TWM241877U - Soft-switching control circuit - Google Patents

Soft-switching control circuit Download PDF

Info

Publication number
TWM241877U
TWM241877U TW092216207U TW92216207U TWM241877U TW M241877 U TWM241877 U TW M241877U TW 092216207 U TW092216207 U TW 092216207U TW 92216207 U TW92216207 U TW 92216207U TW M241877 U TWM241877 U TW M241877U
Authority
TW
Taiwan
Prior art keywords
effect transistor
metal oxide
oxide semiconductor
field effect
semiconductor field
Prior art date
Application number
TW092216207U
Other languages
Chinese (zh)
Inventor
Shu-Fen Shiu
Original Assignee
Shu-Fen Shiu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shu-Fen Shiu filed Critical Shu-Fen Shiu
Priority to TW092216207U priority Critical patent/TWM241877U/en
Publication of TWM241877U publication Critical patent/TWM241877U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Description

M241877 五、創作說明(1) 一、【新型所 一種軟性 、升壓式與升 源轉換器之開 一、【先前技 由於科技 供糸統更佳的 的目標’面對 術所扮演的角 網路、照明等 所以,唯有提 分發揮這些系 又,電子 規格與性能來 要求要不斷的 系統的表現往 腦的應用當中 素往往凌駕於 的影響了電源 向與發展。 以最常見 壓的架構普遍 降壓轉換器是 器的優點是架 屬之技術頜域 切換控制電路 降壓式三種轉 關切換的功率 術】 的曰漸進步, 穩定度與高效 有限能源日益 色也愈來愈重 ’皆是需透過 供高穩定度與 統其特有的功 產品中電源系 做設計,而電 演進與進步。 往很容易被忽 ’因為沒有電 其他技術上的 設計時的考量 ,配合可 換器中, 損失及電 電力電子 率亦是工 的.減少, 要。舉凡 各種不同 高效率的 能。 統的設計 源糸統的 對大多數 略,特別 池的續航 考量,這 ,也影響 控開關應用於降壓式 可降低南頻切換式電 磁干擾。 技術亦不斷提升,提 程師不斷追求與突破 高效率的電力電子技 電力、通訊、控制、 之電力之電子產品, 電能轉換系統才能充 必須根據電子系統的 架構與性能也因此被 的使用者來說,電源 是在於所謂桌上塑電 力問題,因此成本因 樣的思考邏輯,大大 著未來電源設計的方 的降壓轉換器(Buck Converter)來說’降 ,用於各種產品中,線性轉換器和切換式的 取f ΐ遍的兩大架構。一般而言,線性轉換 構簡單,輪出雜訊低,不需要很多的輸出電M241877 V. Creation instructions (1) 1. [The new type of soft, step-up and source converter converter 1. [The previous technology has a better target because of the technology supply system. ' Roads, lighting, etc. Therefore, only by giving points to play these systems, electronic specifications and performance require continuous system performance. In the application of the brain, they often override the power supply and development. With the most common voltage architecture, a universal buck converter is a device. The advantage is that the technology of the jaw-domain switching control circuit is a step-down type of three power-switching power technologies. Progress has been gradually improved, and stability and high-efficiency limited energy have become increasingly important. "Heavier and heavier" is the need to design through the power supply system for high stability and integration of its unique power products, and electrical evolution and progress. It is easy to be ignored because there are no other technical considerations when designing electricity. In cooperation with the converter, the loss and the rate of electricity, power and electronics are also reduced. Give a variety of different high-efficiency performance. The design of the system is based on the considerations of most of the system, especially the battery life. This also affects the control switch applied to the step-down type, which can reduce the electromagnetic interference of the south frequency switching type. Technology has also been continuously improved, and engineers have been pursuing and breaking through high-efficiency power electronics technology. Power, communication, control, and power electronics products can only be charged by users based on the structure and performance of the electronic system. It is said that the power supply lies in the so-called tabletop power problem, so the cost-based thinking logic greatly reduces the future of Buck converters for power supply design. It is used in various products, linear converters The two major architectures of f and switching are fetched. Generally speaking, the linear conversion structure is simple, and the wheel noise is low. It does not require a lot of output power.

第5頁 M241877 五、創作說明(2) _ 容’以及快速的暫熊塑。 輸入輸出的電壓差;::量的點是效率差,因為 在壓差過大的電源轉換設計上。式/良費掉,因此不適合用 轉換Li的效構,因為採用電感作為儲能 性轉換器而言匕電至可高達相較於線 達刪'升降以器!:效率高之外,還能 到的範疇。、、α用,延疋線性轉換器無法做 加上目前電力電子產品不斷的朝短、+、. ,切換式轉換器更是被大量應 ”展 二=可靠度亦須不斷的朝更安全與 更佳電源糸統就需設想更完善周詳的控制方法。 ^ 而切換式電源轉換器因具有短小輕薄的優點,所以 大量應用於一般的電力電子產品,其中降壓式轉換器 (Buck Converter)、升壓式轉換器(B〇〇st c〇nver 盥 :=轉2(BUCk-B〇〇s“。nverter)更是常被採用的; 路&構’ H #『第1圖』所示’係f知之降 器電路架構示意圖。電路架構中主要係利用主開關S的切 換,配合儲能電感L與飛輪二極體D,將電能做非隔離處理 轉換。(依主開關S、儲能電感L與飛輪二極體電路之 所相對連接位置不同,亦可得如『第2圖』所示之 壓式轉換器電路架構示意圖,與『第3圖』所示之習= 降壓轉換器電路架構示意圖。) σ 第6頁 M241877 五、創作說明(3) 雖然=換式轉換器可改善傳統線性轉換器效率低、體 與重1^重的缺點,然而切換開關(Swi tches)在高逮切 何I」t相,的產生大量的功率損失與電磁干擾,所以如 ^ 土效提升系統效率、降低電磁干擾改善電能轉換系統 σ罪度丄將是電力電子技術有待突破的瓶頸。 換哭目刚習用之降壓式轉換器、升壓式轉換器與升降壓轉 頻i之ΐ開關S與飛輪二極體D動作時為硬性切換,當操作 哭V ί冋切換時所造成的功率損失將會增加,若轉換 關的古ί ^電壓切換或高電流切換,損失更是遽增,而開 缺點Γ電壓與高電流應力,將造成生產上零件成本提高之 二、【新型内容】 免缺Ϊί二本創作之主要目的,在於解決上述之缺失,避 習知,本創作係提供一種可輕易達成有效降低原 損失 開關切換與減少飛輪二極體導通時之功率 式榦i ϊ作主要係透過將該主開關與飛輪二極體位於降壓 動=關in式㈣器與升降壓轉換器之處分別以一主 :欠開關置換之。且該主動開關與次開關係包含 該二搞ί巩半導體場效電晶體(m〇sfet),與一二極體, 之源極μ )之正a極端耦合於上述金屬氧化半導體場效電晶體 體之、汲極·、極端耦合於上述金屬氧化半導體場效電晶 ,一端接卜)、+、,-一寄生輸出電容,該寄生輸出電容有兩端 w—極體之正極,另一端接二極體之負極,搭 M241877 、創作說明(4) 配一組與原有輸入主動開關之主控制訊號反向的次控制訊 就輸入次開關。 如是,俾藉該主動開關與次開關皆具雙方向之特性, 所以該電感可操作於不連續導通模式(Disc〇ntinu〇us Conduction Mode)下使主動開關與次開關導通時兩端壓降 為零,達到零電壓切換(Zer〇 v〇ltage Switching),如是 達到降低高頻切換式電源轉換器之開關切換的功率損失及 電磁干擾。 四、【實施方式】 有關本創作之詳細說明及技術内容,現就配合圖式說 明如下: ^ 一 2參閱『第4圖』,係本創作之降壓式轉換器電路架 構示思圖·本創作係為一種軟性切換控制電路,係對一般 ^壓式轉換器(Buck C〇nverter)電路架構之應用,該降壓 式轉換H電路包括:-輸人電源Vin,—接於輸人電源vin ^極端之主動開關si,一接於上述主動開關S1且與輸入電 ,vin並聯之次開關S2,一並聯於上述次開關82之輸出電 谷C,一連接於該次開關S2與輸出電容c間之電感以,整 再並聯一負載β,以對外輸出一電壓(。 其特徵在於,該主動開關S1係包含:一金屬氧化 =體⑽’M1,該金屬氧化半導體場效電晶體 二=!輸入電源Vin之正極相連接,源極⑻與次 開關S2相連接,其閘極(G)端.接主控制訊號“31。 一二極體IH,該二極制之正極㈣合於上述金屬氧Page 5 M241877 V. Creation Instructions (2) _ Rong ’and quick temporary bear sculpture. The voltage difference between input and output; :: The point of the quantity is the efficiency difference, because in the power conversion design with too large a voltage difference. It is not suitable to convert Li's effect structure, because the inductor is used as an energy storage converter, and the power can be as high as compared to the line. : The range beyond high efficiency. For the use of, and α, linear converters cannot be used. In addition, the current power electronics products continue to be short, +,.. Switching converters are being used in large numbers. "Exhibit 2 = Reliability must also be continuously more secure and safer. A better power supply system requires a more comprehensive and thoughtful control method. ^ Switching power converters are widely used in general power electronics because of their shortness and lightness. Buck converters, buck converters, Boost converter (B〇〇st 〇nver :: = turn 2 (BUCk-B〇〇s ". Nverter) is more often used; Road & structure 'H #『 第 1 图 』shown This is a schematic diagram of the circuit structure of the knowing reducer. In the circuit architecture, the main switch S is used to cooperate with the energy storage inductor L and the flywheel diode D to perform non-isolated processing and conversion. (According to the main switch S, energy storage The relative connection position of the inductor L and the flywheel diode circuit is different. The schematic diagram of the voltage converter circuit structure shown in "Figure 2" and the habit shown in "Figure 3" = step-down converter Schematic diagram of circuit architecture.) Σ Page 6 M241877 V. Creation (3) Although = converters can improve the shortcomings of traditional linear converters, such as low efficiency, weight and weight, switchers (switches) generate a large amount of power loss at high frequencies. And electromagnetic interference, so such as improving the efficiency of the system, reducing electromagnetic interference and improving the power conversion system, σ will be the bottleneck of power electronics technology to be broken through. Buck converters, boost converters that are just used to change eyes The switch S and the flywheel diode D are rigidly switched when the converter and the step-up / step-down frequency i are in operation. The power loss caused by the operation of the switch V will increase. If the switch is turned off, the voltage switch or High current switching, the loss is even more increased, and the shortcomings Γ voltage and high current stress will cause the cost of parts in production to increase. [New content] The main purpose of this book is to solve the above-mentioned shortcomings. Avoiding the habit, this creation is to provide a power-type dry operation that can easily achieve effective reduction of original loss switch switching and reduction of flywheel diode conduction. The main purpose is to use the main switch and flywheel diode position. The primary and secondary switches are replaced at the place where the step-down dynamic switch is turned off and the step-up and step-down converter. The relationship between the active switch and the sub-open includes the two semiconductor field effect transistors (m0sfet). ), And a diode, the source μ) of the positive a is extremely coupled to the metal oxide semiconductor field effect transistor, the drain, extremely coupled to the metal oxide semiconductor field effect transistor, one end is connected) , + ,,-A parasitic output capacitor. The parasitic output capacitor has the positive pole of the w-pole at both ends and the negative pole of the diode at the other end. Take M241877. Creation instructions (4) A set of active switches with the original input The secondary control signal whose main control signal is reversed is input to the secondary switch. If so, the active switch and the secondary switch have bidirectional characteristics, so the inductor can be operated in Discontinuus Conduction Mode to make the voltage drop across the active switch and the secondary switch to Zero, reaching zero voltage switching (ZerOvOltage Switching), if it is to reduce the power loss and electromagnetic interference of high-frequency switching power converter switching. 4. [Implementation] For the detailed description and technical content of this creation, I will now explain it with the diagrams as follows: ^ 1 2 Refer to "Figure 4", which is a schematic diagram of the step-down converter circuit architecture of this creation. The creative system is a soft switching control circuit, which is an application of the general Buck Converter circuit architecture. The buck converter H circuit includes:-input power Vin,-connected to input power vin ^ Extreme active switch si, one connected to the above active switch S1 and connected to the input power, vin is a secondary switch S2, one is connected to the output valley C of the above secondary switch 82, one is connected to the secondary switch S2 and the output capacitor c Between the inductors, a load β is connected in parallel to output a voltage (.) It is characterized in that the active switch S1 includes: a metal oxide = body ⑽'M1, the metal oxide semiconductor field effect transistor two =! The positive pole of the input power source Vin is connected, the source pole ⑻ is connected to the secondary switch S2, and the gate (G) terminal thereof is connected to the main control signal "31. A diode IH, the positive pole of the two pole system is combined with the above metal oxygen

M241877 五、創作說明(5) 一 --- 化,導體場效電晶體Ml之源極(S),負極端耦合於上述金 屬氧化半導體場效電晶體Ml之汲極(D)。 一寄生電容C1,該寄生電容C1有兩端,一端接上述」 極體D1之正極,另一端接二極體D1i負極。 該次開關S2係包含:一金屬氧化半導體場效電晶體 M2,該金屬氧化半導體場效電晶體…之汲極(d)與上述主 動開關S1之金屬氧化半導體場效電晶體心的源極(幻相 接,源極(S)與輸入電源Vin之負極相連接,其閘極(G) 接次控制訊號Vgs2。M241877 V. Creative Instructions (5) One ---, the source (S) of the conductor field effect transistor M1, the negative terminal is coupled to the drain (D) of the metal oxide semiconductor field effect transistor M1. A parasitic capacitor C1 has two ends, one end of which is connected to the positive electrode of the above-mentioned polar body D1, and the other end of which is connected to the negative electrode of the diode D1i. The secondary switch S2 includes: a metal oxide semiconductor field effect transistor M2, the drain (d) of the metal oxide semiconductor field effect transistor, and the source of the metal oxide semiconductor field effect transistor core of the active switch S1 ( Phantom phase connection, the source (S) is connected to the negative pole of the input power Vin, and its gate (G) is connected to the control signal Vgs2.

一二極體D2,該二極體D2之正極端耦合於上述金屬氧 4匕,導體場效電晶體M2之源極(S),負極端耦合於上述金 屬氧化半導體場效電晶體M2之汲極(1)); 一寄生電容C2,該寄生電容C2有兩端,一端接上二 極體D2之正極,另一端接二極體D2之負極。 如疋,俾藉該主動開關S1與次開關(S2 )皆具 特性,如是該電感L1可操作於不連續導通模式 ^〇:dUCtl〇n M〇de)下使主動開關S1 與永 開關S2導通時兩端壓降為零,達到零電壓切換(^0 Voltage Switching)。A diode D2, the positive pole of the diode D2 is coupled to the metal oxygen dagger, the source (S) of the conductor field effect transistor M2, and the negative terminal is coupled to the drain of the metal oxide semiconductor field effect transistor M2. (1)); a parasitic capacitor C2, which has two ends, one end of which is connected to the anode of diode D2 and the other end of which is connected to the anode of diode D2. For example, the active switch S1 and the secondary switch (S2) have characteristics. For example, the inductor L1 can be operated in a discontinuous conduction mode (^: dUCtl Mn) to make the active switch S1 and the permanent switch S2 conductive. When the voltage drop across the two ends is zero, zero voltage switching (^ 0 Voltage Switching) is reached.

-n t f作之降壓式轉換器電路動作原理㉟明如下: 參閱『第4圖』與『第9圖』所示 式轉換器電路架構示音圖芬士扁丨从&gt; &amp; π ^ 坡开彡千立si # + ^〜圖及本創作之控制訊號與電感 可〈:思圖。該主控制訊EVgsl與次控制訊號vgs2每 刀為四個階段,針對四個階段之電路作動依序說明The operation principle of the step-down converter circuit made by -ntf is as follows: Refer to the converter circuit structure shown in "Figure 4" and "Figure 9". The picture is shown by Fenshibian 丨 from &gt; &amp; π ^ slope Kailu Qianli si # + ^ ~ The picture and the control signal and inductance of this creation can be <: think picture. The primary control signal EVgsl and the secondary control signal vgs2 are divided into four stages, and the circuit operations for the four stages are explained in sequence.

第9頁 M241877 五、創作說明(6) 下: P&quot;肖ί奴:10 ·為電感L1儲存能量階段。此階段主動 開關S!為導通(0N),而次開關“為截止(〇ff)狀態。其電 流於電路上動作路徑為··輸入電源Vi η—金屬氧化半導體 場效電晶體Ml之汲極(D)—金屬氧化半導體場效電晶體mi 之源極(S)—電感L1 —輸出電容c、負載R,此時電感[丨之 電流(/L1)上升,能量傳遞至負載R,同時對電感u儲能。 第二階段120 ··電感L1之電流(IL1)對次開關“中的寄 生電容C2放電階段。此階段主動開關S1與次開關“皆為截 止(OFF)狀態,而電感u之電流(11^)對次開關“中之寄生 電容C2放電,放電完成後該次開關32中之二極體D2導通。 其電流於電路上動作路徑為:電感Li —輸出電容c、負載r —金屬氧化半導體場效電晶體M2之源極(s)—金屬氧化半 導體場效電晶體^12之汲極〇)。 第二階段130 ·電感L1能量傳遞階段。此階段主動開 關S1為截止(OFF),而次開關S2為導通(on)狀態。其電流 於電路上動作路徑為:電感L1 —輸出電容c、負載r 金屬 氧化半導體場效電晶體M2之源極(S)~&gt;金屬氧化半導體場 效電晶體M2之汲極(D)。因為次開關S2導通(ON)之壓降較 原有習知所用的飛輪二極體D低,導通損失亦可降低。而 當電感能量釋放完成,其電流於電路之動作路徑為:輸出 電容C、負載R —電感L1 —金屬氧化半導體場效電晶體M2之 汲極(D)-&gt;金屬氧化半導體場效電晶體M2之源極(S),輪出 電容C對電感L1作反方向儲能。 第10頁 M241877 五、創作說明(7) 第四階段140 :電感L1之電流(IL1)對寄生電容D1放電 階段。、此階段主動開關S1與次開關“階為截止(〇FF)狀態 ’電感L1之電流(IL1)對主動開關S1之寄生電容C1放電, 放電完成後該主動開關S1之二極體!)〗導通(〇N)。其電流於 電路上動作路徑為··輸入至輸出電容c、負載R —電感— 金屬氧化半導體場效電晶體M1之源極(s)—金屬氧化半導 體場效電晶體Μ1之汲極(D )—輸入電源v丨n。Page 9 M241877 V. Creative Instructions (6) Bottom: P &quot; 肖 ί 奴: 10 · Store energy for inductor L1. At this stage, the active switch S! Is on (0N), and the secondary switch "is off (0ff). Its current path on the circuit is the input power source Vi η-the drain of the metal oxide semiconductor field effect transistor M1. (D) —Source of metal oxide semiconductor field effect transistor (S) —Inductor L1—Output capacitor c, load R, at this time, the current (/ L1) of the inductor [丨 rises, and energy is transferred to the load R, and at the same time, Inductor u stores energy. The second stage is 120. The current of the inductor L1 (IL1) discharges the parasitic capacitor C2 in the secondary switch. At this stage, both the active switch S1 and the secondary switch are “OFF”, and the current (11 ^) of the inductor u discharges the parasitic capacitance C2 in the secondary switch. After the discharge is completed, the diode D2 in the secondary switch 32 is discharged. Continuity. The action path of its current on the circuit is: inductor Li-output capacitor c, load r-source (s) of metal oxide semiconductor field effect transistor M2-metal oxide semiconductor field effect transistor ^ 12 drain). The second stage 130 · The energy transfer stage of the inductor L1. At this stage, the active switch S1 is OFF, and the secondary switch S2 is ON. The path of its current on the circuit is: inductor L1-output capacitor c, load r. Source (S) of the metal oxide semiconductor field effect transistor M2 ~ &gt; Drain (D) of the metal oxide semiconductor field effect transistor M2. Because the voltage drop of the secondary switch S2 is lower than the conventionally used flywheel diode D, the conduction loss can also be reduced. When the inductor energy is released, the current path of the circuit is: output capacitor C, load R—inductor L1—drain (D) of metal oxide semiconductor field effect transistor M2—> metal oxide semiconductor field effect transistor In the source (S) of M2, the wheel-out capacitor C stores energy in the opposite direction to the inductor L1. Page 10 M241877 V. Creative Instructions (7) The fourth stage 140: The current of the inductor L1 (IL1) discharges the parasitic capacitance D1. At this stage, the active switch S1 and the secondary switch are in the "off-off (0FF) state" current (IL1) of the inductor L1 to discharge the parasitic capacitance C1 of the active switch S1, and the diode of the active switch S1 will be discharged after the discharge is completed!)〗 On (ON). Its current path on the circuit is: input to output capacitor c, load R — inductance — source (s) of metal oxide semiconductor field effect transistor M1 — metal oxide semiconductor field effect transistor M1 Drain (D) —input power v 丨 n.

☆如是每一週期之主控制訊號Vgsl與次控制訊號Vgs2係 採,一互補控制訊號開關驅動主動開關S1與次開關(S2 ), 俾藉该主動開關s 1與次開關(S2 )皆具雙方向之特性,如是 該電感L1可操作於不連續導通模式(Disc〇ntinu〇us Conduction Mode)下使主動開關S1與次開關%導通時兩端 壓降為零,達到零電壓切換(Zer〇 v〇ltage Switching)。☆ If the main control signal Vgsl and the secondary control signal Vgs2 of each cycle are adopted, a complementary control signal switch drives the active switch S1 and the secondary switch (S2), and the active switch s1 and the secondary switch (S2) are both dual Directional characteristics. If the inductor L1 can be operated in Discontinuus Conduction Mode, the voltage drop between the two ends of the active switch S1 and the secondary switch will be zero to achieve zero voltage switching (Zer〇v 〇ltage Switching).

本創作另一應用係為對升壓式轉換器(B〇〇st Converter)電路架構之應用,請參閱『第5圖』,係本創 作之升壓式轉換器電路架構示意圖:該升壓式轉換器電路 包括·一輸入電源Vin,一接於輸入電源Vin正極端之電感 L1,、接於该電感L1且與輸入電源Vin並聯之主動開關§1 ,一並聯於上述主動開關S1之輸出電容C,一連接於該主 動開關si與輸出電容c間之次開關S2,整體再並聯一負載 R ’以對外輸出一電壓(v〇ut)。 其特徵在於,該主動開關S1係包含:一金屬氧化半導 =场效電晶體Μ〗,該金屬氧化半導體場效電晶體…之汲極 與電感L1相連接,源極(s)與輸入電源Vin之負極松連Another application of this creation is the application of the boost converter (Boost Converter) circuit architecture. Please refer to "Figure 5", which is a schematic diagram of the boost converter circuit architecture of this creation: the boost The converter circuit includes an input power Vin, an inductor L1 connected to the positive terminal of the input power Vin, an active switch §1 connected to the inductor L1 and connected in parallel with the input power Vin, and an output capacitor connected in parallel to the active switch S1 C, a secondary switch S2 connected between the active switch si and the output capacitor c, and a load R ′ is connected in parallel as a whole to output a voltage (vout). It is characterized in that the active switch S1 comprises: a metal oxide semiconductor = field effect transistor M; the drain of the metal oxide semiconductor field effect transistor is connected to the inductor L1, and the source (s) is connected to the input power source; Vin negative connection

M241877 五、創作說明(8) 接j閘極(G)端接主控制訊號^!。 一 一極體D1,該丁上 化半導體場效電晶“::二正'端輕合於上述金屬氧 屬氧化半導體場效電二=)極:, 極體= =生電容C1有兩端’ 一端接上述二 二 蚀另知接二極體D1之負極。 M2,ί 2『化2 :匕:-金屬氧化半導體場效電晶體 ?晶體Μ2之源極⑻與上述主 垃甘、 &gt; 半導體~效電晶體M2的汲極(]))相诖 ,/、汲極(D)與上述輪出電容c相連接,爱 次控制訊號Vgs2。 ,、閘極(G)端接 一二極體D2,該二極體j)2之正;)¾她立田人 化半導體場效電晶體M2之源極⑻於入上述金屬氧 屬氧化半導體場效電晶體心之汲極⑻。端m述金 一寄生電容以,該寄生電容C2有兩端,一 + 極體D2,正極:另一端接二極體D2之負極。端接上述二 如是,俾藉該主動開關S1與次開關82皆具雙Λ 5盘ΐ是該電感U可操作於不連續導通模式下使主動門】 S1與次開關S2導通時兩端麼降為零,達到零電】:開關 :本創作應用於升壓式轉換器之電路動作原理說明如下 請同時參閱『第5圖』與『第9圖』所 升壓式轉換器電路架構示意圖及本創作之控$二==之 電流波形示意圖。該主控制訊號Vgsl與次控 第12頁 M241877 五、創作說明(9) 週期如前一實施方式,同樣可分 階段,電路作動依序說明如下·· 現針對四個 第&amp;段110 ··為電感L1儲存能量階段。此階段 開關su導通⑽)’而次開齡2為截止则“段= 於電路上動料徑為:輸入電源Vin—電感u—金^ 化半導體場效電晶體M1之汲極(D) —金屬氧化半導體場效 電晶體M1之源極(S) ’此時電感L1之電流(IL1)上升,對電 感L1儲能。 了电 f二階段120 :電感L1之電流(IU)對次開關82中的寄 生電谷C 2放電ρό ^又。此階段主動開關$ 1與次開關$ 2皆為截 f(OFF)狀態,而電感以之電流(IL1)對次開關“之寄生電 谷C2放電’放電完成後該次開關S2中之二極體D2導通。其 ,流於電路上動作路徑為:輸入電源vin—電感L1—金屬 氧化半導體場效電晶體M2之源極(S)—金屬氧化半導體場 效電晶體M2之汲極(D)—輸出電容c、負載R。 第三階段130 ··電感L1能量傳遞階段。此階段主動開 调S1為截止(〇FF),而次開關S2為導通(ON)狀態。其電流 於電路上動作路徑為:輸入電源Vin —電感L1 —金屬氧化 半導體場效電晶體M2之源極(S)—金屬氧化半導體場效電 晶體M2之沒極(D) 輸出電容c、負載R。因為次開關S2導 通(ON)之壓降較原有習知所用的飛輪二極體d低,導通損 失亦可降低。而當電感能量釋放完成,其電流於電路之動 作路徑為:輸出電容C、負載r —金屬氧化半導體場效電晶 體M2之汲極〇)—金屬氧化半導體場效電晶體M2之源極(S)M241877 V. Creation instructions (8) Connect to j gate (G) to terminate the main control signal ^ !. One pole body D1, the Ding Shanghua semiconductor field effect transistor ":: two positive 'terminals are lightly connected to the above metal oxide semiconductor field effect transistor two =) pole :, pole body = = capacitor C1 has two ends 'One end is connected to the above-mentioned two-diode etch, and it is also known to be connected to the negative electrode of diode D1. M2, ί 2 『化 2: 匕:-metal oxide semiconductor field-effect transistor? The source of crystal M2 and the above main rag, &gt; The semiconductor (effect transistor M2) has the drain (])) phase, // the drain (D) is connected to the wheel-out capacitor c, and the control signal Vgs2 is loved. The gate (G) is terminated with a second pole The body D2, the diode j) 2 is positive;) ¾ The source of her Takita humanized semiconductor field-effect transistor M2 is inserted into the drain of the core of the metal oxide semiconductor field-effect transistor described above. The gold parasitic capacitor has two ends, a + pole body D2, and a positive pole: the other end is connected to the negative pole of the diode D2. If the above two ends are connected, the active switch S1 and the secondary switch 82 are both provided. The double Λ 5 disc is that the inductor U can be operated in the discontinuous conduction mode to make the active gate] S1 and the secondary switch S2 turn on at both ends to zero, reaching zero electricity.]: Switch: This creation The operation principle of the circuit for the boost converter is as follows. Please refer to the schematic diagram of the boost converter circuit structure shown in "Figure 5" and "Figure 9" and the current waveform diagram of the control $ 二 == in this creation. The main control signal Vgsl and the secondary control page 12 M241877 V. Creation instructions (9) The cycle is the same as the previous embodiment, and it can also be divided into stages. The circuit operation is explained in order as follows .... Now for the four &amp; paragraph 110 ... Energy storage stage for inductor L1. At this stage, switch su is turned on ⑽) 'and next opening age 2 is cut off. "Segment = The diameter of the moving material on the circuit is: input power Vin-inductance u-gold semiconductor semiconductor field effect transistor M1 Drain (D) — Source (S) of the metal oxide semiconductor field effect transistor M1 'At this time, the current (IL1) of the inductor L1 rises, and energy is stored in the inductor L1. In the second phase 120, the current (IU) of the inductor L1 discharges the parasitic valley C 2 in the secondary switch 82. At this stage, both the active switch $ 1 and the secondary switch $ 2 are in the cut-off f (OFF) state, and the inductor uses the current (IL1) to discharge the secondary switch "the parasitic valley C2 of the secondary switch." The body D2 is turned on. The action path flowing on the circuit is: input power source vin—inductance L1—source (S) of metal oxide semiconductor field effect transistor M2—drain (D) of metal oxide semiconductor field effect transistor M2 — Output capacitance c, load R. The third stage 130 ·· Inductor L1 energy transfer stage. In this stage, the active switch S1 is turned off (0FF), and the secondary switch S2 is turned on (ON). Its current operates on the circuit. The path is: input power Vin-inductance L1-source (S) of metal oxide semiconductor field effect transistor M2-pole (D) of metal oxide semiconductor field effect transistor M2 output capacitor c, load R. Because the secondary switch S2 The voltage drop of the ON is lower than the flywheel diode d used in the prior art, and the conduction loss can be reduced. When the inductor energy is released, the current path of the current in the circuit is: output capacitor C, load r — Drain of metal oxide semiconductor field effect transistor M2. ) —Source of Metal Oxide Semiconductor Field Effect Transistor M2 (S)

第13頁 M241877 五、創作說明(ίο) —電感L1 —輸入電源Vi η,輪出電容c對電感L1作反方向儲 能0 第四階段140 :電感L1之電流(ili)對寄生電容D1放電 階段。此階段主動開關S1與次開關S2階為截止(0FF )狀態 ’電感L1之電流(IL1 )對主動開關si之寄生電容ci放電, 放電完成後該主動開關S1之二極體]^導通(0N)。其電流於 電路上動作路徑為:電感輸入電源Vin—金屬氧化半 導體場玫電晶體Μ1之源極(s )—金屬氧化半導體場效電晶 體Ml之汲極(D)。 ^如是每一週期之主控制訊號Vgsl與次控制訊號Vgs2係 t用一互補控制訊號開關驅動主動開關s丨與次開關S2,俾 藉該主,開關S1與次開關S2皆具雙方向之特性,如是該電 感11可操作於不連續導通模式下使主動開關S1與次開關S2 導通時兩端壓降為零,達到零電壓切換。Page 13 M241877 V. Creation Instructions (Luo) — Inductance L1 — Input power source Vi η, wheel output capacitor c stores energy in the opposite direction to inductor L1 0 Fourth stage 140: The current (ili) of inductor L1 discharges parasitic capacitor D1 stage. At this stage, the active switch S1 and the secondary switch S2 are in the cut-off (0FF) state. The current (IL1) of the inductor L1 discharges the parasitic capacitance ci of the active switch si. After the discharge is completed, the diode of the active switch S1 is turned on (0N ). The action path of the current on the circuit is: the inductive input power source Vin-the source (s) of the metal oxide semiconductor field transistor M1-the drain (D) of the metal oxide semiconductor field effect transistor M1. ^ If it is the primary control signal Vgsl and the secondary control signal Vgs2 of each cycle, a complementary control signal switch is used to drive the active switch s 丨 and the secondary switch S2. By virtue of the primary, the switch S1 and the secondary switch S2 have bidirectional characteristics. For example, if the inductor 11 can be operated in a discontinuous conduction mode, when the active switch S1 and the secondary switch S2 are turned on, the voltage drop across the two ends is zero, and zero voltage switching is achieved.

本名】作再應用係為對升降壓式轉換器(Buck-Boost :nverter)電路架構之應用,請參閱『第6圖』,係本創 ^之升降壓式轉揍器電路架構示意圖:該升降壓式轉換署 包括:一輸入電源Vin,一接於輸入電源Ηη正極端^ 鹋夕^,S1,一接於上述主動開關S1且與輸入電源Vin並 二於好&amp;L1,一並聯於該上述電感L1之輸出電容C,一連 恭^電感L1與輸出電容c間之次開關S2,整體再並聯一 負載R並以對外輸出一電壓(v〇ut)。 許1曰:發:在於,該主動開關$ 1係包含:一金屬氧化半委 两乂日日體M1 ’該金屬氧化半導體場效電晶體Ml之汲名(The real name) is for the application of the buck-boost: nverter circuit architecture. Please refer to [Figure 6], which is the schematic diagram of the buck-boost converter circuit architecture: The voltage conversion agency includes: an input power source Vin, one connected to the positive terminal of the input power source ^ η ^ xi ^, S1, one connected to the above active switch S1 and parallel to the input power source Vin &amp; L1, one connected in parallel to the The output capacitor C of the inductor L1 is connected in series to the secondary switch S2 between the inductor L1 and the output capacitor c, and a load R is connected in parallel as a whole to output a voltage (vout). Xu 1 said: Hair: The active switch $ 1 contains: a metal oxide half-board and two solar heliostats M1 ’the name of the metal oxide semiconductor field effect transistor M1

第14頁 M241877 五、創作說明(11) (D)與輸入電源vin之正極相連接,源極(s)與電感L1 一端 相連接’其閘極(G)端接主控制訊號Vgsl。 一 一極體D1,該二極體D1之正極端耦合於上述金屬氧 化半V體%效電晶體Ml之源極(s),負極端_合於上述金 屬氧化半導體場效電晶體Ml之汲極(d)。 寄生電谷C1 ’該寄生電容ci有兩端,一端接上述二 極體D1之正極,另一端接二極體之負極。 該次開關S2係包含··一金屬氧化半導體場效電晶體M2,該 金屬氧化半導體場效電晶體M2之汲極(D)與上述主動開關^ si之金屬氧化半導體場效電晶體…的源極(s)盥電感η 一 =H接處麵合,源極(S)與輸出電容c之—端相連接,盆 閘極(G)端接次控制訊號Vgs2。 八 一二極體D2,該二極體!)2之正極端耦合於上 導體場效電晶體M2之源極⑻,負極端轉合於上述金 屬氧化半導體場效電晶體M2之汲極(D)。 一寄生電容C2,該寄生電容C2有 一 極體D2之正極,另一端接二極刪之負^ ^接上述二 性,主動開_與次開齡2皆具雙方向之特 性如疋该電感L1可操作於不連續導通掇4Ζ特 本創作應用於升降塵之切換。 下: ^之電路動作原理說明如 請同時參閱『第6圖』盥『篦q 升降壓式轉換器電路架構示音 f』所不,係本創作之 構不忍圖及本創作之控制訊號與電 第15頁 M241877 五、創作說明(12) 感電流波形示意圖。該主控制訊號Vgsl與次控制訊號Vgs2 與前二實施例相同每週期可分為四個階段,現針對四個階 段之電路作動依序說明如下: 第一階段11 0 :為電感L1儲存能量階段。此階段主動 開關S1為導通(ON),而次開關S2為截止(OFF)狀態。其電 流於電路上動作路徑為:輸入電源V i η —金屬氧化半導體 場效電晶體Ml之汲極(D)—金屬氧化半導體場效電晶體M1 之源極(S)—電感L1,此時電感L1之電流(IL1 )上升,對電 感L1儲能。 第二階段120 :電感L1之電流(IL1 )對次開關S2中的寄 生電容C2放電階段。此階段主動開關S1與次開關§2皆為截 止(OFF)狀態,而電感li之電流(ili)對次開關§2之寄生電 容C2放電,放電完成後該次開關82中之二極體D2導通。其 電流於電路上動作路徑為··電仙—輸出電容c、負截^ 金屬氧化半導體場效電晶體M2之源極(s) —金屬氧化 體場效電晶體M2之汲極(D)。 · 第三階段130 :電感L1能量傳遞階段。此 關Sl為截止(0FF),而次開關s2A¾、gfl·lλί、 幵 氧化本莲m Φ Γ战 輸出電容c、負載R—金屬 氧化丰導體%效電晶體…之源極( 屬 效電晶體M2之沒極(D)。因為 J J屬乳化丰導體場Page 14 M241877 V. Creation instructions (11) (D) Connected to the positive pole of the input power source vin, the source (s) is connected to one end of the inductor L1 ', and its gate (G) is connected to the main control signal Vgsl. One pole D1, the positive pole of the diode D1 is coupled to the source (s) of the metal oxide half-V body% effect transistor M1, and the negative terminal is connected to the drain of the metal oxide semiconductor field effect transistor M1. Pole (d). Parasitic valley C1 'This parasitic capacitor ci has two ends, one end is connected to the anode of the above-mentioned diode D1, and the other end is connected to the anode of the diode. The secondary switch S2 includes a source of a metal oxide semiconductor field effect transistor M2, the drain (D) of the metal oxide semiconductor field effect transistor M2, and the source of the metal oxide semiconductor field effect transistor of the active switch ^ si ... The pole (s) and the inductor η a = H are connected together, the source (S) is connected to the-terminal of the output capacitor c, and the gate (G) is connected to the secondary control signal Vgs2. 811 diode D2, the positive pole of which is coupled to the source ⑻ of the upper field effect transistor M2, and the negative terminal is turned to the drain of the metal oxide semiconductor field effect transistor M2 (D ). A parasitic capacitor C2. The parasitic capacitor C2 has the positive pole of the pole D2, and the other end is connected to the negative pole of the two poles. It can be used for discontinuous conduction. The special creation of 4Z is applied to the switch of lifting dust. Bottom: For the explanation of the circuit operation principle of ^, please refer to "Figure 6" and "篦 q step-up and step-down converter circuit architecture display sound f". It is the structure of this creation and the control signal and power of this creation. Page 15 M241877 V. Creative Instructions (12) Schematic diagram of inductive current waveform. The primary control signal Vgsl and the secondary control signal Vgs2 are the same as in the previous two embodiments. Each cycle can be divided into four phases. The circuit operations for the four phases are described in order as follows: Phase 1 0: Store energy for inductor L1. . At this stage, the active switch S1 is ON, and the secondary switch S2 is OFF. The action path of the current on the circuit is: input power V i η-the drain (D) of the metal oxide semiconductor field effect transistor M1-the source (S) of the metal oxide semiconductor field effect transistor M1-the inductor L1, at this time The current (IL1) of the inductor L1 rises, and energy is stored in the inductor L1. The second stage 120: the current (IL1) of the inductor L1 discharges the parasitic capacitor C2 in the secondary switch S2. At this stage, both the active switch S1 and the secondary switch §2 are in the OFF state, and the current (ili) of the inductor li discharges the parasitic capacitance C2 of the secondary switch §2. After the discharge is completed, the diode D2 in the secondary switch 82 is discharged. Continuity. The action path of the current on the circuit is as follows: electric fairy-output capacitance c, negative cut ^ source (s) of metal oxide semiconductor field effect transistor M2-drain (D) of metal oxide field effect transistor M2. · The third stage 130: the energy transfer stage of the inductor L1. This threshold Sl is cut-off (0FF), and the secondary switches s2A¾, gfl·lλί, 幵 oxidize this lotus m Φ Γ and the output capacitor c, load R—metal oxide high-conductance% efficiency transistor… the source of the transistor The pole of M2 (D). Because JJ is an emulsified conductor field

導通⑽時的功率損失亦可降低/ ^知之飛輪二極體D 成,其電流於電路之動作路為:電感能量釋放完 戸唂仅為·輸出電容c、負載R〜電 M241877 五、創作說明(13) 感L1 —金屬氧化半導體場效電晶體M2之汲極(]))—金屬氧 化半導體場效電晶體M2之源極(S),輸出電容(對電感L1作 反方向儲能。 第四階段140 :電感L1之電流(IL1)對寄生電容D1放電 階段。此階段主動開關S1與次開關S2階為截止(〇FF)狀態 ,電感L1之電流(I l 1 )對主動開關s 1之寄生電容c丨放電, 放電完成後該主動開MS1之二極體!)〗導通(〇N)。豆電流於 二iif作路徑為:電感L1—金屬氧化半導體場效電晶體 &amp;入雷、、=s)—金屬氧化半導體場效電晶體Μι之汲極(1&gt;)— 翰入電源V 1 n。 儀搡t二二母一週期之主控制訊號Vgsl與次控制訊號vss2 俾夢兮主動^ ί制訊號開關驅動主動開關S1與次開關“, 以導通時=導通模式下使主動開,與次開關 端壓降為零,達到零電壓切換。 f、 新型之降壓^榦作之軟性切換控制電路可同時應用於 主控制訊號vgsl盥ί松升壓式轉換器與升降壓轉換器,該 段,搭配主動^^控制訊號Vgs2每週期階可分為四個階 S2,僅需要_二丄與取代習知飛輪二極體D的次開關 Vgs2輸入次開關$ =控制訊號Vgsl反向之次控制訊號 導通模式,即可 *電感L1之電流(IL1)操作於不連續 s切換與減少飛'達2效降低原習知轉換器中主開關 示出本創作之目的—Λ:通⑽)時之功率損失,充分顯 的,、功效上均深富實施之進步性與產業之The power loss during turn-on can also be reduced / The known flywheel diode D is formed, and the current of the circuit in the circuit is: the release of the inductor energy is only the output capacitor c, the load R ~ electricity M241877 V. Creation instructions (13) Inductance L1-Drain of metal oxide semiconductor field effect transistor M2 (]))-Source (S) of metal oxide semiconductor field effect transistor M2, output capacitance (reverse energy storage for inductor L1. Four stages 140: The current (IL1) of the inductor L1 discharges the parasitic capacitance D1. At this stage, the active switch S1 and the secondary switch S2 are in the cut-off (0FF) state, and the current (I l 1) of the inductor L1 is compared to the active switch s 1 The parasitic capacitance c 丨 is discharged, and after the discharge is completed, the diode of the active MS1 is turned on!) And turned on (ON). The path of the bean current in the two iifs is: inductor L1—metal oxide semiconductor field effect transistor &amp; thunder ,, = s) —metal oxide semiconductor field effect transistor drain (1 &gt;) — Han input power supply V 1 n. The main control signal Vgsl and the secondary control signal vss2 of one cycle of the instrument are two. The dream signal is active ^ The system signal switch drives the active switch S1 and the secondary switch ", when the conduction = the conduction mode makes the active open, and the secondary switch The terminal voltage drop is zero, reaching zero voltage switching. F. A new type of soft switching control circuit with dry operation can be applied to the main control signal vgsl and boost converter and buck converter at the same time. With active ^^ control signal Vgs2 can be divided into four steps S2 per cycle level, only _ 丄 and the secondary switch Vgs2 which replaces the conventional flywheel diode D input secondary switch $ = control signal Vgsl reverse secondary control signal The conduction mode, that is, the current of the inductor L1 (IL1) can be operated at discontinuous s switching and reduced flying. Up to 2 effects reduce the power when the main switch in the conventional converter shows the purpose of this creation—Λ: 通 ⑽) The losses are fully visible, and the effectiveness of the implementation is progressive and the industrial

M241877 五、創作說明(14) 利用價值 又’本創作之軟性切換控制電路中,該主動開關s丨之 金屬氧化半導體場效電晶體M1與次開關S2之金屬氧化半導 體場2電晶體M2皆可以由雙極性電晶體(BJT) β1、β2取代 (如『第7圖』所示),該取代之對應相關位置為金屬氧 化半導體場效電晶體Ml、M2之源極(s)、閘極(G)與汲極 (D),相對應於雙極性電晶體B1、B2之射極(E)、基極(β) 與集極(C) 〇 5亥主動開關s 1之金屬氧化半導體場效電晶體Μ1與次開 關S2之金屬氧化半導體場效電晶體…亦可由絕緣閘雙極性 電晶體(IGBT ) ΤΙ、Τ2取代(如『第8圖』所示),該取 代之對應相關位置為金屬氧化半導體場效電晶體M1、以之 源極(S)、閘極(G)與汲極(d ),相對應於絕緣閘雙極性電 晶體ΤΙ、T2之射極(E)、閘極(G)與集極(C)。 惟以上所述者,僅為本創作之較佳實施例而已,當不 能以之限定本創作實施之範圍,即大凡依本創作申請$利 範圍所作之均等變化與修飾,皆應仍屬本創作專利涵 範圍内。 &lt;M241877 V. Creation description (14) In the soft switching control circuit of this creation, the metal oxide semiconductor field effect transistor M1 of the active switch s 丨 and the metal oxide semiconductor field 2 transistor M2 of the secondary switch S2 can be used. Replaced by bipolar transistors (BJT) β1 and β2 (as shown in "Figure 7"), the corresponding positions of the substitution are the source (s) and gate ( G) Corresponds to the drain (D), corresponding to the emitter (E), base (β), and collector (C) of the bipolar transistors B1 and B2. Field effect of the metal oxide semiconductor of the active switch s 1 The transistor M1 and the metal oxide semiconductor field-effect transistor of the secondary switch S2 ... can also be replaced by insulated gate bipolar transistors (IGBTs) T1 and T2 (as shown in "Figure 8"). The corresponding position of the replacement is metal The oxide semiconductor field effect transistor M1, the source (S), the gate (G) and the drain (d) thereof correspond to the emitters (E) and the gates (E) of the insulated gate bipolar transistors T1 and T2. G) and collector (C). However, the above are only the preferred embodiments of this creation. When the scope of implementation of this creation cannot be limited, that is, all equal changes and modifications made in accordance with the scope of the application's profit should still belong to this creation. Within the scope of the patent. &lt;

M241877 圖式簡單說明 五、1r圖式之簡單說明 第1圖 第2圖 第3圖 第4圖 第5圖 第6圖 第7圖 第8圖 第9圖 圖式之符號說明 S :主開關 L :儲能電感 D :飛輪二極體 V1 n :輸入電源 si :主動開關 S2 :次開關 C :輸出電容 U :電感 R :負載 係習知之降壓式轉換器 係習知之升壓式轉換器電路;:示$圖 係習知之升降壓轉換器電路年構Γ f圖 係本創作之電路架構示意圖 μ . 4.升壓式轉換器電路架構示意圖 r、 之升降壓式轉換器電路架構示意圖 係本創作中金屬氧化半導體場效電晶體 (MOSFET)以雙極性電晶體(BJT)取代 圖 係本創作中金屬氧化半導體場效電晶體 (MOSFET)以絕緣閘雙極性電晶體(IGBT)取 代之示意圖 係本創作之控制訊號與電感電流波形示意圖 之示意 ❿M241877 Brief description of the diagram V. Brief description of the 1r diagram 1st diagram 2nd diagram 3rd diagram 4th diagram 5th diagram 6th diagram 7th diagram 8th diagram 9th diagram diagram Symbol S: Main switch L : Energy storage inductor D: Flywheel diode V1 n: Input power source si: Active switch S2: Secondary switch C: Output capacitor U: Inductor R: Load converter known buck converter converter system known boost converter circuit ;: The figure shows the annual structure of the conventional buck-boost converter circuit. The Γ f diagram is the schematic diagram of the circuit structure of this creation μ. 4. The schematic diagram of the boost converter circuit architecture r, the schematic diagram of the buck-boost converter circuit architecture is In the creation, the metal oxide semiconductor field-effect transistor (MOSFET) is replaced with a bipolar transistor (BJT). This is a schematic diagram of the metal oxide semiconductor field-effect transistor (MOSFET) replaced with an insulated gate bipolar transistor (IGBT). Schematic diagram of the control signal and inductor current waveform of this creation❿

第19頁 M241877 圖式簡單說明 Ml、M2 D1、D2 Cl &gt; C2 金屬氧化半導體場效電晶體 二極體 寄生電容 Vgsl :主控制訊號 V g s 2 :次控制訊號 ❿Page 19 M241877 Schematic description Ml, M2 D1, D2 Cl &gt; C2 Metal Oxide Semiconductor Field Effect Transistor Diode Parasitic Capacitance Vgsl: Main control signal V g s 2: Secondary control signal ❿

第20頁Page 20

Claims (1)

M241877M241877 種軟性切換控制電路 (Buck Converter)電路架構之應用,該降壓式轉換器電路 已括.一輸入電源(Vln),一接於輸入電源(vin)正極端之 =動開關(si) ’ -接於上述主動關(S1)且與輸入 (νιη)並聯之次開關(S2),一並聯於上述次開關(s2)之輸 出電谷(C),一連接於該次開關(S2)與輸出電容(c)間之 感(L1) ’整體再並聯一負載(R),以對外輸出一電壓 (Vout.); 其特徵在於: 該主動開關(S1)係包含·· :金屬氧化半導體場效電晶體(MOSFET) (Ml ),該金屬 氧化半導體場效電晶體(Ml)之汲極(D)與輸入電源(Vin)之 正極相連接,源極(8)與次開關(S2)相連接,其閘極((^端 接主控制訊號(Vgsl); 一 一極體(D1),該二極體(D1)之正極端麵合於上述金 屬氧化半導體場效電晶體(M1)之源極(s),負極端耦合於 上述金屬氧化半導體場效電晶體(Ml)之汲極(D); 、一寄生電容(C1),該寄生電容(C1)有兩端,一端接上 述二極體(D1)之正極,另一端接二極體(D1)之負極; 該次開關(S2)係包含: ' 一金屬氧化半導體場效電晶體(M2),該金屬氧化半導 體場效電晶體(祕2)之汲極(〇)與上述主動開關(si)之金屬 氧化半導體場效電晶體(M2)的源極(S)相連接,源極(S)與 輸入電源(Vi η)之負極相連接,其閘極(G)端接次控制訊號An application of a soft switching control circuit (Buck Converter) circuit architecture, the step-down converter circuit has been included. One input power source (Vln), one connected to the positive terminal of the input power source (vin) = moving switch (si) '- The secondary switch (S2) connected to the active switch (S1) and parallel to the input (1), one connected to the output valley (C) of the secondary switch (s2), and connected to the secondary switch (S2) and output The inductance (L1) between the capacitors (c) is further connected in parallel with a load (R) as a whole to output a voltage (Vout.); It is characterized in that the active switch (S1) includes a metal oxide semiconductor field effect Transistor (MOSFET) (Ml), the drain (D) of the metal oxide semiconductor field effect transistor (Ml) is connected to the positive pole of the input power source (Vin), and the source (8) is connected to the secondary switch (S2) The gate electrode ((^ is terminated to the main control signal (Vgsl); a pole body (D1), the anode end face of the diode body (D1) is connected to the source of the above-mentioned metal oxide semiconductor field effect transistor (M1)) Electrode (s), the negative terminal of which is coupled to the drain (D) of the metal oxide semiconductor field effect transistor (Ml); Capacitor (C1), the parasitic capacitor (C1) has two ends, one end is connected to the anode of the above-mentioned diode (D1), and the other end is connected to the anode of the diode (D1); the secondary switch (S2) includes: Metal oxide semiconductor field effect transistor (M2), the drain (0) of the metal oxide semiconductor field effect transistor (secret 2) and the source of the metal oxide semiconductor field effect transistor (M2) of the above active switch (si) (S), the source (S) is connected to the negative pole of the input power source (Vi η), and the gate (G) is connected to the secondary control signal M241877 六、申請專利範圍 (Vgs2) 产一二極體(D2),該二極體(D2)之正極端耦合於上述金 屬氧化半導體場效電晶體(M2)之源極(s),負極端麵合於 上述金屬氧化半導體場效電晶體(M2)之汲極(D); 一寄生電容(C2),該寄生電容(C2)有兩端,一端接上 述二極體(D2)之正極,另一端接二極體(D2)之負極; 藉由該主動開關(S1 )與次開關(S2 )皆具雙方向之特性 ,如是該電感(L1 )可操作於不連續導通模式 (Discontinuous Conduction Mode)下使主動開關(S1)與 -人開關(S 2 )導通時兩端壓降為零,達到零電壓切換(z e厂〇 Voltage Switching)。 2、如申請專利範圍第1項所述之軟性切換控制電路, 其中,該主控制訊號(Vgsl)與次控制訊號(vgs2)互為反向M241877 6. Scope of patent application (Vgs2) produces a diode (D2), the positive pole of the diode (D2) is coupled to the source (s) of the metal oxide semiconductor field effect transistor (M2), the negative terminal The parasitic capacitor (C2) has two ends and one end is connected to the positive electrode of the above-mentioned diode (D2). The other end is connected to the negative electrode of the diode (D2). With the active switch (S1) and the secondary switch (S2) both having bidirectional characteristics, if the inductor (L1) can be operated in the discontinuous conduction mode (Discontinuous Conduction Mode) ), When the active switch (S1) and the -man switch (S2) are turned on, the voltage drop at both ends is zero, and zero voltage switching is achieved (Ze Factory 0 Voltage Switching). 2. The soft switching control circuit according to item 1 of the scope of patent application, wherein the primary control signal (Vgsl) and the secondary control signal (vgs2) are opposite to each other. 3、 如申請專利範圍第1項所述之軟性切換控制電路, 其中,該主動開關(si)之金屬氧化半導體場效電晶體(M1) 與次開關(S2)之金屬氧化半導體場效電晶體(M2)可以由雙 極性電晶體(BJT)(B1、B2)取代,該取代之對應相關位置 為金屬氧化半導體場效電晶體(们、M2)之源極(s)、閘極 (G)與汲極(D),相對應於雙極性電晶體(β1、B2)之射極 (E)、基極(B)與集極(c)。 4、 如申請專利範圍第1項所述之軟性切換控制電路, 其中,該主動開關(s 1 )之金屬氧化半導體場效電晶體(M J ) 與次開關(S2)之金屬氧化半導體場效電晶體(M2)可以由絕3. The soft switching control circuit as described in item 1 of the scope of patent application, wherein the metal oxide semiconductor field effect transistor (M1) of the active switch (si) and the metal oxide semiconductor field effect transistor of the secondary switch (S2) (M2) may be replaced by a bipolar transistor (BJT) (B1, B2), and the corresponding corresponding positions are the source (s) and gate (G) of the metal oxide semiconductor field effect transistor (men, M2). The drain (D) corresponds to the emitter (E), base (B) and collector (c) of the bipolar transistor (β1, B2). 4. The soft switching control circuit as described in item 1 of the scope of patent application, wherein the metal oxide semiconductor field effect transistor (MJ) of the active switch (s1) and the metal oxide semiconductor field effect transistor of the secondary switch (S2) The crystal (M2) can be formed by M241877 六、申請專利範圍 緣閘雙極性電晶體(IGBT ) (T1、T2)取代,該取代之對應 相關位置為金屬氧化半導體場效電晶體(Μ1、Μ2)之源極 (S )、閘極(G )與汲極(D ),相對應於絕緣閘雙極性電晶體 (IGBT) (ΤΙ、Τ2)之射極(Ε)、閘極(G)與集極(c)。 5 種軟性切換控制電路,係對一般升壓式轉換器 (Boost C〇nverter)t路架構之應用,該升壓式轉換器電 路包括·一輸入電源(Vin),一接於輸入電源(Vin)正極端 之電感(L1),一接於該電感(L1)且與輸入電源(Vin)並聯 之之主動開關(S1),一並聯於上述主動開關(si)之輸出電 谷(c),一連接於該主動開關(s丨)與輸出電容(c)間之次開 關(S2) ’整體再並聯一負載(r),以對外輸出一電壓 (V 〇 u t); 其特徵在於: 該主動開關(S1)係包含: 一金屬氧化半導體場效電晶體(M1),該金屬氧化半導 體場效電晶體(Ml)之汲極(D)與電感(L1)相連接,源極(s) 與輸入電源(Vi η)之負極相連接,其閘極((})端接主柝 號(Vgsl) ; 一二極體(D1),該二極體(D1)之正極端耦合於上 屬氧化半導體場效電晶體(Ml)之源極(S),負極端耦合於’ 上述金屬氧化半導體場效電晶體(M1)之汲極(D) ; ° 一寄生電容(C1),該寄生電容(C1)有兩端,’_端接上 述二極體(D1)之正極,另一端接二極體(D1)之查么 該次開關(S2)係包含: 胃# ’ M241877M241877 VI. Patent application: Edge gate bipolar transistor (IGBT) (T1, T2) replacement, the corresponding position is the source (S), gate of metal oxide semiconductor field effect transistor (M1, M2). (G) and drain (D) correspond to the emitter (E), gate (G), and collector (c) of the insulated gate bipolar transistor (IGBT) (Ti, T2). 5 kinds of soft switching control circuits are applied to the general boost converter (Boost Converter) t-channel architecture. The boost converter circuit includes an input power source (Vin) and one connected to the input power source (Vin ) The positive inductance (L1), an active switch (S1) connected to the inductor (L1) and connected in parallel with the input power source (Vin), and an output valley (c) connected in parallel to the active switch (si), A secondary switch (S2) connected between the active switch (s 丨) and the output capacitor (c) is connected as a whole in parallel with a load (r) to output a voltage (Vout); It is characterized by: The switch (S1) comprises: a metal oxide semiconductor field effect transistor (M1), the drain (D) of the metal oxide semiconductor field effect transistor (Ml) is connected to the inductor (L1), and the source (s) and The negative pole of the input power source (Vi η) is connected, and its gate electrode (()) is terminated with the main horn (Vgsl); a diode (D1), the positive pole of the diode (D1) is coupled to the upper oxidation The source (S) of the semiconductor field effect transistor (Ml), the negative terminal of which is coupled to the above metal oxide semiconductor field effect transistor Drain (D) of (M1); ° A parasitic capacitor (C1), which has two ends, '_ is connected to the positive electrode of the diode (D1), and the other end is connected to the diode (D1 ) Check that the switch (S2) contains: Stomach # 'M241877 一金屬氧化半導體場效電晶體(M2),該金屬氧化半導 ,場效電晶體(M2)之源極(S)與上述主動開關(S1)之金屬 氧化半導體場效電晶體(以2)的汲極(]))相連接,其汲極 與上述輸出電容(C)相連接,其閘極((})端接次控制訊號 (Vgs2); 一二極體(D2),該二極體(D2)之正極端耦合於上述金 屬氧化半,體場效電晶體(M2)之源極(s),負極端耦合於 上述金屬氧化半導體場效電晶體(M 2 )之汲極(d ); 一寄生電容(C2),該寄生電容(C2)有兩端,一端接上 述二極體(D2)之正極,另一端接二極體(D2)之負極,· 藉由該主動開關(S1)與次開關(32)皆具雙方向之特性,如 是該電感(L1)可操作於不連續導通模式下使主動 與次開關(S2)導通時兩端壓降為零,達到零電壓切^(。 6、 如申請專利範圍第5項所述之軟性切換控制電路, 其中,該主控制訊號Vgsl與次控制訊號VgS2互為反向。 7、 如申請專利範圍第5項所述之軟性切換控制電路, 其中,該主動開關(si)之金屬氧化半導體場效電晶體(M1) 與次開關(S2)之金屬氧化半導體場效電晶體(M2)可以由雙 極性電晶體(BJT)( Bl、B2)取代,該取代之對應相關位置 為金屬氧化半導體場效電晶體(M1、M2)之源極(s)、閘極 (G)與汲極(D),相對應於雙極性電晶體(B1、b2)之射極 (E)、基極(B)與集極(C)。 8、 如申請專利範圍第5項所述之軟性切換控制電路, 其中,該主動開關(si)之金屬氧化半導體場效電晶體(M1)A metal oxide semiconductor field effect transistor (M2), the metal oxide semiconductor, the source (S) of the field effect transistor (M2), and the metal oxide semiconductor field effect transistor of the active switch (S1) (2) The drain (])) is connected, the drain is connected to the output capacitor (C), and the gate (()) is terminated with the secondary control signal (Vgs2); a diode (D2), the diode The positive terminal of the body (D2) is coupled to the metal oxide half, the source (s) of the body field effect transistor (M2), and the negative terminal is coupled to the drain (d) of the metal oxide semiconductor field effect transistor (M 2). ); A parasitic capacitor (C2), the parasitic capacitor (C2) has two ends, one end is connected to the anode of the diode (D2), and the other end is connected to the anode of the diode (D2); S1) and secondary switch (32) both have bidirectional characteristics. If the inductor (L1) can be operated in discontinuous conduction mode, the voltage drop across the two ends of the active and secondary switch (S2) will be zero to achieve zero voltage cut. ^ (. 6. The soft switching control circuit as described in item 5 of the scope of patent application, wherein the primary control signal Vgsl and the secondary control signal VgS 2 is opposite to each other. 7. The soft switching control circuit described in item 5 of the scope of patent application, wherein the metal oxide semiconductor field effect transistor (M1) of the active switch (si) and the metal of the secondary switch (S2) The oxide semiconductor field effect transistor (M2) can be replaced by a bipolar transistor (BJT) (B1, B2), and the corresponding position is the source (s) of the metal oxide semiconductor field effect transistor (M1, M2). The gate (G) and the drain (D) correspond to the emitter (E), base (B), and collector (C) of the bipolar transistors (B1, b2). The soft switching control circuit according to item 5, wherein the metal oxide semiconductor field effect transistor (M1) of the active switch (si) 第24頁 M241877 六、申請專利範圍 與次開關(S2)之金屬氧化半導體場效電晶體(M2)可以由絕 緣閘雙極性電晶體(IGBT ) (ΤΙ、T2)取代,該取代之對應 相關位置為金屬氧化半導體場效電晶體(Ml、M2)之源極 (S)、閘極(G)與汲極(D),相對應於絕緣閘雙極性電晶體 (IGBT ) (ΤΙ、T2)之射極(E)、閘極(G)與集極(C)。 9、一種軟性切換控制電路,係對一般升降壓式轉換 器(Buck-Boost Converter)電路架構之應用,該升降壓式 轉換器電路包括··一輸入電源(V i η ),一接於輸入電源 (Vin)正極端之主動開關(si),一接於上述主動開關(si) 且與輸入電源(Vin)並聯之電感(L1),一並聯於該上述電 感(L1)之輸出電容(C),——連接於該電感(L1)與輸出電容 (C)間之次開關(S2),整體再並聯一負載(R),以對外輸出 一電壓(Vout); ' 其特徵在於: 該主動開關(S1)係包含: 一金屬氧化半導體場效電晶體(Ml),該金屬氧化半導 體場效電晶體(Ml)之汲極(D)與输入電源(Vin)之正極相連 接,源極(S)與電感(L1) 一端相連接,其閘極(G)端接 制訊號(Vgsl); 一二極體(D1),該二極體(D1)之正極端耦合於上述金 屬氧化半導體場效電晶體(Ml)之源極(S),負極端輕人'於 上述金屬氧化半導體場效電晶體(Ml)之汲極(D) ; ° 一寄生電容(C1),該寄生電容(C1)有兩端,一端接上述一 極體(D1)之正極,另一端接二極體(D1)之負極; 心一Page 24 M241877 VI. Patent application scope and the metal oxide semiconductor field effect transistor (M2) of the secondary switch (S2) can be replaced by an insulated gate bipolar transistor (IGBT) (TI, T2), and the corresponding corresponding position of the replacement It is the source (S), gate (G) and drain (D) of the metal oxide semiconductor field effect transistor (Ml, M2), corresponding to the insulating gate bipolar transistor (IGBT) (ΤΙ, T2) Emitter (E), gate (G) and collector (C). 9. A soft switching control circuit, which is an application to the general buck-boost converter circuit architecture. The buck-boost converter circuit includes an input power source (V i η), one connected to the input An active switch (si) at the positive terminal of the power source (Vin), an inductor (L1) connected to the active switch (si) and connected in parallel with the input power source (Vin), and an output capacitor (C) connected in parallel to the above-mentioned inductor (L1) ), —— The secondary switch (S2) connected between the inductor (L1) and the output capacitor (C), and a load (R) is connected in parallel as a whole to output a voltage (Vout); 'It is characterized by: the active The switch (S1) comprises: a metal oxide semiconductor field effect transistor (Ml), the drain (D) of the metal oxide semiconductor field effect transistor (Ml) is connected to the positive electrode of the input power source (Vin), and the source ( S) is connected to one end of the inductor (L1), and the gate (G) is connected to the signal (Vgsl); a diode (D1), the positive pole of the diode (D1) is coupled to the metal oxide semiconductor field The source (S) of the effect transistor (Ml) and the negative terminal are lighter than the above metal oxide semiconductor Drain (D) of the effect transistor (Ml); ° A parasitic capacitor (C1), which has two ends, one end of which is connected to the positive electrode of the aforementioned pole body (D1), and the other end is connected to the diode body ( D1) negative pole; heart one 第25頁Page 25 M241877M241877 該次開關(S2)係包含: 一金屬氧化半導體場效電晶體(M2),該金屬氧化半導 體場效電晶體(M2)之汲極(D)與上述主動開關(S1)之金屬 氧化半導體場效電晶體(M2)的源極(S)與電感(li) 一端相 連接處耦合,源極(S)與輸出電容(C)之一端相連接,其閑 極(G)端接次控制訊號(VgS2) ; /、甲 一二極體(D2),該二極體(D2)之正極端耦合於上述金 屬氧化半導體場效電晶體(M2)之源極(S),負極端耗合於 上述金屬氧化半導體場效電晶體(M 2 )之汲極(d ); 一寄生電容(C2),該寄生電容(C2)有兩端,一端接上述二 極體(D2)之正極,另一端接二極體(D2)之負極; f由該主動開關(S1)與次開關(S2)皆具雙方向之特性,如 是,電感(L1)可操作於不連續導通模式下使主動開關(S1) 與次開關(S2)導通時兩端壓降為零,達到零電壓切換。 1 〇、如申請專利範圍第9項所述之軟性切換控制電 路’其中’該主控制訊號(Vgsi)與次控制訊號(Vgs2)互為 反向。 ^ 11、如申請專利範圍第9項所述之軟性切換控制電 路’其中’該主動開關(S1)之金屬氧化半導體場效電晶體 (Ml )與次開關(82)之金屬氧化半導體場效電晶體(M2)可以 由雙極性電晶體Β1、β2)取代,該取代之對應相關 位置為金屬氧化半導體場效電晶體(Μ1、Μ〗)之源極(s)、 閑極(G)與汲極(D),相對應於雙極性電晶體(Bi、b2)之 射極(E)、基極(B)與集極(c)。The secondary switch (S2) includes: a metal oxide semiconductor field effect transistor (M2), a drain (D) of the metal oxide semiconductor field effect transistor (M2), and the metal oxide semiconductor field of the active switch (S1). The source (S) of the effect transistor (M2) is coupled to one end of the inductor (li), the source (S) is connected to one end of the output capacitor (C), and the idler (G) is connected to the secondary control signal (VgS2); /, a diode (D2), the positive pole of the diode (D2) is coupled to the source (S) of the metal oxide semiconductor field effect transistor (M2), the negative terminal is consumed by The drain (d) of the metal oxide semiconductor field effect transistor (M 2); a parasitic capacitor (C2), which has two ends, one end of which is connected to the anode of the diode (D2), and the other end Connected to the negative pole of the diode (D2); f The active switch (S1) and the secondary switch (S2) have bidirectional characteristics. If so, the inductor (L1) can be operated in discontinuous conduction mode to make the active switch (S1 ) When the secondary switch (S2) is turned on, the voltage drop across the two ends is zero, and zero voltage switching is reached. 10. The soft switching control circuit according to item 9 of the scope of the patent application, wherein the primary control signal (Vgsi) and the secondary control signal (Vgs2) are opposite to each other. ^ 11. The soft switching control circuit described in item 9 of the scope of patent application 'wherein' the metal oxide semiconductor field effect transistor (Ml) of the active switch (S1) and the metal oxide semiconductor field effect transistor of the secondary switch (82) The crystal (M2) may be replaced by a bipolar transistor B1, β2), and the corresponding positions of the substitution are the source (s), idler (G), and drain of the metal oxide semiconductor field effect transistor (M1, M). The pole (D) corresponds to the emitter (E), base (B) and collector (c) of the bipolar transistor (Bi, b2). 第26頁 M241877 六、申請專利範圍 12 如申清專利範圍第9項所述之軟性切換控制電路 /^其Ϊ /該主動開關(S1)之金屬氧化半導體場效電晶體 〃次開關(S2)之金屬氧化半導體場效電晶體(1^2)可以 由絕緣閘雙極性電晶體(IGBT ) (ΤΙ、T2)取代,該取代之 對應相關位置為金屬氧化半導體場效電晶體(Μ1、M2)之源 極(S )、閘極(g )與汲極(d ),相對應於絕緣閘雙極性電晶 體(IGBT) (ΤΙ、Τ2)之射極(Ε)、閘極(G)與集極(C)。Page 26 M241877 VI. Application for patent scope 12 The soft switching control circuit as described in item 9 of the patent application scope / ^ 其 Ϊ / Metal oxide semiconductor field effect transistor secondary switch (S2) of the active switch (S1) The metal oxide semiconductor field effect transistor (1 ^ 2) can be replaced by an insulated gate bipolar transistor (IGBT) (TI, T2), and the corresponding corresponding position is a metal oxide semiconductor field effect transistor (M1, M2) The source (S), gate (g), and drain (d) correspond to the emitter (E), gate (G), and collector of the insulated gate bipolar transistor (IGBT) (ΤΙ, Τ2). Pole (C).
TW092216207U 2003-09-09 2003-09-09 Soft-switching control circuit TWM241877U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW092216207U TWM241877U (en) 2003-09-09 2003-09-09 Soft-switching control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW092216207U TWM241877U (en) 2003-09-09 2003-09-09 Soft-switching control circuit

Publications (1)

Publication Number Publication Date
TWM241877U true TWM241877U (en) 2004-08-21

Family

ID=34077975

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092216207U TWM241877U (en) 2003-09-09 2003-09-09 Soft-switching control circuit

Country Status (1)

Country Link
TW (1) TWM241877U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI465024B (en) * 2012-09-19 2014-12-11 Nat Univ Chin Yi Technology Bidirectional buck-boost converter with soft-switching
TWI684846B (en) * 2014-04-15 2020-02-11 美格納半導體有限公司 Switch control circuit for controlling an average current flowing into a load through a current control switch that is series-coupled to an input power and the load and continuous current mod operation converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI465024B (en) * 2012-09-19 2014-12-11 Nat Univ Chin Yi Technology Bidirectional buck-boost converter with soft-switching
TWI684846B (en) * 2014-04-15 2020-02-11 美格納半導體有限公司 Switch control circuit for controlling an average current flowing into a load through a current control switch that is series-coupled to an input power and the load and continuous current mod operation converter

Similar Documents

Publication Publication Date Title
CN106059320B (en) A kind of Parallel Resonant Zero-voltage switch push-pull ortho-exciting converter
TWI513164B (en) Flyback active clamping power converter
TWI271918B (en) Soft-switching DC/DC converter having relatively less components
CN114629349B (en) Improved high-frequency high-step-up ratio SEPIC converter based on switching inductance
CN101976940A (en) Drive bootstrap circuit for switching tube of switching power supply converter
TW201141033A (en) High voltage gain power converter
CN112994449A (en) Three-state resonant switch capacitor power converter and control method thereof
CN111786553A (en) Efficient bidirectional four-pipe BUCK-BOOST converter
CN104393755B (en) High-efficiency booster circuit
TWI394359B (en) Circuit of reducing power loss on switching
Du et al. A 48V-to-1V buck-assisted active-clamp forward converter with reduced voltage stress for datacenter applications
CN105978322B (en) A kind of quasi- sources Z DC-DC converter of switching capacity type high-gain
TWI501527B (en) High voltage ratio interleaved converter with soft-switching using single auxiliary switch
TWM241877U (en) Soft-switching control circuit
KR20210054181A (en) Improvement of Switching Loss in DC-DC Quadratic Boost Converter
TWI497890B (en) Series cascaded converter with single zero-voltage-transition auxiliary circuit
CN212381120U (en) Efficient bidirectional four-pipe BUCK-BOOST converter
TWI721557B (en) High voltage gain dc/dc converter
WO2023201967A1 (en) Multi-coupled chopper converter, control method, and power supply device
Schmitz et al. High step‐up non‐isolated ZVS‐ZCS dc–dc Cúk‐based converter
TWI742997B (en) Soft-switching power converter
TWI792945B (en) High Voltage Gain DC Converter
CN115714532B (en) Dual-switch direct-current boost converter based on coupling inductance voltage doubling unit and control method
CN113659822B (en) Method for reducing loss of soft switching power converter based on saturated inductance
CN115603572B (en) Boost converter

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees