TWM303394U - Electromagnetically actuated micro lens device - Google Patents

Electromagnetically actuated micro lens device Download PDF

Info

Publication number
TWM303394U
TWM303394U TW95209881U TW95209881U TWM303394U TW M303394 U TWM303394 U TW M303394U TW 95209881 U TW95209881 U TW 95209881U TW 95209881 U TW95209881 U TW 95209881U TW M303394 U TWM303394 U TW M303394U
Authority
TW
Taiwan
Prior art keywords
central portion
sleeve
axial direction
electromagnetic brake
permanent magnet
Prior art date
Application number
TW95209881U
Other languages
Chinese (zh)
Inventor
Kuo-Tung Tiao
Shr-Yuan Jang
Wan-Jen Peng
Original Assignee
Optronics Technology Inc A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optronics Technology Inc A filed Critical Optronics Technology Inc A
Priority to TW95209881U priority Critical patent/TWM303394U/en
Publication of TWM303394U publication Critical patent/TWM303394U/en

Links

Landscapes

  • Lens Barrels (AREA)

Description

M3 03 3 94 八、新型說明: 【新型所屬之技術領域】 本創作係有關於一種電磁制動微型鏡頭裝置,尤指一 種藉甴在纏繞於導磁體結構上之線圈施加電流,以電磁驅 動之方式來帶動裝設有鏡頭之套筒上的永久磁鐵,以進行 鏡頭位置切換之一種電磁制動微型鏡頭裝置者。M3 03 3 94 VIII. New description: [New technical field] This creation is about an electromagnetic brake miniature lens device, especially a way to apply electromagnetic current by means of a coil wound around a magnetizer structure. An electromagnetic brake micro lens device for driving a permanent magnet on a sleeve of a lens for switching the position of the lens.

【先前技術】 隨著科技發達與消費者之需求,各式各樣的資訊產品 也隨之問世。現今電子產業之發展,個人周邊電子產品也 逐漸走向輕薄好攜帶而且功能更具多樣化,其中相機為各 類產品中具有代表性。為因應一般使用者攜帶之便利,更 亦可與手機或PDA等3C產品做結合。 二方邳機冩具備鏡頭組及龐大的機身才能達到攝影 之功能。其中該鏡頭組部分是影響成像品質關鍵之一。該 鏡頭組除了能調整人光量之大小外,也藉由移動鏡頭組之 ^置’用以成像之變焦(調整被攝物體之放大或縮小)、 二調整被攝物體之清晰或模糊)。以往 ====== M3 03 3 94 意圖。該習用之該電磁制動鏡頭裝置丨係包括有一環狀 永久磁鐵、12 -第-線圈組13、以及一第二線圈組$。 該環狀永久磁鐵12其係結合於該鏡頭1上,且-侧八別 具有一第-極性15及一第二極性16。而該第一二:n 以及該第二線圈組14分別環繞設於該鏡頭丨之本體u外 圍前、後二側且與該第一極性15及該第二極性16相對應。 當欲進行鏡頭1移動時,只要將該第—線圈組13與 第一線圈組14通以電流,使兩線圈組I)、μ產生特定方 向(亦即沿鏡頭1軸心方向)的磁力線,即可對該環狀永 久磁鐵12提供一沿鏡頭1軸心向左移動、或是向右移動 的力量,如此,則該鏡頭1便會被推動朝預定方向移動, 達到改變鏡頭1位置的目的。 然而’習用之電磁制動之鏡頭1,由於其線圈13、14 係環繞該鏡頭1之外圍,所以會有下列缺點:第一,其磁 力線係集中在該鏡頭1之軸心中心位置,導致永久磁鐵 12所在的位置其磁力線反而較不密集,如此將造成線圈 13、14所產生之磁力線大部分無法作用而造成效能偏 低,進而更導致鏡頭1移動的效率偏低與耗電量更高之加 成效應;第二,由於該永久磁鐵12與線圈13、14是套設 在鏡頭1的外徑之外,使得習用電磁制動鏡頭裝置的徑向 尺寸將會等於鏡頭1直徑D再外加上線圈13、Μ (或是 永久磁鐵12,視何者外徑較大)的額外尺寸2Ad,最後, 再加上承載座17 (外殼)的厚度。如此,將導致整個結 構的體積加大,而和輕薄短小之設計趨勢相違背。 M303394 故如何改良電磁制動裝置,用以縮減整體體積,降低 其耗電量’並且不影響控魏頭之精準度,就是目前業界 所欲達到之目標。 【新型内容】 本創作之主要目的,係提供一種電磁制動微型鏡頭裝 置’其可以具有體積更微型化、電磁驅動效率更高、且耗 Φ 電量更低之功效。 本創作之另一目的,係在於提供一種電磁制動微型鏡 頭裝置的導磁體結構,其藉由獨特軸向纏繞線圈之導磁體 結構、以及其與永久磁鐵之間相對位置的獨特配置,可令 導磁體結構與永久磁鐵分別位在鏡頭套筒之四個對角角 落位置,進而大幅縮小鏡頭裝置之整體體積者。 為達則述之目的,於本創作之電磁制動微型鏡頭裝置 的-較佳實施例巾,其係包括有:―套筒、設置於套筒表 • 面之兩永久磁鐵、以及纏繞有若干線圈之兩導磁體。利用 該兩導磁鐵之磁力驅動該兩永久磁鐵,進行一轴向運動, 讀套筒位置之變化。躺導磁齡和該兩永久磁鐵 分別位在套筒之四個對角角落,且各導磁體均分別具有軸 向延伸且纏繞有該線圈之一中央部、以及自中央部兩末端 起呈水平環狀延伸至對應兩永久磁鐵末端處之延伸部。由 於本創作之線圈係以軸向纏繞於導磁體之t央部上、再加 上該兩導磁體與該兩永久磁鐵是分別位在套筒之四個對 角角落、且導磁體之延伸部係延伸至永久磁鐵末端處而可 7 M303394 有效集中磁力線,所以本創作之電磁制動微型鏡頭裝置的 體積可以更輕薄短小,並且其電磁驅動效率也可更為提 兩0 【實施方式】 為了能更清楚地描述本創作所提出之電磁制動微型 鏡頭裝置’以下將舉出實施例詳細說明本創作之電磁制動 微型鏡頭裝置,及其使用方式的詳細說明、及本創作之技 術特徵。 清參閱圖二A、圖二B、與圖二c所示,其係分別為 本創作之電磁制動微型鏡頭裝置之第一較佳實施例的立 體、侧視及俯視結構示意圖。料,該電磁制動微型鏡頭 裝置主要係包括有:—套筒2卜—第—永久磁鐵2ΐι、— 第二永久磁鐵212、一第一導磁體22、一第二導磁體23、 以及-承載座24 (外殼該套筒21係定義有一抽向, 該轴向也就是為該套筒21之中心軸方向。 一明參閱圖—A、圖二B、與圖三c所示,其係分別為 圖一 A巾之套筒與永久磁鐵之組合圖、第—導磁部 二導磁狀立體結構圖、及承載座之立體示意圖。 如圖三A所示,該套筒21係成-中空結構’其中可 用以放置一鏡頭模組(圖中夫 而構成-鏡頭組者。兮第;1)或疋直接容納鏡片群 2!外表面之-侧邊。二第一鐵211係設置於該套筒 咖卜且相對於該第—永久磁細之另一側邊。、 8 M303394 亦即,該第一與第二永久磁鐵2n、212乃係位於套筒21 外表面之兩對角角落位置者。此外,該兩永久磁鐵211、 212於沿著該軸向之上下兩端係分別具有一磁極,也就是 說,該永久磁鐵211、212係沿該轴向垂直設置。 如圖三B所示,該第一導磁體22係更包括有:一第 一中央部221、一第一金屬線圈組222、一第一延伸部 223、以及一第二延伸部224。該第一中央部221係呈軸 向垂直延伸,且第一中央部221的長度係不短於套筒21 於該軸向上的長度,換句話說,第一中央部221於軸向上 的兩末端係略突出於套筒21前、後緣,而該第一金屬線 圈組222則是以轴向上下延伸的方式纏繞有若干線圈於 該第一中央部221之外侧。該第一延伸部223係由該第一 中央4 221上方末端起,沿著套筒21的外徑上緣呈水平 環狀方式延伸出去(所以第一延伸部223係與第一中央部 221呈垂直狀),一直到第一永久磁鐵211之上方附近為 止而與第一永久磁鐵211之上端磁極相對應。該第二延伸 部224,則係由該第一中央部221下方末端起,沿套筒21 的外徑下緣呈水平環狀方式延伸出去(所以第二延伸部 224係與第一中央部221呈垂直狀),直至第二永久磁鐵 212之下方附近為止而與第二永久磁鐵212之下端磁極相 對應。其中’該第一延伸部223與第二延伸部224係呈一 左一右之相反延伸方向。當對該第一金屬線圈組222施於 預定電流時,可使該第一導磁體22產生磁力,並藉由第 一延伸部223與第二延伸部224導引磁力線至其兩端而分 9 M3 03 3 94 別與第一永久磁鐵211與第二永久磁鐵212對應產生推 力,進而得以驅動該兩永久磁鐵211、212連同該套筒21 一起進行線性軸向Ma運動。 該第二導磁體23係更包括有··一第二令央部231、 一第二金屬線圈組232、一第三延伸部233、以及一第四 延伸部234。由於該第二導磁體23的結構實質上係與第 一導磁體22相同,因此,第二導磁體23之第二中^部 23卜第二金屬線圈組232、第三延伸部233、以及第四延 伸部234 ’無論於結構、設置位置、作動方式、 22 ^ 一金屬線圈組222、第一延伸部223、以及第二延伸部 224,所以,以下將不再贅述其詳細構成。唯一值得一提 的該第二導磁體23之第三延伸部233 #末端係延伸 至第二永久磁鐵212上方附近,同時第四延伸部234的末 鸲則疋延伸至第一永久磁鐵211的下方附近者。 如圖三(:所示’該承載座24(外殼),其係具兩端開 口之中空結構,且套設於該套筒外2卜於本較佳實施例 中’該承載座24其係用於容置與定位前述之套筒21、導 磁體22、23等το件並使其可在有限之範圍内進行受控制 的相對位移獅。細,㈣該承触24的具體結構並 非本創作之主要技術特徵且可以選用自習用技術,所以於 本實,例中僅以—中空立方體來示意說明之。如圖二c 及圖三C所示’該立方體之承載座24係包括有位在其四 個角落處的四侧邊夾角Μ卜Μ2、Μ3、Μ4,該些四側 M303394 邊夾角24卜242、243、244乃係由該承載座24之任相鄰 兩侧邊所組成之空間。而本創作之技術特徵之一,則係在 於該第一永久磁鐵211與第二永久磁鐵212的位置係分別 恰位在對角角落的第一侧邊夾角241與第三侧邊夾角243 區域。同時,第一導磁體22之第一甲央部221與第二導 磁體23之第二中央部231則恰分別位在對角角落的第二 侧邊夾角242與第四侧邊夾角244區域。由於本創作之兩 永久磁鐵211、212與兩導磁體22、23之中央部221、231 係分別位在承載座24四個對角角落之四側邊夾角241、 242、243、244區域處,所以該永久磁鐵211、212的尺 寸Μ根本不會造成電磁制動微型鏡頭裝置之外徑尺寸的 增加4奐句話說,本創作電磁制動微型鏡頭裝置所使用之 承載座24的内徑尺寸,實質上係幾乎等於套筒21之外徑 D的尺寸大小,相對於如圖一 c所示之習用技術的承载 座Π尺寸(D+2Ad),本創作之獨特軸向纏繞線圈222、 232之導磁體22、23結構、以及其與永久磁鐵211、212 係分別位在鏡頭套筒21之四個角落的獨特配置,碟實可 大幅縮小鏡頭裝置之整體體積者。 請參閱圖四A與圖四B所示,其係分別為本創作電 磁制動微型鏡頭裝置之第一較佳實施例,其作動於一第一 位置與一第二位置時之實施例平面展開示意圖。 於圖四A與圖四B所示之實施例中,該第一永久磁 鐵211與第二永久磁鐵212係以相反極性設置於該套筒 21相對兩侧。如圖四A所示,當對第一金屬線圈組222 M303394 與第二金屬線圈組232通以相反電流時,可使第一延伸部 223與第四延伸部234形成N極,而第二延伸部224與第 二延伸部233則形成S極。由於該第一延伸部223與第四 延伸部234所形成之n極分別與第一永久磁鐵211之上 下兩極(N、S極)產生上斥下吸之推力;同時,第二延 伸部224與第三延伸部233所形成之8極則與第二永久磁 鐵212之上下兩極(s、N極)同樣是上斥下吸。所以, 兩永久磁鐵211、212將會被向下推動。反之,如圖四B 所示,g將所提供之電流反向時,該第一延伸部223與第 四延伸部234所形成之S極將會對第一永久磁鐵2丨〗產生 上吸下斥之推力,同時,第二延伸部224與第三延伸部 233所形成之N極也會對第二永久磁鐵212產生上吸下斥 之推力,而帶動永久磁鐵21卜212向上位移。如此,藉 由控制電流方向來影響該電磁致動所產生之引力方向,進 而帶動永久磁鐵211、212連同套筒21 一起達行線性軸向 運動Ma。 清參閱圖五所示,其係為本創作電磁制動微型鏡頭裝 置之第二較佳實施例立體結構示意圖。 如圖五所不,於本第二較佳實施例中,係揭露本創作 可提供該電磁麵微型鏡職置進行__轉轴向運動 Mr’可將短距離之轴向位移變換成較長距離之旋位移 運動,以提高轴向位移之精密度。於本第二較佳實施例 中’該承載座24係用以一圓柱體以方便說明之,且於承 載座24外圍上設有螺旋延伸之兩斜向導槽245。該第一 12 M303394 永久磁鐵2ΐι與第—永久磁鐵加係斜向設置於該套筒 21之兩側邊,且分別谷納於兩斜向導槽巾。當對兩 導磁體22、23上之線圈222、232施予電流驅動後,該第 -永久磁鐵211與第二永久磁鐵212受該斜向導槽245之 導引而進行類_牙娜之位移方式。因為該套筒21受 螺旋轉轴向運動Mr之故,使得其線性轴向位移量變小, 故更能精密地加以控制其線性軸向位移量。 請參關六A姻六,其係分別為本創作電 補動微型綱裝置之第三較佳實_的立體結構示意 圖、以及俯視示意圖。 如圖六A與圖六B所示之第三較佳實施例中,由於 該套筒2卜第-永久磁鐵21^、第二永久磁鐵212、及承 載座24的結構、設置位置與魏等,均已於前述實施例 均予詳細說明,所以於此不再多加贅述。而本第三較佳實 施例的不同點乃在於,該導磁部31係更包括有一中央部 311、一金屬線圈組312、一第一延伸部313、以及第二延 伸部314 〇 該金屬線圈組312纏繞於該中央部31】。此外,該第 延伸部313 ’其係由該垂直抽向延伸之中央部Μ〗的上 方兩4沿套/^ 21上緣分別向左右兩側延伸出去,至第一 永久磁鐵211與第二永久磁鐵212之上方附近,且與該中 央部311呈垂直狀。該第二延伸部314,其係由該中央部 311下方兩端沿套筒21下緣分別向左右兩侧延伸出去, 至第一永久磁鐵211與第二永久磁鐵212之下方附近,且 13 M3 03 3 94 與該令央部311呈垂直狀。該導磁體31其整體外觀形狀, 則猶如中文之『工』字。 凊參閱圖七A、圖七b所示,其係分別為本創作電 磁制動微型鏡頭裝置之第三較佳實施例,其作動於一第一 位置與—第二位置時之實施例平面展開示意圖。 如圖七A、圖七B所示,該第一永久磁鐵211與第 二永久磁鐵212係以兩端同時具有相同極性,並設置於該 套筒21兩側。其中,第一永久磁鐵211與第二永久磁鐵 212可利用雙極充磁或將兩磁鐵黏合,藉此達到其兩端皆 具有相同極性之目的。如圖七A所示,當該金屬線圈組 312通以電流驅動後,可使得第一延伸部313左右兩末 端、以及第二延伸314左右兩末端分別形成N、s極。由 於該第一延伸部313所形成極係和第一永久磁鐵211 與第二永久磁鐵212之上端N極相斥,另外,第二延伸 部314所形成之s極則和第一永久磁鐵21丨與第二永久磁 鐵212之下端N極相吸,所以可推動永久磁鐵211、212 向下移動。反之,如圖七B所示,當施以一相反電流時, 使得第一延伸部313、以及第二延伸部314分別形成s、 N極,故將推動永久磁鐵211、212向上移動。如此,藉 由控制電流方向來影響該電磁致動所產生之引力方向,可 帶動永久磁鐵211、212連同該套筒21之線性轴向運動 Ma ° 以上所述之實施例,僅為具體說明本創作之可實施態 樣,而非為一可實施之例子。任何熟習本項技藝之通常人 M3 03 3 94 士’在_本_内容後,當可輕易思及錢行若干變 例如:圖六中所示之實施例中,該承載124為-中 空立方體,然而吾人亦可輕易思及,而將其替換為一多角 柱體’並增加該導磁體數目,亦可達到相同之功效。 〃唯以上所述之實關不於聞本創作之可應用 fen ’本創作之保護範圍細本創作之φ請專利範圍内容 所界定技術精神及其均等變化所含括之範目為主者。即大 凡依本創作巾料概_狀均等變纽侧仍將不 失本創作之要義所在,亦不麟本創作之精神和範圍,故 都應視為本創作的進一步實施狀況。 【圖式簡單說明】 圖一 A係為習用電磁制動鏡頭裝置之切換裝置側視結 構示意圖。 圖一 B係為習用電磁制動鏡頭裝置之切換裝置立體結 構示意圖。 圖一 C係為習用電磁制動鏡頭裝置之切換裝置前視結 構示意圖。 圖一 A係為電磁制動微型鏡頭裝置之之第一較佳實施 例的立體結構示意圖。 圖二B係為電磁制動微型鏡頭裝置之之第一較佳實施 例的侧視結構示意圖。 圖二C係為電磁制動微型鏡頭裝置之之第一較佳實施 例的俯視結構示意圖。 15 M3 03 3 94 =三A係顧二种之套筒與永久磁鐵之 圖三B係為圖二A中之第—導磁部及第娜之圖 體結構圖。 丨 <立 圖三為圖二A中之承載座之立體示意圖。 圖四A係為本獅電刪誠麵職置之第一較佳 實施例,其作動於一第一位置時之實施例平面 展開示意圖。[Prior Art] With the development of technology and the needs of consumers, a variety of information products have also come out. With the development of the electronics industry today, personal peripheral electronic products are gradually becoming lighter, more portable, and more diverse in function. Among them, cameras are representative of various products. In order to meet the convenience of ordinary users, it can also be combined with 3C products such as mobile phones or PDAs. The two-way machine has a lens group and a large body to achieve the function of photography. Among them, the lens group is one of the key factors affecting imaging quality. In addition to adjusting the amount of human light, the lens group also adjusts the zoom of the subject by adjusting the zoom of the lens (adjusting or reducing the subject) or adjusting the sharpness or blurring of the subject. Previously ====== M3 03 3 94 Intent. The conventional electromagnetic brake lens device includes an annular permanent magnet, a 12-coil group 13, and a second coil group $. The annular permanent magnet 12 is coupled to the lens 1 and has a first polarity 15 and a second polarity 16 on the side. The first two: n and the second coil group 14 respectively surround the front and rear sides of the body u of the lens unit and correspond to the first polarity 15 and the second polarity 16. When the lens 1 is to be moved, the first coil group 13 and the first coil group 14 are connected to each other, so that the two coil groups I) and μ generate magnetic lines of force in a specific direction (that is, in the axial direction of the lens 1). The annular permanent magnet 12 can be provided with a force moving to the left or to the right along the axis of the lens 1. Thus, the lens 1 is pushed to move in a predetermined direction to change the position of the lens 1. . However, the conventional electromagnetic brake lens 1 has the following disadvantages because its coils 13, 14 surround the periphery of the lens 1. First, the magnetic lines of force are concentrated at the center of the axis of the lens 1, resulting in permanent magnets. At the position of 12, the magnetic lines of force are less dense, which will cause most of the magnetic lines generated by the coils 13, 14 to be ineffective, resulting in low efficiency, and thus the efficiency of the lens 1 is lower and the power consumption is higher. Secondly, since the permanent magnet 12 and the coils 13, 14 are sleeved outside the outer diameter of the lens 1, the radial size of the conventional electromagnetic brake lens device will be equal to the diameter D of the lens 1 plus the coil 13 , Μ (or permanent magnet 12, depending on which outer diameter is larger), the extra size 2Ad, and finally, the thickness of the carrier 17 (outer casing). As a result, the overall structure will be increased in size, which is contrary to the trend of thin and light design. M303394 Therefore, how to improve the electromagnetic brake device to reduce the overall volume and reduce its power consumption ‘and does not affect the precision of the control head is the current goal of the industry. [New content] The main purpose of this creation is to provide an electromagnetic brake micro lens device which can have a more compact size, higher electromagnetic drive efficiency, and lower power consumption. Another object of the present invention is to provide a magnetizing structure for an electromagnetic brake microlens device, which can be guided by a unique configuration of a magnetic structure of a unique axially wound coil and a relative position between the permanent magnet and the permanent magnet. The magnet structure and the permanent magnet are respectively located at the four diagonal corners of the lens sleeve, thereby greatly reducing the overall volume of the lens device. For the purpose of the present invention, the preferred embodiment of the electromagnetic brake microlens device of the present invention comprises: a sleeve, two permanent magnets disposed on the surface of the sleeve, and a plurality of coils wound thereon. Two magnets. The two permanent magnets are driven by the magnetic force of the two guiding magnets to perform an axial movement to change the position of the sleeve. The lying magnetic age and the two permanent magnets are respectively located at four diagonal corners of the sleeve, and each of the guiding magnets has an axial extension and is wound around a central portion of the coil, and is horizontal from both ends of the central portion. The ring extends to an extension corresponding to the ends of the two permanent magnets. Since the coil of the present invention is axially wound on the central portion of the magnetizer, the two magnets and the two permanent magnets are respectively located at four opposite corners of the sleeve and the extension of the magnetizer The system extends to the end of the permanent magnet and 7 M303394 can effectively concentrate the magnetic lines of force. Therefore, the electromagnetic brake micro lens device of the present invention can be made lighter and thinner, and the electromagnetic driving efficiency can be further increased by two. [Embodiment] The electromagnetic brake microlens device proposed by the present invention will be clearly described. The electromagnetic brake microlens device of the present invention will be described in detail below, and a detailed description of the manner of use thereof and the technical features of the present invention will be described. 2A, 2B, and 2c, which are schematic views of the vertical, side, and top views of the first preferred embodiment of the electromagnetic brake microlens device of the present invention. The electromagnetic brake micro lens device mainly comprises: a sleeve 2 - a permanent magnet 2 ΐ, a second permanent magnet 212, a first magnet 22, a second magnet 23, and a carrier 24 (the outer sleeve of the casing 21 defines a direction of withdrawal, the axial direction is the direction of the central axis of the sleeve 21. Referring to Figure -A, Figure 2B, and Figure 3c, respectively, Figure 1 is a combination view of the sleeve and the permanent magnet of the A towel, a three-dimensional magnetic structure diagram of the first magnetic conductive portion, and a three-dimensional schematic view of the bearing seat. As shown in Fig. 3A, the sleeve 21 is formed into a hollow structure. 'It can be used to place a lens module (in the figure, the composition of the lens - the lens group. 兮 1; 1) or 疋 directly accommodate the lens group 2! The outer surface - the side. The second iron 211 is set in the sleeve And the other side of the first permanent magnet 2n, 212, that is, the first and second permanent magnets 2n, 212 are located at two diagonal corners of the outer surface of the sleeve 21 In addition, the two permanent magnets 211, 212 have a magnetic pole respectively at the upper and lower ends along the axial direction, that is, The first magnets 22 further include a first central portion 221, a first metal coil group 222, and a first central magnet portion 221, as shown in FIG. 3B. a first extending portion 223 and a second extending portion 224. The first central portion 221 extends perpendicularly in the axial direction, and the length of the first central portion 221 is not shorter than the length of the sleeve 21 in the axial direction. In other words, both ends of the first central portion 221 in the axial direction slightly protrude from the front and rear edges of the sleeve 21, and the first metal coil group 222 is wound with a plurality of coils in the axial direction. The outer side of the central portion 221. The first extending portion 223 extends from the upper end of the first central portion 4221 and extends horizontally along the upper edge of the outer diameter of the sleeve 21 (so the first extending portion 223 is It is perpendicular to the first central portion 221, and corresponds to the upper end magnetic pole of the first permanent magnet 211 up to the vicinity of the upper portion of the first permanent magnet 211. The second extending portion 224 is formed by the first central portion Starting from the lower end of 221, the lower edge of the outer diameter of the sleeve 21 is horizontally ring-shaped Extending out (so the second extension portion 224 is perpendicular to the first central portion 221) until the lower portion of the second permanent magnet 212 is adjacent to the lower end of the second permanent magnet 212. The first extension The portion 223 and the second extending portion 224 extend in a direction opposite to the left and right. When the first metal coil group 222 is applied with a predetermined current, the first magnetizer 22 can be made to generate a magnetic force, and by the first The extension portion 223 and the second extension portion 224 guide the magnetic lines of force to the two ends thereof, and the points 9 M3 03 3 94 do not generate thrust corresponding to the first permanent magnet 211 and the second permanent magnet 212, thereby driving the two permanent magnets 211, 212. A linear axial Ma motion is performed along with the sleeve 21. The second magnetizer 23 further includes a second central portion 231, a second metal coil assembly 232, a third extension portion 233, and a fourth extension portion 234. Since the structure of the second magnetizer 23 is substantially the same as that of the first magnetizer 22, the second middle portion 23 of the second magnetizer 23 includes the second metal coil group 232, the third extension portion 233, and the The four extension portions 234' are not described in detail in the structure, the installation position, the actuation mode, the 22^ metal coil group 222, the first extension portion 223, and the second extension portion 224, respectively. The only end portion of the second extension magnet 233 that is worth mentioning is that the end portion extends to the vicinity of the second permanent magnet 212, while the end of the fourth extension portion 234 extends to the lower portion of the first permanent magnet 211. Nearby. As shown in Figure 3 (shown as 'the carrier 24 (outer casing), which has a hollow structure with open ends, and is sleeved outside the sleeve 2 in the preferred embodiment, the carrier 24 is A relative displacement lion for accommodating and positioning the aforementioned sleeve 21, magnetizers 22, 23, etc., and allowing it to be controlled within a limited range. (4) The specific structure of the contact 24 is not the creation The main technical features and the self-study technology can be selected, so in the present example, only the hollow cube is used for illustration. As shown in Fig. 2c and Fig. 3C, the carrier 24 of the cube includes a bit in the The four sides of the four corners are at the corners of the two sides, Μ3, Μ4, and the four sides of the M303394 are included in the space formed by the adjacent sides of the carrier 24. One of the technical features of the present invention is that the positions of the first permanent magnet 211 and the second permanent magnet 212 are respectively located at the corners of the first side angle 241 and the third side angle 243 of the diagonal corners. a first central portion 221 of the first conductive magnet 22 and a second second conductive portion 23 The central portion 231 is located at a corner of the second side angle 242 and the fourth side angle 244 of the diagonal corners respectively. The two permanent magnets 211, 212 and the central portions 221, 231 of the two magnets 22, 23 of the present invention. The positions are located at the four side corners 241, 242, 243, 244 of the four diagonal corners of the carrier 24, so the size of the permanent magnets 211, 212 does not cause the outer diameter of the electromagnetic brake micro lens device at all. In other words, the inner diameter of the carrier 24 used in the present invention is substantially equal to the size of the outer diameter D of the sleeve 21, as shown in FIG. The carrier size of the conventional technology (D+2Ad), the structure of the unique axial winding coils 222, 232 of the present invention, and the structure of the magnets 22, 23, and the permanent magnets 211, 212 are respectively located in the lens sleeve 21 The unique configuration of the corners can significantly reduce the overall size of the lens device. Please refer to FIG. 4A and FIG. 4B, which are respectively a first preferred embodiment of the artificial electromagnetic brake micro lens device. Acting in a first place In the embodiment shown in FIG. 4A and FIG. 4B, the first permanent magnet 211 and the second permanent magnet 212 are disposed on the sleeve 21 with opposite polarities. As shown in FIG. 4A, when the first metal coil group 222 M303394 and the second metal coil group 232 are connected with opposite currents, the first extension portion 223 and the fourth extension portion 234 may form an N pole. The second extension portion 224 and the second extension portion 233 form an S pole. The n poles formed by the first extension portion 223 and the fourth extension portion 234 are respectively opposite to the upper and lower poles of the first permanent magnet 211 (N, S poles). The thrust of the repulsion is generated. At the same time, the 8 poles formed by the second extension portion 224 and the third extension portion 233 are the same as the upper and lower poles (s, N poles) of the second permanent magnet 212. Therefore, the two permanent magnets 211, 212 will be pushed downward. On the contrary, as shown in FIG. 4B, when the current supplied by g is reversed, the S pole formed by the first extending portion 223 and the fourth extending portion 234 will suck up the first permanent magnet 2丨. The thrust of the repulsive force, at the same time, the N pole formed by the second extending portion 224 and the third extending portion 233 also generates a pushing force for the second permanent magnet 212 to attract the repulsion, and the permanent magnet 21 212 is displaced upward. Thus, by controlling the direction of the current to influence the direction of gravity generated by the electromagnetic actuation, the permanent magnets 211, 212 are brought together with the sleeve 21 to achieve linear axial motion Ma. Referring to FIG. 5, it is a schematic perspective view of a second preferred embodiment of the present invention. As shown in FIG. 5, in the second preferred embodiment, the present invention can provide the electromagnetic surface micro-mirror position __rotating axial motion Mr' can transform the short-distance axial displacement into a longer distance. The rotational displacement motion increases the precision of the axial displacement. In the second preferred embodiment, the carrier 24 is used for a cylinder for convenience of explanation, and two oblique guide grooves 245 extending in a spiral shape are provided on the periphery of the carrier 24. The first 12 M303394 permanent magnets 2ΐι and the first permanent magnets are obliquely disposed on both sides of the sleeve 21, and are respectively disposed on the two oblique guide grooves. After the current is driven by the coils 222 and 232 on the two magnets 22 and 23, the first permanent magnet 211 and the second permanent magnet 212 are guided by the oblique guide groove 245 to perform a displacement mode. . Since the sleeve 21 is subjected to the helical axial movement Mr, the linear axial displacement amount thereof is made smaller, so that the linear axial displacement amount can be more precisely controlled. Please refer to the 6A Marriage Six, which is a schematic diagram of the three-dimensional structure of the third embodiment of the creation of the micro-assembly device, and a schematic view of the top view. In the third preferred embodiment shown in FIG. 6A and FIG. 6B, the structure, the installation position, and the like of the sleeve 2, the first permanent magnet 21, the second permanent magnet 212, and the carrier 24 are All of the foregoing embodiments have been described in detail, so no further details are provided herein. The third preferred embodiment is different in that the magnetic conductive portion 31 further includes a central portion 311, a metal coil group 312, a first extending portion 313, and a second extending portion 314. The group 312 is wound around the central portion 31]. In addition, the first extension portion 313' extends from the upper portion of the central portion of the vertical extension to the left and right sides of the sleeve/^21 to the left and right sides, respectively, to the first permanent magnet 211 and the second permanent The magnet 212 is near the upper side and is perpendicular to the central portion 311. The second extending portion 314 extends from the lower ends of the central portion 311 to the left and right sides along the lower edge of the sleeve 21 to the vicinity of the lower side of the first permanent magnet 211 and the second permanent magnet 212, and 13 M3 03 3 94 is perpendicular to the central section 311 of the order. The overall shape of the magnetizer 31 is like the Chinese word "work". Referring to FIG. 7A and FIG. 7B, which are respectively a third preferred embodiment of the artificial electromagnetic brake microlens device, the planar development of the embodiment is performed when operating in a first position and a second position. . As shown in Fig. 7A and Fig. 7B, the first permanent magnet 211 and the second permanent magnet 212 have the same polarity at both ends and are disposed on both sides of the sleeve 21. The first permanent magnet 211 and the second permanent magnet 212 can be magnetized by two poles or bonded to each other, thereby achieving the same polarity at both ends. As shown in FIG. 7A, when the metal coil group 312 is driven by current, the left and right ends of the first extension portion 313 and the left and right ends of the second extension 314 can be respectively formed with N and s poles. The poles formed by the first extension portion 313 and the first permanent magnet 211 and the upper end of the second permanent magnet 212 are repelled by the N pole. In addition, the s pole formed by the second extension portion 314 and the first permanent magnet 21丨The N-pole is attracted to the lower end of the second permanent magnet 212, so that the permanent magnets 211, 212 can be pushed downward. On the contrary, as shown in FIG. 7B, when an opposite current is applied, the first extension portion 313 and the second extension portion 314 are respectively formed into s and N poles, so that the permanent magnets 211, 212 are pushed upward. Thus, by controlling the direction of the current to affect the direction of the gravitational force generated by the electromagnetic actuation, the permanent magnets 211, 212 and the linear axial movement of the sleeve 21 can be driven by the above embodiment, for the purpose of illustration only. The implementation of the creation is not an example of implementation. Anybody who is familiar with the skill of the art, M3 03 3 94, after the content, can easily think of a few changes. For example, in the embodiment shown in Figure 6, the carrier 124 is a hollow cube. However, we can easily think about it and replace it with a polygonal cylinder and increase the number of magnets to achieve the same effect. 〃 以上 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的That is to say, the generalization of the creation of the towel will not lose the essence of the creation, nor the spirit and scope of the creation, so it should be regarded as the further implementation of the creation. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a schematic side view of a switching device of a conventional electromagnetic brake lens device. Figure 1 B is a schematic diagram of the three-dimensional structure of the switching device of the conventional electromagnetic brake lens device. Figure 1 C is a schematic diagram of the front view of the switching device of the conventional electromagnetic brake lens device. Figure 1 is a perspective view of a first preferred embodiment of the electromagnetic brake microlens device. Figure 2B is a side elevational view showing the first preferred embodiment of the electromagnetic brake microlens device. Figure 2C is a top plan view showing the first preferred embodiment of the electromagnetic brake microlens device. 15 M3 03 3 94 = Three A series of two kinds of sleeves and permanent magnets Fig. 3B is the first part of Fig. 2A - the magnetic structure and the structure diagram of Dina.丨 < Vertical Figure 3 is a three-dimensional diagram of the carrier in Figure 2A. Fig. 4A is a plan view showing the first embodiment of the lion's electric power cutting operation in a first position.

圖四B料摘作電磁嶋微麵贼置之第一較佳 實施例,其作動於—第二位置時之實施例平面 展開示意圖。 圖五係為本創作電磁觸微型綱裝置之第二較佳實 施例立體結構示意圖。 圖六A係為本創作電磁制動微型鏡頭裝置之第三較佳 實施例的立體結構示意圖。Figure 4B is taken as a first preferred embodiment of the electromagnetic 嶋 面 贼 贼 贼 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Fig. 5 is a perspective view showing the second preferred embodiment of the second embodiment of the present invention. Fig. 6A is a perspective view showing the third preferred embodiment of the electromagnetic brake microlens device of the present invention.

圖六B係為本創作電磁制動微型鏡頭裝置之第三較佳 實施例的俯視示意圖。 圖七A係為本創作電磁制動微型鏡頭裝置之第三較佳 實施例,其作動於一第一位置時之實施例平面 展開示意圖。 圖七B係為本創作電磁制動微型鏡頭裝置之第三較佳 實施例,其作動於一第二位置時之實施例平面 展開示意圖。 16 M303394 【主要元件符號說明】 1〜電磁制動鏡頭裝置之切換裝置 11〜鏡頭 12〜環狀永久磁鐵 13〜第一線圈組 15〜第一極性 Π〜承載座 21〜套筒 211〜第一永久磁鐵 22〜第一導磁體 221〜第一中央部 223〜第一延伸部 23〜第二導磁體 231〜第二中央部 233〜第三延伸部 24〜承載座 241〜第一侧邊夾角 243〜第三側邊夾角 245〜斜向導槽 31〜導磁體 311〜中央部 313〜第一延伸部 Ma〜線性轴向運動 14〜第二線圈組 16〜第二極性 212〜第二永久磁鐵 222〜第一金屬線圈組 224〜第二延伸部 232〜第二金屬線圈組 234〜第四延伸部 242〜第二側邊夾角 244〜第四側邊夾角 312〜金屬線圈組 314〜第二延伸部 Mr〜螺旋轉轴向運動 17Fig. 6B is a top plan view showing a third preferred embodiment of the artificial electromagnetic brake microlens device. Fig. 7A is a plan view showing the third embodiment of the present invention, which is a third embodiment of the electromagnetic brake microlens device, which is actuated in a first position. Fig. 7B is a plan view showing the third embodiment of the present invention, which is a third embodiment of the electromagnetic brake microlens device, which is actuated in a second position. 16 M303394 [Description of main component symbols] 1~Electromagnetic brake lens device switching device 11~lens 12~ring permanent magnet 13~first coil group 15~first polarityΠ~carrier 21~sleeve 211~first permanent The magnet 22 - the first magnet 221 - the first central portion 223 - the first extending portion 23 - the second conductive portion 231 - the second central portion 233 - the third extending portion 24 - the carrier 241 - the first side angle 243 - The third side angle 245 to the oblique guide groove 31 to the magnetizer 311 to the central portion 313 to the first extension portion Ma to the linear axial movement 14 to the second coil group 16 to the second polarity 212 to the second permanent magnet 222 to the second a metal coil group 224 to a second extension portion 232 to a second metal coil group 234 to a fourth extension portion 242 to a second side edge angle 244 to a fourth side angle 312 to a metal coil group 314 to a second extension portion Mr~ Spiral to axial movement 17

Claims (1)

M303394 九、申請專利範圍: L一種電磁制動微型鏡頭裝置,包括有: 一套筒,其定義有一軸向; 兩永久磁鐵,設置於該套筒外,且各永久磁鐵於沿著該 轴向的兩端係分別具有一磁極;以及, 至少一導磁體,其係更包括有一沿該軸向延伸之中央 部、纏繞於該中央部之一線圈、一第一延伸部、以及 .一第二延伸部; 其中,該第一延伸部係自中央部之一末端起以大致垂直 於該軸向之方向至少環狀延伸至其中之一永久磁鐵 之一末端附近處,而該第二延伸部則是自中央部之另 一末端起以大致垂直於該轴向之方向至少環狀延伸 至另一永久磁鐵之另一末端附近處。 2·如申請專利範圍第1項所述之電磁制動微型鏡頭裝置, 其中,该線圈係以轴向延伸之方式螺旋纏繞於導磁體之 # 中央部上’且中央部的長度係不短於套筒於該軸向上的 長度。 3·如申印專利範圍第1項所述之電磁制動微型鏡頭裝置, 其中,該第一延伸部與第二延伸部自該中央部兩端起所 延伸出去的方向係大致相反。 4·如申凊專利範圍第3項所述之電磁制動微型鏡頭裝置, 其中,該導磁體的數量係為兩個,且該兩個導磁體的結 構實質相同,並且,該兩導磁體之中央部與該兩永久磁 鐵實質上係分別位於該套筒的四個對角位置。 M3 03 3 94 5.如申請專利範圍第4項所述之電磁制動微型鏡頭襄置, 其更包括有-立方體形之承載座用以承裁該套筒、永久 磁鐵、及導磁體,並且,該兩導磁體之中央部與該兩永 久磁鐵係分別位於該承載座之四個對角角落位置。 請專利範圍第4項所述之電磁制動微型鏡頭裝置, 其更包括有一承載座用以承載該套筒、永久磁鐵、及導 磁體,並且,於該承載座之外圍設有螺旋延伸之兩斜向 導槽,該兩永久磁鐵係分別斜向設置於該套筒之兩侧邊 且分別谷納於該兩斜向導槽;其中,當對兩導磁體之線 圈施予電流時,該兩磁鐵將受該斜向導槽之導引而進行 類似螺牙旋轉之螺旋轉轴向運動。 7·如申請專利範圍第1項所述之電磁制動微型鏡頭裝置, 其中,該第一延伸部與第二延伸部均是分別自該中央部 起朝著大致垂直於該軸向之兩側方向延伸出去,並分別 延伸至兩磁鐵之兩末端附近處,而使該導磁體實質上係 呈現一類似「工」字結構。 8·如申請專利範圍第7項所述之電磁制動微型鏡頭裝 置’其中’各永久磁鐵於其轴向兩端的磁極係為相同極 性。 9·如申請專利範圍第1項所述之電磁制動微型鏡頭裝置, 其中’於該套筒内係設有一鏡頭。 10·—種電磁制動微型鏡頭裝置,包括有: 一套筒,其定義有一轴向; 一承載座,該承載座於該轴向之投影係具有至少四個 M3 03 3 94 角落,該套筒係容置於該承載座内; 至夕永久磁鐵,設置於該套筒外,且係位於承載座 之其中之一角落内;以及, 、導磁體,其係更包括有一沿該轴向延伸之中央 邻纏繞於該中央部之一線圈、以及至少一延伸部; 其中,該導磁體之中央部係位於承載座之另一角落 内’且該延伸部係自中央部之-末端起以大致垂直 鲁 於該軸向之方向至少環狀延伸至該永久磁鐵附近 處。 如申明專利範圍第10項所述之電磁制動微型鏡頭裝 、其中該線圈係以轴向延伸之方式螺旋纏繞於導 磁體之中央部上,且中央部的長度係不短於套筒於該 軸向上的長度。 •如申π專利範圍第10項所述之電磁制動微型鏡頭裝 置,其中,該中央部於軸向1之兩端係分別設有一延 _ 伸部’且該兩延伸部自該中央部兩端起所延伸出去的 方向係大致相反。 的 3·如申研專利範圍帛^項所述之電磁制動微型鏡頭裝 置,其中,永久磁鐵的數量與導磁體的數量均為兩個, 且該兩個導磁體的結構實質相同,並且,該兩導磁體 之令央部與該兩永久磁鐵實質上係分別位於該承载座 的四個對角角落位置。 14.如申請專利範圍第1()項所述之電磁制動微型鏡頭装 置’其中,該中央部於轴向上之兩端係分別設有一延 20 M303394 ^,且該兩延伸部均是分财央部起朝著大致 垂直於該軸向之兩側方向延伸出去,而使該導磁體實 質上係呈現一類似「工」字結構。 15.如申請補朗第14撕叙電磁鑛微型鏡頭裝 置,其卜各永久磁鐵於其轴向兩端的磁極係為相同 極性。 16·如申料利細第1G項所述之電磁觸微型鏡頭裝 置,其令,於該套筒内係設有一鏡頭。 17·—種電磁制動微型鏡頭裝置,包括有: 一套筒,其定義有一軸向; 至少^久磁鐵,設置於該套筒外,且各永久磁鐵於 沿著該軸向的兩端係分別具有一磁極;以及, 至少-導磁體,其係更包括有一沿該軸向延伸之中央 部、以軸向延伸之方式螺旋纏繞於該中央部之一線 圈:以及至少一延伸部,該中央部的長度係略長於 套筒於該軸向上的長度,使中央部至少有一末端於 軸向上係突伸出套筒; 其令,該延伸部係自中央部突伸出套筒之該末端起以 大致垂直於該軸向之方向至少環狀延伸至該永久磁 鐵附近處。 21M303394 IX. Patent application scope: L. An electromagnetic brake micro lens device, comprising: a sleeve defining an axial direction; two permanent magnets disposed outside the sleeve, and each permanent magnet being along the axial direction Each of the two ends has a magnetic pole; and, at least one of the magnets further includes a central portion extending along the axial direction, a coil wound around the central portion, a first extension portion, and a second extension Wherein the first extension portion extends at least one end from the end of the central portion in a direction substantially perpendicular to the axial direction to at least one end of one of the permanent magnets, and the second extension portion is From the other end of the central portion, at least approximately annularly extending to the vicinity of the other end of the other permanent magnet in a direction substantially perpendicular to the axial direction. 2. The electromagnetic brake microlens device according to claim 1, wherein the coil is spirally wound on the central portion of the magnetizer in an axially extending manner and the length of the central portion is not shorter than the sleeve. The length of the barrel in this axial direction. 3. The electromagnetic brake microlens device of claim 1, wherein the direction in which the first extension portion and the second extension portion extend from both ends of the central portion is substantially opposite. 4. The electromagnetic brake microlens device of claim 3, wherein the number of the magnetizers is two, and the structures of the two magnetizers are substantially the same, and the center of the two magnetrons The portion and the two permanent magnets are substantially located at four diagonal positions of the sleeve, respectively. M3 03 3 94. The electromagnetic brake micro lens device of claim 4, further comprising a cube-shaped carrier for bearing the sleeve, the permanent magnet, and the magnetizer, and The central portion of the two magnets and the two permanent magnets are respectively located at four diagonal corner positions of the carrier. The electromagnetic brake microlens device of claim 4, further comprising a carrier for carrying the sleeve, the permanent magnet, and the magnetizer, and having two spiral extensions on the periphery of the carrier a guiding groove, the two permanent magnets are respectively disposed obliquely on both sides of the sleeve and respectively valleyd on the two oblique guiding grooves; wherein when the current is applied to the coils of the two guiding magnets, the two magnets are subjected to The oblique guide groove is guided to perform a helical rotation axial movement similar to a screw rotation. The electromagnetic brake microlens device of claim 1, wherein the first extension portion and the second extension portion are respectively oriented from the central portion toward a direction substantially perpendicular to the axial direction. Extending out and extending to the vicinity of both ends of the two magnets, the magnetizer is substantially similar to a "work" structure. 8. The electromagnetic brake microlens device of claim 7, wherein the permanent magnets have the same polarity at the axial ends of the permanent magnets. 9. The electromagnetic brake microlens device of claim 1, wherein the lens is provided in the sleeve. 10. An electromagnetic brake microlens device comprising: a sleeve defining an axial direction; a carrier having a projection of the carrier in the axial direction having at least four corners of M3 03 3 94, the sleeve The system is disposed in the carrier; the permanent magnet is disposed outside the sleeve and is located in one of the corners of the carrier; and, the magnetizer further includes an axial extension The central portion is wound around one of the coils of the central portion and at least one extension portion; wherein the central portion of the magnetizer is located in another corner of the carrier seat and the extension portion is substantially vertical from the end of the central portion The direction of the axial direction extends at least annularly to the vicinity of the permanent magnet. The electromagnetic brake microlens assembly according to claim 10, wherein the coil is spirally wound on the central portion of the magnetizer in an axially extending manner, and the length of the central portion is not shorter than the sleeve on the shaft. The length of the upwards. The electromagnetic brake microlens device according to claim 10, wherein the central portion is respectively provided with an extension portion at both ends of the axial direction 1 and the two extension portions are from the both ends of the central portion The direction in which the extension extends is roughly the opposite. 3. The electromagnetic brake microlens device according to the scope of the patent application, wherein the number of permanent magnets and the number of the magnetizers are two, and the structures of the two magnetizers are substantially the same, and The central portion of the two magnets and the two permanent magnets are substantially located at four diagonal corner positions of the carrier. 14. The electromagnetic brake microlens device of claim 1, wherein the central portion is provided with a length of 20 M303394 ^ at both ends in the axial direction, and the two extensions are divided into two parts. The central portion extends toward a direction substantially perpendicular to both sides of the axial direction, so that the magnetizer substantially assumes a similar "work" structure. 15. If applying for the 14th tearing magnetite microlens device, the magnetic poles of the permanent magnets at their axial ends are of the same polarity. 16. The electromagnetic contact microlens device of claim 1G, wherein a lens is attached to the sleeve. 17. The electromagnetic brake microlens device comprises: a sleeve defining an axial direction; at least a permanent magnet disposed outside the sleeve, and each permanent magnet being respectively disposed at both ends along the axial direction And a magnetic pole; and, at least, a magnetizer further comprising a central portion extending along the axial direction, a coil spirally wound around the central portion in an axial direction: and at least one extension portion, the central portion The length is slightly longer than the length of the sleeve in the axial direction, such that at least one end of the central portion projects axially from the sleeve; such that the extension is from the end of the central protruding sleeve Extending at least approximately annularly to the vicinity of the permanent magnet in a direction substantially perpendicular to the axial direction. twenty one
TW95209881U 2006-06-07 2006-06-07 Electromagnetically actuated micro lens device TWM303394U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95209881U TWM303394U (en) 2006-06-07 2006-06-07 Electromagnetically actuated micro lens device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95209881U TWM303394U (en) 2006-06-07 2006-06-07 Electromagnetically actuated micro lens device

Publications (1)

Publication Number Publication Date
TWM303394U true TWM303394U (en) 2006-12-21

Family

ID=38292365

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95209881U TWM303394U (en) 2006-06-07 2006-06-07 Electromagnetically actuated micro lens device

Country Status (1)

Country Link
TW (1) TWM303394U (en)

Similar Documents

Publication Publication Date Title
JP4681874B2 (en) Drive device
US8040621B2 (en) Miniature magnetic-levitated lens driving device
TWI280731B (en) An actuating apparatus using mini linear motor and an auto-focusing device having the actuating apparatus
TWI317202B (en) Actuator
KR101124077B1 (en) Stator core and motor device including the same
JP2006304475A (en) Magnetic member, motor device, magnetizing method and storage device
JP2007148354A (en) Lens drive unit
CN1285156C (en) Driving device, light modulator and lens driving device
CN113258747A (en) Driving device, camera mould and electronic equipment
TWM303394U (en) Electromagnetically actuated micro lens device
TWM343180U (en) Electromagnet for lens driving mechanism thereof
CN106461905B (en) Voice coil motor and focusing lens
JP2004048873A5 (en)
CN2909295Y (en) Mini-lens device of electromagnet brake
JPWO2005124978A1 (en) Stepping motor
TWI286873B (en) Cylinder-like electromagnetic motor
JP2004266903A (en) Linear vibration actuator
JP2003102161A (en) Linear motion mechanism
CN215420058U (en) Driving device, camera module and electronic equipment
JP5985793B2 (en) Auto focus module magnet base
TWM305361U (en) Multi-stage miniature actuating apparatus for lens
US20120169169A1 (en) Kinetic energy supplementary device
TWI354183B (en)
JP2005164621A (en) Lens device
JP4446402B2 (en) DC motor

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees