TW200945598A - Structure and process of a silicon-based thin film solar-cell with multijunction structure - Google Patents

Structure and process of a silicon-based thin film solar-cell with multijunction structure Download PDF

Info

Publication number
TW200945598A
TW200945598A TW97115104A TW97115104A TW200945598A TW 200945598 A TW200945598 A TW 200945598A TW 97115104 A TW97115104 A TW 97115104A TW 97115104 A TW97115104 A TW 97115104A TW 200945598 A TW200945598 A TW 200945598A
Authority
TW
Taiwan
Prior art keywords
photoelectric conversion
conversion layer
layer
group
solar cell
Prior art date
Application number
TW97115104A
Other languages
Chinese (zh)
Inventor
Yung-Chieh Chien
Ru-Yuan Yang
Yu-Chi Chang
Original Assignee
Contrel Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Contrel Technology Co Ltd filed Critical Contrel Technology Co Ltd
Priority to TW97115104A priority Critical patent/TW200945598A/en
Publication of TW200945598A publication Critical patent/TW200945598A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention discloses a structure and process of a silicon-based thin film solar-cell with multijunction. It mainly comprises a substrate; a transparent conductive film; a first photoelectric conversion layer; a second photoelectric conversion layer; a third photoelectric conversion layer and an electrode. The bandgap of the first photoelectric conversion layer is lager than the bandgap of the second photoelectric conversion layer which is lager than the bandgap of the third photoelectric conversion layer. The second photoelectric conversion layer has a embedded crystallized structure. The arrangement of the bandgap levels can increase the overall range of light absorption to improve the efficiency of the disclosed solar cell.

Description

200945598 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種矽基薄膜太陽能電池結構及其製 程’其特別冑關於I有多堆4之石夕I薄膜太陽能電池結構 及其製程。藉由製作不同之能隙與薄琪材料相互養接之複 數個光電轉換層,該電池可以提高其光波長之吸收範圍, 並增加太陽能電池之光電轉換效率。 參 【先前技術】 按,目前由於國際能源短缺,而世界各國一直持續研 發各種可行之替代能源,而其中又以太陽能發電之太陽電 池最受_目,太陽電池係具有使用方便、取之不盡、用 之不竭、無廢棄物、無污染、無轉動部份、無噪音、可阻 隔転射熱、使用壽命長、尺寸可隨意變化、並與建築物作 結合及普及化等優點,故利用太陽電池作為能源之取得。 在20世紀70年代,由美國貝爾實驗室首先研製出的 ❹ 彳太陽能電池逐步發展起來。隨著太陽電池之發展,如今 太陽能電池有多種類型,典型的有單晶碎太陽能電池、多 晶石夕太陽能電池、非晶石夕太陽能電池、化合物太陽能電池、 染料敏化太陽能電池等。 矽(Silicon )為目前通用的太陽能電池之原料代 表,而在市場上又區分為:1·單結晶矽;2.多結晶矽:3· 非結晶石夕。目前最成熟的工業生產製造技術和最大的市場 佔有率乃以單晶石夕和非晶石夕為主的光電板。原因是:—、 單晶效率最高,·二、非晶價格最便宜,且無需封裝,生產 200945598 也最快;三、多晶的切割及下游再加工較不易,而前述兩 ' 種都較易於再切割及加工。為了降低成本,現今主要以積 極發展非晶石夕薄膜太陽電池為主,但其效率上於實際應用 中仍然過低。近來’為了保持輸出電壓,一般須要採用p_i_N 結構’讓中間能帶位於純質(intrinsie,丨iayer)區域。其中又 以於i層中成長所謂的微晶石夕(MicrocryStaiiine si,〆 c-Si : Η)結構最受到矚目。微晶矽薄膜,其薄膜的載子遷 移率(Cairier mobility)比一般非晶矽質薄膜高出個數 • 量級’而暗電導值則介於1〇·5〜H)·7 (S.cm-1)之間,明顯 高出非晶矽薄膜3〜4個數量級。然而,過去並無在複數個 P-i-N結構中製作多能隙之矽基薄膜太陽能電池。 因此,有必要提出一種具有多堆疊之矽基薄膜太陽能 電池結構及其製程,以堆疊不同形式之p_i_N結構來提高其 光波長之吸收範圍,並增加太陽能電池之光電轉換效率。 【發明内容】 ❹ β本發明之主要目的在提供-種具有多堆叠之梦基薄膜 太陽能電池結構與製程。藉由製作複數個相互憂接之光電 轉換層,該複數個光電轉換層係利用不同之能隙與薄膜材 料以提高其光波長之吸收範圍,並增加太陽能電池之光電 轉換效率。 為達上述主要目的,本發明提出一種具有多堆疊之石夕 薄膜太陽能電池結構,其包含-基板;-透明導電膜; 第光電轉換層;一第二光電轉換層;一第三光電轉換 以及電極。該基板之一面係為照光面,且該透明導電 6 200945598 膜係形成於該基板上,用以取出電能與提昇光電轉換 * 率。該第一光電轉換層係形成於該透明導電膜上方,、之效 產生電子電洞對,並提供光電流,且該第一光電轉換層= 材料係選自於由碳化石夕與非晶石夕所組成之一族群。該第二 光電轉換層係形成於該第一光電轉換層上方,用以產生: 子電洞對’並提供光電流,其中該第二光電轉換層之材料 係選自於由奈米晶矽、微晶矽與多晶矽所組成之一族群, 且該第二光電轉換層内之結晶材料佔該第二光電轉換層之 • *體的比例係介於10%至_之間。該第三光電轉換層係 形成於該第二光電轉換層上方,用以產生電子電洞對7並 提供光電流,且該第三光電轉換層之材料係選自於 曰曰 石夕、非晶石夕錯、微晶石夕錯與多晶石夕錯所組成之一族群。而 該電極係形成於該第三光電轉換層上方,用以取出電能與 提昇光電轉換之效率。其中,該第一光電轉換層之能隙大 於該第二光電轉換層之能隙,而該第二光電轉換層之能隙 大於該第三光電轉換層之能隙。至於該第一光電轉換層之 〇 厚度則不大於該第二光電轉換層之厚度,而該第二光電轉 換層之厚度不大於該第三光電轉換層。 根據本發明之具有多堆疊之矽基薄膜太陽能電池 結構,其中該石夕基薄膜太陽能電池結構更包含:一抗反射 層’形成於該第三光電轉換層上彳,用明少反射所造成 之光能流失。 為達上述次要目的,本發明提出一種具有多堆疊之矽 基薄媒太陽能電池之製程’其包含下列步驟:⑷提供一 基板;(B)形成一透明導電膜;(c)以化學式氣相沈積法 200945598 =轉:電轉換層;(D)以化學式氣相沈積法形成-電轉換層;、、層’⑹以化學式氣相沈積法形成―第三光 係用以作為:i(F)形成一電極。其中於步驟⑷:該基板 選自於由ί 體。於步驟(B):該透明導電膜之材料係 之-族群。锡氧化層、二氧化錫與含雜質的氧化鋅所組成 由碳化心第—光電轉換層之材料係選自於 電轉換層= 一族群。於步驟(D):該第二光BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ruthenium-based thin film solar cell structure and a process thereof, and in particular to a structure of a Si-I thin film solar cell having a stack of 4 and a process therefor. By fabricating a plurality of photoelectric conversion layers which are mutually protected by different energy gaps and thin materials, the battery can increase the absorption range of the light wavelength and increase the photoelectric conversion efficiency of the solar cell. According to the [prior technology], due to the international energy shortage, the countries in the world have been continuously researching and developing various viable alternative energy sources, and the solar cells that generate electricity from solar power are the most popular. The solar cell system is easy to use and inexhaustible. Inexhaustible, no waste, no pollution, no rotating parts, no noise, can block the heat of the ray, long service life, the size can be changed at will, and combined with the building and popularization, so the use Solar cells are made as energy sources. In the 1970s, the first solar cell developed by Bell Labs in the United States gradually developed. With the development of solar cells, there are many types of solar cells today, typically monocrystalline solar cells, polycrystalline solar cells, amorphous solar cells, compound solar cells, dye-sensitized solar cells, and the like. Silicon (Silicon) is the raw material for the current general-purpose solar cells, and is divided into: 1·single crystal 矽; 2. polycrystalline 矽: 3· amorphous stone eve. At present, the most mature industrial manufacturing technology and the largest market share are photovoltaic panels based on single crystal and amorphous stone. The reasons are: -, single crystal efficiency is the highest, · second, amorphous price is the cheapest, and no packaging, production 200945598 is also the fastest; third, polycrystalline cutting and downstream reprocessing is not easy, and the above two 'is easy Re-cutting and processing. In order to reduce costs, it is mainly based on the active development of amorphous austenitic thin-film solar cells, but its efficiency is still too low in practical applications. Recently, in order to maintain the output voltage, it is generally necessary to use the p_i_N structure to make the intermediate band in the intrinsie (丨iayer) region. Among them, the so-called MicrocryStaiiine si (〆 c-Si : Η) structure in the i-layer is most noticed. The microcrystalline germanium film has a carrier mobility (Cairier mobility) higher than that of a general amorphous tantalum film. The dark conductance value is between 1〇·5~H)·7 (S. Between cm-1), it is significantly higher than the amorphous ruthenium film by 3 to 4 orders of magnitude. However, in the past, no multi-gap 矽-based thin film solar cells were fabricated in a plurality of P-i-N structures. Therefore, it is necessary to propose a multi-stacked bismuth-based thin film solar cell structure and a process thereof for stacking different forms of p_i_N structure to increase the absorption range of the optical wavelength and increase the photoelectric conversion efficiency of the solar cell. SUMMARY OF THE INVENTION The main purpose of the present invention is to provide a structure and process for a dream-based thin film solar cell having multiple stacks. By fabricating a plurality of mutually opposite photoelectric conversion layers, the plurality of photoelectric conversion layers utilize different energy gaps and film materials to increase the absorption range of the light wavelength and increase the photoelectric conversion efficiency of the solar cell. To achieve the above main object, the present invention provides a multi-stacked stone solar cell structure comprising: a substrate; a transparent conductive film; a photoelectric conversion layer; a second photoelectric conversion layer; a third photoelectric conversion and an electrode . One of the substrates is a light-emitting surface, and the transparent conductive 6 200945598 film is formed on the substrate for taking out electrical energy and increasing the photoelectric conversion rate. The first photoelectric conversion layer is formed on the transparent conductive film to generate an electron hole pair and provide a photocurrent, and the first photoelectric conversion layer= material is selected from the group consisting of carbon stone and amorphous stone. One of the ethnic groups formed by the evening. The second photoelectric conversion layer is formed above the first photoelectric conversion layer for generating: a sub-hole pair ' and providing a photocurrent, wherein the material of the second photoelectric conversion layer is selected from the group consisting of nanocrystalline and micro A group consisting of a germanium and a polycrystalline germanium, and the ratio of the crystalline material in the second photoelectric conversion layer to the body of the second photoelectric conversion layer is between 10% and _. The third photoelectric conversion layer is formed on the second photoelectric conversion layer for generating the electron hole pair 7 and providing a photocurrent, and the material of the third photoelectric conversion layer is selected from the group consisting of One group consisting of Shi Xi wrong, microcrystalline stone eve and polycrystalline stone. The electrode is formed above the third photoelectric conversion layer for extracting electrical energy and improving the efficiency of photoelectric conversion. The energy gap of the first photoelectric conversion layer is greater than the energy gap of the second photoelectric conversion layer, and the energy gap of the second photoelectric conversion layer is greater than the energy gap of the third photoelectric conversion layer. The thickness of the first photoelectric conversion layer is not greater than the thickness of the second photoelectric conversion layer, and the thickness of the second photoelectric conversion layer is not greater than the third photoelectric conversion layer. According to the present invention, there is a multi-stacked bismuth-based thin film solar cell structure, wherein the skele-based thin film solar cell structure further comprises: an anti-reflective layer formed on the third photoelectric conversion layer, caused by less reflection Light energy is lost. To achieve the above secondary object, the present invention provides a process for a multi-stacked germanium-based thin-film solar cell, which comprises the steps of: (4) providing a substrate; (B) forming a transparent conductive film; (c) chemical gas phase Deposition method 200945598 = transfer: electrical conversion layer; (D) chemical vapor deposition to form - electrical conversion layer; , layer ' (6) formed by chemical vapor deposition - the third light system is used as: i (F) An electrode is formed. Wherein in step (4): the substrate is selected from the group consisting of. In the step (B): the material of the transparent conductive film is a group. The tin oxide layer, the tin dioxide and the impurity-containing zinc oxide are composed of a carbonized core-photoelectric conversion layer selected from the group consisting of an electric conversion layer = a group of groups. In step (D): the second light

組成之係選Γ由奈米晶石夕、微晶'與多晶石夕所 二光電且該第—光電轉換層内之結晶材料佔該第 =電轉換層之整體的比例係介於聰至80%之間。於步 .該第三光電轉換層之材料係選自於由多晶矽、非曰 =、微晶残與多晶料所組成之—族群。於步驟(F), =之材料係選自於由銦錫氧化層、二氧化錫、氧化辞、 、、金、銀所組成之一族群。 夕制扣㈣本發明之具有多堆疊之碎基薄膜太陽能電池 届 〃中該製程更包含:形成-抗反射層,該抗反射 成於該N型半導體層上方,且形成該反抗層之製程 紅自於由電漿增強型化學式氣相沈積法、熱絲化學氣相 况積法與特高頻電漿增_㈣式氣相沈積法所組成之一 族群中。 根據本發明之具有多堆疊之石夕基薄膜太陽能電池之製 程,其中該第一光電轉換層、該第二光電轉換層與該第三 光電轉換層於製作時,製程溫度係介於2(TC至3()(rc之間。 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂’下文特舉數個較佳實施例,並配合所附圖式,作 8 200945598 詳細說明如下 【實施方式】 者及明可表現為不同形式之實施例,但附圖所示 本文所揭示者明之較佳實施例’並請了解 將本發明限制於圖干2本發明之一範例,且並非意圖用以 ^ 圖不及/或所描述之特定實施例中。 :參照第1圖’其所示為本發明之一種具有多堆叠之 多始矗膜太陽能電;也100結構之側視剖面圖。該-種具有 读Η道之石夕基薄膜太陽能電池1〇0結構包含一基板11〇; 一 =導電膜120;_第一光電轉換層130; 一第二光電轉換 0’第二光電轉換層150以及一電極160。該基板11() 之-面係為照光面,且透明導電膜12()係形成於該基板m 用以取出電能與提昇光電轉換之效率。該第一光電轉 換層130係形成於該透明導電膜12〇上方,用以產生電子 ❹ 電洞對’並提供光電流’且該第一光電轉換層130之材料 '、選自於由碳化石夕與非晶石夕所組成之一族群。該第二光電 轉換層14G係形成於該第—光電轉換層13()上方,用以產 電子電洞對,並提供光電流。其令,該第二光電轉換層 140之材料係選自於由奈米晶碎、微晶珍與多晶碎所組成之 •族群,且該第二光電轉換層140内之結晶材料佔該第二 光電轉換層140之整體的比例係介於10%至80〇/〇之間。在 =一實施例中,該第二光電轉換層14〇内之結晶材料的結 晶尺寸係介於10奈米至500奈米之間。該第三光電轉換層 15〇係形成於該第二光電轉換層140上方,用以產生電子電The composition of the selected layer consists of nanocrystalline, microcrystalline, and polycrystalline as the second photoelectric, and the ratio of the crystalline material in the first photoelectric conversion layer to the entire electrical conversion layer is between Cong to 80. %between. The material of the third photoelectric conversion layer is selected from the group consisting of polycrystalline germanium, non-quinone =, microcrystalline residual and polycrystalline material. In the step (F), the material is selected from a group consisting of an indium tin oxide layer, a tin dioxide, an oxidized word, a gold, and a silver. The fourth embodiment of the present invention further comprises: forming an anti-reflection layer formed on the N-type semiconductor layer and forming a process red of the anti-resist layer It is composed of a group consisting of a plasma-enhanced chemical vapor deposition method, a hot-wire chemical vapor deposition method, and a UHF plasma-enriched vapor deposition method. According to the process of the present invention, the process has a process temperature of 2 (TC) when the first photoelectric conversion layer, the second photoelectric conversion layer and the third photoelectric conversion layer are fabricated. The above and other objects, features, and advantages of the present invention will become more apparent and obvious <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The following is a description of the preferred embodiments of the present invention, and the preferred embodiments of the present invention are disclosed in the drawings, and the invention is limited to the example of the invention. It is not intended to be used in the specific embodiments described or illustrated. Referring to FIG. 1 which is a multi-stacked multi-layer solar photovoltaic of the present invention; also a side profile of the 100 structure Figure 1. The structure of a Shihuai thin film solar cell having a read channel comprises a substrate 11A; a = conductive film 120; a first photoelectric conversion layer 130; a second photoelectric conversion 0' second photoelectric The conversion layer 150 and an electrode 160. The substrate 11 The surface of the () is a illuminating surface, and the transparent conductive film 12 () is formed on the substrate m for taking out electric energy and improving the efficiency of photoelectric conversion. The first photoelectric conversion layer 130 is formed on the transparent conductive film 12 The upper part is used to generate an electron ❹ hole pair 'and provide a photocurrent' and the material of the first photoelectric conversion layer 130' is selected from a group consisting of carbonized stone and amorphous stone eve. The conversion layer 14G is formed over the first photoelectric conversion layer 13 () for generating an electron hole pair and providing a photocurrent. The material of the second photoelectric conversion layer 140 is selected from the group consisting of nanocrystalline crystals. a group consisting of microcrystalline and polycrystalline, and the ratio of the crystalline material in the second photoelectric conversion layer 140 to the entirety of the second photoelectric conversion layer 140 is between 10% and 80 Å/〇. In an embodiment, the crystalline material in the second photoelectric conversion layer 14 has a crystal size ranging from 10 nm to 500 nm. The third photoelectric conversion layer 15 is formed in the second Above the photoelectric conversion layer 140 for generating electronic electricity

,Θ “、、第1圖’其中,該第一光電轉換層130、該第二 光電轉換層14G與該第三光電轉換層15()皆係由—p型半 導體層、—本質型(⑷半導體層與- N型半導體層組合 而成,該組合結構之側示剖面圖如圖2a〜圖及所示。其中, P型半導體層係指在本質材料中加人的雜f (Impurities) 可產生多餘的電洞’以電洞構成多數載子之半導體,即稱 之為p里半導體層。例如:對石夕和鍺半導體之本質半導體 摻入3價原子的雜質時’會形成多餘之電洞,電流將以電 洞做為主要的運作。該第-光電轉換層、該第二光電轉換 構成多數載子之半導體,即稱之為N型半導體層、就石夕或 鍺半導體而言,㈣本質半導體摻人5價原子的雜質時, 200945598 =卜並提供光電流,且該第三光電轉制150之材料係 '於由多晶矽、非晶矽鍺、微晶矽鍺與多晶矽鍺所組成 之一族群。該電極⑽係形成於該第三光電轉換層15〇上 方用以取出電能與提昇光電轉換之效率。需注意的是, 該光電轉換層13G之能隙大於該第二光電轉換層140 之月b隙,而該第二光電轉換層14〇之能隙大於該第三光電 轉換層15G之能隙;以及該第—光電轉換層㈣之厚度不 大於該第二光電轉換層刚之厚度’而該第二光電轉換層 二〇之厚度不大於該第三光電轉換層15G。該♦基薄膜太陽 月b電池、、、口構更包含.一抗反射層,抗反射層係形成於該第 二光電轉換層15G ’用以減少反射所造成之光能流失。 層與該第三光電轉換層内之各p型半導制之摻雜濃度係 介於1018至1G2G原子/立方公分之間。該N型半導體層 係指在本質材料中加人的雜f可產生多餘的電子,以電子 200945598 會形成多餘之電子,並以電 兮筮止恭姑 电于机作為主要的運作。i中, 電轉換層13°内之Ν型半導體層⑶,第:二 轉換層140内之N型半導體層 第一先電 内之N型半導體層153之^ 與第三光電轉換層150 mu 之摻雜方式可制氣體摻雜、準分 子雷射退火、固相結晶化、埶 早刀 要製程方式。該第一光電轉換層散2離子佈植法作為主 第三光電轉換層内之各N型半導:第-:電轉換層與該 …。原子/立方公分之間導體層之推雜漠度係介於 Φ ❹ 太陽結構中,本質型(|型)半導體層對於薄膜型 傳導'電特性影響最大’當電子與電洞在材料内部 二導極ΓΓ型。型)半導體層之厚度過厚,兩者重合 免此現象發生,本質型。型)半導體層不 本質型。型)半導體層太薄,又易造成吸 2足.。其I本質型(⑻半導體層一般以非晶石夕質薄 Η)為主。但非晶石夕質薄媒先天上最大的缺失在於 光照使用後’非晶石夕質薄媒於短時間内,其性能將大幅衰 退,即所謂的SW (Staebler_Wronski)效應 約^,。該⑽應是由於材料中部份未飽二= 原子(Dangling bond,DB),因光照射所發生結構變化之 故。微晶矽質薄膜的載子遷移率比一般非晶矽質薄膜高出 1〜2個數量級,而暗電導值則介於1〇_5〜1〇_7 (s咖乂「之 間’明顯高出傳統非晶石夕質薄膜3〜4個數量級,故於本質 型(丨型)半導體層使用微晶矽質之結晶薄臈可加以提高太 陽能電池之轉換效率。 本發明之一種具有多堆疊之矽基薄膜太陽能電池1〇〇 200945598 之製程,其包含下列步驟:(A)提供一基板11〇;(b)形成 一透明導電膜120;(C)以化學式氣相沈積法形成一第—光 電轉換層UiKp)以化學式氣相沈積法形成一第二光電轉 換層140;⑹以化學式氣相沈積法形成—第三光電轉換層 150 ;以及(F)形成一電極160。 本發明之第-實施例之該步驟⑷:該基板u〇用以作 為承載主體,且該基板110之材料係選自於矽、玻璃、可 挽性基板或不鏽鋼板之其中一者。而為了降低製作上的成 • 本,該基板uo可採用玻璃及不鏽鋼來作為基板110。該步 驟(B):該透明導電膜12〇之製程方式可選用常見之蒸鑛法 (Evaporation)、濺鍍法(Sputter)、電鍍法、印刷法製程 作為主要之製程方式。該透明導電膜12〇之材料可選自於 由銦錫氧化物(Indium tin oxide,ΙΤ〇 )、二氧化锡( dioxide,Sn〇2)、氧化鋅(Zinc〇xide Zn〇)或含雜質的氧 化鋅等所組成之-族群,且該透明導電膜12〇係形成於該 基板uo之上。該步驟(c):該第一光電轉換層13〇係以化 © $式氣相沈積法加以沈積而成,且該第-光電轉換層13〇 係形成於該透明導電膜12G上方,而該第—光電轉換層m 之材料係選自於由碳化石夕與非晶石夕所組成之一族群。該步 驟’形_第二光電轉換層14G之化學氣相沈積法係以 -混合物為反應氣體之來源,其中該混合物係㈣烧氣體 與氫氣,或石夕烧氣體、氫氣與氯氣所組成。該第二光電轉 換層140係形成於該第一光電轉換層13〇上方,且該第二 光電轉換層140之材料係選自於由奈米晶石夕、微晶石夕與多 晶硬所組成之-族群,且該第二光電轉換層14〇内之結晶 12 200945598 材料佔該第二光電轉換層140之整體的比例係介於10%至 80%之間。該步驟(E):該第三光電轉換層150係以化學式 氣相沈積法加以沈積而成。且該第三光電轉換層150係形 成於該第二光電轉換層140上方,該第三光電轉換層15〇 之材料係選自於由多晶矽、非晶矽鍺、微晶矽鍺與多晶碎 鍺所組成之一族群。其中,該第一光電轉換層130内之p 型半導體層13卜該第二光電轉換層140内之P型半導體層 141與該第三光電轉換層150内之P型半導體層151之製程 • 方式可選用電漿增強型化學式氣相沈積製程 (Plasma-enhanced chemical vapor deposition, PECVD)、熱絲 化學氣相沉積法(Hot-wire chemical vapor deposition, HW-CVD)或特高頻電漿增強型化學式氣相沈積(Very high frequency-plasma enhance chemical vapor deposition, VHF-PECVD )等製程作為主要的製程方式。在一實施例 中,該第一光電轉換層130内之P型半導體層131、該第二 光電轉換層140内之P型半導體層141與該第三光電轉換 〇 層150内之P型半導體層151係由電漿增強型化學式氣相 沈積來形成,其機台腔體之壓力為0.01托(t〇rr)至 0.5(torr) ’製程溫度為20°C至300°C,通入之氣體可選用石夕 化合物(Silicide)氣體如石夕烧(siiane,SH4)並混和氫氣 (Hydrogen,Η )、氬氣(Argon,Ar)等作為製作氣體。其 中’當氫氣流量與石夕烧流量比例為〇. 1倍至1 〇倍時,可用 以製作出非晶質石夕薄膜’並做為該第一光電轉換層13 〇内 之P型半導體層131 ;當氫氣流量與矽烷流量比例為1〇倍 至30倍,可用以製作出微晶質矽薄膜,並做為該第二光 200945598 轉換層140内之p型半導體層141;當氣氣流量與石夕炫流量 比例為30倍至5G倍’可用以製作出多晶質石夕薄膜,並做 為該第三光電轉換層150内之p型半導體層i5i。該第一光 電轉換層m内之P型半導體層131,該第二光電轉換層 140内之P型半導體層141與該第三光電轉換層⑼内之p ,半導體&amp; 151之摻雜方式皆可選用氣體摻雜、銘誘導結 3¾ ^( Aluminum induced crystalline, AIC Thermal, Θ ", FIG. 1", wherein the first photoelectric conversion layer 130, the second photoelectric conversion layer 14G, and the third photoelectric conversion layer 15 are both made of a -p type semiconductor layer, - an essential type ((4) The semiconductor layer is combined with the -N type semiconductor layer, and the side cross-sectional view of the combined structure is shown in FIG. 2a to FIG. 2 , wherein the P-type semiconductor layer refers to the impurity (Impurities) added to the essential material. Excessive holes are generated. The semiconductors that make up the majority of the carriers by the holes are called p-semiconductor layers. For example, when the intrinsic semiconductors of the Shixi and Helium semiconductors are doped with impurities of trivalent atoms, they will form unnecessary electricity. In the hole, the current will operate mainly as a hole. The first photoelectric conversion layer and the second photoelectric conversion constitute a semiconductor of a majority carrier, which is called an N-type semiconductor layer, and in the case of a Shi Xi or a semiconductor, (4) When the intrinsic semiconductor is doped with impurities of a pentavalent atom, 200945598 = provides photocurrent, and the material of the third photoelectric conversion 150 is composed of polycrystalline germanium, amorphous germanium, microcrystalline germanium and polycrystalline germanium. a group of people. The electrode (10) is formed in the first The photoelectric conversion layer 15 is used for taking out electric energy and improving the efficiency of photoelectric conversion. It should be noted that the energy gap of the photoelectric conversion layer 13G is larger than the monthly b-slot of the second photoelectric conversion layer 140, and the second photoelectric conversion layer The energy gap of 14 大于 is greater than the energy gap of the third photoelectric conversion layer 15G; and the thickness of the first photoelectric conversion layer (4) is not greater than the thickness of the second photoelectric conversion layer ′ and the thickness of the second photoelectric conversion layer Not more than the third photoelectric conversion layer 15G. The ♦ base film solar moon b battery, the mouth structure further comprises an anti-reflection layer, and the anti-reflection layer is formed on the second photoelectric conversion layer 15G ′ to reduce the reflection The resulting light energy is lost. The doping concentration of each p-type semi-conducting layer in the layer and the third photoelectric conversion layer is between 1018 and 1 G2 G atoms/cm 3 . The N-type semiconductor layer is referred to in the intrinsic material. The added impurity f can generate excess electrons, and the electron 200945598 will form excess electrons, and the electric operation will be used as the main operation. In the i, the electrotransformation layer has a germanium semiconductor layer within 13°. (3), N: N in the conversion layer 140 The doping method of the N-type semiconductor layer 153 and the third photoelectric conversion layer 150 mu in the first pre-electrical layer of the semiconductor layer can be doped by gas doping, excimer laser annealing, solid phase crystallization, and the method of process The first photoelectric conversion layer 2 ion implantation method is used as each N-type semiconducting in the main third photoelectric conversion layer: the -: electrical conversion layer and the conductor layer between the atomic/cubic centimeter The degree is in the Φ 太阳 solar structure, and the intrinsic (|-type) semiconductor layer has the greatest influence on the film-type conduction 'electrical characteristics'. When the electrons and holes are inside the material, the thickness of the semiconductor layer is too thick. The two coincide with this phenomenon, the essential type. The semiconductor layer is not intrinsic. The semiconductor layer is too thin, and it is easy to cause 2 feet. Its I is of the essential type (the (8) semiconductor layer is generally a thin amorphous enamel). However, the biggest flaw in the amorphous day is that the performance of the amorphous amorphous material will be greatly reduced in a short period of time, that is, the so-called SW (Staebler_Wronski) effect is about ^. This (10) should be due to a structural change in the light due to the partial undensity of the material (Dangling bond, DB). The carrier mobility of the microcrystalline tantalum film is 1~2 orders of magnitude higher than that of the general amorphous tantalum film, while the dark conductance value is between 1〇_5~1〇_7 (the between It is higher than the traditional amorphous austenitic film by 3 to 4 orders of magnitude, so that the crystalline thin film of microcrystalline enamel can be used in the intrinsic (丨-type) semiconductor layer to improve the conversion efficiency of the solar cell. The process of the bismuth-based thin film solar cell 1〇〇200945598 comprises the following steps: (A) providing a substrate 11; (b) forming a transparent conductive film 120; (C) forming a first phase by chemical vapor deposition. The photoelectric conversion layer UiKp) forms a second photoelectric conversion layer 140 by chemical vapor deposition; (6) forms a third photoelectric conversion layer 150 by chemical vapor deposition; and (F) forms an electrode 160. In the step (4) of the embodiment, the substrate u is used as a carrier body, and the material of the substrate 110 is selected from one of a beryllium, a glass, a tractable substrate or a stainless steel plate, and the manufacturing process is reduced. • The substrate uo can be made of glass and stainless steel. As the substrate 110. The step (B): the transparent conductive film 12 is processed by a common evaporation method, a sputtering method, a plating method, or a printing process as a main process. The material of the transparent conductive film 12〇 may be selected from the group consisting of indium tin oxide (Indium tin oxide), tin dioxide (dioxide, Sn〇2), zinc oxide (Zinc〇xide Zn〇) or impurity-containing oxidation. a group of zinc and the like, and the transparent conductive film 12 is formed on the substrate uo. The step (c): the first photoelectric conversion layer 13 is deposited by a vapor deposition method. And the first photoelectric conversion layer 13 is formed on the transparent conductive film 12G, and the material of the first photoelectric conversion layer m is selected from a group consisting of carbonized stone and amorphous stone The chemical vapor deposition method of the step-shaped second photoelectric conversion layer 14G is a source of a reaction gas, wherein the mixture is composed of (4) a gas and a hydrogen gas, or a gas, a hydrogen gas and a chlorine gas. The second photoelectric conversion layer 140 is formed on the first photoelectric The conversion layer 13 is located above, and the material of the second photoelectric conversion layer 140 is selected from a group consisting of nanocrystalline, microcrystalline, and polycrystalline, and the second photoelectric conversion layer 14 is Crystalline 12 200945598 The ratio of the material to the entirety of the second photoelectric conversion layer 140 is between 10% and 80%. This step (E): the third photoelectric conversion layer 150 is deposited by chemical vapor deposition. The third photoelectric conversion layer 150 is formed on the second photoelectric conversion layer 140, and the material of the third photoelectric conversion layer 15 is selected from the group consisting of polycrystalline germanium, amorphous germanium, and microcrystalline germanium. A group of polycrystalline mites. The process and manner of the p-type semiconductor layer 13 in the first photoelectric conversion layer 130, the P-type semiconductor layer 141 in the second photoelectric conversion layer 140, and the P-type semiconductor layer 151 in the third photoelectric conversion layer 150 Plasma-enhanced chemical vapor deposition (PECVD), hot-wire chemical vapor deposition (HW-CVD) or ultra-high-frequency plasma-enhanced chemical formula The process of vapor high frequency-plasma enhance chemical vapor deposition (VHF-PECVD) is the main process. In one embodiment, the P-type semiconductor layer 131 in the first photoelectric conversion layer 130, the P-type semiconductor layer 141 in the second photoelectric conversion layer 140, and the P-type semiconductor layer in the third photoelectric conversion layer 150 The 151 series is formed by plasma enhanced chemical vapor deposition, and the pressure of the machine cavity is 0.01 Torr (t〇rr) to 0.5 (torr) 'The process temperature is 20 ° C to 300 ° C, and the gas is introduced. A Silicide gas such as siiane (SH4) may be used, and hydrogen (Hydrogen, argon), argon (Argon, Ar) or the like may be mixed as a production gas. Wherein 'when the hydrogen flow rate and the flow rate of the Shixi burn are 〇. 1 times to 1 〇 times, it can be used to produce an amorphous shi shi film' and as the P-type semiconductor layer in the first photoelectric conversion layer 13 〇 131; when the ratio of the hydrogen flow rate to the decane flow rate is 1 to 30 times, it can be used to fabricate a microcrystalline germanium film, and as the p-type semiconductor layer 141 in the second light 200945598 conversion layer 140; when the gas flow rate The ratio of flow rate to Shi Xixuan is 30 times to 5G times, and it is possible to produce a polycrystalline stone film as the p-type semiconductor layer i5i in the third photoelectric conversion layer 150. The P-type semiconductor layer 131 in the first photoelectric conversion layer m, the P-type semiconductor layer 141 in the second photoelectric conversion layer 140, and the doping method of p, semiconductor &amp; 151 in the third photoelectric conversion layer (9) Optional gas doping, inductive junction 33⁄4 ^ ( Aluminum induced crystalline, AIC Thermal

diffusion)、固相結晶化(s〇ndphase叩伽⑴叫或 準刀子雷射退火(Excimer laser anneal, ELA )製程作為主 要的製程方式。該第一光電轉換層13〇内之本質型〇型) 半導體層132,該第二光電轉換4 14〇内之本質型(i型) 半導體層142與該第三光電轉換| 15〇内之本質㉟〇型) 半導體層152之製程方式可選用於電漿增強型化學式氣相 沈積製程、熱絲化學氣相沉積法或特高頻電漿增強型化學 式氣相沈積製程作為主要的製程方式。 在一實施例中,該第一光電轉換層13〇内之本質型(i 里)半導體層132,該第二光電轉換層14〇内之本質型(i 型)半導體層142與該第三光電轉換層15〇内之本質型(i 型)半導體層152係由電装增強型化學式氣相沈積來形成, 其機台腔體之壓力為(^丨托⑼⑺至Q 5(t。⑺,製程溫度為 C至300 C,通入之氣體可選用矽化合物氣體如矽烷並混 和,氣、氬氣等作為製作氣體。其中,#氫氣流量與錢 流置比例為0.1倍至1〇倍時,可用以製作出非晶質矽薄膜, 並做為該第一光電轉換層130内之本質型(i型)半導體層 1 32 ’备氫氣流量與矽烷流量比例為丨〇倍至3〇倍,可用以 200945598 製作出微晶質矽薄膜,並做為 質型(⑷半導體層此當第氫一氣光&amp;電晉轉換層140内之本 3〇倍至5G倍,可用以製作出多日^與㈣流量比例為 光電轉換層15。内之本質型(心;並做為該第三 光電韓拖届i +導體層152。該第一 光電轉換層13〇内之N型半導體層133 153之裝程方式可選用於電襞增強型化學式氣 相沈積製程、熱絲化學氣相 曰社化學式乳 學式氣相沈積製程作為主要製程;4特㈣電浆增強型化 層133,第實施:L中’第一光電轉換層13°内之Μ半導體 層帛二光電轉換層140内之Ν型半導體層143、第一 =轉:層15。内之Ν型半導體層153係由電漿增強型: =相沈積來形成,其機台腔體之壓力“·〇&quot;·⑺ φ ΐΓΙΓ,製程溫度為抑至wc,通入之氣體可選用 二口,氣體如錢並混和氫氣、氬氣等作為製作氣體。 ,、中’备氫氣流量與石夕燒流量比例為〇1倍至ι〇倍時,可 :以製作出非晶質石夕薄膜,並做為該第一光電轉換層13〇 =N!半導體層133; #氫氣流量與⑦燒流量比例為1〇 倍’可用以製作出微晶質矽薄膜’並做為該第二光 層U0内之N型半導體層143 ;當氣氣流量與石夕院 …例為3〇倍至5〇倍,可用以製作出多晶質矽薄膜, 並做為該第二光電轉換層15G内之N型半導體層I”。 在步驟(F)中:該電極160係形成於該第三光電轉換層 150上方’且形成該電極16()的製程係選自於由蒸鍍法、賤 15 200945598 鍍法、電鍍法或印刷法所組成之一族群。該電極16()之製 作材料可選用銦錫氧化物(Incjium tin 〇xide,IT〇 )、二氧化 錫(Starmum dioxide,Sn02)、氧化辞(Zinc〇xide Zn〇)、 含雜質的氧化辞、錄、金、銀、鈦、銅、把、及銘等材料, 該電極160之功效與該透明導電膜12〇相同。以及本發明 更包含形成抗反射層於該第三光電轉換層15〇上方,且形 成該抗反射層的製程係選自於由電漿增強型化學式氣相沈 積法、熱絲化學氣相沉積法或特高頻電漿增強型化學式氣Diffusion), solid phase crystallization (s〇ndphase 叩 ( (1) or excimer laser anneal (ELA) process as the main process. The first photoelectric conversion layer 13 本质 intrinsic 〇 type) The semiconductor layer 132, the intrinsic type (i-type) semiconductor layer 142 in the second photoelectric conversion 4 14 与 and the intrinsic 35 〇 type in the third photoelectric conversion | 15 )) semiconductor layer 152 can be selected for plasma processing Enhanced chemical vapor deposition process, hot wire chemical vapor deposition or ultra-high frequency plasma enhanced chemical vapor deposition process is the main process. In one embodiment, the intrinsic (i) semiconductor layer 132 in the first photoelectric conversion layer 13, the intrinsic (i-type) semiconductor layer 142 in the second photoelectric conversion layer 14 and the third photoelectric The intrinsic (i-type) semiconductor layer 152 in the conversion layer 15 is formed by Denso-enhanced chemical vapor deposition, and the pressure of the chamber cavity is (^) (7) (7) to Q 5 (t. (7), process temperature For C to 300 C, the gas to be introduced may be selected from a compound gas such as decane and mixed with gas, argon gas, etc., wherein #hydrogen flow rate and money flow ratio are 0.1 to 1 times, and may be used. An amorphous germanium film is formed, and the ratio of the hydrogen flow rate to the decane flow rate of the intrinsic type (i type) semiconductor layer 1 32 ' in the first photoelectric conversion layer 130 is 丨〇 times to 3 times, and can be used as 200945598. A microcrystalline ruthenium film is produced and made into a mass form ((4) semiconductor layer, which is 3 〇 to 5 G times in the first hydrogen gas-light conversion layer 140, which can be used to produce a multi-day ^ and (four) flow rate. The ratio is the photoelectric conversion layer 15. The inner type (heart; and as the third photoelectric Dragging the i + conductor layer 152. The process of the N-type semiconductor layer 133 153 in the first photoelectric conversion layer 13 can be selected for the electro-enhanced chemical vapor deposition process, the hot wire chemical vaporization chemical system The vapor deposition process is the main process; 4 (four) plasma enhancement layer 133, the first implementation: L in the first photoelectric conversion layer 13 ° within the semiconductor layer 帛 two photoelectric conversion layer 140 of the Ν type semiconductor Layer 143, first = turn: layer 15. The inner germanium-type semiconductor layer 153 is formed by plasma-enhanced type: = phase deposition, and the pressure of the machine cavity is "·〇&quot; (7) φ ΐΓΙΓ, process temperature In order to suppress wc, two gases can be used for the gas to be introduced, such as gas and money, and hydrogen, argon, etc. are mixed as the production gas. The ratio of the flow rate of the hydrogen gas to the gas-fired gas is 〇1 times to 〇 times. , can be: to produce an amorphous stone film, and as the first photoelectric conversion layer 13 〇 = N! semiconductor layer 133; # hydrogen flow rate and 7 burn flow ratio is 1 ' ' can be used to make crystal a thin film 'as the N-type semiconductor layer 143 in the second optical layer U0; when the gas flow rate and The temple is exemplified by 3 to 5 times, and can be used to produce a polycrystalline germanium film as the N-type semiconductor layer I" in the second photoelectric conversion layer 15G. In the step (F): The electrode 160 is formed above the third photoelectric conversion layer 150 and the process for forming the electrode 16 is selected from the group consisting of an evaporation method, a 贱15 200945598 plating method, an electroplating method, or a printing method. The electrode 16 () can be made of indium tin oxide (Incjium tin 〇xide, IT〇), tin dioxide (Sn02), oxidized (Zinc〇xide Zn〇), oxidized words containing impurities, recorded The material of the electrode 160 is the same as that of the transparent conductive film 12〇, such as gold, silver, titanium, copper, handle, and stencil. And the invention further comprises forming an anti-reflection layer over the third photoelectric conversion layer 15〇, and the process of forming the anti-reflection layer is selected from the group consisting of a plasma enhanced chemical vapor deposition method and a hot wire chemical vapor deposition method. Or UHF plasma enhanced chemical gas

相沈積法所組成之一族群。在一實施例中,本發明之該抗 反射層係由電漿增強型化學式氣相沈積來形成,其機台腔 體之歷力為0.01托(t。⑺至〇.5(t。⑺,製程溫度為室溫至綱 °c,通入之氣體可選㈣化合物氣體混合氨氣等作為該抗 反射層之製作氣體。 現晴蒼照第3圖,其所示為該第二光電轉換層14〇之 x光繞射分析圖。利用x光繞射分析儀的實作量測結果揭 不,其X光繞射分析圖之蜂值出現⑴υ、(22〇)、(3⑴之 矽質結晶面。現請參照第4目,其所示為該第二光電轉換 層140之微拉曼光譜分析圖。利用微拉曼光譜分析儀(microA group of people formed by phase deposition. In one embodiment, the anti-reflective layer of the present invention is formed by plasma enhanced chemical vapor deposition, and the operating chamber has a calendar force of 0.01 Torr (t. (7) to 〇.5 (t. (7), The process temperature is from room temperature to °c, and the gas to be introduced may be selected as (4) a compound gas mixed with ammonia gas or the like as a production gas of the antireflection layer. Now, according to Fig. 3, the second photoelectric conversion layer 14 is shown. The x-ray diffraction analysis image is revealed by the actual measurement results of the x-ray diffraction analyzer, and the bee values of the X-ray diffraction analysis diagram appear as (1) υ, (22 〇), and (3 (1) enamel crystal faces. Referring now to item 4, there is shown a micro-Raman spectroscopy analysis of the second photoelectric conversion layer 140. Using a micro-Raman spectroscopy analyzer (micro

Raman spee㈣的實作量測結果揭示,其微拉曼光譜圖之 峰值出現在510cm·1,為_φ楚# a Λ t 中等紇日日度之微晶石夕質薄膜。現 請參照第5圖,其所示為兮筮_, 現 吓馮5亥第二光電轉換層150之微拉曼 光譜分析圖。利用微拉曼光議八把炫,. 尤 °曰刀析儀(micro Raman spectra ) 的實作量測結果揭示,复料如思丨4面 丨 一 ,、微拉曼光譜圖之峰值出現在 ,為一尚、,,。晶度之多晶矽質薄膜。 需注意的是,本發明夕哲_ &amp; 第二實施例係類似於該第一實 16 200945598 施例。其主要差別在於,本發明之第二實施例係將該第一 實施例之步驟⑻改為步_1):#_元素㈣第三光電 轉換層15〇内,其製程方式可還 飞了選用電漿增強型化學式氣相 參 沈積製程、熱絲化學氣相沉積法或特高頻電_強型化學 式氣相沈料製程料主要製財式H實施例中, 該第三光電轉換層150係由„增_化學式氣相沈積來 形成’其機台腔體之壓力為_托(㈣至啊㈣,製程 溫度為赃至綱。C,通人之氣體可選时化合物氣體如 石夕烧與狀(GeH4)並混和氫氣、氬氣料㈣鍺薄膜之 製作氣體,其錯元素佔該第三光電轉換層15〇之元素比例 在5%至3G%之間,可用以提高太陽能電池之光吸收範圍。 综上所述,本發明之第一實施例為較佳實施例。該具 有多堆疊之石夕基薄膜太陽能電池結構及其製程,其特別是 關於複數個相互疊接之光電轉換層,該複數個光電轉換層 係利用不同之薄膜材料以提高其光波長之吸收範圍,並增 加太陽能電池之光電轉換效率。 雖然本發明已以前述較佳實施例揭示,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作各種之更動與修改。如上述的解釋,都 可以作各型式的修正與變化,而不會破壞此發明的精神。 因此本發明之保護範圍當視後附之申請專利範圍所界定者 為準。 圖式簡單說明】 為了讓本發明之上述和其他目的、特徵、和優點能更 17 200945598 明顯,本說明書中特舉本發明較佳實施例,並配合所附圖 示,作詳細說明。相關圖式内容說明如下: 圖1顯示為本發明之具有多能階之石夕基薄膜太陽能電 池之側視剖面圖; 圖2a〜圖2C分別為本發明之該第三光電轉換層、該第 二光電轉換層、該第一光電轉換層之側視剖面圖; 圖3顯示為本發明之該第二光電轉換層之χ光繞射分 析圖; • 圖4顯示為本發明之該第二光電轉換層之微拉曼光譜 分析圖; 圖5顯示為本發明之該第三光電轉換層之微拉曼光譜 分析圖。 【主要元件符號說明】 100 : —種具有多堆疊之矽基薄膜太陽能電池 110.基板 120:透明導電膜 〇 130 :第一光電轉換層 131:第一光電轉換層内之ρ型半導體層 132:第一光電轉換層内之本質型(i型)半導體層 133 :第一光電轉換層内之N型半導體層 140 :第二光電轉換層 141:第二光電轉換層内之P型半導體層 142:第二光電轉換層内之本質型(i型)半導體層 143:第二光電轉換層内之N型半導體層 150 :第三光電轉換層 200945598The results of Raman spee (4) show that the peak of the micro-Raman spectrum appears at 510 cm·1, which is _φ楚# a Λ t medium-sized daytime microcrystalline stone. Referring now to Figure 5, which shows 兮筮_, the micro-Raman spectrum analysis of the second photoelectric conversion layer 150 of Feng 5H is now scared. Using the micro-Raman light to discuss the results of the implementation of the micro-Raman spectra, the results of the micro-Raman spectra show that the peak of the micro-Raman spectrum appears in the , for a Shang,,,. Crystalline polycrystalline tantalum film. It should be noted that the second embodiment of the present invention is similar to the first embodiment of the present invention. The main difference is that the second embodiment of the present invention changes the step (8) of the first embodiment to step_1): #_元素(四) in the third photoelectric conversion layer 15〇, and the process mode can be used for flight. Plasma-enhanced chemical vapor phase deposition process, hot wire chemical vapor deposition method or UHF electro-strong chemical vapor phase deposition material main manufacturing method H embodiment, the third photoelectric conversion layer 150 The pressure of the machine cavity is formed by „增_chemical vapor deposition. _Too ((4) to ah (4), the process temperature is 赃 to the outline. C, the gas of the person is optional, such as Shi Xizhuo Shape (GeH4) and mixing hydrogen gas, argon gas (4) 锗 film production gas, the proportion of the wrong elements in the third photoelectric conversion layer 15 在 between 5% to 3G%, can be used to improve the light absorption of solar cells In summary, the first embodiment of the present invention is a preferred embodiment. The structure of the multi-stacked Shi Xiji thin film solar cell and the process thereof are particularly related to a plurality of mutually-transferred photoelectric conversion layers, The plurality of photoelectric conversion layers are different in thin use The material is used to increase the absorption range of the light wavelength and increase the photoelectric conversion efficiency of the solar cell. Although the invention has been disclosed in the foregoing preferred embodiments, it is not intended to limit the invention, and anyone skilled in the art can Various changes and modifications can be made in the spirit and scope of the invention. As explained above, various modifications and changes can be made without departing from the spirit of the invention. Therefore, the scope of protection of the present invention is attached. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, and advantages of the present invention will become more apparent. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings illustrate the following: FIG. 1 is a side cross-sectional view showing a multi-level stone-based solar cell of the present invention; FIGS. 2a to 2C are respectively the present invention a side view of the third photoelectric conversion layer, the second photoelectric conversion layer, and the first photoelectric conversion layer; FIG. 3 shows the second photoelectric conversion layer of the present invention Twilight diffraction analysis chart; Figure 4 shows a micro-Raman spectrum analysis of the second photoelectric conversion layer of the present invention; Figure 5 shows a micro-Raman spectrum analysis of the third photoelectric conversion layer of the present invention. [Main component symbol description] 100: A multi-stacked germanium-based thin film solar cell 110. Substrate 120: transparent conductive film 〇130: first photoelectric conversion layer 131: p-type semiconductor layer 132 in the first photoelectric conversion layer: An intrinsic type (i-type) semiconductor layer 133 in the first photoelectric conversion layer: an N-type semiconductor layer 140 in the first photoelectric conversion layer: a second photoelectric conversion layer 141: a P-type semiconductor layer 142 in the second photoelectric conversion layer: An intrinsic type (i type) semiconductor layer 143 in the second photoelectric conversion layer: an N type semiconductor layer 150 in the second photoelectric conversion layer: a third photoelectric conversion layer 200945598

151:第三光電轉換層内之P型半導體層 152:第三光電轉換層内之本質型(i型)半導體層 153:第三光電轉換層内之N型半導體層 160 :電極 19151: P-type semiconductor layer in the third photoelectric conversion layer 152: Intrinsic type (i-type) semiconductor layer in the third photoelectric conversion layer 153: N-type semiconductor layer in the third photoelectric conversion layer 160: Electrode 19

Claims (1)

200945598 十、申請專利範圍: 1.一種具有多堆疊之石夕基薄媒太陽能電池結構,直 包含: 八 一基板,該基板之一面係為照光面; -透明導電模’形成於該基板上,該透明導電膜係用 以取出電能與提昇光電轉換之效率; 一第一光電轉換層,形成於該透明導電膜上方,該第 -光電轉換層係用以產生電子電洞對,並提供光電流,且 # 1亥第一光電轉換層之材料係選自於由碳切與非晶石夕所組 成之一族群; 第一光電轉換層,形成於該第一光電轉換層上方’ 該第二光電轉換層係用以產生電子電洞對,並提供光電 流’且該第二光電轉換層之材料係選自於由奈米晶矽、微 晶石夕與多晶石夕所組成之一族群中,且該第二光電轉換層内 之結晶材料佔該第二光電轉換層之整體的比例係介於娜 至80%之間; ® -第三光電轉換層’形成於該第二光電轉換層上方, 該第三光電轉換層係用以產生電子電洞對,並提供光電 μ ’且該第二光電轉換層之材料係選自於由多晶矽、非晶 矽鍺、微晶矽鍺與多晶矽鍺所組成之—族群;以及 一電極,形成於該第三光電轉換層上方,該電極係用 以取出電能與提昇光電轉換之效率; 其中,該第一光電轉換層之能隙大於該第二光電轉換 層之能隙,而該第二光電轉換層之能隙大於該第三光電轉 20 200945598 換層之能隙; 其中該第一光電轉換層之厚度不大於該第二光電轉換 層之厚度’而該第二光電轉換層之厚度不大於該第三光電 轉換層。 2. 如申請專利範圍第1項所述之具有多堆疊之矽基薄 膜太陽能電池結構,其中該第一光電轉換層、該第二光電 轉換層與該第三光電轉換層皆係由一 p型半導體層、一本 _ (i型)+導體層與—N型半導體層組合而成。 3. 如申請專利範圍第1項所述之具有多堆疊之矽基薄 膜太陽能電池結構,其中該第二光電轉換層内之結晶材料 之結晶尺寸在10奈米至500奈米之間。 4. 如申請專利範圍第丨項所述之具有多堆疊之矽基薄 膜太陽此電池結構’其中該石夕基薄膜太陽能電池結構更包 ⑯ 含: -抗反射層,形成於該第三光電轉換層上方,用以減 少反射所造成之光能流失。 5. -種具有多堆4之石夕基薄膜太陽能電池之製程,其包 含下列步驟: (Α)提供一基板,用以作為承載主體; 你(Β)^&quot;❹㈣膜’該透明導電膜係形成於該基 板之上,且該透明導電膜之材料係選自於由銦錫氧化物、 200945598 二氧(=Γ的氧化鋅所組成之-族群; ()化學式氣相沈積法形成 第一光電轉換層係形成於該透明導電膜2電轉換層,該 群; 由钱石夕與非晶梦所組成之一族 (D)以化學式氣相沈積 —_ 第二光電轉換層係形成於該第:-光電轉換層,該 參 ❹ 光電轉換層之材料係選自‘曰:換層上方,該第二 所組成之一族群,且Μ、/丁、未曰曰夕、微晶石夕與多晶石夕 且4第一光電轉換層内 第:轉換層之整體的比例係介简至二I, 第-先電式氣相沈積法形成一第三光電轉換層,該 =層之材料係選自於由多…晶㈣ 錄與^ aa錢所組成之—族群·以及 ()形成電極’該電極係形成於該第三光電轉換層 且Γ極金之材:Γ自:*_氧化層、二氧化錫、 金銀、鈦、銅'鈀與鋁所組成之一族群。 6·如申請專利範圍第5項所述之具有多堆疊之石夕基薄 膜太陽能電池之製程,其中該第—光電轉換層、該第二光 電轉換層與該第三光電轉換層皆係由-P型半導體層、一 本質型(1型)半導體層與一 N型半導體層組合而成。 7.如申凊專利範圍第5項所述之具有多堆疊之梦基薄 膜太陽能電池之製程,其中更包含: 22 * 200945598 形成一抗反射層,該抗反射層係形成於該第=光電轉 換層上方,且形成該抗反射層的製程係選自於由電漿增強 型化學式氣相沈積法、熱絲化學氣相沉積法與特高頻^漿 增強型化學式氣相沈積法所組成之一族群。 8.如申請專利範圍第5項所述之具有多堆疊之矽基薄 臈太陽能電池之製程,其中該第一光電轉換層、該第二光 電轉換層與該第三光電轉換層内之每一該些p型半導體層 之摻雜濃度係介於1〇18至1020原子/立方公分之間。 9·如申請專利範圍帛5項所述之具有多堆疊之矽基薄 膜太陽能電池之製程,其中該第—光電轉換層、該第二光 電轉換層與該第三光電轉換層内之每—該些n型半導體層 之摻雜濃度係介於1018至1020原子/立方公分之間。 10.如申請專利範圍第5項所述之具有多堆疊之㈣薄 電電池之製程,其中該第—光電轉換層、該第二光 价層與該第三光電轉換層於製作時,其製程溫度係介 % 20C至300ΐ之間。 23200945598 X. Patent application scope: 1. A multi-stacked Shi Xiji thin-film solar cell structure, comprising: an Bayi substrate, one of the surfaces of the substrate is an illumination surface; - a transparent conductive mold is formed on the substrate, The transparent conductive film is used for extracting electrical energy and improving the efficiency of photoelectric conversion; a first photoelectric conversion layer is formed over the transparent conductive film, and the first photoelectric conversion layer is used to generate an electron hole pair and provide a photocurrent And the material of the first photoelectric conversion layer is selected from a group consisting of carbon cut and amorphous rock; the first photoelectric conversion layer is formed above the first photoelectric conversion layer' The conversion layer is used to generate an electron hole pair and provide a photocurrent 'and the material of the second photoelectric conversion layer is selected from a group consisting of nanocrystalline germanium, microcrystalline stone and polycrystalline stone eve. And the ratio of the crystalline material in the second photoelectric conversion layer to the entirety of the second photoelectric conversion layer is between 80%; and the third photoelectric conversion layer is formed on the second photoelectric conversion layer.The third photoelectric conversion layer is configured to generate an electron hole pair and provide a photoelectric μ′ and the material of the second photoelectric conversion layer is selected from the group consisting of polycrystalline germanium, amorphous germanium, microcrystalline germanium and polycrystalline germanium. And an electrode formed above the third photoelectric conversion layer for extracting electrical energy and improving efficiency of photoelectric conversion; wherein an energy gap of the first photoelectric conversion layer is greater than the second photoelectric conversion layer The energy gap of the second photoelectric conversion layer is greater than the energy gap of the third photoelectric conversion layer 20 200945598; wherein the thickness of the first photoelectric conversion layer is not greater than the thickness of the second photoelectric conversion layer The thickness of the second photoelectric conversion layer is not greater than the thickness of the third photoelectric conversion layer. 2. The multi-stacked bismuth-based thin film solar cell structure according to claim 1, wherein the first photoelectric conversion layer, the second photoelectric conversion layer and the third photoelectric conversion layer are each a p-type The semiconductor layer, a _ (i type) + conductor layer and an -N type semiconductor layer are combined. 3. The multi-stacked bismuth-based thin film solar cell structure of claim 1, wherein the crystalline material in the second photoelectric conversion layer has a crystal size between 10 nm and 500 nm. 4. The battery structure of the multi-stacked ruthenium-based film solar cell as described in the scope of the patent application of the present invention, wherein the ray-base thin film solar cell structure further comprises: - an anti-reflection layer formed on the third photoelectric conversion Above the layer, to reduce the loss of light energy caused by reflection. 5. A process for a multi-pile 4 ray-based thin film solar cell comprising the steps of: (Α) providing a substrate for use as a carrier body; (Β)^&quot;❹(四)膜' the transparent conductive film Formed on the substrate, and the material of the transparent conductive film is selected from the group consisting of indium tin oxide, 200945598 dioxane (= zinc oxide of bismuth); () chemical vapor deposition method formed first a photoelectric conversion layer is formed on the electrotransformation layer of the transparent conductive film 2, the group; a group (D) composed of Qian Shixi and an amorphous dream is chemically vapor deposited - a second photoelectric conversion layer is formed in the first :- photoelectric conversion layer, the material of the reference photoelectric conversion layer is selected from the group consisting of '曰: above the layer, the second group is composed of one group, and Μ, /丁,未曰曰夕, microcrystalline stone 夕和多The proportion of the whole of the conversion layer in the first photoelectric conversion layer of the first and second photoelectric conversion layers is reduced to two, and the first photoelectric conversion layer forms a third photoelectric conversion layer, and the material of the layer is selected. From the multi-crystal (four) record and ^ aa money - the group and () shape Electrode 'The electrode is formed on the third photoelectric conversion layer and the material of the ruthenium gold: a group consisting of: *_oxide layer, tin dioxide, gold silver, titanium, copper 'palladium and aluminum. The process of the multi-stacked sinusoidal thin film solar cell of the fifth aspect, wherein the first photoelectric conversion layer, the second photoelectric conversion layer and the third photoelectric conversion layer are both a -P type semiconductor layer, An intrinsic type (1 type) semiconductor layer is combined with an N-type semiconductor layer. 7. The process of the multi-stacked dream-based thin film solar cell according to claim 5, which further comprises: 22 * 200945598 forming an anti-reflection layer formed on the third photoelectric conversion layer, and the process of forming the anti-reflection layer is selected from the group consisting of a plasma enhanced chemical vapor deposition method and a hot wire chemical vapor phase A process group consisting of a deposition method and a high-frequency slurry-enhanced chemical vapor deposition method. 8. The process of the multi-stacked germanium-based thin tantalum solar cell according to claim 5, wherein the first Photoelectric conversion layer, The doping concentration of each of the p-type semiconductor layers in the second photoelectric conversion layer and the third photoelectric conversion layer is between 1〇18 and 1020 atoms/cm3. 9·If the patent application scope is 5 items The process of the multi-stacked bismuth-based thin film solar cell, wherein each of the first photoelectric conversion layer, the second photoelectric conversion layer and the third photoelectric conversion layer has a doping concentration of the n-type semiconductor layers The process is between 1018 and 1020 atoms/cm 3 . 10. The process of the multi-stacked (four) thin electric battery according to claim 5, wherein the first photoelectric conversion layer and the second photovoltaic layer When the third photoelectric conversion layer is fabricated, the process temperature is between 20C and 300ΐ. twenty three
TW97115104A 2008-04-24 2008-04-24 Structure and process of a silicon-based thin film solar-cell with multijunction structure TW200945598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97115104A TW200945598A (en) 2008-04-24 2008-04-24 Structure and process of a silicon-based thin film solar-cell with multijunction structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97115104A TW200945598A (en) 2008-04-24 2008-04-24 Structure and process of a silicon-based thin film solar-cell with multijunction structure

Publications (1)

Publication Number Publication Date
TW200945598A true TW200945598A (en) 2009-11-01

Family

ID=44869789

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97115104A TW200945598A (en) 2008-04-24 2008-04-24 Structure and process of a silicon-based thin film solar-cell with multijunction structure

Country Status (1)

Country Link
TW (1) TW200945598A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408821B (en) * 2009-12-11 2013-09-11
TWI409965B (en) * 2010-07-08 2013-09-21 An Ching New Energy Machinery & Equipment Co Ltd High photoelectric conversion efficiency triple junction solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408821B (en) * 2009-12-11 2013-09-11
TWI409965B (en) * 2010-07-08 2013-09-21 An Ching New Energy Machinery & Equipment Co Ltd High photoelectric conversion efficiency triple junction solar cell

Similar Documents

Publication Publication Date Title
Schropp et al. Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells
CN101567404A (en) Multisection silicon-based film solar cell structure and process thereof
JP2001267598A (en) Laminated solar cell
Sai et al. Key Points in the Latest Developments of High‐Efficiency Thin‐Film Silicon Solar Cells
TW201010115A (en) Method for depositing an amorphous silicon film for photovoltaic devices with reduced light-induced degradation for improved stabilized performance
TWM319521U (en) Thin film solar-cell with tandem intrinsic layer
TW200945598A (en) Structure and process of a silicon-based thin film solar-cell with multijunction structure
CN103107240B (en) Multi-crystal silicon film solar battery and preparation method thereof
CN103077994B (en) Polysilicon and cadmium telluride film double-knot solar panel and preparation process
TWI488322B (en) Manufacturing method of thin film solar cells and thin film solar cells thereof
TW201001731A (en) Photovoltaic device and method of manufacturing a photovoltaic device
TW201121065A (en) Thin-film solar cells containing nanocrystalline silicon and microcrystalline silicon.
TWI447919B (en) Silicon based solar cell with a heterojunction structure and the manufacturing method thereof
TW200933908A (en) A silicon-based thin film solar-cell
WO2012171146A1 (en) Thin film solar cell with new type anti-reflection layer and fabrication method thereof
JP5770294B2 (en) Photoelectric conversion device and manufacturing method thereof
WO2011105166A1 (en) Photoelectric conversion module and method for manufacturing same
TWI451578B (en) Silicon-based solar cell with hetrojunction and manufacturing method thereof
Moulin et al. Amorphous and Nanocrystalline Silicon Solar Cells
TWM335796U (en) A silicon-based thin film solar-cell with multijunction
TW200933907A (en) A silicon based thin film solar cell with multi bandgap levels
TWI511309B (en) Tandem type thin film silicon solar cell with double layer cell structure
TWI466306B (en) Flexible solar cell with high transmission and the manufacturing process thereof
CN109801991B (en) Vertical laminated solar cell and preparation method thereof
TWM323112U (en) Thin film solar-cell with multi level microcrystalline silicon