, wherein the microcrystalline enamel film layer is selected from the group consisting of a plasma enhanced chemical gas phase 20. M321146 deposition process or special One of the high frequency plasma enhanced chemical vapor deposition processes. A compound semiconductor thin film solar cell having a microcrystalline germanium as described in claim 1, wherein the microcrystalline stone thin film layer is mixed with a stone gas or a stone compound and a hydrogen gas. form. -2〇·The compound semiconductor thin film solar cell with microcrystalline seconds as described in the patent scope of Shen Qing, wherein the microcrystalline tantalum film layer accounts for no more than 8.4% of all incoming gases. The decane gas is formed. : 21 · If you apply for special fiber circumference! The compound semiconductor film of the micro-secret is described as a solar cell, wherein the thickness of the microcrystalline tantalum film layer is between 2,500 and 4,500 angstroms. 22. If you apply for a patent scope! The compound semiconductor thin film solar cell having a microcrystalline dream, wherein the crystallite size of the microcrystalline stone layer is between 2 Å and 3 Å. Leasing_ 23. As described in the scope of the patent application, the compound of the cesium compound semiconductor in the 晶石夕之 semiconductor is selected from the can be used, the yuan chaos - the Qiannian sedimentary county or the high temperature furnace control process As the main standard. 24) If the patent application scope 彳(4)1 is entitled to have a microcrystalline compound semiconductor film too 21 M321146 cation battery, wherein the five-element element doped in the polycrystalline enamel film layer doped with the five-group element is selected from One of the processes of gas diffusion, solid phase diffusion, or ion implantation. « 25. The compound semiconductor thin film solar cell with microcrystalline germanium as described in claim 1, wherein the five-element element doped with a polycrystalline enamel film layer doped with a five-group element, such as nitrogen, fills One of Kun, Kun, and Xu. • 26. The compound semiconductor thin film solar cell having the microcrystalline stone according to claim 1, wherein the doped pentagonal element polycrystalline stone film layer has a thickness of less than 150 angstroms. .27. The towel 4 is a micro-secret compound semiconductor thin film solar cell described in item i, wherein the front electrode is selected from the group consisting of a vapor deposition method, a plating method, and a printing method. The compound semiconductor thin film of the above-mentioned one having a microcrystalline stone is too ~ 7 battery, wherein the front electrode material is selected from the group consisting of: recording, gold, silver, titanium, and, and A compound semiconductor thin %b battery having microcrystals 7 wherein the thickness of the front electrode is less than a fine 0 angstrom. twenty two
TW96205638U 2007-04-09 2007-04-09 Compound semiconductor thin film solar cell with embedded microcrystalline silicon TWM321146U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96205638U TWM321146U (en) 2007-04-09 2007-04-09 Compound semiconductor thin film solar cell with embedded microcrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96205638U TWM321146U (en) 2007-04-09 2007-04-09 Compound semiconductor thin film solar cell with embedded microcrystalline silicon

Publications (1)

Publication Number Publication Date
TWM321146U true TWM321146U (en) 2007-10-21

Family

ID=39228269

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96205638U TWM321146U (en) 2007-04-09 2007-04-09 Compound semiconductor thin film solar cell with embedded microcrystalline silicon

Country Status (1)

Country Link
TW (1) TWM321146U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI418044B (en) * 2008-02-12 2013-12-01 Univ Tohoku A solar cell that directly forms a solar power generation film on the substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI418044B (en) * 2008-02-12 2013-12-01 Univ Tohoku A solar cell that directly forms a solar power generation film on the substrate
US8841545B2 (en) 2008-02-12 2014-09-23 Tohoku University Solar cell wherein solar photovolatic thin film is directly formed on base
TWI556462B (en) * 2008-02-12 2016-11-01 國立大學法人東北大學 Solar cell having photovoltaic thin film formed directly on substrate

Similar Documents

Publication Publication Date Title
Wu High-efficiency polycrystalline CdTe thin-film solar cells
Zhou et al. Passivating contacts for high-efficiency silicon-based solar cells: from single-junction to tandem architecture
Saitoh et al. Optical and electrical properties of amorphous silicon films prepared by photochemical vapor deposition
CN101866961A (en) Light trapping structure for thin film silicon/crystalline silicon heterojunction solar battery
Mavlonov et al. Superstrate-type flexible and bifacial Cu (In, Ga) Se2 thin-film solar cells with In2O3: SnO2 back contact
CN104332515B (en) Copper indium diselenide nanocrystalline silicon thin film solar cell with graphene as conductive material and preparation method thereof
JP2918345B2 (en) Photovoltaic element
CN110416328A (en) A kind of HJT battery and preparation method thereof
Zhang et al. High efficiency CIGS solar cells on flexible stainless steel substrate with SiO2 diffusion barrier layer
Sai et al. Key Points in the Latest Developments of High‐Efficiency Thin‐Film Silicon Solar Cells
CN101246926A (en) Amorphous boron carbon alloy and photovoltaic application thereof
CN111987183A (en) Bipolar SnOXCrystalline silicon solar cell
CN114171623A (en) Heterojunction solar cell and manufacturing method thereof
TWM319521U (en) Thin film solar-cell with tandem intrinsic layer
Hamashita et al. Preparation of Al-doped hydrogenated nanocrystalline cubic silicon carbide by VHF-PECVD for heterojunction emitter of n-type crystalline silicon solar cells
TWM321146U (en) Compound semiconductor thin film solar cell with embedded microcrystalline silicon
KR101504343B1 (en) Manufacturing method of compound semiconductor solar cell
TW201121065A (en) Thin-film solar cells containing nanocrystalline silicon and microcrystalline silicon.
Alami et al. Second-generation photovoltaics: thin-film technologies
CN105355674B (en) There is the flexible cadmium telluride solar cell of Graphene interposed layer
CN212848452U (en) Heterojunction solar cell
JP5770294B2 (en) Photoelectric conversion device and manufacturing method thereof
TW201342640A (en) Distributed-type PN-junction of MOS structure silicon solar cells
CN110383496B (en) Solar cell apparatus and method for forming single, tandem and heterojunction system solar cell apparatus
Xu et al. Atomic-layer-deposited H: MoOx function layer as efficient hole selective passivating contact in silicon solar cells

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees