M266636 八、新型說明: 【新型所屬之技術領域】 一賴作涉及-種電子裝置㈣⑽統,更具㈣是涉及 :種管理和限制提供給可充電電池的輸出功率位準的電源 管理電路。 【新型内容】 本創作提供了—種控制提供給可充電電池的充電參數的 電路,該電路包括:—個提供代表—個沉電源輸出功率值 的功率控制信號的功率控制電路;和一個當該功率輸出值 超出一個預定功率門限值時,用於減小提供給該電池的充 電翏數的控制信號發生電路。 本創作提供了一種電子裝置,該電子裝置包括一個控制 ^供給可充電電池的充電參數的電路,該電路包括:一個 "代表個DC電源的輸出功率值的功率控制信號的功 率,制電路,·和-個當該輸出功率值超出預定的功率門限 值時,/咸少提供給該電池的充電參數的控制信號產生電路。 上本創作提供了 —種控制電路包括··_個存在判斷電路, β _電路將具有_個固定輸出電遷值的π電源的 μ [值〜可選電塵門限值作比較,當該電遷值超出該可選 門限電遷值時提供一個代表該DC電源是否存在的存在判 斷L ’和-個控制信號產生電路’該控制信號產生電路 接收至少該存在判斷信號並進一步提供一個控制信號以回 應至少該存在判斷信號。 本創作提供了 -種電子裝置,該電子裝置包括一種電 93941.doc M266636 路,該電路包括:一個存右 β畊毛路,該存在判斷電路將 具有一個固定輸出電壓俏 寻 勺c電源的電壓值與可選雷 門限值作比較,當該電壓^ &電壓 值起出可選門限電壓值時 個代表該DC電源在位的在户& μ ’、 隹位的存在判斷信號;和一個 進:步提供一個控制信號以回應至少該存在判斷信號。 熟習此技藝之人士應了解’雖'然以下具體描述將作為較 佳實施例,本創作並不受限於這些實施例。相反的,本創 作具有廣泛的應用範圍,僅受限於附屬的權利要求。 【實施方式】 圖1所不為根據一個實施例的電壓模式電池充電器系統 10系統10包括一個採用DC電源14給一個或多個電池16充 電的電壓模式電池充電器電路12。沉電源可以是一個 AC/DC轉接器(adapter)或是其他供電裝置。充電器電路η L過開關20控制降壓型轉換器(Buck c〇nverter)電路i8(包 括習知技藝者所熟知的一個電感和一個電容)的工作週 期,從而控制提供給電池16的充電功率。總體上,電路12 通過監控電源電流、電池充電電流(電流模式)和電池電壓 (電壓模式)控制降壓型轉換器丨8的工作週期(duty cycle)。 通過感測電阻(或阻抗)Rsch檢測電池充電電流。本創作採用 電壓模式拓撲結構,檢測Rsch上的電流而不是檢測流經電 感的電流(如在常規電流模式拓撲結構中)。按照這種模式, 通過同時採用電池電路控制和電壓控制,本創作在接近電 池充電週期終止時可以更精確地給電池充電,與常規電流 93941.doc M266636 模式充電拓撲結構相比,提供更精確的充電終止。以下將 對糸統1 〇加以詳述。 貝夤上,充電器電路12通過控制補償電容Cc〇mp38的功 率來控制降壓型轉換器18的工作週期。電路12包括··一個 由感測放大器26和轉導放大器28組成的電池電流控制部 刀,一個由求和單元30和轉導放大器32組成的電池電壓控 制部分,和一個由感測放大器34和轉導放大器36組成的功 率扰制σ卩分。電池電流控制部分和電池電壓控制部分分別 產生代表電池電流和電池電壓的信號。功率控制部分產生 代表從電源14處可獲得的功率的信號。這些部分的每一個 在節點60處相連,如果其中任何一個部分超出一個門限 值,提供給充電電容的功率就將減小,從而減小降壓型轉 換器的工作週期。以下將對這種操作加以詳述。 降壓型轉換器1 8的工作週期由比較器4〇通過開關2〇控 制。比較器40的輸入為補償電容((^〇1111))38上的電壓和振盪 杰44產生的鋸齒波信號。比較器4〇的輸出為一個脈寬調變 (PWM)信號68,該信號68的脈寬(工作週期)反映了 cc〇mp 3 8 上電壓佗號振幅和錯齒波信號振幅的相交部分。採用這種 感測方法所產生PWM信號的工作週期將基於補償電容3 8上 的電壓和由振盈器44產生的鋸齒波信號。這裏所說的,,基於 ’’應被廣泛地理解為’’是什麼的函數"或者”與什麼相關,,。 Ccomp電容38上的電壓振幅越大,PWM信號砧的工作週期 就越大。在示範性實施例中,鋸齒波信號是一個頻率固定 的信號’因此可以通過調整Ccomp電容38上的電壓振幅來 93941.doc M266636 凋整PWM的工作週期。Ccomp電容38經由電流源42充電。 若是電流控制部分、電壓控制部分或者功率控制部分的任 何部分都沒有發出信號,電流源就最大限度地給Ccomp電 容38充電,此時,PW]vu〇工作週期最大,並且降壓型轉換 裔給電池提供的充電電流和充電電壓也最大。電流控制部 分、電壓控制部分或者功率控制部分的任何部分發出的信 號對於補償電容3 8都將是一個衰減因素,從而減小補償電 容上的電壓,並由此減小PWM信號的工作週期。按這種方 式,提供給電池16的充電電流是可以控制的。降壓型轉換 器1 8和開關20的具體細節都是本領域所熟知的,對於本創 作並不重要’並可推廣為可控制的Dc/DC轉換器電路。 電流控制 電流控制部分(電路)包括一個感測放大器26和一個轉導 放大器28。感測放大器監控流經感測阻抗Rsch 24的電池充 電電流,並發出一個與電池充電電流成比例的信號。轉導 放大器28接收感測放大器26的輸出,並將該輸出信號與已 可程式化的(期望的)電池電流信號Ich比較。通常,轉導放 大器28的輸入是電壓信號,輸出是相應成比例的電流信 说。轉導放大器的輸出是電流控制信號62,該電流控制信 就與超出已可程式化信號lch的電池充電電流量成比例。電 流控制信號62在電池充電電流超出已可程式化的電流值 Ich之前為零。已可程式化Ich的值是根據具體的電池型號和 需求而設置的,例如,本領域熟知的,給標準鋰離子電池 充電時設置Ich值。 93941.doc M266636 若電池充電電流超出門限值Ich,放大器28發出一個相應 比例的電流控制信號62。由於放大器的輪出(在節點6〇)與電 "“原42的負極相連’放大器28發出的任何信號都將減弱電 流源42的電流。接著,該操作將減小Cc〇mp %上的電壓, 從而減小削信號68的工作週期,並減小提供給電池的充 電電流。由於輸出電流控制信號62與輸入值成正比,所以 工作週期作為電池充電電流的函數可被動態調整。 電流感測放大器26可以是客製化的或者是本領域現成的 放大器。然而,本領域的技術人員應認識到,放大器%必 須提供高的共模電壓抑制。相應地,參考圖2,本創作的另 方面疋提供一個用於降低對高共模抑制電壓要求的放大 器。圖2中❹J放大器26包括一個由運算放大器健制的開 關48’增益電阻R152^R25()。圖2中放大器%對於共模電 壓不敏感。相反地’開關將⑽上的浮動差動電壓根據 R2/R1給出的增益放大電壓,轉移為對地電壓。 電壓控制 電壓控制部分(電路)包括求和單元3〇和一個轉導放大器 32。在示範性實施射,求和單元包括三個輸人:一個高 精度參考電壓或校準電MRef信號、—個㈣設置(Vset)jt 號和-個電壓修正(Vcor)㈣。在示範性實施例中,電池二 是一個鋰離子電池。鋰離子電池對過電壓情況非常敏感, 而且若是過度充電將會很危險。因此’參考信號或校準信 號Ref要精確到電池允許的公差範圍内。對於鋰離子電池, 允許誤差在+/-0.5%内。然而,其他類型的電池和參考電 93941.doc M266636 [要长同樣在此考慮。VseM<表一個電塵設置值’通常由 電池製造商提供。Vcor是一個與充電電流成正比的修正化 號,用作充電裝置和與電池相關的寄生電阻的補償信號(由 於無法直接測量電池電堡,因此必須依靠寄生電阻)DVcor 可乂匕過刀接冑與感測放大器26的輸出並聯的分麼器來 得到。這三個信號以加權的形式在求和單元3〇中求和。例 如,求和單元30的輪出可以設置為:參考電麼+(Vset/x) /Vcor/y) ’其巾叉和y分別按照期望的電麼設置值和修正值M266636 8. Description of the new type: [Technical field to which the new type belongs] A type of electronic device system, and more particularly, a type of power management circuit that manages and limits the output power level provided to the rechargeable battery. [New content] This creation provides a circuit that controls the charging parameters provided to a rechargeable battery. The circuit includes: a power control circuit that provides a power control signal that represents the output power value of a power supply; and a power control circuit When the power output value exceeds a predetermined power threshold value, a control signal generating circuit for reducing the charging threshold provided to the battery. This creation provides an electronic device that includes a circuit that controls the charging parameters supplied to a rechargeable battery. The circuit includes: a " power of a power control signal representing the output power value of a DC power source, a control circuit, And a control signal generating circuit for charging parameters provided to the battery when the output power value exceeds a predetermined power threshold. The above-mentioned creation provides a kind of control circuit including a presence judgment circuit, a β circuit which compares the μ [value of the π power source with a fixed output electromigration value to the optional electric dust threshold value. When the shift value exceeds the optional threshold, the switch provides a presence judgment L 'and a control signal generation circuit representing the existence of the DC power supply. The control signal generation circuit receives at least the existence determination signal and further provides a control signal to Respond at least to the presence judgment signal. This creation provides an electronic device, which includes an electrical 93941.doc M266636 circuit. The circuit includes: a stored right β farming road. The existence judgment circuit will have a fixed output voltage. The value is compared with the optional thunder threshold value. When the voltage ^ & voltage value rises from the optional threshold voltage value, a presence judgment signal representing the presence of the DC power source & μ ', 隹 bit; and a Further: A control signal is provided in response to at least the existence judgment signal. Those skilled in the art should understand that 'though' although the following detailed description will be taken as the preferred embodiments, this creation is not limited to these embodiments. On the contrary, the present invention has a wide range of applications and is limited only by the appended claims. [Embodiment] FIG. 1 is not a voltage mode battery charger system 10 according to an embodiment. The system 10 includes a voltage mode battery charger circuit 12 that uses a DC power source 14 to charge one or more batteries 16. The power source can be an AC / DC adapter or other power supply device. The charger circuit η L passes the switch 20 to control the duty cycle of the buck converter circuit i8 (including an inductor and a capacitor that are well known to those skilled in the art), thereby controlling the charging power provided to the battery 16 . In general, the circuit 12 controls the duty cycle of the buck converter 8 by monitoring the power supply current, battery charging current (current mode), and battery voltage (voltage mode). The battery charging current is detected by the sense resistor (or impedance) Rsch. This creation uses a voltage mode topology to detect the current on Rsch instead of the current flowing through the inductor (as in a conventional current mode topology). According to this mode, by using battery circuit control and voltage control at the same time, the author can charge the battery more accurately near the end of the battery charging cycle. Compared with the conventional current 93941.doc M266636 mode charging topology, it provides more accurate Charging terminated. The system 10 will be described in detail below. In fact, the charger circuit 12 controls the duty cycle of the step-down converter 18 by controlling the power of the compensation capacitor Ccommp38. The circuit 12 includes a battery current control section knife consisting of a sense amplifier 26 and a transduction amplifier 28, a battery voltage control section consisting of a summing unit 30 and a transduction amplifier 32, and a sense amplifier 34 and The power disturbance composed of the transconductance amplifier 36 controls σ 卩. The battery current control section and the battery voltage control section generate signals representing the battery current and the battery voltage, respectively. The power control section generates a signal representing the power available from the power source 14. Each of these sections is connected at node 60. If any of these sections exceeds a threshold value, the power provided to the charging capacitor will be reduced, thereby reducing the duty cycle of the step-down converter. This operation will be described in detail below. The duty cycle of the buck converter 18 is controlled by a comparator 40 through a switch 20. The input of the comparator 40 is the voltage and oscillation on the compensation capacitor ((^ 〇1111)) 38 and the sawtooth wave signal generated by the amplifier 44. The output of the comparator 40 is a pulse width modulation (PWM) signal 68. The pulse width (duty cycle) of the signal 68 reflects the intersection of the amplitude of the voltage signal and the amplitude of the staggered wave signal at cc0mp 3 8. The duty cycle of the PWM signal generated by this sensing method will be based on the voltage on the compensation capacitor 38 and the sawtooth wave signal generated by the oscillator 44. What is said here is based on "a function that should be widely understood as" or "What is related to it." The larger the voltage amplitude on the Ccomp capacitor 38, the larger the duty cycle of the PWM signal anvil. In the exemplary embodiment, the sawtooth wave signal is a fixed-frequency signal 'so the duty cycle of the PWM can be adjusted by adjusting the voltage amplitude on the Ccomp capacitor 3893941.doc M266636. The Ccomp capacitor 38 is charged via the current source 42. If the current control part, voltage control part, or any part of the power control part does not send a signal, the current source will charge the Ccomp capacitor 38 to the maximum extent. At this time, the PW] vu〇 duty cycle is the largest and the step-down conversion The charging current and charging voltage provided by the battery are also the largest. The signal sent by the current control part, voltage control part or any part of the power control part will be an attenuation factor for the compensation capacitor 38, thereby reducing the voltage on the compensation capacitor, and This reduces the duty cycle of the PWM signal. In this way, the charging current provided to the battery 16 can be controlled The specific details of the step-down converter 18 and the switch 20 are well known in the art and are not important for this creation 'and can be generalized as a controllable DC / DC converter circuit. Current control current control section (circuit ) Includes a sense amplifier 26 and a transduction amplifier 28. The sense amplifier monitors the battery charging current flowing through the sensing impedance Rsch 24 and sends a signal proportional to the battery charging current. The transduction amplifier 28 receives the sense amplifier 26 and compare this output signal with the already programmable (desired) battery current signal Ich. Generally, the input of the transconductance amplifier 28 is a voltage signal and the output is a corresponding proportional current signal. The transconductance amplifier The output of is a current control signal 62, which is proportional to the amount of battery charging current that exceeds the programmable signal lch. The current control signal 62 is zero before the battery charging current exceeds the programmable current value Ich. The programmable Ich value is set according to the specific battery model and requirements. For example, it is well known in the art to give a standard lithium-ion battery Set the Ich value when charging. 93941.doc M266636 If the battery charging current exceeds the threshold Ich, the amplifier 28 sends out a corresponding proportion of the current control signal 62. Because the amplifier ’s rotation (at node 60) and electricity " Any signal sent from the negative amplifier of the amplifier 28 will weaken the current of the current source 42. This operation will then reduce the voltage on CC0%, thereby reducing the duty cycle of the cut signal 68 and reducing the charging current supplied to the battery. Since the output current control signal 62 is proportional to the input value, the duty cycle can be dynamically adjusted as a function of the battery charging current. The current-sense amplifier 26 may be a customized or off-the-shelf amplifier in the art. However, those skilled in the art will recognize that the amplifier% must provide high common-mode voltage rejection. Accordingly, referring to FIG. 2, another aspect of the present invention provides an amplifier for reducing the requirement for high common-mode rejection voltage. The ❹J amplifier 26 in FIG. 2 includes a switch 48 'gain resistor R152 ^ R25 () made by an operational amplifier. The amplifier% in Figure 2 is not sensitive to common-mode voltage. Conversely, the 'switch' will amplify the floating differential voltage on ⑽ to the voltage to ground according to the gain given by R2 / R1. Voltage control The voltage control section (circuit) includes a summing unit 30 and a transduction amplifier 32. In the exemplary implementation, the summing unit includes three inputs: a high-precision reference voltage or calibration electrical MRef signal, a ㈣set (Vset) jt number, and a voltage correction (Vcor) ㈣. In the exemplary embodiment, battery two is a lithium-ion battery. Lithium-ion batteries are very sensitive to overvoltage conditions and can be dangerous if overcharged. Therefore, the reference signal or calibration signal Ref must be accurate to the tolerance range allowed by the battery. For lithium-ion batteries, the tolerance is within +/- 0.5%. However, other types of batteries and reference power 93941.doc M266636 [Longer lengths are also considered here. VseM < table of a dust setting value ' is usually provided by the battery manufacturer. Vcor is a correction number that is proportional to the charging current, and is used as a compensation signal for the charging device and the parasitic resistance related to the battery (because the battery can not be directly measured, it must rely on parasitic resistance). DVcor can be connected with a knife. A divider is obtained in parallel with the output of the sense amplifier 26. These three signals are summed in a summing unit 30 in a weighted form. For example, the rotation output of the summing unit 30 can be set as: reference power + (Vset / x) / Vcor / y) ′, and its fork and y are set and corrected according to the desired power.
選取。ve(^Vset不必與參考電壓—樣精痛,因為要除以X 和y ’其所占比例就相應較小。 7求矛單元30輸出的加權電壓信號通常被視為預先設定 的電池電壓門限信號。轉導放大器32將求和單元30的輸出 與電池電壓相比較。轉導放大器32輸出為一個電塵控制信 β忒電壓控制信號與超出求和單元確定的門限值的電 池電C里成正比。如前面電流控制部分所述,若電池電壓 超出长和單元確定的門限值,信號64則不為零。由於放大 _ 器32的輸出(在節點60)與電流源42的負極連接,放大器32 兔出的任何“號64都將減弱電流源42的電流。接著,該操 作將減小Ccomp 38上的電壓,從而減小pwm信號68的工作 週期’並減小提供給電池的充電電流。由於放大器32的輸 出L就64與輸入值成正比,所以工作週期可被動態調整以 · 達到期望的電池電壓。 功率控制 · 功率控制部分(電路)包括一個感測放大器34和一個轉導 93941.doc -10- M266636 放大裔36。功率控制部分用於減小降壓型轉換器的工作週 J攸而在DC私源需要給電源相連的有源系統72(例如攜帶 :電子裝置)提供更大功率日夺,減小提供給電池的充電電 流。該有源系統與跨接在感測電阻Rsac22上的充電系統 $聯。由於電源14所提供的總功率不變,所以在一個設計 凡善的系統中,冑源系統和電池充電電路的負冑需求是平 衡的。功率控制部分通過減少充電電流來滿足有源系統的 需求,從而確保有源、系統(在功率需求方面)享有優先權。因 此,功率控制部分產生一個功率控制信號66,該功率控制 U與電池充電為和有源系統所需功率超出門限^一此的 里成正比。lac—llm通常是電源14可提供的最大值。例如, 电源14此同時給一個有源系統(未示出)供電和給電池提供 充電電流。如果該攜帶型系統需要更多功率,貝丨丨電池的充 電電*相應地減小以保證該系統的需求。電源丨4通常定義 為DC電源,匕可以是由AC/DC轉接器供電的。由於ο。電源 μ提供的輸出電壓值是恒定的,通過監控和限制Dc電源的 電流輸出就足以限制DC電源的功率。 感測放大器34監控由電源14提供給感測阻抗Rsac 22的轉 f裔總電流。轉接器(電源)總電流包括:系統電流(例如, 提供給與電源14連接的攜帶型系統(未示出)的電流)和電池 充電杰電路12控制的充電電流(等於電池的充電電流除以 降壓型轉換器的工作週期)。感測電阻Rsac 22上的信號與轉 接器總電流成正比。轉導放大器36接收感測放大器34的輸 出七唬,並將该信號與一個功率門限信號Iacjim相比較。 93941.doc M266636 如此’若感測電阻上的信號大於lac—lim,就表明系統需要 更大的功率,電池充電電流就應相應地減小。當然,該限 制信號可以是固定的,或者可以根據系統的動態功率所需 和/或電源的變化進行調整。轉導放大器的輸出為功率控制 信號66,該信號在電池充電器和活動系統所需功率超出門 限值lac—lim之前為零。 若電池充電器和活動系統所需功率超出門限值Iac_Hm, 放大36則發出一個相應比例的功率控制信號66。由於放 大器的輸出(在節點60)與電流源42的負極相連,所以放大器 36發出的任何信號都將減弱電流源的電流。接著,該過程 將減小Cc〇mp 38上的電壓,從而減小Pwm信號68的工作週 期,並減小提供給電池的充電電流。由於放大器36的輸出 4口號66與輸入值成正比,所以工作週期作為平衡系統與電 池兩者間的功率需求的一個函數可被動態調整,從而使dc 電源14不會超過最大輸出功率。 圖3所示為說明PWM信號68(下圖)和補償電容上的電壓 Vccomp與鋸齒波信號44相交(上圖)的時序圖7〇。在本示範 性實施例中,Vccomp實質上是一個Dc信號,該信號的振幅 通過電机源42调向,通過電流控制信號62、電壓控制信號 64或功率控制信號66調低。換言之,Vcc〇mp的值(振幅)為 乜號(42-(62, 64和/或66))之和。通過下移Vcc〇mp的值,pWM 信號的工作週期將減小。 因此,採用本創作,PW]MKt號的工作週期可以通過一個 差刀補偵電谷進行調整。在示範性實施例中,pwM可以作 93941.doc M266636 為電池充電電流、電池電壓和/或系統功率所需的函數被動 態調整。圖1所示的拓撲結構是一個電壓模式拓撲結構。電 壓杈式拓撲結構意味著感測電阻Rsch置於降壓型轉換器的 外側,因此,流經該電阻的電流是一個0(::值(無漣波)。 在另一個實施例中,如下所述,可以採用電源管理電路 12a控制提供給可充電電池16的充電功率等級。為實現該功 月b 了採用電源管理電路12a直接控制一個可控DC電源(圖 4A)或者一個DC/DC轉換器(圖4B),其中每個實施例中的相 關DC電源可能不提供一個固定的輸出電壓值。 圖4A所示為具有本創作的電源管理電路i2a的電子裝置 400,該電源管理電路控制提供給可充電電池的電池充電參 數,例如,電池充電電流和/或電壓。在圖4A的實施例中, 通過控制可控DC電源404的輸出功率等級實現該功能。電 子袭置400可以疋包括筆記型電腦、行動電話、個人數位助 理此類的任何電子裝置。採用來自可控〇〇電源4〇4的電能 以多種杈式給系統72、電池丨6供電或者同時給他們供電。 電池16包括一個或多個電池。電池16可以是如鋰離子電 池、鎳編電池、鎳氫電池等種類的可充電電池。 可& DC電源404可以是本領域熟知的任何種類的電源, 例如,一個接收AC輸入電壓並根據一個適當的控制信號提 供一個可控DC輸出的可控AC/DC轉接器。控制信號可由電 源官理電路12a沿路徑421發出。從電源管理電路12a到可控 DC電源404的路徑421可以是一個使用本領域所知的任何 通訊協定的獨立路徑。例如,可控Dc電源4〇4可配置有一 93941.doc 13 M266636 :接收來自電源管理電路12a的串列控制信號的串列通信 U RS232)。另外’可控沉電源4〇4也可配置有一個接 收-個類比控制信號的類比介面。這樣就不需要獨立路徑 “例如,來自電源管理電路12&的控制信號可以被調變 “电原線25上。這種情況下,電源管理電路心和可控 電源404都配備有本領域所知的調變/解調線路,以產生在 電源線25上傳輸的回授控制信號。 私源官理電路12a包括一個功率控制電路471和一個控制 信號產生電路473。通常,功率控制電路471給控制信號產 生電路473提供-個代表可控DC電源404輸出功率等級的 ㈣控制信號。控制信號產生電路473包括多種誤差信號放 大器,用於將信號(例如,功率控制信號)與為每個被監控參 數而設置的相關門限值作比較。類似於前面詳述的^中的 電路12。例如,誤差信號放大器可以排列成類比,,線或 (Wired-OR)”拓撲結構,這樣,首先檢測到出現超出相關最 大1 I?值h況的5吳差#唬放大器將給可控轉接器命令信 唬接著適當的控制信號被傳送給可控Dc電源404,例 如,在達到一個最大門限時,用於減小—個輸出功率參數。 圖4B所示為具有本創作電源管理電路的電子裝置 她的另-個示範性實施例,該電源管理電路用來控制電 池充電參數,例如,通過控制㈣沉轉換器18控制電池充 電電流和/或電池充電電壓。DC電源4〇6通過dc/dc轉換器 18給電池提供充電電能。DC電源4〇6的輸出電壓值可隨時 間變化。例如,DC電源4G6是-個太陽能電源,它的輸出 93941.doc •14· M266636 电壓值ik著電源接收到的光線多少而變化。Dc電源還可能 是一個燃料電池。DC電源406提供的固定輸出電壓值可能 與系統期望的電壓值不同。例如,電子裝置4〇(^的用戶使 用固定輸出電壓值為15伏的電源,而電子裝置4〇〇a的期望 電源為20伏。作為本創作的優選實施例,在不超過該電源 最大輸出電流的情況下,電源管理電路12使這種輸出電壓 值變化的DC能夠提供最大的功率。 控制信號產生電路473給DC/DC轉換器18發出一個控制 “號。该控制信號可以是如前所述的一個pwM信號68,該 DC/DC轉換器18可以是本領域所知的任何〇(::/1)(:轉換器。 圖4B的其他元件和操作與前面圖4A中的描述類似。因此, 類似電路元件標號也是同樣地標注。為簡明起見,這裏就 不在重複描述類似的元件或操作。 圖5A所示為電源管理電路12a的一個實施例的示範性電 路圖,圖中描述了控制信號產生電路473的詳細情況。控制 乜號產生電路473包括用於將各種信號與相關門限值比較 的多種誤差信號放大器36、472、28和32。這裏,控制信號 產生電路473的各種元件和操作與前面圖i中描述的電路12 的操作類似。因此,類似電路元件標號也是同樣地標注。 為簡明起見,這裏就不在重複描述類似的元件或操作。 由於可控DC電源404的輸出是變化不定的,因此控制信 唬產生電路473可同時包括一個限流誤差信號放大器36和 一個功率限制誤差信號放大器472。該限流誤差信號放大器 36將一個代表可控DC:電源4〇4輸出電流的信號與一個電流 93941.doc M266636 -m相比較。功率限制誤差信號放大器π]將一個代 表可控DC電源4〇4輸出功率的信號與一㈣率門限值相比 較。當電源的輪出電流達到電流門限值或者輪出功率達到 f率門限值’控制信號產生電路473就將減小由比較器4〇 提ί'的PWM控制信號的工作週期。這時,可控電源_ 回應PWM控制信號從而減小其輸出功率。當然,比較器也 可以被其他電路所代替,只要該電路能夠將補償電容似 的電屡與來自振盈器44的鑛齒波信號作比較,並能提供控 制可控DC電源的輸出電壓的任何類型的控制信號(如,類比 或數位信號)。 功率控制電路471包括感測放大器34,該感測放大器與感 測電阻22相連以提供一個代表可控DC電源4〇4電流輸出的 信號。功率控制電路471進一步包括一個功率轉換電路 577。功率轉換電路577從感測放大器34輸出端接收代表可 控DC電源404電流輸出的信號、和另一個代表可控dc電源 404電壓輸出的彳§號VAD,並給誤差信號放大器472提供二 個代表可控DC電源404輸出功率大小的功率控制信號。 圖5B所不為圖4B的另一個實施例,其中電源管理電路 12a給DC/DC轉換器18提供一個控制信號以控制提供給可 充電電池16的充電參數。DC電源406的輸出電壓值可能隨 時間變化,如前面圖4B中的具體描述。控制信號可以是如 前所述的一個PWM信號,DC/DC轉換器18也可以是本領域 所公知的任何類型的DC/DC轉換器。圖5B的其他元件和授 作與前面圖5 A中的描述類似。因此,類似電路元件標號也 93941.doc -16- M266636 是同樣地標注 元件或操作。 為簡明起見,這裏就不在重複描述類似的 圖6所示為圖5 A和圖5B中示範性功率控制電路47 i和功 率轉換電路577的具體方塊圖。該電路給控制信號產生電路 473中的层差信號放大器%提供電流信號,給誤差信號放大 器,提供功率信號。功率轉換電路577包括類比或數位乘 法拓撲結構的標準配置。然而’為了達到期望的精確度, 這二方去還需要加以修整。功率轉換電路577還可以包括一 個斜波振盈器608、一㈣較器61〇、-個乘法器612和一個 濾波器614,下面將具體描述。 通常,功率控制電路471包括感測放大器34,該感測放大 器監控感測電阻22上的壓降並將一個IAD信號提供給比較 器610的同相輸入端eIAD信號可以是一個代表來自dc電源 404或406電流的DC電壓信號。一個頻率固定的鋸齒波信號 會由斜波振盪器608提供給比較器610的反相輸入端。控制 仏號產生電路473中的斜波振盪器44的輸出也可以提供這 一信號給比較器610。這樣,比較器61〇就提供了一個轉接 器電流脈寬調變信號IAD_PWM,其中信號脈寬或工作週期 基於IAD信號值。 乘法器612將IAD一PWM與代表電源404或406的輸出電壓 值的VAD信號相乘,從而獲得一個p〇wer_pwM信號。 power—PWM信號可以是一個具有代表dc電源404或406電 流輸出和具有代表DC電源404或406電壓輸出的脈寬調變 信號。如此,power—PW1V[信號就代表DC電源404或406的暫 93941.doc -17- M266636 態輸出功率。接著,p〇wer 一 PWM信號輸入到濾波器614,然 後遽波器輸出一個具有DC電壓值的功率信號。從濾波器 6 Η輸出的該功率信號接著提供給控制信號產生電路473的 誤差信號放大器472。若是暫態輸出功率值上升並超過預定 的功率門限值,誤差信號放大器472就使比較器4〇提供一個 PWM信號以減小提供給電池的充電參數。該pwM信號可以 提供給可控DC電源404或DC/DC轉換器18。 功率控制電路471也可以包括一個電流控制電路6〇6。電 流控制電路606包括將IAD信號提供給控制信號產生電路 473的感測放大器34。控制信號產生電路473包括一個誤差 #唬放大器36,誤差信號放大器接收該IAD信號並將其與一 個電流門限值相比較。若是輸出電流值增大並超出一個預 定的電流門限,控制信號產生電路473就提供一個控制信號 以減小一個充電參數,例如,提供給電池丨6的充電電壓。 圖7所示為各種彳吕號的時序圖,進一步解釋了圖6的功率 控制電路47卜時序圖708示出了比較器61〇接收的兩個輸入 信號,或者說是IAD信號711和鋸齒波信號714。鋸齒波信號 714可以是一個頻率固定的信號,這樣鋸齒波信號714和IAD 2號711的相交點就定義了產生的IAD一PWM信號716的脈 寬或工作週期。例如,tl時間與t2時間的時間間隔代表一個 週期。IAD—PWM信號716在tl時間與t2時間内為,,〇,,,在口 時間與t3時間内為”r。因此,t2時間與β時間的時間間隔 定義了來自比較器610的IAD—PWM信號716的脈寬或稱工 作週期。 93941.doc -18- M266636 在圖708中,當IAD信號711從圖中位置上移,合成 1八0—?界]\4信號716的脈寬就增大。類似地,當1八1)信號711 從圖中位置下移,合成IAD一PWM信號716的脈寬就減小。 1八0—?%:\1信號716的振幅為固定值又。 接著’ IAD 一 PWM信號716輸入到乘法器612並與代表電源 404或406的輸出電壓值的VAD信號相乘。這樣就得到乘法 器612的輸出信號或稱powerJPWM信號7 j 8。p〇wer—pWM信 唬718因此具有代表電源4〇4(譬如一可控轉接器)電流輸出 0 值的脈寬和代表可控轉接器電壓輸出值的振幅y。接著, power一PWM信號718輸入到濾波器614以提供具有恒定DC 功率值的功率信號720。該功率信號也可以被輸入到控制信 號產生電路473,例如,輸入到電路473的誤差信號放大器 472 ° 圖8所示為圖4A、圖4B、圖5A、圖5B、圖6和® 7的電源 官理電路12a的一個示範性實施例的具體電路圖。圖8的元 件與前面圖6中描述的元件標記類似。為簡明起見,這裏就 φ 不在重複描述該元件。 感測放大器34可以是本領域任何類型的感測放大器。在 圖8的實施例中,感測放大器34包括一個由一個運算放大器 6a、增益電阻以和们控制的電晶體Μρι。與圖2示意的實施 例類似,感測放大器34能降低對高共模電壓抑制的要求。 感測放大器34提供IAD信號。 電彳木樣電路807可以包括一對電阻R3、R4,形成一個 從而將可控轉接益的輸出電壓的按比例縮小並提 93941.doc 19 M266636 供給運算放大器la的同相輸入端。運算放大器“的輸出回 授到反相輸入端。本領域的技術人員應認識到,還可以採 用多種電壓採樣電路將VAD信號提供給乘法器612。 乘法裔612可以是一個功率緩衝器,有效地將IAD—pwM 輸入k唬的振幅轉換為代表可控轉接器電壓值的振幅。這 樣,在功率緩衝器的輸出端就得到p〇wer_pWM信號。濾波 器614可以是一個Rc濾波器。它由一個串連在濾波器的輸 入與節點814之間的電阻和一個連接在節點814與地之間的 電谷CF組成。RC濾波器接收p〇wer_pWM輸入信號並提供具 有代表DC電源輸出功率值的dc電壓值的輸出功率信號。 圖9所示為電源管理電路丨2b的另一實施例。電源管理電 路12b包括一個存在判斷電路9〇3,用於將dc電源902的電 壓值與可選擇電壓門限值作比較,下面將詳述。這樣,單 個電源管理電路12b就可以使用具有相應多個固定輸出電 壓值的多種DC電源902。 通常’電源管理電路12b包括一個控制信號產生電路905 和一個存在判斷電路903。控制信號產生電路905包括電路 91 6中的多種誤差信號放大器,用於將信號與每個監控參數 的相關門限值作比較,類似於前面圖1中電路12的具體描 述。例如,多個誤差信號放大器可以配置成類比”線或,,拓 撲結構’這樣首先檢測到出現超出相關最大門限值情況的 誤差信號放大器將控制提供給DC/DC轉換器904的命令信 號。控制信號產生電路可以包括PWM線路91 5,類似於圖1 中給DC/DC轉換器904提供PWM控制信號的電路1 2。例如, 93941.doc -20- M266636 若是其中一個誤差信號放大器檢測到出現超出相關最大門 限值情況,減小PWM控制信號的工作週期就可以減小 DC/DC轉換器904的一個輸出功率參數。 控制信號產生電路905還可以包括電路916中本領域所熟 知的選擇器線路,用於提供一個選擇器控制信號,該控制 仡唬根據各種監控狀態和/或來自主機電源管理單元 (PMU)912的命令至少可以控制開關SW1、SW3*sw4的狀 態。 通常,存在判斷電路903將DC電源902的電壓值與一個可 選電壓門限值比較。DC電源9〇2可以是提供-個固定輸出 電壓值的任何類㈣DC電源、,例如,有目定沉輸出電壓的 ACDC轉接。可以採用多個Dc電源提供相關的多個固定 輸出DC電壓值。例如’―個从沉轉接器提供15伏沉輸 出,而另一個ACDC轉接器提供一個2(ΗλΓ)(::輸出。電壓門 限值V—SEL根據DC電源902的期望固定輸出電壓值而選 定。選定的電壓門限值V—SEL通常是小於期望輸出電壓值 的標準值。因此,若是DC電源存在,並且該dc電源提供了 一個符合期望固定電壓佶i μ # % & 值要求的電壓值,比較操作就提供 一個表示該情況的信號。 為執行該比較操作’存在判斷電路903包括-個比較器 93 1 „亥比較器在其同相輸入端接收一個代表%電源術電 壓值的電壓信W_DC。比較器931在其反相輸入端接收可 選電限值V_SEL。若%電源的電壓值超出選定門限 值比車乂 則將㈤1輪出信號提供給控制信號產生電路 93941.doc *21 - M266636 905,表明存在dc雷、、店* α ^ 、 /原並且DC電源提供的輸出電壓符合要 二以通過多種方式選擇可選電㈣限值並將其提供給比 較裔931。例如,可選門限電壓電路932可以提供可選門限 值包【illGA中’可選門限電壓電路932包括接收一個參 考電壓值V—咖並提供選定電射1限值V—SEL的-個電阻 網路麵。電阻網路_4包括按本領域熟知的方法排列的 個或夕個電阻’例如’為達到期望值或選定門限電壓值 而排列成分壓、網路。另夕卜,電阻網路1〇〇4包括至少一個可 校準到期望阻值的可調電阻元件。電阻元件可以採用本領 域熱知的多種方法進行校準(例如,鐳射校準”這樣通過電 阻網路1004與接收到的參考電壓V—REF相結合,就能提供 一個期望門限電壓值。 另外,可選門限電遷電路932可以包括一個記憶元件 1006,如圖10B所示。記憶元件1〇〇6可以是存儲數位資訊的 任何類型記憶元件,例如,隨機記憶體(ram卜可程式化 唯讀記憶體(PROM)、可擦可程式化唯讀記憶體(EpR⑽)、 電氣可擦拭可程式化唯讀記憶體(EEpRC)M)、動態隨機存取 記憶體(DRAM)、磁片(如軟碟和硬碟)和光碟(如 CD-R0M),當然也不限於此。記憶元件1〇〇6可以是一次性 可私式化記憶體或者是多次可程式化記憶體,這取決於採 用的記憶元件類型和再可程式化時記憶元件的存取方式。 一旦期望類比門限電壓值可程式化資料存儲在記憶元件 中,則可以採用數模轉換器(DAC) 1008將存儲的數位信號轉 93941.doc -22- M266636 換為代表選定電壓門限值v 一 s E L的類比電壓信號。 卜^還可以由主機PMU 912通過主機匯流排98〇給電源 咏黾路m發出指示,從而選擇選定電壓門限值v SEL。 電源管理電路i 2 b的主機介面9 i 3通過内部信號匯流排9 8 2 將信號提供給可選電壓門限電路932,這樣期望門限值就可 以由主機PMU 912進行動態可程式化。 因而,這裡提供一個電路以控制提供給可充電電池的一 個充電減。該電路包括—個功率控制電路,用於提供— 個代表DC電源功率輸出值的功率控制信號,和—個控制信 號產生電路’用於在功率輸出值超出一個預定功率門限值 時減小提供給電池的充電參數。 提供的另-個電路包括一個存在判斷電路,用於將具有 —個ms輸出電壓纟的%電源的電壓值與可選電壓門限 值相比較,並且若是電壓值超出可選電壓門限值時提供一 個表不DC電源存在的存在信號。該電路還包括—個控制信 號產生電路’ 5亥控制信號產生電路至少接收並響應該存纟馨 信號並進一步發出一個控制信號。 本貝或的技術人員應4識到本創作可以有許多修改。對 於本領域技術人員顯而易見的修改以及其他修改都被視為 〇各在本創作的精神和範圍之内,本創作僅受限於附屬的 申請專利範圍。 【圖式簡單說明】 ^ 熟習此技藝之人士雁γ , 應了解,雖然以下具體描述將作為較 仫貝轭例和方法’本發明並不受限於這些實施例和方法。 93941.doc -23- M266636 僅受限於附屬的申 相反的,本發明具有廣泛的應用範圍 請專利範圍。 合圖示 並且其 本發明的其他特性和優點將在以下具體描述並句 的說明中更為明顯,其"目同數字表示相同元件, 中: 圖1所示為本發明的轉性電池充電祕的方塊圖; 圖2所示為本發明的示範性放大電路; 圖3所示為用於產生圖i系統中pwM信號之振盪器信號和 DC信號的時序圖; 圖4 A所示為另—實施例的具有電源管理電路的-個電子 裝置的方塊圖,其中電源管理電路提供-個控制信號給可 控DC電源; 圖4B所示為圖从的具有電源管理電路的另一電子裝置 的方塊圖’其巾電源管理f路提供—個控制信號給DC/DC 轉換器; 圖5A所示為圖从的電源管理電路中控制信號產生電路 部分的詳細方塊圖; 圖5B所示為圖4B的電源管理電路中控制信號產生電路 部分的詳細方塊圖; 圖6所不為圖5A和圖5B的電源管理電路中電源控制電路 部分的詳細方塊圖; 圖7所示為圖6中各種信號與時間的關係圖; 圖8所示為圖6中電源管理電路的—個實施例的示範性電 路圖; 93941.doc -24- M266636 圖9所不為採用一個固定電壓輸出的DC電源和具有比較 DC电源电壓與可選擇電壓門限位準電路的電子裝置的方 塊圖; 圖10A和10B所示為圖9中可選擇電壓門限電路的示範性 實施例的方塊圖。 【主要元件符號說明】 10 電池充電器系統 12 電池充電器電路 12a、12b 電源管理電路 14 、 902 電源 16 電池 18 、 904 直流至直流轉換器 20、48 開關 22、24 感測電阻 25 電源線 26、34 感測放大器 28 、 32 、 36 轉導放大器 46、1 a、6a 運算放大器 472 誤差信號放大器 30 求和單元 38 補償電容 40 比較器 42 電流源 44 振盪器Select. ve (^ Vset does not have to be as painful as the reference voltage, because its proportion is relatively small when divided by X and y '. 7 The weighted voltage signal output from the spear unit 30 is usually regarded as a preset battery voltage threshold The transduction amplifier 32 compares the output of the summing unit 30 with the battery voltage. The output of the transduction amplifier 32 is an electric dust control signal β 忒 The voltage control signal is formed by the battery voltage C exceeding the threshold determined by the summing unit. Proportional. As described in the current control section above, if the battery voltage exceeds the threshold determined by the long and unit, the signal 64 is not zero. Because the output of the amplifier 32 (at node 60) is connected to the negative pole of the current source 42, the amplifier Any “No. 64” produced by the 32 rabbits will weaken the current of the current source 42. This operation will then reduce the voltage on Ccomp 38, thereby reducing the duty cycle of the pwm signal 68 'and reducing the charging current provided to the battery. Since the output L of the amplifier 32 is directly proportional to the input value, the duty cycle can be dynamically adjusted to achieve the desired battery voltage. Power Control The power control section (circuit) includes a sense Sense amplifier 34 and a transduction 93941.doc -10- M266636 amplifier 36. The power control part is used to reduce the working week of the step-down converter. You need to connect the active system 72 ( For example, carry: electronic device) to provide more power and reduce the charging current provided to the battery. This active system is connected to the charging system connected across the sense resistor Rsac22. Because the total power provided by the power supply 14 is not Change, so in a well-designed system, the negative demand of the source system and the battery charging circuit is balanced. The power control part reduces the charging current to meet the needs of the active system, thereby ensuring that the active, system (in In terms of power demand), the power control part generates a power control signal 66, which is proportional to the battery charge and the power required by the active system exceeds the threshold ^ lac_llm is usually The maximum value that the power supply 14 can provide. For example, the power supply 14 simultaneously powers an active system (not shown) and provides charging current to the battery. If the portable system needs more Power, the battery charge * is reduced accordingly to ensure the system's needs. Power supply 4 is usually defined as a DC power supply, which can be powered by an AC / DC adapter. Because ο. Power provided by μ The output voltage value is constant, and it is sufficient to limit the power of the DC power supply by monitoring and limiting the current output of the Dc power supply. The sense amplifier 34 monitors the total current of the converter from the power supply 14 to the sensing impedance Rsac 22. The adapter ( Power supply) total current includes: system current (for example, current provided to a portable system (not shown) connected to power supply 14) and charging current controlled by battery charging circuit 12 (equal to battery charging current divided by step-down conversion) Device's duty cycle). The signal on the sense resistor Rsac 22 is proportional to the total converter current. The transconductance amplifier 36 receives the output of the sense amplifier 34 and compares this signal to a power threshold signal Iacjim. 93941.doc M266636 So, if the signal on the sensing resistor is greater than lac-lim, it means that the system needs more power, and the battery charging current should be reduced accordingly. Of course, the limit signal can be fixed or can be adjusted according to the dynamic power requirements of the system and / or changes in the power source. The output of the transconductance amplifier is a power control signal 66, which is zero before the power required by the battery charger and the active system exceeds the threshold lac_lim. If the power required by the battery charger and the active system exceeds the threshold Iac_Hm, the amplified 36 sends a power control signal 66 of a corresponding proportion. Since the output of the amplifier (at node 60) is connected to the negative terminal of the current source 42, any signal from the amplifier 36 will weaken the current of the current source. This process will then reduce the voltage on the Comp 38, thereby reducing the duty cycle of the Pwm signal 68 and reducing the charge current provided to the battery. Since the output 4 slogan 66 of the amplifier 36 is proportional to the input value, the duty cycle can be dynamically adjusted as a function of the power requirements between the balancing system and the battery, so that the dc power source 14 does not exceed the maximum output power. Figure 3 shows a timing diagram 70 illustrating the intersection of the PWM signal 68 (bottom) and the voltage Vccomp on the compensation capacitor with the sawtooth wave signal 44 (top). In the present exemplary embodiment, Vccomp is essentially a Dc signal, the amplitude of which is adjusted by the motor source 42 and reduced by the current control signal 62, the voltage control signal 64 or the power control signal 66. In other words, the value (amplitude) of Vcc0mp is the sum of 乜 (42- (62, 64, and / or 66)). By shifting down the value of Vcc0mp, the duty cycle of the pWM signal will be reduced. Therefore, with this creation, the duty cycle of PW] MKt can be adjusted by a differential knife compensation valley. In an exemplary embodiment, pwM can be passively adjusted as a function of the battery charging current, battery voltage, and / or system power required by 93941.doc M266636. The topology shown in Figure 1 is a voltage-mode topology. The voltage bifurcated topology means that the sense resistor Rsch is placed outside the buck converter, so the current flowing through the resistor is a 0 (:: value (no ripple). In another embodiment, as follows As mentioned above, the power management circuit 12a can be used to control the charging power level provided to the rechargeable battery 16. In order to achieve this function b, the power management circuit 12a is used to directly control a controllable DC power supply (Figure 4A) or a DC / DC conversion Device (FIG. 4B), wherein the related DC power supply in each embodiment may not provide a fixed output voltage value. FIG. 4A shows an electronic device 400 having the power management circuit i2a of the present invention, which power management circuit controls the supply The battery charging parameters of the rechargeable battery, for example, the battery charging current and / or voltage. In the embodiment of FIG. 4A, this function is achieved by controlling the output power level of the controllable DC power source 404. The electronic attack device 400 may include notes Any electronic device such as a personal computer, mobile phone, personal digital assistant, etc. It uses power from a controllable power source 404 to supply the system 72 and battery 6 in a variety of ways. Or power them at the same time. The battery 16 includes one or more batteries. The battery 16 may be a rechargeable battery such as a lithium ion battery, a nickel braided battery, a nickel metal hydride battery, and the like. The DC power source 404 may be well known in the art. Any kind of power source, for example, a controllable AC / DC adapter that receives an AC input voltage and provides a controllable DC output based on an appropriate control signal. The control signal can be sent by the power management circuit 12a along path 421. From the power source The path 421 from the management circuit 12a to the controllable DC power source 404 may be an independent path using any communication protocol known in the art. For example, the controllable DC power source 404 may be configured with a 93941.doc 13 M266636: Receive from the power management Serial communication signal of the serial control circuit 12a (U RS232). In addition, the controllable sink power supply 404 can also be configured with an analog interface for receiving an analog control signal. This eliminates the need for a separate path "for example, the control signal from the power management circuit 12 & can be modulated" on the electrical source line 25. In this case, both the power management circuit core and the controllable power supply 404 are equipped with a modulation / demodulation circuit known in the art to generate a feedback control signal transmitted on the power supply line 25. The private source management circuit 12a includes a power control circuit 471 and a control signal generating circuit 473. In general, the power control circuit 471 provides a control signal to the control signal generating circuit 473 which represents the output power level of the controllable DC power source 404. The control signal generating circuit 473 includes various error signal amplifiers for comparing a signal (for example, a power control signal) with a relevant threshold value set for each monitored parameter. This is similar to circuit 12 in ^ detailed above. For example, the error signal amplifiers can be arranged in an analog, wire-OR (Wired-OR) topology. In this way, a 5 W difference that first detects a condition that exceeds the relevant maximum 1 I? Value will be controlled. The controller command signal is then transmitted to the controllable DC power supply 404, for example, when a maximum threshold is reached, used to reduce an output power parameter. Figure 4B shows an electronic device with the power management circuit of the present invention. For another exemplary embodiment of the device, the power management circuit is used to control battery charging parameters, for example, by controlling the sink converter 18 to control the battery charging current and / or the battery charging voltage. The DC power source 406 is controlled by dc / The dc converter 18 provides charging power to the battery. The output voltage value of the DC power source 406 can change with time. For example, the DC power source 4G6 is a solar power source, and its output is 93941.doc • 14 · M266636 The voltage value ik is the power source The amount of light received varies. The DC power supply may also be a fuel cell. The fixed output voltage value provided by the DC power supply 406 may be different from the voltage value expected by the system. For example, electronic devices A user of 40% uses a power supply with a fixed output voltage value of 15V, and the expected power supply of the electronic device 400A is 20V. As a preferred embodiment of this creation, under the condition that the maximum output current of the power supply is not exceeded The power management circuit 12 enables the DC whose output voltage value changes to provide the maximum power. The control signal generating circuit 473 sends a control "signal" to the DC / DC converter 18. The control signal may be a pwM as described above. Signal 68, the DC / DC converter 18 may be any 0 (:: / 1) (: converter known in the art. The other elements and operations of Figure 4B are similar to those described previously in Figure 4A. Therefore, similar circuits The component numbers are also labeled the same. For the sake of brevity, similar components or operations are not repeatedly described here. FIG. 5A shows an exemplary circuit diagram of an embodiment of the power management circuit 12a, and the control signal generation circuit 473 is described in the figure. Details of the control signal generation circuit 473 include various error signal amplifiers 36, 472, 28, and 32 for comparing various signals with related threshold values. Here, the control signal generation The various elements and operations of circuit 473 are similar to the operation of circuit 12 described earlier in Figure i. Therefore, similar circuit element numbers are also labeled the same. For simplicity, similar elements or operations are not repeated here. The output of the DC power supply 404 is variable, so the control signal generation circuit 473 may include both a current-limiting error signal amplifier 36 and a power-limiting error signal amplifier 472. The current-limiting error signal amplifier 36 will represent a controllable DC: The signal of the output current of the power supply 4 is compared with a current of 93941.doc M266636-m. The power limit error signal amplifier π] compares a signal representing the output power of the controllable DC power supply 4 with a threshold value. When the wheel output current of the power supply reaches the current threshold value or the wheel output power reaches the f-rate threshold value, the control signal generating circuit 473 will reduce the duty cycle of the PWM control signal provided by the comparator 40. At this time, the controllable power supply_ responds to the PWM control signal to reduce its output power. Of course, the comparator can also be replaced by other circuits, as long as the circuit can repeatedly compare the electricity of the compensation capacitor with the mineral tooth wave signal from the vibrator 44 and can provide any control of the output voltage of the controllable DC power supply. Type of control signal (for example, analog or digital signal). The power control circuit 471 includes a sense amplifier 34 which is connected to the sense resistor 22 to provide a signal representative of the current output of the controllable DC power source 40. The power control circuit 471 further includes a power conversion circuit 577. The power conversion circuit 577 receives a signal representing the current output of the controllable DC power source 404 from the output terminal of the sense amplifier 34 and another 彳 § VAD representing the voltage output of the controllable DC power source 404, and provides two representatives to the error signal amplifier 472. The controllable DC power source 404 outputs a power control signal with a power level. FIG. 5B is not another embodiment of FIG. 4B, in which the power management circuit 12a provides a control signal to the DC / DC converter 18 to control the charging parameters provided to the rechargeable battery 16. The output voltage value of the DC power supply 406 may change with time, as described in detail in FIG. 4B. The control signal may be a PWM signal as described above, and the DC / DC converter 18 may also be any type of DC / DC converter known in the art. The other elements and operations of Figure 5B are similar to those described earlier in Figure 5A. Therefore, similar circuit components are also labeled 93941.doc -16- M266636 with the same components or operations. For the sake of brevity, similar descriptions are not repeated here. Fig. 6 shows a specific block diagram of the exemplary power control circuit 47i and the power conversion circuit 577 in Figs. 5A and 5B. This circuit supplies a current signal to the step signal amplifier% in the control signal generating circuit 473 and a power signal to the error signal amplifier. The power conversion circuit 577 includes a standard configuration of an analog or digital multiplication topology. However, in order to achieve the desired accuracy, the two parties need to be trimmed. The power conversion circuit 577 may further include a ramp-wave oscillator 608, a comparator 61, a multiplier 612, and a filter 614, which will be described in detail below. In general, the power control circuit 471 includes a sense amplifier 34 that monitors the voltage drop across the sense resistor 22 and provides an IAD signal to the non-inverting input of the comparator 610. The eIAD signal may be a signal from the dc power source 404 or DC voltage signal with 406 current. A fixed-frequency sawtooth signal is provided by the ramp oscillator 608 to the inverting input of the comparator 610. The output of the ramp-wave oscillator 44 in the control signal generation circuit 473 can also provide this signal to the comparator 610. In this way, the comparator 61 provides an adapter current pulse width modulation signal IAD_PWM, where the signal pulse width or duty cycle is based on the IAD signal value. The multiplier 612 multiplies the IAD_PWM by the VAD signal representing the output voltage value of the power source 404 or 406, thereby obtaining a power_pwM signal. The power-PWM signal may be a pulse width modulated signal having a current output representing a dc power source 404 or 406 and a voltage output representing a DC power source 404 or 406. In this way, the power-PW1V [signal represents the temporary output power of the DC power source 404 or 406 93941.doc -17- M266636. Next, a PWM signal is input to the filter 614, and then the wave filter outputs a power signal having a DC voltage value. This power signal output from the filter 6 'is then supplied to the error signal amplifier 472 of the control signal generating circuit 473. If the value of the transient output power increases and exceeds a predetermined power threshold, the error signal amplifier 472 causes the comparator 40 to provide a PWM signal to reduce the charging parameters provided to the battery. This pwM signal can be supplied to a controllable DC power source 404 or a DC / DC converter 18. The power control circuit 471 may also include a current control circuit 606. The current control circuit 606 includes a sense amplifier 34 that supplies an IAD signal to the control signal generating circuit 473. The control signal generating circuit 473 includes an error amplifier 36, which receives the IAD signal and compares it with a current threshold value. If the output current value increases and exceeds a predetermined current threshold, the control signal generating circuit 473 provides a control signal to reduce a charging parameter, for example, the charging voltage provided to the battery 6. FIG. 7 shows timing diagrams of various signals, further explaining the power control circuit 47 in FIG. 6. The timing diagram 708 shows the two input signals received by the comparator 61, or the IAD signal 711 and the sawtooth wave. Signal 714. The sawtooth wave signal 714 may be a fixed-frequency signal. In this way, the intersection of the sawtooth wave signal 714 and the IAD No. 2 711 defines the pulse width or duty cycle of the generated IAD-PWM signal 716. For example, the time interval between time t1 and time t2 represents one cycle. The IAD_PWM signal 716 is, r, 0, t in time t1 and time t2, and “r” in port time and time t3. Therefore, the time interval between time t2 and time β defines the IAD_PWM from the comparator 610 The pulse width or duty cycle of the signal 716. 93941.doc -18- M266636 In Figure 708, when the IAD signal 711 is shifted up from the position in the figure, the 1-80-? Boundary is generated] \ 4 The pulse width of the signal 716 increases Similarly, when the signal 711 moves down from the position in the figure, the pulse width of the synthesized IAD-PWM signal 716 decreases. 180 —?%: The amplitude of the signal 716 is a fixed value again. Then, the IAD-PWM signal 716 is input to the multiplier 612 and multiplied by the VAD signal representing the output voltage value of the power source 404 or 406. In this way, the output signal of the multiplier 612 or the powerJPWM signal 7 j 8 is obtained. The pWM signal 718 therefore has a pulse width that represents the current output 0 of the power supply 4 (such as a controllable adapter) and an amplitude y that represents the voltage output value of the controllable adapter. Then, a power-PWM signal 718 is input to Filter 614 to provide a power signal 720 with a constant DC power value. This power signal can also be input to the control Control signal generating circuit 473, for example, an error signal amplifier 472 input to the circuit 473. FIG. 8 shows an exemplary power supply management circuit 12a of FIGS. 4A, 4B, 5A, 5B, 6 and 7 The specific circuit diagram of the embodiment. The components in FIG. 8 are similar to the components described in FIG. 6 above. For the sake of brevity, φ is not described repeatedly here. Sense amplifier 34 can be any type of sense amplifier in the art. In the embodiment of FIG. 8, the sense amplifier 34 includes a transistor Mp controlled by an operational amplifier 6a, a gain resistor, and the like. Similar to the embodiment shown in FIG. 2, the sense amplifier 34 can reduce the high common mode Requirements for voltage suppression. The sense amplifier 34 provides the IAD signal. The electrical circuit circuit 807 may include a pair of resistors R3 and R4 to form a proportional reduction of the output voltage of the controllable switching gain. M266636 is supplied to the non-inverting input of the operational amplifier la. The output of the operational amplifier is fed back to the inverting input. Those skilled in the art will recognize that multiple voltage sampling circuits may also be used to provide the VAD signal to the multiplier 612. The multiplier 612 can be a power buffer, which effectively converts the amplitude of the IAD-pwM input k to the amplitude representing the voltage value of the controllable adapter. In this way, the power_pWM signal is obtained at the output of the power buffer. The filter 614 may be an Rc filter. It consists of a resistor connected in series between the input of the filter and node 814 and an electric valley CF connected between node 814 and ground. The RC filter receives the poWer_pWM input signal and provides an output power signal having a dc voltage value representing the output power value of the DC power source. FIG. 9 shows another embodiment of the power management circuit 2b. The power management circuit 12b includes a presence judgment circuit 903 for comparing the voltage value of the dc power supply 902 with a selectable voltage threshold value, which will be described in detail below. Thus, a single power management circuit 12b can use a plurality of DC power supplies 902 having a corresponding plurality of fixed output voltage values. Generally, the 'power management circuit 12b includes a control signal generating circuit 905 and a presence judging circuit 903. The control signal generating circuit 905 includes various error signal amplifiers in the circuit 9116, which are used to compare the signal with the relevant threshold value of each monitoring parameter, similar to the specific description of the circuit 12 in FIG. 1 above. For example, multiple error signal amplifiers can be configured as an analog "wire or, topology," so that the error signal amplifier that first detects that a relevant maximum threshold is exceeded will provide control to the command signal provided to the DC / DC converter 904. Control signal The generating circuit may include a PWM circuit 91 5 similar to the circuit 12 for providing a PWM control signal to the DC / DC converter 904 in FIG. 1. For example, 93941.doc -20- M266636 if one of the error signal amplifiers detects an over-correlation In the case of the maximum threshold value, reducing the duty cycle of the PWM control signal can reduce an output power parameter of the DC / DC converter 904. The control signal generating circuit 905 may further include a selector circuit well known in the art in the circuit 916. In order to provide a selector control signal, the control can control at least the states of the switches SW1, SW3 * sw4 according to various monitoring states and / or commands from the host power management unit (PMU) 912. Generally, the existence judgment circuit 903 converts DC The voltage value of the power supply 902 is compared with an optional voltage threshold. The DC power supply 902 can provide a fixed output Any kind of ㈣DC power supply with a voltage value, for example, an ACDC switch with a specified sink output voltage. Multiple DC power supplies can be used to provide multiple fixed output DC voltage values. For example, a ―Shenzhen adapter provides 15 Voltage sink output, and another ACDC adapter provides a 2 (ΗλΓ) (:: output. The voltage threshold V-SEL is selected based on the desired fixed output voltage value of the DC power supply 902. The selected voltage threshold V-SEL is usually Is a standard value that is less than the desired output voltage value. Therefore, if a DC power source exists and the dc power source provides a voltage value that meets the desired fixed voltage 佶 i μ #% & value, the comparison operation provides a In order to perform the comparison operation, the presence judgment circuit 903 includes a comparator 93 1 "The comparator receives a voltage signal W_DC representing the% power voltage value at its non-inverting input. The comparator 931 is at its inverting input Receive optional electrical limit value V_SEL. If the voltage value of the% power supply exceeds the selected threshold value than the car 乂, then the ㈤1 round output signal is provided to the control signal generation circuit 93941.doc * 21-M266636 905 , Indicating that there is dc thunder, shop * α ^, / original, and the output voltage provided by the DC power supply meets the requirements to select an optional electrical threshold value in multiple ways and provide it to the comparison group 931. For example, the optional threshold voltage The circuit 932 can provide an optional threshold package. [IllGA 'optional threshold voltage circuit 932 includes a resistor network that receives a reference voltage value V-c and provides the selected radio 1 limit V-SEL. Resistance network_ 4 includes arranging one or more resistors 'for example' according to methods well known in the art, such as arranging component voltages and networks to achieve a desired value or a selected threshold voltage value. In addition, the resistance network 1004 includes at least one adjustable resistance element that can be calibrated to a desired resistance value. The resistance element can be calibrated by a variety of methods known in the art (for example, laser calibration) such that the combination of the resistance network 1004 and the received reference voltage V-REF can provide a desired threshold voltage value. In addition, optional The threshold electromigration circuit 932 may include a memory element 1006, as shown in FIG. 10B. The memory element 1006 may be any type of memory element that stores digital information, for example, random memory (RAM, programmable read-only memory). (PROM), Erasable Programmable Read Only Memory (EpR⑽), Electrically Erasable Programmable Read Only Memory (EEpRC) M), Dynamic Random Access Memory (DRAM), Magnetic Disks (such as floppy disks and Hard disk) and optical disks (such as CD-ROM), of course, it is not limited to this. The memory element 106 can be a one-time personalizable memory or a multi-time programmable memory, depending on the memory used. Component type and memory device access method when it is reprogrammable. Once the analog threshold voltage value can be programmed into the memory device, a digital-to-analog converter (DAC) 1008 can be used to store the stored data. The bit signal is transferred to 93941.doc -22- M266636 and replaced with an analog voltage signal representing the selected voltage threshold value v-s EL. It can also be instructed by the host PMU 912 to the power source circuit m through the host bus 98, thereby Select the selected voltage threshold v SEL. The host interface 9 i 3 of the power management circuit i 2 b provides the signal to the optional voltage threshold circuit 932 through the internal signal bus 9 8 2 so that the desired threshold can be performed by the host PMU 912 Dynamically programmable. Therefore, a circuit is provided here to control a charge reduction provided to the rechargeable battery. The circuit includes a power control circuit for providing a power control signal representing the power output value of the DC power supply, and- A control signal generating circuit is used to reduce the charging parameter provided to the battery when the power output value exceeds a predetermined power threshold value. Another circuit provided includes a presence judging circuit for applying an output voltage of one ms 纟The voltage value of the% power supply is compared with the selectable voltage threshold, and a table is provided if the voltage value exceeds the selectable voltage threshold The existence signal of the existence of DC power supply. The circuit also includes a control signal generating circuit. The control signal generating circuit receives at least the response signal and further sends out a control signal. The technician of this or There can be many modifications to this creation. Modifications obvious to those skilled in the art and other modifications are considered to be within the spirit and scope of this creation, and this creation is only limited by the scope of the attached patent application. [Schematic simple [Explanation] ^ Those who are familiar with the art, γ, should understand that although the following detailed description will be used as examples and methods of the yoke, the present invention is not limited to these examples and methods. 93941.doc -23- M266636 is limited only by the attached application. On the contrary, the invention has a wide range of applications. Patent scope. Combined with the figures and other features and advantages of the present invention will be more apparent in the description of the following detailed description and clauses, where " the same numbers refer to the same elements, in: Figure 1 shows the charging of the conversion battery of the present invention Fig. 2 shows an exemplary amplifier circuit of the present invention; Fig. 3 shows a timing diagram of an oscillator signal and a DC signal for generating a pwM signal in the system of Fig. I; Fig. 4 A shows another —A block diagram of an electronic device with a power management circuit according to an embodiment, in which the power management circuit provides a control signal to a controllable DC power supply; FIG. 4B shows a diagram of another electronic device with a power management circuit from FIG. Block diagram 'its power management channel f provides a control signal to the DC / DC converter; Figure 5A shows a detailed block diagram of the control signal generating circuit part of the power management circuit from the figure; Figure 5B shows Figure 4B Figure 6 is a detailed block diagram of the control signal generating circuit part of the power management circuit; Figure 6 is not a detailed block diagram of the power control circuit part of the power management circuit of Figures 5A and 5B; Figure 7 shows various signals in Figure 6 Relationship with time; Figure 8 shows an exemplary circuit diagram of an embodiment of the power management circuit in Figure 6; 93941.doc -24- M266636 Figure 9 is not a DC power supply with a fixed voltage output and has a comparison A block diagram of an electronic device with a DC power supply voltage and a selectable voltage threshold level circuit; FIGS. 10A and 10B are block diagrams of an exemplary embodiment of the selectable voltage threshold circuit in FIG. 9. [Description of main component symbols] 10 Battery charger system 12 Battery charger circuit 12a, 12b Power management circuit 14, 902 Power supply 16 Battery 18, 904 DC to DC converter 20, 48 Switch 22, 24 Sensing resistor 25 Power line 26 , 34 sense amplifier 28, 32, 36 transconductance amplifier 46, 1a, 6a operational amplifier 472 error signal amplifier 30 summing unit 38 compensation capacitor 40 comparator 42 current source 44 oscillator
93941.doc -25- M266636 52、 50 電阻 60 節點 62、 64 、 66 、 68 、 信號 711 、714 、 716 、 718 、720 70〜 708 時序圖 72 系統 400 ^ 400a 電子裝置 404 DC電源 421 路徑 471 功率控制電 路 473 控制信號產 生 電 路 577 功率轉換電 路 608 斜波振盪器 610 比較器 612 乘法器 614 濾波器 807 電壓採樣電 路 903 存在判斷電 路 905 控制信號產 生 電 路 912 主機電源管 理 單 元 931 比較器 932 可選門限電 壓 電 路 980 主機匯流排 93941.doc -26- M266636 982 内部信號匯流排 1004 電阻網路 1006 記憶元件 1008 數模轉換器 93941.doc -27-93941.doc -25- M266636 52, 50 resistance 60 nodes 62, 64, 66, 68, signals 711, 714, 716, 718, 720 70 ~ 708 timing diagram 72 system 400 ^ 400a electronic device 404 DC power supply 421 path 471 power Control circuit 473 Control signal generation circuit 577 Power conversion circuit 608 Ramp oscillator 610 Comparator 612 Multiplier 614 Filter 807 Voltage sampling circuit 903 Presence judgment circuit 905 Control signal generation circuit 912 Host power management unit 931 Comparator 932 Optional threshold Voltage circuit 980 Host bus 93941.doc -26- M266636 982 Internal signal bus 1004 Resistance network 1006 Memory element 1008 Digital-to-analog converter 93941.doc -27-