TWM319521U - Thin film solar-cell with tandem intrinsic layer - Google Patents

Thin film solar-cell with tandem intrinsic layer Download PDF

Info

Publication number
TWM319521U
TWM319521U TW96205637U TW96205637U TWM319521U TW M319521 U TWM319521 U TW M319521U TW 96205637 U TW96205637 U TW 96205637U TW 96205637 U TW96205637 U TW 96205637U TW M319521 U TWM319521 U TW M319521U
Authority
TW
Taiwan
Prior art keywords
layer
thin film
stacked
solar cell
film layer
Prior art date
Application number
TW96205637U
Other languages
Chinese (zh)
Inventor
Ru-Yuan Yang
Min-Hang Weng
Uio-Pu Chiou
Hsin-Hsien Wu
Cheng-Yuan Hung
Original Assignee
Advance Design Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Design Technology Inc filed Critical Advance Design Technology Inc
Priority to TW96205637U priority Critical patent/TWM319521U/en
Publication of TWM319521U publication Critical patent/TWM319521U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

M319521 八、新型說明: : 【新型所屬之技術領域】 : 本新型係有關於一種薄膜太陽能電池,其特別有關於一種堆疊型 本質層薄膜太陽能電池,可以有效地提高其光電轉換效率。 【先前技術】 * 按,目前由於國際能源短缺,而世界各國一直持續研發各種可行 籲之替代能源,而其中又以太陽能發電之太陽電池最受到矚目,太陽電 池係具有使用方便、取之不盡、用之不竭、無廢棄物、無污染、無轉 ,動部份、無噪音、可阻隔輻射熱、使用壽命長、尺寸可隨意變化、並 •與建築物作結合及普及化等優點,故利用太陽電池作為能源之取得。 在20世紀70年代,由美國貝爾實驗室首先研製出的矽太陽能電池 逐步發展起來。隨著太陽電池之發展,如今太陽能電池有多種類型, 典型的有單晶矽太陽能電池、多晶矽太陽能電池、非晶矽太陽能電池、 •化合物太陽能電池、染料敏化太陽能電池等。而為了降低成本,故現 今主要以積極發展非晶矽薄膜太陽電池為主,但其效率上於實際應用 中仍然過低。近來,有所謂的中間能帶(Intermediate band)結構被提 出,也就疋在導帶(Conductionband)與價帶(Valenceband)之間引 進額外的能帶。理論上,如果掺雜(dGping)濃度高到某_度,即掺雜 原子之間的距離接近到某種程度,掺雜原子就不能再被視為是相互獨 立的掺雜原子的能階互相耦合(Overlapping),就會在導帶與價帶 之間引進中間能帶。而中間能帶的引入,可以讓原本能量小於能隙的 6 M319521 不被吸收的光子,有機會被吸收,因而增加光電流。另一方面,為了 :保持輸出電壓,一般須要採用P-i-N結構,讓中間能帶位於純質(intrinsic, • i layer)區域其中又以於i層中成長所謂的微晶石夕(Microcrystalline % • c- Si: Η )結構最受到矚目。微晶矽薄膜,其薄膜的載子遷移率(Carrier mobility)比一般非晶矽質薄膜高出1〜2個數量級,而暗電導值則介於 105〜107 (S.cm3之間,明顯高出非晶矽薄膜3〜4個數量級。 • 傳統P-i-n堆疊型太陽能電池之應用方式,通常先以電漿增強型化 •予式氣相沈積製程(Plasma enl!ance ehemieal vapQf depQsitiQn,pEevD > 中通入大量氫氣與石夕烧做稀釋,再經由不同石夕烧流量反應形成非晶石夕 質薄膜、及微晶石夕質薄膜。並將微晶石夕質薄膜鑲埋於非晶石夕質薄膜層 •中減1型(本質層)半導體層,加以提高其吸光效率及各項電特 性。然,非晶石夕質薄膜雖具有較高之能隙約略為17eV,可吸收較長波 長之光子,但針對於短波長之光子卻無法加以魏。因此,為了解決 上述問題,有需要提供-種具有可吸收長波長光子,以提高可見光譜 •光子的吸收範圍並改善各項電特性之堆疊型本質層薄膜太陽能電池, 以克服先前技術的缺點。 【新型内容】 本創作之主要目的在提供一種具有堆疊型本質層薄膜太陽能電 池,其以堆疊軸-本質(i型)半導歸,讀高魏長波長光子 提昇可見光譜光子的吸收細、並改善太陽電池之電特性,以提昇太 陽能電池之光電轉換效率。 7 M319521 為達上述目的’本創作提出一種具有堆疊型本質層薄膜太陽能電 :池,其包含一基板;一第一穿透導電膜;一 P型半導體層;一非晶矽 :質薄膜層·’一微晶矽質薄膜層;一多晶矽質薄膜層;一 N型半導體層; 一第二穿透導電膜;及一上電極。 根據本創作之具有堆疊型本質層薄膜太陽能電池之一特徵,其中該 非晶矽質、該微晶矽質薄膜及該多晶矽質薄膜堆疊形成一本質(i型) •半導體層,係用於提高吸收長波長光子並提昇可見光譜光子的吸收範 φ 圍。 根據本創作之具有堆疊型本質層薄膜太陽能電池之一特徵,其中 該非晶矽質薄膜層係由佔所有通入氣體比例大於7%之矽烷氣體所形 成。 根據本創作之具有堆疊型本質層薄膜太陽能電池之一特徵,其中 該微晶矽質薄膜層係由佔所有通入氣體比例不大於8.4%之矽烷氣體 所形成。 • ‘根據本創作之具有堆疊型本質層薄膜太陽能電池之一特徵,其中 該微晶矽質薄膜層之結晶尺寸為2〇至3〇奈米之間。 根據本創作之具有堆疊型本質層薄膜太陽能電池之一特徵,其中 該非晶矽質薄膜層厚度需大於5〇11111。 為讓本創作之上述和其他目的、特徵、和優點能更明顯易懂,下 文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 8 M319521 雖然本創作可表現為不同形式之實施例,但附圖所示者及於下文 ,中說明者係為本創作可之較佳實施例,並請了解本文所揭示者係考量 :為本創作之一範例,且並非意圖用以將本創作限制於圖示及/或所描述 之特定實施例中。 根據本創作第一實施例中,具有堆疊型本質層薄膜太陽能電池,其 係以堆疊形成-本質(i型)轉體層,以提高吸收長波長光子提昇 可見光譜光子的吸收範圍、並改善太陽電池之電特性。現請參照第工 >圖,其所示為具有堆疊型本質層薄膜太陽能電池1〇〇之侧視剖面圖。 該具有堆疊型本質層薄膜太陽能電池100包含一基板110; —第一穿 透導電膜120; - P型半導體層13〇; 一非晶石夕質薄膜層14〇; 一微晶 .矽質薄膜層150; —多晶矽質薄膜層16〇; —N型半導體層17〇; 一第 一穿透導電膜180 ;及一上電極do。 該第-穿透導電膜12〇形成於該基板11〇上方,其穿透導電膜之目 的為提高電流之收餘電極上,以提昇光電轉換之效率。其中該穿透 .導電膜可選用於常見之蒸鍍法(Evap〇rati〇n)、賤錄法(S㈣㈣製程 作為主要製程方式。其材料可選用銦錫氧化層㈤如⑽啦 IT〇)、二氧化錫(Stannum diGxide,Sn〇2)、氧化鋅(zineGxide Zn〇) 作為該穿透導魏⑽之材料。該第二穿透導電膜⑽形成於該N型 半導體層Γ70上,其製作方式及翻材料與該第—穿透導電膜⑽ 同。 該P型半導體層13〇形成於穿透導電膜120上, 在本徵材質中加入的雜質(―可產生多餘的電洞以 9 M319521 電洞構成錄載子之半導體。例如,若對本質半導體掺入3價原 ,子的雜質時,就矽和鍺半導體而言,會形成多餘之電洞。電流則 :以電洞為主來運作。其中該P型半導體層13〇之摻雜方式可選 用於銘誘導、、、口 日日石夕(Aluminum induced crystalline,AIC )、固相結 晶化(Solid phase crystalline,SPC )或準分子雷射退火(Exdmer laser anneal,ELA)製程作為主要製程方式。 該非晶矽質薄膜層140形成於該P型半導體層13〇上方,其係用於 泰及收較短波長之光子。非晶石夕質薄膜具有較高之能隙(Band gap)約 略為1.7eV ’可將太陽光譜中較高能隙(短波長)之光子加以吸收提 高轉換效率。 該微晶矽質薄膜層150形成於該非晶矽質薄膜層14〇上方,其係用 % 於提高太陽電池之電特性。該多晶矽質薄膜層16〇形成於該微晶矽質 薄膜層150上方,其係用於吸收較長波長之光子。多晶矽質薄膜具有 較低之能隙(Energybandgap,Eg)約略為i.i4eV,可將太陽光譜中較 ❿低能隙(長波長)之光子加以吸收提高轉換效率。 ,其中該非晶矽質薄膜層140、該微晶矽質薄膜層150及該多晶矽質 薄膜層可定義為一本質(i型)半導體層。i型半導體層對於薄膜型太 陽電池之電特性影響最大,因為當電子與電洞在材料内部傳導,如其 距離過長,兩者重合機率極高,為避免此現象發生,i層不宜過厚,但 如太薄,又易造成吸光不足。i層一般僅以非晶矽質薄膜(a-Si:H)為 主’但非晶矽質薄膜先天上最大的缺失,在於光照使用後短時間内性 能的大幅衰退,也就是所謂的SW (Staebler-Wronski)效應,其幅度 M319521 約15〜35%。發生原因是因為材料中部份未飽和矽原子 -bond, DB) ’目光照射,發生轉變化之故。本實關使麟非晶石夕質 :薄膜層140、該微晶石夕質薄膜層15〇及該多晶石夕質薄膜層⑽,其係以 堆疊之方式形成-本# (i型)半導體層,可獲得—高效率堆疊型本 .質層_太陽能電池。其最佳實補為先沈積非祕質_層140, 再沈數微晶石夕質薄膜層15〇堆疊於非晶石夕質薄膜層14〇上方,最後沈 積-層多祕質薄膜層16G堆疊於微晶㈣薄膜層15()上方。該非晶 _石夕質薄膜層140為-層、該微晶石夕質薄膜層15〇為一層,及該多晶石夕 質薄膜層160為-層,故總堆豐層數為三層。但需注意的是,該i型 半導體層的堆宜數目可大於二層以上。因此使用非晶⑦質薄膜層 • 1.微晶石夕質薄膜層150及多晶石夕質薄膜層1ό〇所形成之堆疊型本質 層薄膜太陽能電池,能提高吸收長波長光子、並提昇可見光譜光子的 吸收範圍,純改善太陽電紅各項電雛㈣太陽電池之轉換效率。 ,其中該非晶♦質薄膜層140可選用於電裝增強型化學式氣相沈積 _ 棠輊(Plasma enhance chemical vapor deposition, PECVD)、低壓化學式 (L〇w pressure chemical vapor deposition, LPCVD)^^ /皿爐g製私(Furnace)作為主要製程方式。現請參照第2圖,其顯示 為非晶石夕質薄膜之微拉曼光譜分析圖。利用微拉曼光譜分析儀㈤伽 Raman spectra)的實作量測結果揭示,其微拉曼光譜圖之峰值出現在 480cm為一高結晶度之非晶石夕質薄膜。 該微晶㈣薄膜層150形成於該非晶㈣薄膜層140上方,微晶 碎質薄膜的載子遷移率比一般非晶石夕質薄膜高出1〜2個數量級,而暗 11 M319521 電導值則介於1(T5~10_7 (S.cm_1)之間,明顯高出傳統非晶矽質薄膜 :3〜4個數量級,故使用微晶矽質薄膜可加以提高太陽能電池之轉換效 :率。其中該微晶矽質薄膜層150可選用於電漿增強型化學式氣相沈積 製程或特高頻電漿增強型化學式氣相沈積(Very high frequencyiplasma enhance chemical vapor deposition,VHF-PECVD )製程作為主要製程方 式。現請參照第3圖,其顯示所示為微晶矽質薄膜之微拉曼光譜分析 圖。利用微拉曼光譜分析儀(micro Raman spectra)的實作量測結果揭 春示’其微拉曼光§普圖之峰值出現在5〇3cm-i為一高結晶度之微晶石夕質 薄膜。 該多晶梦質細層16G可選可通人魏之化學式氣相沈積製 程或高溫爐管製程作為主要製程方式。其中,該多晶石夕質薄膜層厚度 需小於20腿。現請參照第4圖,其顯示所示為多晶石夕質薄膜之 光譜分析圖。彻微拉曼光譜分㈣(miercRa_spe咖)的實作量 測結果揭*,其齡曼光顧之峰㈣财為—高結晶度之 •多晶石夕質薄膜。 -該N型半導體層17G形成於該多晶料薄膜層⑽上方,n 導體是指在本徵材質中加人的雜f可產生多餘的電子,以電 成多數載子之半導體。例如,若對本質 ^ ^ “ 貝千導體摻入5價原子的雜 貝時’就發和錯半導體而言,合形成客 .., 9 夕餘之電子。電流則以電子 為主來運作。其中該N型半導體戶之攸 法m 1請.、 日之摻雜方式可選用於熱擴散 法刪n) _子雑法(IG a 要製程方式。 F馬主 12 M319521 忒上電極190形成於該穿透導電膜180上方,其係為一歐姆(Ohmic :contact)電極。其功用為將太陽電池所生之電力,以最少損失取出。 ‘因此希望此部分沒有整流,串流電阻低,接著強度高,耐焊接性。一 般歐姆電極形成法有蒸鍍法、電鍍法及印刷法等。在製造高效率之太 陽電池時’蒸鑛法採用之材料有鎳(Ni)、金(Au)、銀(Α^)、鈦(耵)、 把(Pd)、及銘(A1)…等。 赫晶石夕質薄膜層14〇、該微晶石夕質薄膜層15〇及該多晶石夕質薄膜 >層160堆豐形成一(_半導體層,可用以提高可見光譜光子的吸收、 並改善太陽能電池之各項電特性以提高太陽能電池轉換效率。需注意 的是’該非晶石夕質薄膜層_厚度需大於5〇nm。並可透過電裝增強型 •化學錢相沈雜程、低壓化學錢她積製程、或高雜管製程作 為主要t程方式。在製程過程中,一般可通入石夕化合物,如魏及氮 氣等,其中,該石夕烧氣體含量佔所有通入氣體需大於7%以上,其較 佳實施例為大於8.4%之石夕烧含量。 卜該微㈣質薄膜層15G亦可透過電漿增強型化學式氣相沈積製 程、或特高頻電漿增強型化學錢相沈積製程作為 製程過程巾’-般可通从化合物,如魏並混和歧、氫氣及氨氣 等。其中,該矽烷氣體含量需不大於8.4%以上,其較佳實施例為不大 於7%之魏含量。該微晶石夕質薄膜層之結晶尺寸為2〇至%奈米之 間。 石夕(sm—為目前義的太陽能電池之原料代表而在市場上又 區分為:1.單結晶石夕;2.多結晶石夕;3.非結晶石夕。目前最成熟的工 13 M319521 業生產製造技術和最大的市場佔有率乃以單晶石夕和非晶石夕為主的光電 :板。原因是:一、單晶效率最高;三、非晶價格最便宜,且無需封裝, :生產也最快;三、多晶的_及下游再加工較不易,崎述兩種都較 易於再切割及加工。有鑑於此,本創作之該基板11〇係選自於石夕、玻 璃、可撓性基板或不鏽鋼板之一。 根據本創作第二實施例巾,具有堆4型本㈣細太陽能電池,其 係可有效提昇可見光譜光子的吸收細、改善太陽㈣池之各項電特 φ性’亚可大幅降低太陽電池之厚度,達到低成本高效率之目標。現請 參照第5圖,其所示為具有堆疊型本質層薄膜太陽能電池之侧視剖面 圖。該具有堆疊型本質層薄膜太陽能電池2〇〇包含一基板21〇 ; 一穿 •透導電膜22〇; -非晶石夕質薄膜層23〇; 一微晶石夕質薄膜層鳩;一多 晶矽質薄膜層250 ; —抗反射層260 ;及一上電極270。 一該穿透導電膜22〇形成於該基板上方,其穿透導電膜係用於提 高電流之收集於電極上。該非晶石夕質薄膜層13〇形成於該穿透導電膜 _ 220上方’其係用於吸收較短波長之光子。該微晶石夕質薄膜層形 成=非晶石夕質薄膜層23〇上方,其係用於提高太陽電池之電特性。 心曰曰石夕貝薄臈層25〇形成於該微晶石夕質薄膜層測上方,其係用於 吸收車乂長波長之光子。該抗反射層26〇形成於該多晶石夕質薄膜層现 上方,其係用於減少光子的反射,提高光子之吸收。。 該創作之第二實施例其動作原稍該創作之第一實施例其動作原 凡王相同’其不同之處在於該第二實施例中該非晶石夕質薄膜層23〇 摻雜一知元素,該多晶矽質薄膜層25〇内摻雜五族元素,以及形成 14 M319521 -抗反射層26G取代第_實施射之第二穿透導賴⑽,與第—實 :施例有所不同。其中,該非晶石夕質薄膜層230 _雜三族元素,如蝴、 :銘、鎵、銦、鱗可形成-p型半導體層。p型半導體是指在本徵 材質中加入的雜質(impudties)可產生多餘的電洞,以電洞構 成多數載子之半導體。例如,若對本質半導體掺人3族原子的雜 質時,就石夕和錯半導體而言,會形成多餘之電洞。電流則以電洞 為主來運作。該三族元素之摻雜方式可選用氣體擴散法、固相擴 ❿散法、或離子注入法等製程。氣體擴散法是將掺雜元素以氣體送入保 持南溫的機板上,形成一 p型半導體層。固相擴散法是在機板表面堆 積具赫雜之擴制,而後在高溫下將其導人。離子怖植法是利用 約5eV左右的加速電壓將2χ1〇15αη2^ 4xi〇lw的換雜物注入。其 中’該摻雜二族兀素之非晶石夕質薄膜層MO内掺雜三族元素濃度為厶 l〇15cm_3 至 2xl017cm_3 之間。 该多晶矽質薄膜層250内摻雜五族元素,如氮、填、石申、錄、絲 ^ ^形成一 11型半導體層。11型半導體是指在本徵材質中加入的雜 貝可產生多餘的電子,以電子構成多數載子之半導體。例如,若 對本貝半導體摻人5族原子的雜質時,财和鍺半導體而言,會 形成多餘之電子。電流_電子#來運作。該五族元权換^ ’方式可選用氣體擴散法、固相擴散法、或離子注人法等製程。氣體擴 政法疋將摻雜70素以氣體送入保持高溫的機板上,形成一 η型半導體 層。固相擴散法是在機板表面堆積具有摻雜物之擴散齊!,而後在高溫 下將其導入。離子怖植法是利用約5eV左右的加速電壓將2灿 15 M319521 的摻雜物注入。其中,摻雜五族元素之多晶矽質薄膜層25()内摻雜之 :五族元素濃度為2xl016cm-3至2xl017cm·3之間。 : 而該抗反射層260形成於該多晶矽質薄膜層250上方,其係用於 減少光子的反射,提高光子之吸收。矽在波長4〇〇〜11〇〇奈米之區域内 有6.0〜3·5之大折射率,故在短波長區域内有54%、長波長區域内有 34%之反射損失。為了減少反射損失,使用折射率不同之透明材料做 成杬反射層(Anti-reflecti〇n coating),可提高光子之吸收。其中該抗 >反射層厚度需大於1〇〇奈米。 該抗反射層260可選用物理式氣相沈積法(physical vap〇r deposition’ PVD)如濺鑛、蒸鍍或化學式氣相沈積法等。選用之材料 .可為氮切(Si3N4)、二氧姆⑽)、氧化錫⑽2)、二氧化鈦 (τ1〇2)、三氧化二銘(Al2〇3)、五氧化二组(Ta〇5)等不崎射率之 透明材料。 4上所述’本創作之具有堆疊型本質層_太陽能電池,具有可 1及收長波長光子、提昇可絲譜光子的吸收範圍,並可大幅降低太陽 電池之厚度’物低成本高效率之功效。 '、本㈣已^職佳實施觸示,然其並非用以限定本創 ,任何熟訊賴者,在獨離本_之精神和範_,當可作各 不=動tT。如上述的解釋,都可以作各型式的修正與變化,而 ==H乍的精神。因此本創作之保護範圍當視後 乾圍所界定者為準。 16 M319521 【圖式簡單說明】 圖1顯示為根據本創作第一實施例之具有堆疊型本質層薄膜太陽 能電池之側視剖面圖; 圖2顯示為第一實施例非晶矽質薄膜之微拉曼光譜分析圖; 圖3顯示為第一實施例微晶石夕質薄膜之微拉曼光譜分析圖 圖4顯示為第一實施例多晶矽質薄膜之德^拉曼光譜分析圖;以及 圖5顯示為根據本創作第二實施例之具有堆疊型本質層薄膜太陽 丨能電池之侧視剖面圖; 【主要元件符號說明】 1〇〇具有堆疊型本質層薄膜太陽能電池 110基板第一穿透導電膜130 p型半導體層 140非晶石夕質薄膜層150微晶石夕質薄膜層 160多晶矽質薄膜層170 N型半導體層 I…180第二穿透導電膜19〇上電極 ,200具有堆疊型本質層薄膜太陽能電池 210基板220穿透導電膜230非晶矽質薄膜層 240微晶梦質薄膜層250多晶梦質薄膜層 260抗反射層270上電極 17M319521 VIII. New description: : [New technology field]: This new type relates to a thin film solar cell, which is particularly related to a stacked type intrinsic thin film solar cell, which can effectively improve its photoelectric conversion efficiency. [Previous technology] * According to the current international energy shortage, countries around the world have been continuously researching and developing various alternative energy sources, and solar cells with solar power are attracting the most attention. The solar cell system is easy to use and inexhaustible. Inexhaustible, no waste, no pollution, no rotation, no moving parts, no noise, can block radiant heat, long service life, freely changeable size, and combined with the building and popularization, so Use solar cells as an energy source. In the 1970s, the first solar cells developed by Bell Labs in the United States gradually developed. With the development of solar cells, there are many types of solar cells today, typically single crystal germanium solar cells, polycrystalline germanium solar cells, amorphous germanium solar cells, compound solar cells, dye-sensitized solar cells, and the like. In order to reduce costs, it is mainly based on the active development of amorphous tantalum thin film solar cells, but its efficiency is still too low in practical applications. Recently, a so-called intermediate band structure has been proposed, which introduces an additional band between the conduction band and the Valence band. Theoretically, if the doping (dGping) concentration is high to a certain degree, that is, the distance between the doping atoms is close to a certain extent, the doping atoms can no longer be regarded as mutually independent doping atoms. Overlapping introduces an intermediate band between the conduction band and the valence band. The introduction of the intermediate energy band allows the photons whose original energy is less than the energy gap of the 6 M319521 to be absorbed, which has the opportunity to be absorbed, thus increasing the photocurrent. On the other hand, in order to maintain the output voltage, it is generally necessary to adopt a PiN structure, so that the intermediate band is located in the intrinsic (i layer) region, and the so-called microcrystalline stone is grown in the i layer (Microcrystalline % • c - Si: Η ) The structure is most noticed. The microcrystalline germanium film has a carrier mobility of 1 to 2 orders of magnitude higher than that of a general amorphous tantalum film, and a dark conductance value of 105 to 107 (S.cm3, which is significantly higher). Amorphous germanium film is 3~4 orders of magnitude. • The application method of traditional Pin stacked solar cells is usually firstly plasma-enhanced and pre-vapor deposition process (Plasma enl!ance ehemieal vapQf depQsitiQn, pEevD > A large amount of hydrogen is introduced and diluted with Shixia to form an amorphous stone film and a microcrystalline stone film through a different flow reaction of the stone, and the microcrystalline stone is embedded in the amorphous stone. Thin film layer • Medium minus 1 type (essential layer) semiconductor layer to improve its light absorption efficiency and various electrical characteristics. However, amorphous austenitic film has a high energy gap of about 17 eV, which can absorb longer wavelengths. Photon, but for short-wavelength photons can not be used. Therefore, in order to solve the above problems, it is necessary to provide a kind of photons capable of absorbing long-wavelength to improve the absorption spectrum of the visible spectrum and photons and improve various electrical characteristics. stack An intrinsic thin film solar cell to overcome the shortcomings of the prior art. [New content] The main purpose of the present invention is to provide a thin-film solar cell with a stacked intrinsic layer, which is read by a stacked axis-essential (i-type) semi-conductor. High-Wei long-wavelength photons enhance the absorption of visible-spectrum photons and improve the electrical characteristics of solar cells to improve the photoelectric conversion efficiency of solar cells. 7 M319521 To achieve the above objectives, this paper proposes a stacked-type intrinsic thin-film solar power: a cell comprising a substrate; a first through conductive film; a P-type semiconductor layer; an amorphous germanium: a thin film layer; a microcrystalline tantalum film layer; a polycrystalline tantalum film layer; an N-type semiconductor layer a second through-conducting film; and an upper electrode. According to one aspect of the present invention, there is a stacked-type intrinsic thin film solar cell, wherein the amorphous tantalum, the microcrystalline tantalum film and the polycrystalline tantalum film are stacked to form a Intrinsic (i-type) • The semiconductor layer is used to increase the absorption of long-wavelength photons and enhance the absorption range of visible-spectrum photons. One of the features of a stacked intrinsic thin film solar cell, wherein the amorphous tantalum film layer is formed of a decane gas having a ratio of all of the introduced gases greater than 7%. According to the present invention, a stacked intrinsic thin film solar cell is used. A feature wherein the microcrystalline tantalum film layer is formed from a decane gas having a ratio of all of the introduced gases of not more than 8.4%. • A characteristic of a stacked intrinsic thin film solar cell according to the present invention, wherein the micro The crystal size of the crystalline enamel film layer is between 2 Å and 3 Å. According to one feature of the present invention, the thickness of the amorphous enamel film layer is greater than 5 〇 11111. The above and other objects, features, and advantages of the present invention will become more apparent and understood. [Embodiment] 8 M319521 Although the present invention can be embodied in different forms, the embodiments shown in the drawings and the following description are preferred embodiments of the present invention, and the persons disclosed herein are understood. The considerations are an example of the present invention and are not intended to limit the present invention to the particular embodiments illustrated and/or described. According to the first embodiment of the present invention, there is a stacked intrinsic thin film solar cell which is formed by stacking an intrinsic (i-type) rotating layer to enhance absorption of long-wavelength photons to enhance the absorption range of visible spectrum photons and to improve solar cells. Electrical characteristics. Referring now to the figure > figure, there is shown a side cross-sectional view of a stacked intrinsic thin film solar cell. The stacked intrinsic layer thin film solar cell 100 comprises a substrate 110; a first penetrating conductive film 120; a P-type semiconductor layer 13A; an amorphous quartz film layer 14; a microcrystalline. Layer 150; - polycrystalline tantalum film layer 16; - N type semiconductor layer 17A; a first through conductive film 180; and an upper electrode do. The first through-conducting conductive film 12 is formed on the substrate 11A, and the purpose of penetrating the conductive film is to increase the current on the residual electrode to improve the efficiency of photoelectric conversion. Among them, the conductive film can be selected for the common evaporation method (Evap〇rati〇n), the recording method (S(4) (4) process as the main process. The material can be selected from indium tin oxide layer (5) such as (10) IT〇), Stannum diGxide (Sn〇2) and zinc oxide (zineGxide Zn〇) are used as the material for the penetration guide (10). The second through conductive film (10) is formed on the N-type semiconductor layer 70, and is formed in the same manner as the first through conductive film (10). The P-type semiconductor layer 13 is formed on the penetrating conductive film 120, and the impurity added in the intrinsic material (the semiconductor which can generate excess holes and the 9 M319521 hole constitutes a recording carrier. For example, if the semiconductor is When a trivalent ortho-inorganic impurity is incorporated, an excess hole is formed in the case of a germanium and a germanium semiconductor. The current is mainly operated by a hole, and the doping method of the P-type semiconductor layer 13 It is selected as the main process for the induction, arsenal, aluminum induced crystalline (AIC), solid phase crystallization (SPC) or exdmer laser anneal (ELA) processes. The amorphous enamel film layer 140 is formed on the P-type semiconductor layer 13 ,, which is used for receiving photons of shorter wavelengths. The amorphous ruthenium film has a higher energy gap (about 1.7). eV ' absorbs the photons of the higher energy gap (short wavelength) in the solar spectrum to improve the conversion efficiency. The microcrystalline tantalum film layer 150 is formed on the amorphous tantalum film layer 14〇, which is used to increase the solar cell. Electric The polycrystalline enamel film layer 16 is formed on the microcrystalline enamel film layer 150 for absorbing photons of longer wavelength. The polycrystalline enamel film has a lower energy band (Energy bandgap, Eg) of about i.i4eV The photon of the lower energy gap (long wavelength) in the solar spectrum can be absorbed to improve the conversion efficiency, wherein the amorphous tantalum film layer 140, the microcrystalline tantalum film layer 150 and the polycrystalline tantalum film layer can be defined as one Intrinsic (i-type) semiconductor layer. The i-type semiconductor layer has the greatest influence on the electrical characteristics of the thin film type solar cell, because when electrons and holes are conducted inside the material, if the distance is too long, the probability of coincidence is extremely high, in order to avoid this phenomenon. Occurrence, i layer should not be too thick, but if it is too thin, it is easy to cause insufficient light absorption. The i layer is generally only amorphous enamel film (a-Si: H) mainly 'but the amorphous enamel film is the largest loss in the congenital In the short-term performance after the use of light, the so-called SW (Staebler-Wronski) effect, the amplitude of M319521 is about 15~35%. The reason is because some of the unsaturated germanium atoms in the material -bond, DB ) Irradiating the eyes, so that the occurrence of the transition. The present invention relates to a thin amorphous layer: a thin film layer 140, the microcrystalline stone thin film layer 15〇, and the polycrystalline stone thin film layer (10), which are formed in a stacked manner - this # (i type) The semiconductor layer is available - a high-efficiency stacked type of material layer - solar cell. The best solid compensation is to deposit the non-mystery layer 138, and then deposit the micro-crystallized film layer 15 〇 over the amorphous enamel film layer 14 ,, and finally deposit-layer multi-security film layer 16G Stacked above the microcrystalline (four) film layer 15 (). The amorphous iridium film layer 140 is a layer, the microcrystalline stone film layer 15 is a layer, and the polycrystalline stone film layer 160 is a layer, so the total number of layers is three. It should be noted, however, that the number of stacks of the i-type semiconductor layer may be greater than two or more layers. Therefore, the stacked intrinsic thin film solar cell formed by using the amorphous 7-layer thin film layer 1. 1. the microcrystalline stone thin film layer 150 and the polycrystalline stone thin film layer 1 提高 can improve absorption of long-wavelength photons and enhance visible The absorption range of spectral photons, purely improve the conversion efficiency of solar cells. The amorphous ♦ film layer 140 can be selected for use in a plasma enhanced chemical vapor deposition (PECVD) or a low pressure chemical vapor deposition (LPCVD) ^^ / dish Furnace is the main process. Referring now to Figure 2, it is shown as a micro-Raman spectroscopy analysis of an amorphous stone film. Using the micro-Raman spectroscopy (5) gamma Raman spectra, the results of the measurement showed that the peak of the micro-Raman spectrum appeared at 480 cm as a high crystallinity amorphous quartz film. The microcrystalline (tetra) film layer 150 is formed on the amorphous (four) film layer 140. The carrier mobility of the microcrystalline film is 1 to 2 orders of magnitude higher than that of the general amorphous film, and the dark 11 M319521 conductance value is Between 1 (T5~10_7 (S.cm_1), significantly higher than the traditional amorphous tantalum film: 3~4 orders of magnitude, so the use of microcrystalline tantalum film can improve the conversion efficiency of solar cells: rate. The microcrystalline enamel film layer 150 can be selected as a plasma enhanced chemical vapor deposition process or a high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) process as a main process. Now, please refer to Figure 3, which shows the micro-Raman spectroscopy of the microcrystalline tantalum film. The results of the micro-Raman spectra are used to measure the results. The peak of Raman light § Putu appears in 5〇3cm-i is a high crystallinity microcrystalline stone ceremonial film. The polycrystalline dreamy fine layer 16G can be selected to pass the chemical chemical vapor deposition process or high temperature The furnace control process is the main process. The thickness of the polycrystalline stone film layer needs to be less than 20 legs. Please refer to Fig. 4, which shows the spectrum analysis diagram of the polycrystalline stone film. The Raman spectrum is divided into four (miercRa_spe) The result of the measurement of the implementation is revealed that the age of Man Guang Gufeng (four) is a high crystallinity • polycrystalline stone film. The N-type semiconductor layer 17G is formed on the polycrystalline film layer (10), n A conductor is a semiconductor in which an impurity f is added to an intrinsic material to generate excess electrons to form a majority carrier. For example, if the essence is ^ ^ "Bei Qian conductor is doped with a 5-valent atom," In the case of hair and wrong semiconductors, they form the electrons of the guest.., 9 eve. The current is operated mainly by electrons. Among them, the N-type semiconductor households have the m1 method. Thermal diffusion method deletes n) _ sub-method method (IG a to process mode. F horse master 12 M319521 忒 upper electrode 190 is formed above the penetrating conductive film 180, which is an Ohmic (contact) electrode. Its function is Take out the electricity generated by the solar cell with the least amount of loss. 'So I hope that this part is not rectified, Low cross-flow resistance, high strength, and solder resistance. Generally, ohmic electrode formation methods include vapor deposition, electroplating, and printing. When manufacturing high-efficiency solar cells, the material used in the steaming method is nickel (Ni). , gold (Au), silver (Α^), titanium (耵), put (Pd), and Ming (A1), etc. Hematite film layer 14〇, the microcrystalline stone film layer 15〇 And the polycrystalline stone film > layer 160 is formed to form a (-semiconductor layer, which can be used to improve absorption of photons in the visible spectrum, and improve various electrical characteristics of the solar cell to improve solar cell conversion efficiency. It should be noted that the thickness of the amorphous thin film layer needs to be greater than 5 〇 nm. It can be enhanced by electric equipment. • Chemical money phase mixing, low-pressure chemistry, her process, or high-mix control is the main method. In the process of the process, it is generally possible to pass a compound such as Wei and nitrogen, wherein the gas content of the gas is more than 7% of all the gas, and the preferred embodiment is more than 8.4%. Burning content. The micro (four) thin film layer 15G can also be passed through a plasma enhanced chemical vapor deposition process or a UHF plasma enhanced chemical money phase deposition process as a process process towel - a general compound, such as Wei and mixed Dissimilarity, hydrogen and ammonia. Wherein the decane gas content is required to be not more than 8.4%, and the preferred embodiment thereof is a Wei content of not more than 7%. The crystallite size of the microcrystalline stone layer is between 2 Å and % nanometer. Shi Xi (sm—is the representative of the raw materials of solar cells currently in the market and is divided into: 1. single crystal stone eve; 2. polycrystalline stone eve; 3. amorphous stone eve. currently the most mature work 13 M319521 The manufacturing technology and the largest market share are photoelectrics: mainly single crystal and amorphous stone. The reasons are as follows: 1. The single crystal has the highest efficiency; 3. The amorphous price is the cheapest, and no packaging is required. : The production is also the fastest; third, polycrystalline _ and downstream reprocessing are not easy, both of which are easier to re-cut and process. In view of this, the substrate 11 of this creation is selected from Shi Xi, glass. One of the flexible substrate or the stainless steel plate. According to the second embodiment of the present invention, there is a stack of type 4 (four) thin solar cells, which can effectively improve the absorption of photonic particles in the visible spectrum and improve the solar (four) pool. φ-'Asia can significantly reduce the thickness of solar cells, achieving the goal of low cost and high efficiency. Please refer to Figure 5, which shows a side profile view of a stacked intrinsic thin film solar cell. Layer thin film solar cell 2 The crucible comprises a substrate 21〇; a through-transparent conductive film 22〇; an amorphous quartz film layer 23〇; a microcrystalline stone film layer; a polycrystalline tantalum film layer 250; an anti-reflection layer 260 And an upper electrode 270. The through conductive film 22 is formed over the substrate, and the conductive film is used to increase current collection on the electrode. The amorphous stone film layer 13 is formed on the substrate. The top of the conductive film _ 220 is used to absorb photons of shorter wavelengths. The layer of microcrystalline stone is formed above the layer 23 of the amorphous film, which is used to improve the electrical characteristics of the solar cell. A layer of 25 〇 曰曰 夕 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 The film layer is now above, which is used to reduce the reflection of photons and improve the absorption of photons. The second embodiment of the creation is originally the same as the first embodiment of the creation. The difference is that the difference is that In the second embodiment, the amorphous rock layer 23 is doped with a known element, The polycrystalline tantalum film layer 25 is doped with a group C element, and 14 M319521 - an anti-reflection layer 26G is formed instead of the second pass-through guide (10) of the first embodiment, which is different from the first embodiment: The amorphous slab film layer 230 _ hetero-triad elements, such as butterfly, ming, gallium, indium, scales can form a p-type semiconductor layer. p-type semiconductor refers to impurities (impudties) added in the intrinsic material. Excessive holes are created to form a semiconductor with a majority of carriers. For example, if an intrinsic semiconductor is doped with an impurity of a Group 3 atom, an extra hole is formed in the case of Shi Xi and the wrong semiconductor. The current is The hole is mainly operated. The doping method of the three elements can be selected by a gas diffusion method, a solid phase diffusion method, or an ion implantation method. The gas diffusion method is to feed the doping element into the south temperature by gas. On the board, a p-type semiconductor layer is formed. The solid phase diffusion method is a proliferation of the surface of the board, and then it is guided at a high temperature. The ion implantation method injects a change of 2χ1〇15αη2^ 4xi〇lw with an accelerating voltage of about 5 eV. The concentration of the doped Group III element in the MO layer of the doped disulfide-doped amorphous stone layer is between 厶l〇15cm_3 and 2xl017cm_3. The polycrystalline tantalum film layer 250 is doped with a group of five elements such as nitrogen, filled, stone, recorded, and wire to form an 11-type semiconductor layer. Type 11 semiconductor refers to a semiconductor that is added to the intrinsic material to generate excess electrons and electrons to form a majority carrier. For example, if Benbe Semiconductor incorporates a Group 5 atom impurity, it will form redundant electrons for the company. Current_Electronic # to operate. The five-member weight change method can be selected by a gas diffusion method, a solid phase diffusion method, or an ion implantation method. The gas expands and oxidizes the doped 70 gas into a high temperature maintaining plate to form an n-type semiconductor layer. The solid phase diffusion method is to spread the dopants on the surface of the board! And then introduce it at high temperature. The ion implantation method implants a dopant of 2 Can 15 M319521 with an accelerating voltage of about 5 eV. Wherein, the doped cerium thin film layer 25 () doped with a group of five elements is doped: the concentration of the group C element is between 2 x l016 cm -3 and 2 x l 017 cm · 3. The anti-reflective layer 260 is formed over the polycrystalline enamel film layer 250 for reducing photon reflection and enhancing photon absorption.矽 has a large refractive index of 6.0 to 3.5 in the region of wavelength 4 〇〇 to 11 〇〇 nanometer, so there is 54% in the short wavelength region and 34% in the long wavelength region. In order to reduce the reflection loss, a transparent material having a different refractive index is used as an anti-reflective coating to improve photon absorption. Wherein the thickness of the anti-reflective layer needs to be greater than 1 nanometer. The anti-reflection layer 260 may be selected from physical vap〇r deposition (PVD) such as sputtering, evaporation or chemical vapor deposition. Materials selected may be nitrogen cut (Si3N4), diox (10)), tin oxide (10) 2), titanium dioxide (τ1〇2), bismuth oxide (Al2〇3), pentoxide group (Ta〇5), etc. A transparent material that is not at a high rate. 4] The above-mentioned creation has a stacked intrinsic layer _ solar cell, which has a range of 1 and long wavelength photons, enhances the absorption range of the spectrophotometer, and can greatly reduce the thickness of the solar cell. efficacy. ', this (four) has been the implementation of the implementation of the good, but it is not used to limit the creation, any person who is familiar with the news, in the spirit of independence and the _, can be used for each does not = tT. As explained above, it is possible to make corrections and changes of various types, and the spirit of ==H乍. Therefore, the scope of protection of this creation is subject to the definition of the back circumference. 16 M319521 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side cross-sectional view showing a stacked intrinsic thin film solar cell according to a first embodiment of the present invention; FIG. 2 is a micro pull of the amorphous tantalum film of the first embodiment. Figure 3 shows the micro-Raman spectrum analysis of the microcrystalline stone film of the first embodiment. Figure 4 shows the German Raman spectrum analysis of the polycrystalline tantalum film of the first embodiment; and Figure 5 shows A side cross-sectional view of a solar cell having a stacked intrinsic layer film according to a second embodiment of the present invention; [Description of main components] 1〇〇 a first intrinsically conductive film having a stacked intrinsic thin film solar cell 110 substrate 130 p-type semiconductor layer 140 amorphous stone layer thin film layer 150 microcrystalline stone layer thin film layer 160 polycrystalline tantalum film layer 170 N-type semiconductor layer I...180 second through-conducting film 19 upper electrode, 200 has a stacked nature Layer thin film solar cell 210 substrate 220 penetrates conductive film 230 amorphous enamel film layer 240 microcrystalline dream film layer 250 polycrystalline dream film layer 260 antireflection layer 270 upper electrode 17

Claims (1)

M319521 九、申請專利範圍: ,L 一種具有堆疊型本質層薄膜太陽能電池,其主要包含: : 一基板; -第-穿透導電膜,係形成於該基板上,其係用於提昇光電轉換之 效率; 一 P型半導體層,係形成於該第一穿透導電膜上,其係用於產生 洞; 一非晶石夕質薄膜層,係形成於該P型半導體層上方,其係用於提高 短波長光子的吸收範圍; 一微晶矽質薄膜層,係形成於該非晶矽質薄膜層上方, 高太陽電池之電特性; 一多晶矽質薄膜層,係形成於該微晶矽質薄膜層上方,其 收長波長光子的吸收範圍; N型半導體層,係形成於該多晶石夕質薄膜層上方, 生電子; 一第二穿透導電膜,係形成於該N型半導體層上方, 昇光電轉換之效率;以及 -上電極,係形成於該第二穿料電鼓方其細於取; 其中該非_㈣朗、該微砂層及該多 : 定義為-本質型㈣)半導體層。 質輕層可 電 其係用於提 t係用於吸 其係用於產 其係用於提 2.如申請專利範圍第!項所述之具有堆疊型本質層薄膜太陽能電 18 M319521 池’其中該基板係選自於矽基板、玻璃、可撓性基板或不鏽鋼板之 ’ 〇 3·如申請專利範圍第1項所述之具有堆疊型本質層薄膜太陽能電 池’其中该非晶砍質薄膜層係由佔所有通入氣體比例大於7%之發 ’ 烷氣體所形成。 φ 4·如申請專利範圍第1項所述之具有堆疊型本質層薄膜太陽能電 池’其中該微晶矽質薄膜層係由佔所有通入氣體的比例不大於8.4 %之梦烧氣體所形成。 5·如申请專利範圍第1項所述之具有堆疊型本質層薄膜太陽能電 池,其中該非晶矽質薄膜層係選自於電漿增強型化學式氣相沈積製 程、低壓化學式氣相沈積、或高溫爐管製程之一。 6·如申請專利範圍第1項所述之具有堆疊型本質層薄膜太陽能電 池,其中該微晶矽質薄膜層係選自於電漿增強型化學式氣相沈積製 程或特高頻電漿增強型化學式氣相沈積製程之一。 7·如申請專利範圍第1項所述之具有堆疊型本質層薄膜太陽能電 池,其中該多晶矽質薄膜層係選自於可通入矽烷氣體之化學式氣相 沈積製程或高溫爐管製程作為主要製程方式。 19 M319521 :8.如申請專利範圍第i項所述之具有堆疊型本質層薄膜太陽能電 : 池’其中該非晶矽質薄膜層厚度需大於50nm。 9·如申請專利範圍第!項所述之具有堆疊型本質層薄膜太陽能電 池,其中該微晶矽質薄膜層之結晶尺寸為2〇至3〇奈米之間。 • 10.如申請專利範圍第i項所述之具有堆疊型本質層薄膜太陽能電 池’其中該多晶矽質薄膜層厚度需小於20nm。 11·如中請專利範圍第!項所述之具有堆疊型本質層薄膜太陽能電 池其中該P型半導體層之摻雜方式係選自於銘誘導結晶石夕、固相 結晶化或準分子雷射退火製程之一。 ⑩12.如申請翻簡第1項所狀具有堆㈣本質層薄膜太陽能電 ,池,其中該N型半導體層之掺雜方式係選自於熱擴散 植法製程之一。 13·如申請翻顧第i項所述之具有堆疊型本__太陽能電 池’其中該第一穿透導電膜及該第二穿透導電膜係選自於 賤錢法製程之一。 20 M319521 14.如申請專利範園第1項所述之具有堆疊型本質層薄膜太陽能電 池,其中該第一穿透導電膜及該第二穿透導電膜係選自於銦錫氧化 層、二氧化錫、氧化辞之一。 15.如中請專利範圍第工項所述之具有堆疊型本質層_太陽能電 池’其中該上電極係選自於蒸鑛法、電鍍法及印刷法等製程之一。 • 16·如申請專利範圍第1 θ , 池,其中該上電極材料係選自於錄、金、 Μ 1項所奴具有堆疊縣制_太陽能電 銀、鈦、鈀、及鋁等 21M319521 IX. Patent application scope: L A stacked-type intrinsic thin film solar cell mainly comprises: a substrate; a first-penetrating conductive film formed on the substrate for improving photoelectric conversion a P-type semiconductor layer formed on the first penetrating conductive film for generating a hole; an amorphous slab film layer formed on the P-type semiconductor layer, which is used for Increasing the absorption range of short-wavelength photons; a microcrystalline enamel film layer formed above the amorphous enamel film layer, electrically characteristic of a high solar cell; a polycrystalline enamel film layer formed on the microcrystalline enamel film layer Above, the absorption range of the long-wavelength photon is received; the N-type semiconductor layer is formed on the polycrystalline stone film layer to generate electrons; and a second penetrating conductive film is formed on the N-type semiconductor layer. The efficiency of the up-conversion conversion; and the upper electrode is formed on the second feed-through electric drum; wherein the non-(four) lang, the micro-sand layer and the multi-layer: defined as an intrinsic (four)) semiconductor layer. The light and light layer can be used for the t-system to be used for the production of the system for the purpose of the system. The stacked-type intrinsic thin film solar electric 18 M319521 pool, wherein the substrate is selected from the group consisting of a ruthenium substrate, a glass, a flexible substrate or a stainless steel plate. 〇3 as described in claim 1 There is a stacked intrinsic thin film solar cell in which the amorphous chopped film layer is formed of a gas of a total amount of more than 7% of the gas. φ 4· The stacked intrinsic thin film solar cell as described in claim 1, wherein the microcrystalline tantalum film layer is formed of a dream gas having a ratio of not more than 8.4% of all the introduced gases. 5. The stacked intrinsic thin film solar cell according to claim 1, wherein the amorphous tantalum film layer is selected from the group consisting of a plasma enhanced chemical vapor deposition process, a low pressure chemical vapor deposition, or a high temperature. One of the furnace control procedures. 6. The stacked intrinsic thin film solar cell according to claim 1, wherein the microcrystalline tantalum film layer is selected from the group consisting of a plasma enhanced chemical vapor deposition process or a UHF plasma enhanced process. One of the chemical vapor deposition processes. 7. The stacked intrinsic thin film solar cell according to claim 1, wherein the polycrystalline tantalum film layer is selected from a chemical vapor deposition process or a high temperature furnace control process in which a decane gas is introduced as a main process. the way. 19 M319521: 8. The stacked intrinsic thin film solar power according to the invention of claim i: wherein the thickness of the amorphous tantalum film layer is greater than 50 nm. 9. If you apply for a patent scope! The present invention has a stacked intrinsic thin film solar cell in which the crystallite size of the microcrystalline tantalum film layer is between 2 Å and 3 Å. 10. The stacked intrinsic thin film solar cell as described in claim i, wherein the thickness of the polycrystalline tantalum film layer is less than 20 nm. 11. Please ask for the scope of patents! The stacked intrinsic layer thin film solar cell has a doping mode selected from the group consisting of: inducing crystallization, solid phase crystallization or excimer laser annealing. 1012. A method for refining the first item has a stack (IV) intrinsic thin film solar cell, wherein the doping mode of the N-type semiconductor layer is selected from one of a thermal diffusion planting process. 13. If the application for reviewing the item i has a stacked type __solar battery, wherein the first through conductive film and the second through conductive film are selected from one of the methods of the money method. The method of claim 1, wherein the first through-conducting film and the second penetrating conductive film are selected from the group consisting of indium tin oxide layer, One of tin oxide and oxidation. 15. A stacked intrinsic layer - solar cell as described in the scope of the patent application, wherein the upper electrode is selected from one of a process such as a steaming method, an electroplating method, and a printing method. • 16· If the patent application scope is 1st θ, the pool, wherein the upper electrode material is selected from the records of gold, gold, and smuggling, including the stacked county system _ solar silver, titanium, palladium, and aluminum, etc. 21
TW96205637U 2007-04-09 2007-04-09 Thin film solar-cell with tandem intrinsic layer TWM319521U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96205637U TWM319521U (en) 2007-04-09 2007-04-09 Thin film solar-cell with tandem intrinsic layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96205637U TWM319521U (en) 2007-04-09 2007-04-09 Thin film solar-cell with tandem intrinsic layer

Publications (1)

Publication Number Publication Date
TWM319521U true TWM319521U (en) 2007-09-21

Family

ID=39460048

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96205637U TWM319521U (en) 2007-04-09 2007-04-09 Thin film solar-cell with tandem intrinsic layer

Country Status (1)

Country Link
TW (1) TWM319521U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8263860B2 (en) 2008-04-03 2012-09-11 Tsinghua University Silicon photovoltaic device with carbon nanotube cable electrode
TWI408820B (en) * 2009-12-09 2013-09-11 Metal Ind Res Anddevelopment Ct Solar battery
TWI412144B (en) * 2008-06-12 2013-10-11 Nexpower Technology Corp Anti-reflection solar cell
TWI419341B (en) * 2009-05-18 2013-12-11 Ind Tech Res Inst Quantum dot thin film solar cell
TWI450402B (en) * 2008-05-02 2014-08-21 Hon Hai Prec Ind Co Ltd Solar cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8263860B2 (en) 2008-04-03 2012-09-11 Tsinghua University Silicon photovoltaic device with carbon nanotube cable electrode
TWI450402B (en) * 2008-05-02 2014-08-21 Hon Hai Prec Ind Co Ltd Solar cell
TWI412144B (en) * 2008-06-12 2013-10-11 Nexpower Technology Corp Anti-reflection solar cell
TWI419341B (en) * 2009-05-18 2013-12-11 Ind Tech Res Inst Quantum dot thin film solar cell
US8658889B2 (en) 2009-05-18 2014-02-25 Industrial Technology Research Institute Quantum dot thin film solar cell
TWI408820B (en) * 2009-12-09 2013-09-11 Metal Ind Res Anddevelopment Ct Solar battery

Similar Documents

Publication Publication Date Title
JP4560245B2 (en) Photovoltaic element
US20110259395A1 (en) Single Junction CIGS/CIS Solar Module
TW201001721A (en) Method for obtaining high performance thin film devices deposited on highly textured substrates
JP4928337B2 (en) Method for manufacturing photoelectric conversion device
JP2001267611A (en) Thin-film solar battery and its manufacturing method
TW201403852A (en) Silicon-based solar cells with improved resistance to light-induced degradation
US20110146784A1 (en) Photovoltaic device back contact
EP2541614A1 (en) Thin film photoelectric conversion device and process for production thereof
TWM319521U (en) Thin film solar-cell with tandem intrinsic layer
WO2012173814A1 (en) Tandem solar cell with improved tunnel junction
JP2004265889A (en) Photoelectric conversion element, photoelectric conversion device, and iron silicide film
KR101484620B1 (en) Silicon solar cell
TW201121065A (en) Thin-film solar cells containing nanocrystalline silicon and microcrystalline silicon.
JP4215697B2 (en) Photoelectric conversion device and manufacturing method thereof
TW200933908A (en) A silicon-based thin film solar-cell
JPWO2006049003A1 (en) Method for manufacturing thin film photoelectric conversion device
WO2011105166A1 (en) Photoelectric conversion module and method for manufacturing same
TW200945598A (en) Structure and process of a silicon-based thin film solar-cell with multijunction structure
TWM323112U (en) Thin film solar-cell with multi level microcrystalline silicon
JP2004363578A (en) Semiconductor thin film, photoelectric converter employing it, and photovoltaic generator device
TWM327083U (en) Thin film solar-cell with multi levels of microcrystalline silicon
JP5818789B2 (en) Thin film solar cell
TWM335796U (en) A silicon-based thin film solar-cell with multijunction
JP2710246B2 (en) Photovoltaic element
WO2011102352A1 (en) Solar cell, and process for production of solar cell

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees