TWI853238B - Vibration sensor - Google Patents

Vibration sensor Download PDF

Info

Publication number
TWI853238B
TWI853238B TW111116126A TW111116126A TWI853238B TW I853238 B TWI853238 B TW I853238B TW 111116126 A TW111116126 A TW 111116126A TW 111116126 A TW111116126 A TW 111116126A TW I853238 B TWI853238 B TW I853238B
Authority
TW
Taiwan
Prior art keywords
elastic element
vibration
vibration sensor
mass
mass element
Prior art date
Application number
TW111116126A
Other languages
Chinese (zh)
Other versions
TW202301882A (en
Inventor
鄧文俊
袁永帥
周文兵
黃雨佳
Original Assignee
大陸商深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110677119.2A external-priority patent/CN113286213A/en
Priority claimed from CN202121366390.6U external-priority patent/CN215300865U/en
Application filed by 大陸商深圳市韶音科技有限公司 filed Critical 大陸商深圳市韶音科技有限公司
Publication of TW202301882A publication Critical patent/TW202301882A/en
Application granted granted Critical
Publication of TWI853238B publication Critical patent/TWI853238B/en

Links

Images

Abstract

The embodiments of the present disclosure may disclose a vibration sensor, including a shell structure and an acoustic transducer, and at least part of the shell structure and the acoustic transducer forms an acoustic cavity; a vibration unit, configured to divide the acoustic cavity into a plurality of acoustic cavities containing a first acoustic cavity, and the acoustic cavity may be acoustically connected to the acoustic transducer; the vibration unit may include at least one elastic element and quality element, and the at least one elastic element and the quality element may locate in the acoustic cavity. The at least one elastic element may be distributed on the opposite two sides of the quality element in a first direction so that in the range below the target frequency, the response sensitivity of the vibration unit to the shell structure in the first direction is higher than that of the vibration unit to the shell structure in the second direction, and the second direction is perpendicular to the first direction.

Description

振動感測器Vibration sensor

本申請案涉及感測器領域,特別涉及一種振動感測器。 This application relates to the field of sensors, and in particular to a vibration sensor.

本申請案主張於2021年6月18日提交之申請號為202110677119.2的中國專利申請案的優先權,以及於2021年6月18日提交之申請號為202121366390.6的中國專利申請案的優先權,其全部內容通過引用的方式併入本文。 This application claims priority to the Chinese patent application No. 202110677119.2 filed on June 18, 2021, and the Chinese patent application No. 202121366390.6 filed on June 18, 2021, the entire contents of which are incorporated herein by reference.

振動感測器是一種將振動信號轉換為電信號的能量轉換器件。在一些情況下,振動感測器可以用作骨傳導麥克風。在骨傳導麥克風中,振動感測器可以檢測人說話時的經皮膚傳遞的振動信號,將人皮膚傳遞來的振動信號轉換為電信號,從而達到傳聲的效果。骨傳導麥克風可以減少外界環境中通過空氣傳播的雜訊對目標聲源的干擾,達到更好的傳聲效果。振動感測器(例如,骨傳導麥克風)在實際的應用場景中可能接收目標聲源以外的其他振動信號(例如,耳機中振動揚聲器的振動信號、耳機的振動信號等),從而影響振動感測器的傳聲效果。 A vibration sensor is an energy conversion device that converts vibration signals into electrical signals. In some cases, a vibration sensor can be used as a bone conduction microphone. In a bone conduction microphone, the vibration sensor can detect the vibration signal transmitted through the skin when a person speaks, and convert the vibration signal transmitted from the human skin into an electrical signal, thereby achieving the effect of sound transmission. A bone conduction microphone can reduce the interference of noise transmitted through the air in the external environment on the target sound source, achieving a better sound transmission effect. In actual application scenarios, vibration sensors (e.g., bone conduction microphones) may receive vibration signals other than the target sound source (e.g., vibration signals from the vibrating speakers in headphones, vibration signals from the headphones, etc.), thereby affecting the sound transmission effect of the vibration sensor.

基於上述問題,本說明書提供一種振動感測器,可以用來降低非目標振動信號的影響,從而提高振動感測器對目標振動信號的傳聲效果。 Based on the above problems, this specification provides a vibration sensor that can be used to reduce the impact of non-target vibration signals, thereby improving the sound transmission effect of the vibration sensor on the target vibration signal.

本說明書實施例的一個方面提供一種振動感測器,包括:殼體結構和聲學換能器,所述聲學換能器與所述殼體結構實體連接,其中,至少部分所述殼體結構與所述聲學換能器形成聲學腔體;振動單元,將所述聲學腔體分隔為包含第一聲學腔體的多個聲學腔體,所述第一聲學腔體與所述聲學換能器聲學連通;所述振動單元包括至少一個彈性元件和質量元件,所述至少一個彈性元件和所述質量元件位於所述聲學腔體中,所述質量元件與所述殼體結構或所述聲學換能器通過所述至少一個彈性元件連接;所述殼體結構被配置為基於外部振動信號產生振動,所述振動單元回應於所述殼體結構的所述振動使所述第一聲學腔體的體積改變,所述聲學換能器基於所述第一聲學腔體體積的改變產生電信號,其中,所述至少一個彈性元件在第一方向上分佈在所述質量元件的相反兩側,使得目標頻率範圍內,所述振動單元對所述第一方向上的所述殼體結構的所述振動的回應靈敏度高於所述振動單元對第二方向上的所述殼體結構的所述振動的回應靈敏度,所述第二方向垂直於所述第一方向。 One aspect of an embodiment of the present specification provides a vibration sensor, comprising: a shell structure and an acoustic transducer, wherein the acoustic transducer is physically connected to the shell structure, wherein at least a portion of the shell structure and the acoustic transducer form an acoustic cavity; a vibration unit, which divides the acoustic cavity into a plurality of acoustic cavities including a first acoustic cavity, wherein the first acoustic cavity is acoustically connected to the acoustic transducer; the vibration unit comprises at least one elastic element and a mass element, wherein the at least one elastic element and the mass element are located in the acoustic cavity, and the mass element is connected to the shell structure or the acoustic transducer through the at least one elastic element. The housing structure is configured to generate vibration based on an external vibration signal, the vibration unit changes the volume of the first acoustic cavity in response to the vibration of the housing structure, and the acoustic transducer generates an electrical signal based on the change in the volume of the first acoustic cavity, wherein the at least one elastic element is distributed on opposite sides of the mass element in a first direction, so that within a target frequency range, the vibration unit has a higher response sensitivity to the vibration of the housing structure in the first direction than to the vibration of the housing structure in a second direction, and the second direction is perpendicular to the first direction.

在一些實施例中,所述振動單元在所述第二方向上振動的諧振頻率與所述振動單元在所述第一方向上振動的諧振頻率的比值大於或等於2,所述振動單元對所述第二方向上的所述殼體結構的所述振動的回應靈敏度與所述振動單元對所述第一方向上的所述殼體結構的所述振動的回應靈敏度的差值為-20dB~-40dB。 In some embodiments, the ratio of the harmonic frequency of the vibration unit vibrating in the second direction to the harmonic frequency of the vibration unit vibrating in the first direction is greater than or equal to 2, and the difference between the response sensitivity of the vibration unit to the vibration of the shell structure in the second direction and the response sensitivity of the vibration unit to the vibration of the shell structure in the first direction is -20dB~-40dB.

在一些實施例中,所述第一方向為所述質量元件的厚度方向,所述至少一個彈性元件的形心與所述質量元件的重心在第一方向上的距離不大於所述質量元件厚度的1/3,所述至少一個彈性元件的形心與所述質量元件的重心在第二方向上的距離不大於所述質量元件的邊長或半徑的1/3。 In some embodiments, the first direction is the thickness direction of the mass element, the distance between the centroid of the at least one elastic element and the center of gravity of the mass element in the first direction is no more than 1/3 of the thickness of the mass element, and the distance between the centroid of the at least one elastic element and the center of gravity of the mass element in the second direction is no more than 1/3 of the side length or radius of the mass element.

在一些實施例中,所述至少一個彈性元件包括第一彈性元件和第二彈性元件,所述第一彈性元件和所述第二彈性元件和與所述聲學腔體對應的 所述殼體結構或所述聲學換能器連接;所述第一彈性元件和所述第二彈性元件在所述第一方向上相對於所述質量元件呈近似對稱分佈,其中,所述第一方向為所述質量元件的厚度方向,所述質量元件的上表面與所述第一彈性元件連接,所述質量元件的下表面與所述第二彈性元件連接。 In some embodiments, the at least one elastic element includes a first elastic element and a second elastic element, the first elastic element and the second elastic element are connected to the shell structure or the acoustic transducer corresponding to the acoustic cavity; the first elastic element and the second elastic element are approximately symmetrically distributed relative to the mass element in the first direction, wherein the first direction is the thickness direction of the mass element, the upper surface of the mass element is connected to the first elastic element, and the lower surface of the mass element is connected to the second elastic element.

在一些實施例中,所述第一彈性元件和所述第二彈性元件為膜狀結構,所述質量元件的上表面或下表面的尺寸小於所述第一彈性元件和所述第二彈性元件的尺寸。 In some embodiments, the first elastic element and the second elastic element are membrane-like structures, and the size of the upper surface or the lower surface of the mass element is smaller than the size of the first elastic element and the second elastic element.

在一些實施例中,在所述第一彈性元件、所述第二彈性元件、所述質量元件與所述聲學腔體對應的所述殼體結構或所述聲學換能器之間具有間隙,所述間隙中具有用於調節所述振動感測器的品質因數的填充物。 In some embodiments, there is a gap between the first elastic element, the second elastic element, the mass element, and the shell structure or the acoustic transducer corresponding to the acoustic cavity, and the gap contains a filler for adjusting the quality factor of the vibration sensor.

在一些實施例中,所述第一彈性元件和所述第二彈性元件為柱狀結構,所述第一彈性元件和所述第二彈性元件分別沿著所述質量元件的厚度方向延伸並與所述殼體結構連接。 In some embodiments, the first elastic element and the second elastic element are columnar structures, and the first elastic element and the second elastic element extend along the thickness direction of the mass element and are connected to the shell structure.

在一些實施例中,在所述第一彈性元件的外側、所述第二彈性元件的外側、所述質量元件的外側與所述聲學腔體對應的所述殼體結構或所述聲學換能器之間具有間隙,所述間隙中具有用於調節所述振動感測器的品質因數的填充物。 In some embodiments, there is a gap between the outer side of the first elastic element, the outer side of the second elastic element, the outer side of the mass element, and the shell structure or the acoustic transducer corresponding to the acoustic cavity, and the gap contains a filler for adjusting the quality factor of the vibration sensor.

在一些實施例中,所述第一彈性元件包括第一子彈性元件和第二子彈性元件,所述第一子彈性元件與所述聲學腔體對應的殼體結構或聲學換能器通過所述第二子彈性元件連接,所述第一子彈性元件與所述質量元件的上表面連接;所述第二彈性元件包括第三子彈性元件和第四子彈性元件,所述第三子彈性元件與所述聲學腔體對應的殼體結構或聲學換能器通過所述第四子彈性元件連接,所述第三子彈性元件與所述質量元件的下表面連接。 In some embodiments, the first elastic element includes a first sub-elastic element and a second sub-elastic element, the first sub-elastic element is connected to the shell structure or acoustic transducer corresponding to the acoustic cavity through the second sub-elastic element, and the first sub-elastic element is connected to the upper surface of the mass element; the second elastic element includes a third sub-elastic element and a fourth sub-elastic element, the third sub-elastic element is connected to the shell structure or acoustic transducer corresponding to the acoustic cavity through the fourth sub-elastic element, and the third sub-elastic element is connected to the lower surface of the mass element.

本說明書實施例提供另一種振動感測器,該振動感測器包括殼體 結構和聲學換能器,所述聲學換能器與所述殼體結構實體連接,其中,至少部分所述殼體結構與所述聲學換能器形成聲學腔體;振動單元,將所述聲學腔體分隔為包含第一聲學腔體的多個聲學腔體,所述第一聲學腔體與所述聲學換能器聲學連通;所述振動單元包括至少一個彈性元件和質量元件,所述至少一個彈性元件和所述質量元件位於所述聲學腔體中,所述質量元件與所述殼體結構或所述聲學換能器通過所述至少一個彈性元件連接;所述殼體結構被配置為基於外部振動信號產生振動,所述振動單元回應於所述殼體結構的所述振動使所述第一聲學腔體的體積改變,所述聲學換能器基於所述第一聲學腔體的所述體積的改變產生電信號;其中,所述至少一個質量元件在第一方向上分佈在所述彈性元件的相反兩側,使得目標頻率範圍內,所述振動單元對所述第一方向上的所述殼體結構的所述振動的回應靈敏度高於所述振動單元對第二方向上的所述殼體結構的所述振動的回應靈敏度,所述第二方向垂直於所述第一方向。 The embodiment of the present specification provides another vibration sensor, which includes a housing structure and an acoustic transducer, wherein the acoustic transducer is physically connected to the housing structure, wherein at least a portion of the housing structure and the acoustic transducer form an acoustic cavity; a vibration unit, which divides the acoustic cavity into a plurality of acoustic cavities including a first acoustic cavity, wherein the first acoustic cavity is acoustically connected to the acoustic transducer; the vibration unit includes at least one elastic element and a mass element, wherein the at least one elastic element and the mass element are located in the acoustic cavity, and the mass element is connected to the housing structure or the acoustic transducer through the at least one elastic element. The housing structure is configured to generate vibration based on an external vibration signal, the vibration unit changes the volume of the first acoustic cavity in response to the vibration of the housing structure, and the acoustic transducer generates an electrical signal based on the change in the volume of the first acoustic cavity; wherein the at least one mass element is distributed on opposite sides of the elastic element in a first direction, so that within a target frequency range, the vibration unit has a higher response sensitivity to the vibration of the housing structure in the first direction than to the vibration of the housing structure in a second direction, and the second direction is perpendicular to the first direction.

100:耳機 100: Headphones

110:振動揚聲器 110: Vibration speaker

120:振動感測器 120: Vibration sensor

300:振動感測器 300: Vibration sensor

310:殼體結構 310: Shell structure

320:振動單元 320: Vibration unit

330:進聲孔 330: Sound inlet

340:基板 340: Substrate

360:第一聲學腔體 360: The first acoustic cavity

370:第二聲學腔體 370: Second acoustic cavity

400:振動感測器 400: Vibration sensor

410:殼體結構 410: Shell structure

420:振動單元 420: Vibration unit

421:質量元件 421:Mass element

422:彈性元件 422: Elastic element

430:進聲孔 430: Sound inlet

440:基板結構 440: Substrate structure

460:第一聲學腔體 460: The first acoustic cavity

470:第二聲學腔體 470: Second acoustic cavity

500:振動感測器 500: Vibration sensor

510:殼體結構 510: Shell structure

520:振動單元 520: Vibration unit

521:質量元件 521:Mass element

522:彈性元件 522: Elastic element

530:進聲孔 530: Sound inlet

540:基板結構 540: Substrate structure

560:第一聲學腔體 560: The first acoustic cavity

600:振動感測器 600: Vibration sensor

620:振動單元 620: Vibration unit

621:質量元件 621:Mass element

622:彈性元件 622: Elastic element

800:振動感測器 800: Vibration sensor

810:殼體結構 810: Shell structure

811:通孔 811:Through hole

820:聲學換能器 820:Acoustic transducer

830:振動單元 830: Vibration unit

831:質量元件 831:Mass element

832:彈性元件 832: Elastic element

840:第一聲學腔體 840: The first acoustic cavity

850:第二聲學腔體 850: Second acoustic cavity

900:振動感測器 900: Vibration sensor

910:殼體結構 910: Shell structure

920:基板結構 920: Substrate structure

921:通孔 921:Through hole

930:振動單元 930: Vibration unit

931:質量元件 931:Mass element

932:彈性元件 932: Elastic element

940:第一聲學腔體 940: The first acoustic cavity

950:第二聲學腔體 950: Second acoustic cavity

960:間隙 960: Gap

1400:振動感測器 1400: Vibration sensor

1410:殼體結構 1410: Shell structure

1420:基板結構 1420: Substrate structure

1421:通孔 1421:Through hole

1430:振動單元 1430: Vibration unit

1431:質量元件 1431:Mass element

1432:彈性元件 1432: Elastic element

1440:第一聲學腔體 1440: The first acoustic cavity

1450:第二聲學腔體 1450: Second acoustic cavity

1460:間隙 1460: Gap

1500:振動感測器 1500: Vibration sensor

1510:殼體結構 1510: Shell structure

1520:基板結構 1520: Substrate structure

1521:通孔 1521:Through hole

1530:振動單元 1530: Vibration unit

1531:質量元件 1531:Mass element

1532:彈性元件 1532: Elastic element

1540:第一聲學腔體 1540: The first acoustic cavity

1550:第二聲學腔體 1550: Second acoustic cavity

1560:間隙 1560: Gap

1570:固定片 1570:Fixed plate

1600:振動感測器 1600: Vibration sensor

1610:殼體結構 1610: Shell structure

1620:基板結構 1620: Substrate structure

1621:通孔 1621:Through hole

1630:振動單元 1630: Vibration unit

1631:質量元件 1631:Mass element

1632:彈性元件 1632: Elastic element

1640:第一聲學腔體 1640: The first acoustic cavity

1650:第二聲學腔體 1650: Second acoustic cavity

1700:振動感測器 1700: Vibration sensor

1710:殼體結構 1710: Shell structure

1720:基板結構 1720: Substrate structure

1721:通孔 1721:Through hole

1730:振動單元 1730: Vibration unit

1731:質量元件 1731:Mass element

1732:彈性元件 1732: Elastic element

1740:第一聲學腔體 1740: The first acoustic cavity

1750:第二聲學腔體 1750: Second acoustic cavity

1760:間隙 1760: Gap

3201:質量元件 3201:Mass element

3202:彈性元件 3202: Elastic element

4221:第一彈性元件 4221: First elastic element

4222:第二彈性元件 4222: Second elastic element

8321:第一彈性元件 8321: First elastic element

8322:第二彈性元件 8322: Second elastic element

9321:第一彈性元件 9321: First elastic element

9322:第二彈性元件 9322: Second elastic element

14321:第一彈性元件 14321: First elastic element

14322:第二彈性元件 14322: Second elastic element

15321:第一彈性元件 15321: First elastic element

15322:第二彈性元件 15322: Second elastic element

16311:第一質量元件 16311:First mass element

16312:第二質量元件 16312: Second mass element

17311:第一質量元件 17311:First mass element

17312:第二質量元件 17312: Second mass element

17321:第一彈性元件 17321: First elastic element

17322:第二彈性元件 17322: Second elastic element

17323:第三彈性元件 17323: Third elastic element

153211:第一子彈性元件 153211: First sub-elastic element

153212:第二子彈性元件 153212: Second sub-elastic element

153221:第三子彈性元件 153221: The third elastic element

153222:第四子彈性元件 153222: The fourth elastic element

本說明書將以示例性實施例的方式進一步描述,這些示例性實施例將通過附圖進行詳細描述。這些實施例並非限制性的,在這些實施例中,相同的元件符號表示相同的結構,其中:[圖1]係根據本說明書的一些實施例所示的振動感測器的應用場景圖;[圖2]係根據圖1所示的振動感測器的振動信號的示意圖;[圖3]係根據本說明書一些實施例所示的振動感測器的結構示意圖;[圖4]係根據本說明書一些實施例所示的振動感測器的結構示意圖; [圖5]係根據本說明書一些實施例所示的振動感測器的結構示意圖;[圖6]係根據本說明書的一些實施例所示的振動感測器在第一方向的振動模態圖;[圖7]係根據本說明書的一些實施例所示的振動感測器在第二方向的振動模態圖;[圖8]係根據本說明書的一些實施例所示的振動感測器的結構示意圖;[圖9]係根據本說明書的一些實施例所示的振動感測器的結構示意圖;[圖10]係根據本說明書的一些實施例所示的振動感測器的頻率響應曲線圖;[圖11]係根據本說明書的一些實施例所示的振動感測器的動態類比圖;[圖12]係根據本說明書的一些實施例所示的振動感測器的動態類比圖;[圖13]係根據本說明書的一些實施例所示的振動單元的諧振頻率圖;[圖14]係根據本說明書的一些實施例所示的振動感測器的結構示意圖;[圖15]係根據本說明書的一些實施例所示的振動感測器的結構示意圖;[圖16]係根據本說明書的一些實施例所示的振動感測器的結構示意圖; [圖17]係根據本說明書的一些實施例所示的振動感測器的結構示意圖。 This specification will be further described in the form of exemplary embodiments, which will be described in detail through the accompanying drawings. These embodiments are not restrictive. In these embodiments, the same component symbols represent the same structure, where: [Figure 1] is an application scenario diagram of a vibration sensor according to some embodiments of this specification; [Figure 2] is a schematic diagram of a vibration signal of the vibration sensor shown in Figure 1; [Figure 3] is a structural schematic diagram of a vibration sensor according to some embodiments of this specification; [Figure 4] is a schematic diagram of a vibration sensor according to some embodiments of this specification. [Figure 5] is a schematic diagram of the structure of the vibration sensor shown in some embodiments of this specification; [Figure 6] is a vibration mode diagram of the vibration sensor in the first direction according to some embodiments of this specification; [Figure 7] is a vibration mode diagram of the vibration sensor in the second direction according to some embodiments of this specification; [Figure 8] is a schematic diagram of the structure of the vibration sensor shown in some embodiments of this specification; [ FIG. 9 is a schematic diagram of the structure of a vibration sensor according to some embodiments of the present specification; FIG. 10 is a frequency response curve diagram of a vibration sensor according to some embodiments of the present specification; FIG. 11 is a dynamic analog diagram of a vibration sensor according to some embodiments of the present specification; FIG. 12 is a dynamic analog diagram of a vibration sensor according to some embodiments of the present specification; FIG. 13 is a dynamic analog diagram of a vibration sensor according to some embodiments of the present specification. [Figure 14] is a schematic diagram of the structure of the vibration sensor shown in some embodiments of this specification; [Figure 15] is a schematic diagram of the structure of the vibration sensor shown in some embodiments of this specification; [Figure 16] is a schematic diagram of the structure of the vibration sensor shown in some embodiments of this specification; [Figure 17] is a schematic diagram of the structure of the vibration sensor shown in some embodiments of this specification.

為了使本發明的目的、技術方案及優點更加清楚明白,以下結合附圖及實施例,對本發明進行進一步詳細說明。應當理解,此處所描述的具體實施例僅僅用以解釋本發明,並不用於限定本發明。 In order to make the purpose, technical solutions and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with the attached drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention and are not intended to limit the present invention.

相反,本發明涵蓋任何由申請專利範圍定義的在本發明的精髓和範圍上做的替代、修改、等效方法且方案。進一步,為了使公眾對本發明有更好的瞭解,在下文對本發明的細節描述中,詳盡描述了一些特定的細節部分。對本領域技術人員來說沒有這些細節部分的描述也可以完全理解本發明。 On the contrary, the present invention covers any substitution, modification, equivalent method and scheme made on the essence and scope of the present invention as defined by the scope of the patent application. Furthermore, in order to enable the public to have a better understanding of the present invention, some specific details are described in detail in the detailed description of the present invention below. For those skilled in the art, the present invention can be fully understood without the description of these details.

本發明實施例涉及振動感測器。振動感測器可以包括殼體結構、振動單元和聲學換能器,殼體結構與聲學換能器通過實體方式連接,至少部分殼體結構與聲學換能器形成聲學腔體,振動單元位於殼體結構與聲學換能器形成的聲學腔體中。在一些實施例中,振動單元可以包括至少一個彈性元件和質量元件,至少一個彈性元件和質量元件位於聲學腔體中。殼體結構被配置為基於外部信號而產生振動,當殼體結構基於外部信號產生振動時,振動單元回應於殼體結構的振動而同時振動,從而使第一聲學腔體的體積改變,進而聲學換能器產生電信號。在一些實施例中,至少一個彈性元件在第一方向上分佈在質量元件的相反兩側,或者至少一個質量元件在第一方向上分佈在質量元件的相反兩側,使得目標頻率範圍內(例如,3000Hz以下),振動單元對第一方向上的殼體結構的振動的回應靈敏度高於振動單元對第二方向上的殼體結構的振動的回應靈敏度,其中,第二方向垂直於第一方向。例如,至少一個彈性元件包括第一彈性元件和第二彈性元件,第一彈性元件和第二彈性元件分別位於質量元件的上表面和下表 面,其中,第一彈性元件和第二彈性元件可以近似視為一個整體,該整體的形心與質量元件的重心近似重合。以振動感測器應用於耳機(例如,骨傳導耳機)中作為示例,振動感測器可以作為骨傳導麥克風採集使用者說話時面部肌肉產生振動信號,並將振動信號轉化為包含語音資訊的電信號。振動感測器集成在耳機中時,振動感測器在接收使用者講話時的面部肌肉振動信號的同時也會接收其他振動信號(例如,揚聲器的振動信號、耳機殼體的振動信號、外界空氣中的雜訊信號等),不同的振動信號具有不同的振動方向。本說明書實施例中將彈性元件的形心與質量元件的重心近似重合設置可以使得振動單元對第一方向上的殼體結構的振動的回應靈敏度高於振動單元對第二方向上的殼體結構的振動的回應靈敏度。在一些應用場景中,振動感測器用於採集使用者講話時的振動信號,第一方向對應使用者講話時的面部肌肉振動信號,第二方向對應其他振動信號(例如,揚聲器的振動信號)的振動方向。在其他應用場景中,振動感測器用於採集外部環境的雜訊信號時,第一方向對應外部環境的雜訊信號的振動方向,第二方向對應其他振動信號(例如,揚聲器的振動信號)的振動方向,進而提高振動感測器的方向選擇性,降低其他振動信號對振動感測器所要採集的目標信號造成的干擾。 Embodiments of the present invention relate to a vibration sensor. The vibration sensor may include a shell structure, a vibration unit and an acoustic transducer, the shell structure and the acoustic transducer are physically connected, at least a portion of the shell structure and the acoustic transducer form an acoustic cavity, and the vibration unit is located in the acoustic cavity formed by the shell structure and the acoustic transducer. In some embodiments, the vibration unit may include at least one elastic element and a mass element, and at least one elastic element and the mass element are located in the acoustic cavity. The shell structure is configured to generate vibration based on an external signal. When the shell structure generates vibration based on the external signal, the vibration unit vibrates simultaneously in response to the vibration of the shell structure, thereby changing the volume of the first acoustic cavity, and then the acoustic transducer generates an electrical signal. In some embodiments, at least one elastic element is distributed on opposite sides of the mass element in the first direction, or at least one mass element is distributed on opposite sides of the mass element in the first direction, so that within the target frequency range (for example, below 3000 Hz), the response sensitivity of the vibration unit to the vibration of the housing structure in the first direction is higher than the response sensitivity of the vibration unit to the vibration of the housing structure in the second direction, wherein the second direction is perpendicular to the first direction. For example, at least one elastic element includes a first elastic element and a second elastic element, the first elastic element and the second elastic element are respectively located on the upper surface and the lower surface of the mass element, wherein the first elastic element and the second elastic element can be approximately regarded as a whole, and the centroid of the whole approximately coincides with the center of gravity of the mass element. Taking the application of vibration sensors in headphones (e.g., bone conduction headphones) as an example, the vibration sensor can act as a bone conduction microphone to collect vibration signals generated by the user's facial muscles when speaking, and convert the vibration signals into electrical signals containing voice information. When the vibration sensor is integrated into the headphones, the vibration sensor will receive other vibration signals (e.g., vibration signals from speakers, vibration signals from the headphone housing, noise signals in the outside air, etc.) while receiving the vibration signals from the user's facial muscles when speaking. Different vibration signals have different vibration directions. In the embodiment of this specification, the centroid of the elastic element and the center of gravity of the mass element are approximately coincident, so that the response sensitivity of the vibration unit to the vibration of the housing structure in the first direction is higher than the response sensitivity of the vibration unit to the vibration of the housing structure in the second direction. In some application scenarios, the vibration sensor is used to collect the vibration signal of the user when speaking, the first direction corresponds to the facial muscle vibration signal of the user when speaking, and the second direction corresponds to the vibration direction of other vibration signals (for example, the vibration signal of the speaker). In other application scenarios, when the vibration sensor is used to collect noise signals from the external environment, the first direction corresponds to the vibration direction of the noise signal from the external environment, and the second direction corresponds to the vibration direction of other vibration signals (for example, the vibration signal of the speaker), thereby improving the directional selectivity of the vibration sensor and reducing the interference of other vibration signals on the target signal to be collected by the vibration sensor.

在一些實施例中,本說明書實施例中的振動感測器可以應用於移動設備、可穿戴設備、虛擬實境設備、擴增實境設備等,或其任意組合。在一些實施例中,移動設備可以包括智慧手機、平板電腦、個人數位助理(PDA)、遊戲裝置、導航設備等,或其任何組合。在一些實施例中,可穿戴設備可以包括智慧手環、耳機、助聽器、智慧頭盔、智能手錶、智能服裝、智慧背包、智慧配件等,或其任意組合。在一些實施例中,虛擬實境設備和/或擴增實境設備可以包括虛擬實境頭盔、虛擬實境眼鏡、虛擬實境眼罩、擴增實境頭盔、擴增實境眼鏡、擴增實境眼罩等或其任何組合。例如,虛擬實境設備和/或擴增實境設備可以包 括Google Glass、Oculus Rift、Hololens、Gear VR等。 In some embodiments, the vibration sensor in the embodiments of this specification can be applied to mobile devices, wearable devices, virtual reality devices, augmented reality devices, etc., or any combination thereof. In some embodiments, the mobile device can include a smart phone, a tablet computer, a personal digital assistant (PDA), a game device, a navigation device, etc., or any combination thereof. In some embodiments, the wearable device can include a smart bracelet, an earphone, a hearing aid, a smart helmet, a smart watch, a smart clothing, a smart backpack, a smart accessory, etc., or any combination thereof. In some embodiments, the virtual reality device and/or augmented reality device may include a virtual reality helmet, virtual reality glasses, virtual reality goggles, augmented reality helmets, augmented reality glasses, augmented reality goggles, etc. or any combination thereof. For example, the virtual reality device and/or augmented reality device may include Google Glass, Oculus Rift, Hololens, Gear VR, etc.

圖1是根據本說明書的一些實施例所示的振動感測器的應用場景圖。以振動感測器應用於耳機(例如,骨傳導耳機)作為示例,如圖1所示,耳機100可以包括振動揚聲器110和振動感測器120。當使用者佩戴圖1所示的耳機100時,耳機100與使用者頭部皮膚區域相接觸,耳機100在工作狀態時,一方面,振動揚聲器110基於音訊信號產生振動信號,該振動信號通過耳機100的殼體或其他結構(例如,振動板)傳遞至使用者頭部皮膚,該振動信號通過頭部的骨骼或肌肉傳遞至使用者的聽覺神經。另一方面,使用者在通話狀態或錄音時,使用者講話時聲帶發出的聲音經過骨骼傳導到皮膚表面,並帶動耳機100的殼體產生振動信號,振動感測器120可以基於採集該振動信號,並將該振動信號轉化為包含語音資訊的電信號。在一些應用場景中,例如,使用者在使用耳機100進行通話或輸入語音資訊時,振動感測器120要採集的振動信號是使用者講話時面部肌肉產生的振動信號,這裡的振動信號可以視為目標信號(目標振動信號的振動方向為圖1中所示的雙向箭頭E),目標信號是振動感測器120所要採集的振動信號。耳機100的振動揚聲器110在工作狀態時也會產生振動信號,外部空氣振動也會作用於耳機100產生振動信號,這些振動信號可以視為雜訊信號。為了防止雜訊信號對目標信號雜訊影響,可以將耳機100中振動揚聲器110與振動感測器120垂直或近似垂直設置,這裡振動揚聲器110與振動感測器120垂直或近似垂直設置是指振動揚聲器110的振動方向(圖1中所示的雙向箭頭N)與振動感測器120的振動方向(圖1中所示的第一方向)相垂直或近似垂直。這裡的近似垂直可以是指振動揚聲器110的法線與振動感測器120的法線具有一定角度範圍內的夾角。在一些實施例中,該夾角的範圍可以為75°-115°。優選地,該夾角的範圍可以為80°-100°。進一步優選地,該夾角的範圍可以為85°-95°。在一些實施例中,為了減少耳機100與使用者面部皮膚接觸產生的振動對目標信號的影響,振動揚聲器 110的振動方向可以與使用者皮膚接觸區域所在的平面以一定夾角θ(例如,小於90°)進行設置。 FIG1 is an application scenario diagram of a vibration sensor according to some embodiments of the present specification. Taking the application of the vibration sensor to an earphone (e.g., a bone conduction earphone) as an example, as shown in FIG1 , the earphone 100 may include a vibration speaker 110 and a vibration sensor 120. When a user wears the earphone 100 shown in FIG1 , the earphone 100 contacts the skin area of the user's head. When the earphone 100 is in operation, on the one hand, the vibration speaker 110 generates a vibration signal based on an audio signal, and the vibration signal is transmitted to the user's head skin through the housing of the earphone 100 or other structures (e.g., a vibration plate), and the vibration signal is transmitted to the user's auditory nerve through the bones or muscles of the head. On the other hand, when the user is on a call or recording, the sound emitted by the vocal cords when the user is speaking is transmitted to the skin surface through the bones, and drives the housing of the headset 100 to generate a vibration signal. The vibration sensor 120 can collect the vibration signal and convert it into an electrical signal containing voice information. In some application scenarios, for example, when the user is using the headset 100 to make a call or input voice information, the vibration signal to be collected by the vibration sensor 120 is the vibration signal generated by the facial muscles when the user is speaking. The vibration signal here can be regarded as a target signal (the vibration direction of the target vibration signal is the bidirectional arrow E shown in FIG. 1), and the target signal is the vibration signal to be collected by the vibration sensor 120. The vibration speaker 110 of the earphone 100 will also generate a vibration signal when in operation, and the external air vibration will also act on the earphone 100 to generate a vibration signal, and these vibration signals can be regarded as noise signals. In order to prevent the noise signal from affecting the target signal noise, the vibration speaker 110 and the vibration sensor 120 in the earphone 100 can be arranged vertically or approximately vertically, where the vibration speaker 110 and the vibration sensor 120 are arranged vertically or approximately vertically means that the vibration direction of the vibration speaker 110 (the bidirectional arrow N shown in FIG. 1) is vertically or approximately vertically to the vibration direction of the vibration sensor 120 (the first direction shown in FIG. 1). The approximately vertical here may mean that the normal of the vibration speaker 110 and the normal of the vibration sensor 120 have an angle within a certain range. In some embodiments, the angle may be in the range of 75°-115°. Preferably, the angle may be in the range of 80°-100°. More preferably, the angle may be in the range of 85°-95°. In some embodiments, in order to reduce the impact of the vibration generated by the contact between the earphone 100 and the user's facial skin on the target signal, the vibration direction of the vibration speaker 110 may be set at a certain angle θ (for example, less than 90°) with the plane where the user's skin contact area is located.

圖2是根據圖1所示的振動感測器的示例性振動信號的示意圖。結合圖1和圖2,振動感測器120中振動單元的振動方向為第一方向;振動揚聲器110產生的振動信號為SN,其中,振動揚聲器110的振動方向與使用者皮膚接觸區域不垂直時,振動揚聲器110產生的振動信號SN在第一方向上具有信號分量Se,該信號分量Se也可以視為雜訊信號;使用者講話時面部肌肉產生的振動信號(目標信號)為SE,其中,Se為目標信號SE在第一方向上的信號分量,該信號分量可以被振動感測器120拾取。本說明書實施例提供的振動感測器120中的振動單元中,將彈性元件的形心或重心與質量元件的重心近似重合設置可以使得振動單元對第一方向上的殼體結構的振動的回應靈敏度高於振動單元對第二方向上的殼體結構的振動的回應靈敏度,使得振動感測器120可以對使用者講話時面部肌肉產生的振動信號(目標信號SE)在第一方向的有效分量Se更好的進行接收,同時使得振動揚聲器110在第二方向上的振動信號Sn對於振動感測器120的影響較小,從而可以提高振動感測器的方向選擇性,降低非目標振動信號對振動感測器所要採集的目標信號造成的干擾。需要注意的是,這裡彈性元件的形心與質量元件的重心近似重合可以理解彈性元件為密度均勻的規則幾何結構(例如,圓柱狀結構、環狀結構、長方體結構等)的形心與質量元件的重心近似重合,此時彈性元件的形心可以視為彈性元件的重心。在一些實施例中,彈性元件為不規則結構體時或密度不均勻時,則可視為彈性元件的實際重心與質量元件的重心近似重合。 FIG2 is a schematic diagram of an exemplary vibration signal according to the vibration sensor shown in FIG1. In combination with FIG1 and FIG2, the vibration direction of the vibration unit in the vibration sensor 120 is the first direction; the vibration signal generated by the vibration speaker 110 is SN, wherein, when the vibration direction of the vibration speaker 110 is not perpendicular to the user's skin contact area, the vibration signal SN generated by the vibration speaker 110 has a signal component Se in the first direction, and the signal component Se can also be regarded as a noise signal; the vibration signal (target signal) generated by the facial muscles of the user when speaking is SE, wherein Se is the signal component of the target signal SE in the first direction, and the signal component can be picked up by the vibration sensor 120. In the vibration unit of the vibration sensor 120 provided in the embodiment of the present specification, the centroid or center of gravity of the elastic element is approximately coincident with the center of gravity of the mass element, so that the response sensitivity of the vibration unit to the vibration of the shell structure in the first direction is higher than the response sensitivity of the vibration unit to the vibration of the shell structure in the second direction, so that the vibration sensor 120 can better receive the effective component Se of the vibration signal (target signal SE) in the first direction generated by the facial muscles of the user when speaking, and at the same time, the vibration signal Sn of the vibration speaker 110 in the second direction has less influence on the vibration sensor 120, thereby improving the directional selectivity of the vibration sensor and reducing the interference of non-target vibration signals on the target signal to be collected by the vibration sensor. It should be noted that the centroid of the elastic element and the center of gravity of the mass element here approximately coincide with each other. It can be understood that the centroid of the elastic element is a regular geometric structure with uniform density (for example, a cylindrical structure, a ring structure, a rectangular parallelepiped structure, etc.) and the center of gravity of the mass element approximately coincide with each other. At this time, the centroid of the elastic element can be regarded as the center of gravity of the elastic element. In some embodiments, when the elastic element is an irregular structure or has uneven density, the actual center of gravity of the elastic element can be regarded as approximately coinciding with the center of gravity of the mass element.

圖3是根據本說明書的一些實施例所示的振動感測器的結構示意圖。如圖3所示,振動感測器300可以包括殼體結構310、聲學換能器、振動單元320。在一些實施例中,振動感測器300的形狀可以是長方體、圓柱體或其他不規 則結構體。在一些實施例中,殼體結構310可以為具有一定硬度的材料製成,從而使得殼體結構310對振動感測器300及其內部元件(例如,振動單元320)進行保護。在一些實施例中,殼體結構310的材質可以包括但不限於金屬、合金材料、高分子材料(例如,丙烯腈-丁二烯-苯乙烯共聚物、聚氯乙烯、聚碳酸酯、聚丙烯等)等中的一種或多種。在一些實施例中,殼體結構310與聲學換能器連接,這裡的方式連接可以包括但不限於焊接、卡接、黏接或一體成型等連接方式。在一些實施例中,殼體結構310和聲學換能器可以形成聲學腔體,其中,振動單元320可以位於該聲學腔體內。振動單元320可以將聲學腔體分隔為第一聲學腔體360和第二聲學腔體370。聲學換能器可以將殼體結構310內部聲學腔體的振動信號轉換為電信號。具體地,振動感測器300工作時,外部振動信號可以通過殼體結構310傳遞到振動單元320,振動單元330回應於殼體結構310的振動而發生振動。由於振動單元320的振動相位與殼體結構310和聲學換能器的振動相位不同,振動單元320的振動可以引起殼體結構310中第一聲學腔體360的體積變化,進而引起第一聲學腔體360的聲壓變化,聲學換能器可以檢測第一聲學腔體360的聲壓變化並轉換為電信號。在一些實施例中,聲學換能器可以包括基板340,殼體結構310可以通過基板340與聲學換能器連接。在一些實施例中,基板340可以為剛性電路板(例如,PCB)和/或撓性電路板(例如,FPC)。在一些實施例中,基板340可以包括至少一個進聲孔330,第一聲學腔體360可以通過進聲孔330與聲學換能器連通。在一些實施例中,聲學換能器還可以包括至少一個振膜(圖3中未示出),振膜可以設置於進聲孔330處,當外部振動信號作用於殼體結構310時,第一聲學腔體360的聲壓發生變化,振膜回應於第一聲學腔體360的聲壓變化而發生機械振動,聲學換能器的磁路系統基於振膜的機械振動產生電信號。 FIG3 is a schematic diagram of a vibration sensor according to some embodiments of the present specification. As shown in FIG3 , the vibration sensor 300 may include a housing structure 310, an acoustic transducer, and a vibration unit 320. In some embodiments, the shape of the vibration sensor 300 may be a cuboid, a cylinder, or other irregular structures. In some embodiments, the housing structure 310 may be made of a material having a certain hardness, so that the housing structure 310 protects the vibration sensor 300 and its internal components (e.g., the vibration unit 320). In some embodiments, the material of the housing structure 310 may include but is not limited to one or more of metal, alloy material, polymer material (e.g., acrylonitrile-butadiene-styrene copolymer, polyvinyl chloride, polycarbonate, polypropylene, etc.), etc. In some embodiments, the shell structure 310 is connected to the acoustic transducer, and the connection methods here may include but are not limited to welding, clamping, bonding or integral molding. In some embodiments, the shell structure 310 and the acoustic transducer can form an acoustic cavity, wherein the vibration unit 320 can be located in the acoustic cavity. The vibration unit 320 can separate the acoustic cavity into a first acoustic cavity 360 and a second acoustic cavity 370. The acoustic transducer can convert the vibration signal of the acoustic cavity inside the shell structure 310 into an electrical signal. Specifically, when the vibration sensor 300 is working, the external vibration signal can be transmitted to the vibration unit 320 through the shell structure 310, and the vibration unit 330 vibrates in response to the vibration of the shell structure 310. Since the vibration phase of the vibration unit 320 is different from the vibration phase of the housing structure 310 and the acoustic transducer, the vibration of the vibration unit 320 can cause the volume of the first acoustic cavity 360 in the housing structure 310 to change, thereby causing the sound pressure of the first acoustic cavity 360 to change, and the acoustic transducer can detect the sound pressure change of the first acoustic cavity 360 and convert it into an electrical signal. In some embodiments, the acoustic transducer may include a substrate 340, and the housing structure 310 may be connected to the acoustic transducer through the substrate 340. In some embodiments, the substrate 340 may be a rigid circuit board (e.g., PCB) and/or a flexible circuit board (e.g., FPC). In some embodiments, the substrate 340 may include at least one sound inlet hole 330, and the first acoustic cavity 360 may be connected to the acoustic transducer through the sound inlet hole 330. In some embodiments, the acoustic transducer may also include at least one diaphragm (not shown in FIG. 3 ), and the diaphragm may be disposed at the sound inlet hole 330. When an external vibration signal acts on the shell structure 310, the sound pressure of the first acoustic cavity 360 changes, and the diaphragm mechanically vibrates in response to the change in the sound pressure of the first acoustic cavity 360. The magnetic circuit system of the acoustic transducer generates an electrical signal based on the mechanical vibration of the diaphragm.

在一些實施例中,振動單元320可以包括彈性元件3202和質量元件3201,質量元件3201和彈性元件3202位於聲學腔體內,質量元件3201與殼體結 構310通過彈性元件3202連接。具體地,彈性元件3202的周側與殼體結構310的內壁連接,質量元件3201可以位於彈性元件3202的上表面或下表面。質量元件3201可以增大彈性元件3202相對於殼體結構310的振動幅度,使得第一聲學腔體360的體積變化值可以在不同聲壓級和頻率的外部振動信號的作用下發生明顯變化,進而提高振動感測器300的靈敏度。在一些實施例中,彈性元件3202的結構可以是膜狀結構。在一些實施例中,質量元件3201可以為長方體、圓柱體等規則結構體或不規則結構體。在一些實施例中,質量元件3201的材質可以金屬材料或非金屬材料。金屬材料可以包括但不限於鋼材(例如,不銹鋼、碳素鋼等)、輕質合金(例如,鋁合金、鈹銅、鎂合金、鈦合金等)等,或其任意組合。非金屬材料可以包括但不限於聚氨酯發泡材料、玻璃纖維、碳纖維、石墨纖維、碳化矽纖維等。在一些實施例中,彈性元件3202的材質可以包括但不限於海綿、橡膠、矽膠、塑膠、泡沫、聚二甲基矽氧烷(PDMS)、聚醯亞胺(PI)等,或其任意組合。在一些實施例中,彈性元件3202的厚度可以為0.1um~500um。優選地,彈性元件3202的厚度可以為0.5um~300um。更為優選地,彈性元件3202的厚度可以為1um~50um。在一些實施例中,質量元件3201的厚度可以為10um~1000um。優選地,質量元件3201的厚度可以為20um~800um。進一步優選地,質量元件3201的厚度可以為50um~500um。在一些實施例中,質量元件3201可以位於彈性元件3202的中心位置。在一些實施例中,質量元件3201的尺寸(例如,長度和寬度)可以小於彈性元件3202的尺寸,其中,質量元件3201的周側與殼體結構310的內壁具有間距,該間距可以防止質量元件3201相對於殼體結構310振動時發生碰撞。在一些實施例中,質量元件3201的周側與殼體結構310內壁的間距可以為1um~1000um。優選地,質量元件3201的周側與殼體結構310內壁的間距20um~800um。進一步優選地,質量元件3201的周側與殼體結構310內壁的間距50um~500um。在一些實施例中,通過調整質量元件3201的尺寸(例如,長度、寬 度)可以改變振動感測器在第二方向的諧振頻率與第一方向的諧振頻率的比值(也被稱為相對橫向靈敏度),使得振動感測器300在目標頻率範圍內,在保證振動感測器300在第一方向上的靈敏度不發生較大變化的前提下,降低振動感測器300在第二方向上的靈敏度。在一些實施例中,振動感測器在第二方向上的振動頻率與第一方向上的振動頻率的比值可以大於1。優選地,振動感測器在第二方向上的振動頻率與第一方向上的振動頻率的比值也可以大於1.5。進一步優選地,振動感測器在第二方向上的振動頻率與第一方向上的振動頻率的比值也可以大於2。在一些實施例中,質量元件3201的尺寸(例如,長度或寬度)與彈性元件3202的尺寸的比值可以為0.2~0.9。優選地,質量元件3201的尺寸與彈性元件3202的尺寸的比值可以為0.3~0.7。進一步優選地,質量元件3201的尺寸與彈性元件3202的尺寸的比值可以為0.5-0.7。僅作為具體示例,例如,質量元件3201的尺寸(例如,長度或寬度)可以是彈性元件3202的尺寸的1/2。又例如,質量元件3201的尺寸(例如,長度或寬度)可以是彈性元件3202的尺寸的3/4。在一些實施例中,第一方向可以是指質量元件3201的厚度方向,第二方向與第一方向垂直。在本實施例中,彈性元件3202相比於殼體結構310更容易發生彈性形變,使得振動單元320可以相對殼體結構310發生相對運動。當外界的振動的作用於到殼體結構310時,殼體結構310、聲學換能器、振動單元320等部件同時產生振動,由於振動單元320的振動相位與殼體結構310、聲學換能器的振動相位不相同,從而引起了聲學腔體的體積變化,導致聲學腔體的聲壓產生變化,並由聲學換能器將其轉化為電信號,實現了對聲音的拾取。 In some embodiments, the vibration unit 320 may include an elastic element 3202 and a mass element 3201, the mass element 3201 and the elastic element 3202 are located in the acoustic cavity, and the mass element 3201 is connected to the shell structure 310 through the elastic element 3202. Specifically, the periphery of the elastic element 3202 is connected to the inner wall of the shell structure 310, and the mass element 3201 may be located on the upper surface or the lower surface of the elastic element 3202. The mass element 3201 can increase the vibration amplitude of the elastic element 3202 relative to the shell structure 310, so that the volume change value of the first acoustic cavity 360 can change significantly under the action of external vibration signals of different sound pressure levels and frequencies, thereby improving the sensitivity of the vibration sensor 300. In some embodiments, the structure of the elastic element 3202 can be a membrane structure. In some embodiments, the mass element 3201 can be a regular structure such as a cuboid, a cylinder, or an irregular structure. In some embodiments, the material of the mass element 3201 can be a metal material or a non-metal material. Metal materials may include but are not limited to steel (e.g., stainless steel, carbon steel, etc.), light alloys (e.g., aluminum alloys, palladium copper, magnesium alloys, titanium alloys, etc.), etc., or any combination thereof. Non-metal materials may include but are not limited to polyurethane foam materials, glass fibers, carbon fibers, graphite fibers, silicon carbide fibers, etc. In some embodiments, the material of the elastic element 3202 may include but is not limited to sponge, rubber, silicone, plastic, foam, polydimethylsiloxane (PDMS), polyimide (PI), etc., or any combination thereof. In some embodiments, the thickness of the elastic element 3202 may be 0.1um~500um. Preferably, the thickness of the elastic element 3202 may be 0.5um~300um. More preferably, the thickness of the elastic element 3202 may be 1um~50um. In some embodiments, the thickness of the mass element 3201 may be 10um~1000um. Preferably, the thickness of the mass element 3201 may be 20um~800um. Further preferably, the thickness of the mass element 3201 may be 50um~500um. In some embodiments, the mass element 3201 may be located at the center of the elastic element 3202. In some embodiments, the size (e.g., length and width) of the mass element 3201 may be smaller than the size of the elastic element 3202, wherein the periphery of the mass element 3201 has a spacing with the inner wall of the shell structure 310, and the spacing may prevent the mass element 3201 from colliding with the shell structure 310 when vibrating. In some embodiments, the distance between the periphery of the mass element 3201 and the inner wall of the shell structure 310 can be 1um~1000um. Preferably, the distance between the periphery of the mass element 3201 and the inner wall of the shell structure 310 is 20um~800um. More preferably, the distance between the periphery of the mass element 3201 and the inner wall of the shell structure 310 is 50um~500um. In some embodiments, the ratio of the resonant frequency of the vibration sensor in the second direction to the resonant frequency in the first direction (also referred to as relative lateral sensitivity) can be changed by adjusting the size (e.g., length, width) of the mass element 3201, so that the sensitivity of the vibration sensor 300 in the second direction is reduced within the target frequency range while ensuring that the sensitivity of the vibration sensor 300 in the first direction does not change significantly. In some embodiments, the ratio of the vibration frequency of the vibration sensor in the second direction to the vibration frequency in the first direction can be greater than 1. Preferably, the ratio of the vibration frequency of the vibration sensor in the second direction to the vibration frequency in the first direction can also be greater than 1.5. Further preferably, the ratio of the vibration frequency of the vibration sensor in the second direction to the vibration frequency in the first direction may also be greater than 2. In some embodiments, the ratio of the size of the mass element 3201 (e.g., length or width) to the size of the elastic element 3202 may be 0.2~0.9. Preferably, the ratio of the size of the mass element 3201 to the size of the elastic element 3202 may be 0.3~0.7. Further preferably, the ratio of the size of the mass element 3201 to the size of the elastic element 3202 may be 0.5-0.7. Just as a specific example, for example, the size of the mass element 3201 (e.g., length or width) may be 1/2 of the size of the elastic element 3202. For another example, the size (e.g., length or width) of the mass element 3201 may be 3/4 of the size of the elastic element 3202. In some embodiments, the first direction may refer to the thickness direction of the mass element 3201, and the second direction is perpendicular to the first direction. In this embodiment, the elastic element 3202 is more likely to undergo elastic deformation than the shell structure 310, so that the vibration unit 320 can move relative to the shell structure 310. When external vibration acts on the shell structure 310, the shell structure 310, the acoustic transducer, the vibration unit 320 and other components vibrate at the same time. Since the vibration phase of the vibration unit 320 is different from the shell structure 310 and the acoustic transducer, the volume of the acoustic cavity changes, resulting in a change in the sound pressure of the acoustic cavity, which is converted into an electrical signal by the acoustic transducer to achieve sound pickup.

需要說明的是,彈性元件3202的形狀不限於圖3中所示的膜狀結構,還可以為其它可以發生彈性形變的結構,例如,彈簧結構、金屬環片、膜狀結構、柱狀結構等。 It should be noted that the shape of the elastic element 3202 is not limited to the membrane structure shown in FIG. 3 , but can also be other structures that can undergo elastic deformation, such as a spring structure, a metal ring, a membrane structure, a columnar structure, etc.

圖4是根據本說明書的一些實施例所示的振動感測器的結構示意 圖。如圖4所示的振動感測器400可以包括殼體結構410、聲學換能器、振動單元420。圖4中的振動感測器400可以與圖3中的振動感測器300相同或相似。例如,振動感測器400的殼體結構410可以與振動感測器300的殼體結構310相同或相似,再例如,振動感測器400的基板結構440可以與振動感測器300的基板結構340相同或相似。又例如,振動感測器400的第一聲學腔體460可以與振動感測器300的第一聲學腔體360相同或相似。關於振動感測器400的更多結構(例如,第二聲學腔體470、進聲孔430、質量元件421等)可以參考圖4及相關描述。 FIG4 is a schematic diagram of a vibration sensor according to some embodiments of the present specification. The vibration sensor 400 shown in FIG4 may include a housing structure 410, an acoustic transducer, and a vibration unit 420. The vibration sensor 400 in FIG4 may be the same as or similar to the vibration sensor 300 in FIG3. For example, the housing structure 410 of the vibration sensor 400 may be the same as or similar to the housing structure 310 of the vibration sensor 300. For another example, the substrate structure 440 of the vibration sensor 400 may be the same as or similar to the substrate structure 340 of the vibration sensor 300. For another example, the first acoustic cavity 460 of the vibration sensor 400 may be the same as or similar to the first acoustic cavity 360 of the vibration sensor 300. For more information about the vibration sensor 400 (e.g., the second acoustic cavity 470, the sound inlet 430, the mass element 421, etc.), please refer to FIG. 4 and related descriptions.

在一些實施例中,振動單元可以包括質量元件421和彈性元件422,彈性元件422位於質量元件421在第一方向上的一側,例如,質量元件421可以位於彈性元件422的上表面。在其他實施例中,質量元件421還可以位於彈性元件422的下表面。 In some embodiments, the vibration unit may include a mass element 421 and an elastic element 422, wherein the elastic element 422 is located on one side of the mass element 421 in the first direction, for example, the mass element 421 may be located on the upper surface of the elastic element 422. In other embodiments, the mass element 421 may also be located on the lower surface of the elastic element 422.

在一些實施例中,圖4中的振動感測器400與圖3中的振動感測器300的主要區別之處在於,彈性元件422可以包括第一彈性元件4221和第二彈性元件4222,第一彈性元件4221和第二彈性元件4222位於質量元件421的同一側,如圖4所示,質量元件421通過第二彈性元件4222與第一彈性元件4221連接,第一彈性元件4221與聲學換能器的基板結構440連接。具體地,質量元件421、第二彈性元件4222、第一彈性元件4221由上至下依次連接,其中,第一彈性元件4221的下表面與聲學換能器的基板結構440連接,第一彈性元件4221的上表面與第二彈性元件4222的上表面連接,質量元件421位於第二彈性元件的上表面。 In some embodiments, the main difference between the vibration sensor 400 in FIG. 4 and the vibration sensor 300 in FIG. 3 is that the elastic element 422 may include a first elastic element 4221 and a second elastic element 4222, and the first elastic element 4221 and the second elastic element 4222 are located on the same side of the mass element 421. As shown in FIG. 4, the mass element 421 is connected to the first elastic element 4221 through the second elastic element 4222, and the first elastic element 4221 is connected to the substrate structure 440 of the acoustic transducer. Specifically, the mass element 421, the second elastic element 4222, and the first elastic element 4221 are connected in sequence from top to bottom, wherein the lower surface of the first elastic element 4221 is connected to the substrate structure 440 of the acoustic transducer, the upper surface of the first elastic element 4221 is connected to the upper surface of the second elastic element 4222, and the mass element 421 is located on the upper surface of the second elastic element.

在一些實施例中,第一彈性元件4221可以為膜狀結構,第二彈性元件4222為圓環狀結構,第一彈性元件4221的內側、第二彈性元件4222的下表面和聲學換能器的基板結構440形成第一聲學腔體460,第一聲學腔體460與基板結構440處的進聲孔430連通。第一彈性元件4221和第二彈性元件4222可以由相同或不同的材料製成,關於第一彈性元件4221和/或第二彈性元件4222的材料可以 參考圖3中彈性元件3202的描述,在此不做贅述。在一些實施例中,第一彈性元件4221和第二彈性元件4222可以作為一體結構或相互獨立的結構。在一些實施例中,通過調整質量元件421的尺寸(例如,長度、寬度)可以改變振動感測器在第二方向的諧振頻率與第一方向的諧振頻率的比值(也被稱為相對橫向靈敏度),使得振動感測器400在目標頻率範圍內,在保證振動感測器400在第一方向上的靈敏度不發生較大變化的前提下,降低振動感測器400在第二方向上的靈敏度。關於質量元件421的尺寸和彈性元件422的具體內容可以參考本說明書中其它地方的描述,例如,圖3及其相關描述。 In some embodiments, the first elastic element 4221 may be a membrane structure, and the second elastic element 4222 may be a ring structure. The inner side of the first elastic element 4221, the lower surface of the second elastic element 4222, and the substrate structure 440 of the acoustic transducer form a first acoustic cavity 460, and the first acoustic cavity 460 is connected to the sound inlet hole 430 at the substrate structure 440. The first elastic element 4221 and the second elastic element 4222 may be made of the same or different materials. The materials of the first elastic element 4221 and/or the second elastic element 4222 may refer to the description of the elastic element 3202 in FIG. 3, which will not be repeated here. In some embodiments, the first elastic element 4221 and the second elastic element 4222 may be an integrated structure or independent structures. In some embodiments, the ratio of the resonant frequency of the vibration sensor in the second direction to the resonant frequency in the first direction (also referred to as relative lateral sensitivity) can be changed by adjusting the size (e.g., length, width) of the mass element 421, so that the sensitivity of the vibration sensor 400 in the second direction is reduced within the target frequency range while ensuring that the sensitivity of the vibration sensor 400 in the first direction does not change significantly. For the specific contents of the size of the mass element 421 and the elastic element 422, please refer to the description elsewhere in this specification, for example, Figure 3 and its related description.

圖5是根據本說明書的一些實施例所示的振動感測器的結構示意圖。如圖5所示,振動感測器500可以包括殼體結構510、聲學換能器、振動單元520。圖5中所示的振動感測器與圖4中所示的振動感測器400相同或相似。例如,振動感測器500的殼體結構510與振動感測器400的殼體結構410相同或類似。又例如,振動感測器500的第一聲學腔體560與振動感測器400的第一聲學腔體460相同或類似。再例如,振動感測器500的基板結構540和進聲孔530與振動感測器400的基板結構440和進聲孔430相同或類似。 FIG5 is a schematic diagram of the structure of a vibration sensor according to some embodiments of the present specification. As shown in FIG5, the vibration sensor 500 may include a housing structure 510, an acoustic transducer, and a vibration unit 520. The vibration sensor shown in FIG5 is the same as or similar to the vibration sensor 400 shown in FIG4. For example, the housing structure 510 of the vibration sensor 500 is the same as or similar to the housing structure 410 of the vibration sensor 400. For another example, the first acoustic cavity 560 of the vibration sensor 500 is the same as or similar to the first acoustic cavity 460 of the vibration sensor 400. For another example, the substrate structure 540 and the sound inlet 530 of the vibration sensor 500 are the same as or similar to the substrate structure 440 and the sound inlet 430 of the vibration sensor 400.

在一些實施例中,如圖5所示,振動感測器500與振動感測器400的主要區別之處在於,振動單元包括質量元件521和彈性元件522,質量元件521通過彈性元件522與基板結構540連接,彈性元件522與聲學換能器的基板結構540連接。具體地,質量元件521、彈性元件522和基板結構540由上到下依次連接,其中,質量元件521的下表面與彈性元件522的上表面連接,彈性元件522的下表面與聲學換能器的基板結構540連接。 In some embodiments, as shown in FIG. 5 , the main difference between the vibration sensor 500 and the vibration sensor 400 is that the vibration unit includes a mass element 521 and an elastic element 522, the mass element 521 is connected to a substrate structure 540 through the elastic element 522, and the elastic element 522 is connected to the substrate structure 540 of the acoustic transducer. Specifically, the mass element 521, the elastic element 522 and the substrate structure 540 are connected in sequence from top to bottom, wherein the lower surface of the mass element 521 is connected to the upper surface of the elastic element 522, and the lower surface of the elastic element 522 is connected to the substrate structure 540 of the acoustic transducer.

在一些實施例中,彈性元件522為一個圓環狀結構,彈性元件522的內側、質量元件521的下表面與基板結構540形成第一聲學腔體560,第一聲學腔體560與基板結構540處的進聲孔530連通。關於彈性元件522的材料可以參考 圖3中彈性元件3202的描述,在此不做贅述。在一些實施例中,彈性元件522和質量元件521可以作為一體結構或相互獨立的結構。在一些實施例中,通過調整質量元件521的尺寸(例如,長度、寬度)可以改變振動感測器在第二方向的諧振頻率與第一方向的諧振頻率的比值(也被稱為相對橫向靈敏度),使得振動感測器500在目標頻率範圍內,在保證振動感測器500在第一方向上的靈敏度不發生較大變化的前提下,降低振動感測器500在第二方向上的靈敏度。關於質量元件521的尺寸和彈性元件522的具體內容可以參考本說明書中其它地方的描述,例如,圖3及其相關描述。 In some embodiments, the elastic element 522 is a ring-shaped structure, and the inner side of the elastic element 522, the lower surface of the mass element 521 and the substrate structure 540 form a first acoustic cavity 560, and the first acoustic cavity 560 is connected to the sound inlet hole 530 at the substrate structure 540. The material of the elastic element 522 can refer to the description of the elastic element 3202 in Figure 3, which will not be repeated here. In some embodiments, the elastic element 522 and the mass element 521 can be used as an integrated structure or independent structures. In some embodiments, the ratio of the resonant frequency of the vibration sensor in the second direction to the resonant frequency in the first direction (also referred to as relative lateral sensitivity) can be changed by adjusting the size of the mass element 521 (e.g., length, width), so that the sensitivity of the vibration sensor 500 in the second direction is reduced within the target frequency range while ensuring that the sensitivity of the vibration sensor 500 in the first direction does not change significantly. For the specific contents of the size of the mass element 521 and the elastic element 522, please refer to the description elsewhere in this specification, for example, Figure 3 and its related description.

圖6是根據本說明書的一些實施例所示的振動感測器在第一方向的振動模態圖;圖7是根據本說明書的一些實施例所示的振動感測器在第二方向的振動模態圖。如圖6和圖7所示,振動感測器600在接收不同振動方向的振動信號時,振動單元620的振動情況也有所不同。如圖6所示,在一些實施例中,振動感測器600在接收來自第一方向的振動信號時,振動單元620的質量元件621沿第一方向振動,同時彈性元件622在質量元件621的作用下產生在第一方向的彈性形變,這裡質量元件621左側和右側在第一方向的位移相同,彈性元件622的左側和右側在第一方向的彈性形變量也相同。如圖7所示,振動感測器600在接收來自第二方向的振動信號時,質量元件621和彈性元件622產生類似波浪狀的運動,比如,質量元件621和彈性元件622左側的振動和右側的振動幅度不同。由此可知,振動感測器600在接收目標信號時,其他振動信號(例如,與目標信號振動方向不同的信號)會對目標信號造成干擾。在一些實施例中,為了使得振動感測器在接收目標信號時盡可能降低其他信號的干擾,可以通過對振動單元620(例如,彈性元件622和質量元件621)進行調整。例如,通過在振動感測器中設置相對於質量元件在第一方向上呈近似對稱分佈的至少一個彈性元件,或者設置相對於彈性元件在第一方向上呈近似對稱分佈的至少一個質量元件,使得質量元件的 重心與至少一個彈性元件的形心之間的距離限定在特定範圍(例如,至少一個彈性元件的形心與質量元件的重心在第一方向上的距離不大於質量元件厚度的1/3)內,從而可以降低振動感測器在第二方向上的靈敏度,進而提高振動感測器的方向選擇性,增強振動感測器的抗雜訊干擾能力。在關於進一步提高振動感測器在第一方向的靈敏度的同時降低第二方向的靈敏度的內容可以參考圖8-圖17及其相關描述。 FIG. 6 is a vibration mode diagram of a vibration sensor in a first direction according to some embodiments of the present specification; FIG. 7 is a vibration mode diagram of a vibration sensor in a second direction according to some embodiments of the present specification. As shown in FIG. 6 and FIG. 7, when the vibration sensor 600 receives vibration signals of different vibration directions, the vibration conditions of the vibration unit 620 are also different. As shown in FIG. 6, in some embodiments, when the vibration sensor 600 receives a vibration signal from a first direction, the mass element 621 of the vibration unit 620 vibrates along the first direction, and at the same time, the elastic element 622 generates elastic deformation in the first direction under the action of the mass element 621, where the displacement of the left and right sides of the mass element 621 in the first direction is the same, and the elastic deformation of the left and right sides of the elastic element 622 in the first direction is also the same. As shown in FIG. 7 , when the vibration sensor 600 receives the vibration signal from the second direction, the mass element 621 and the elastic element 622 generate wave-like motion, for example, the vibration amplitudes of the left side and the right side of the mass element 621 and the elastic element 622 are different. It can be seen that when the vibration sensor 600 receives the target signal, other vibration signals (for example, signals with different vibration directions from the target signal) will interfere with the target signal. In some embodiments, in order to reduce the interference of other signals as much as possible when the vibration sensor receives the target signal, the vibration unit 620 (for example, the elastic element 622 and the mass element 621) can be adjusted. For example, by providing at least one elastic element in the vibration sensor that is approximately symmetrically distributed relative to the mass element in the first direction, or providing at least one mass element in the vibration sensor that is approximately symmetrically distributed relative to the elastic element in the first direction, so that the distance between the center of gravity of the mass element and the centroid of at least one elastic element is limited to a specific range (for example, the distance between the centroid of at least one elastic element and the center of gravity of the mass element in the first direction is not greater than 1/3 of the thickness of the mass element), the sensitivity of the vibration sensor in the second direction can be reduced, thereby improving the directional selectivity of the vibration sensor and enhancing the anti-noise interference capability of the vibration sensor. For the content of further improving the sensitivity of the vibration sensor in the first direction while reducing the sensitivity in the second direction, please refer to Figures 8 to 17 and their related descriptions.

圖8是根據本說明書的一些實施例所示的振動感測器的結構示意圖。如圖8所示,振動感測器800可以包括殼體結構810、聲學換能器820和振動單元830。在一些實施例中,殼體結構810的形狀可以是長方體、圓柱體或其他規則結構體或不規則結構體。在一些實施例中,殼體結構810可以為具有一定硬度的材料製成,從而使得殼體結構810對振動感測器800及其內部元件(例如,振動單元830)進行保護。在一些實施例中,殼體結構810的材質可以包括但不限於金屬、合金材料、高分子材料(例如,丙烯腈-丁二烯-苯乙烯共聚物、聚氯乙烯、聚碳酸酯、聚丙烯等)等中的一種或多種。在一些實施例中,殼體結構810和聲學換能器820通過實體方式連接,這裡的實體方式連接可以包括但不限於焊接、卡接、黏接或一體成型等連接方式。在一些實施例中,至少部分殼體結構810和聲學換能器820可以形成聲學腔體。在一些實施例中,殼體結構810可獨立形成具有聲學腔體的封裝結構,其中,聲學換能器820可以位於該封裝結構的聲學腔體內。在一些實施例中,殼體結構810可以是內部中空且其一端具有開放式敞口的結構,聲學換能器820與殼體結構810的敞口端實體連接實現封裝,從而形成聲學腔體。在一些實施例中,振動單元830可以位於聲學腔體內,振動單元830可以將聲學腔體分隔為第一聲學腔體840和第二聲學腔體850。在一些實施例中,第一聲學腔體840與聲學換能器820聲學連通,第二聲學腔體850可以為聲學密封的腔體結構。需要說明的是,振動單元830將聲學腔體分隔為的多個聲學腔體不限於第一聲學 腔體840、第二聲學腔體850,還可以包括更多個聲學腔體,例如,第三聲學腔體、第四聲學腔體等。 FIG8 is a schematic diagram of a structure of a vibration sensor according to some embodiments of the present specification. As shown in FIG8 , the vibration sensor 800 may include a housing structure 810, an acoustic transducer 820, and a vibration unit 830. In some embodiments, the shape of the housing structure 810 may be a cuboid, a cylinder, or other regular structures or irregular structures. In some embodiments, the housing structure 810 may be made of a material having a certain hardness, so that the housing structure 810 protects the vibration sensor 800 and its internal components (e.g., the vibration unit 830). In some embodiments, the material of the housing structure 810 may include but is not limited to one or more of metals, alloy materials, polymer materials (e.g., acrylonitrile-butadiene-styrene copolymer, polyvinyl chloride, polycarbonate, polypropylene, etc.), etc. In some embodiments, the shell structure 810 and the acoustic transducer 820 are connected in a physical manner, and the physical connection here may include but is not limited to connection methods such as welding, clamping, bonding or integral molding. In some embodiments, at least part of the shell structure 810 and the acoustic transducer 820 can form an acoustic cavity. In some embodiments, the shell structure 810 can independently form a packaging structure with an acoustic cavity, wherein the acoustic transducer 820 can be located in the acoustic cavity of the packaging structure. In some embodiments, the shell structure 810 can be a structure with a hollow interior and an open opening at one end, and the acoustic transducer 820 is physically connected to the open end of the shell structure 810 to achieve packaging, thereby forming an acoustic cavity. In some embodiments, the vibration unit 830 may be located in the acoustic cavity, and the vibration unit 830 may separate the acoustic cavity into a first acoustic cavity 840 and a second acoustic cavity 850. In some embodiments, the first acoustic cavity 840 is acoustically connected to the acoustic transducer 820, and the second acoustic cavity 850 may be an acoustically sealed cavity structure. It should be noted that the multiple acoustic cavities into which the vibration unit 830 separates the acoustic cavity are not limited to the first acoustic cavity 840 and the second acoustic cavity 850, and may also include more acoustic cavities, for example, a third acoustic cavity, a fourth acoustic cavity, etc.

振動感測器800可以將外部振動信號轉換為電信號。在一些實施例中,外部振動信號可以包括人說話時的振動信號、皮膚隨人體運動或隨靠近皮膚的揚聲器工作等原因產生的振動信號、與振動感測器接觸的物體或空氣產生的振動信號等,或其任意組合。進一步地,振動感測器產生的電信號可以輸入外部電子設備。在一些實施例中,外部電子設備可以包括移動設備、可穿戴設備、虛擬實境設備、擴增實境設備等,或其任意組合。在一些實施例中,移動設備可以包括智慧手機、平板電腦、個人數位助理(PDA)、遊戲裝置、導航設備等,或其任何組合。在一些實施例中,可穿戴設備可以包括智慧手環、耳機、助聽器、智慧頭盔、智能手錶、智能服裝、智慧背包、智慧配件等,或其任意組合。在一些實施例中,虛擬實境設備和/或擴增實境設備可以包括虛擬實境頭盔、虛擬實境眼鏡、虛擬實境眼罩、擴增實境頭盔、擴增實境眼鏡、擴增實境眼罩等或其任何組合。例如,虛擬實境設備和/或擴增實境設備可以包括Google Glass、Oculus Rift、Hololens、Gear VR等。具體地,振動感測器800工作時,外部振動信號可以通過殼體結構810傳遞到振動單元830,振動單元830回應於殼體結構810的振動而發生振動。由於振動單元830的振動相位與殼體結構810和聲學換能器820的振動相位不同,振動單元830的振動可以引起第一聲學腔體840的體積變化,進而引起第一聲學腔體840的聲壓變化。聲學換能器820可以檢測第一聲學腔體840的聲壓變化並轉換為電信號,通過焊點(圖8中未示出)傳遞到外部電子設備。這裡的焊點可以與耳機、助聽器、輔聽器、擴增實境眼鏡、擴增實境頭盔、虛擬實境眼鏡等設備的內部元件(例如,處理器)通過資料線電連接,所述內部元件獲取的電信號可以通過有線或無線的方式傳遞到外部電子設備。在一些實施例中,聲學換能器820可以包括至少一個通孔811,通孔811與第一腔體840連通,在通孔811 的位置處設有振膜(圖8中未示出),第一聲學腔體840的聲壓發生變化時,第一聲學腔體840內部的空氣發生振動並通過通孔811而作用於振膜,使振膜發生形變,聲學換能器820將振膜的振動信號轉化為電信號。 The vibration sensor 800 can convert the external vibration signal into an electrical signal. In some embodiments, the external vibration signal may include a vibration signal when a person speaks, a vibration signal generated by the skin following the movement of the human body or the operation of a speaker close to the skin, a vibration signal generated by an object or air in contact with the vibration sensor, or any combination thereof. Further, the electrical signal generated by the vibration sensor can be input into an external electronic device. In some embodiments, the external electronic device may include a mobile device, a wearable device, a virtual reality device, an augmented reality device, or the like, or any combination thereof. In some embodiments, the mobile device may include a smart phone, a tablet computer, a personal digital assistant (PDA), a gaming device, a navigation device, or the like, or any combination thereof. In some embodiments, the wearable device may include a smart bracelet, earphones, hearing aids, a smart helmet, a smart watch, smart clothing, a smart backpack, a smart accessory, or any combination thereof. In some embodiments, the virtual reality device and/or the augmented reality device may include a virtual reality helmet, a virtual reality glasses, a virtual reality goggles, an augmented reality helmet, an augmented reality glasses, an augmented reality goggles, or any combination thereof. For example, the virtual reality device and/or the augmented reality device may include Google Glass, Oculus Rift, Hololens, Gear VR, or the like. Specifically, when the vibration sensor 800 is working, the external vibration signal can be transmitted to the vibration unit 830 through the housing structure 810, and the vibration unit 830 vibrates in response to the vibration of the housing structure 810. Since the vibration phase of the vibration unit 830 is different from the vibration phase of the housing structure 810 and the acoustic transducer 820, the vibration of the vibration unit 830 can cause the volume of the first acoustic cavity 840 to change, thereby causing the sound pressure of the first acoustic cavity 840 to change. The acoustic transducer 820 can detect the sound pressure change of the first acoustic cavity 840 and convert it into an electrical signal, which is transmitted to the external electronic device through the solder joint (not shown in FIG. 8). The solder joints here can be electrically connected to internal components (e.g., processors) of devices such as headphones, hearing aids, hearing aids, augmented reality glasses, augmented reality helmets, virtual reality glasses, etc. through data lines, and the electrical signals obtained by the internal components can be transmitted to external electronic devices via wired or wireless means. In some embodiments, the acoustic transducer 820 may include at least one through hole 811, which is connected to the first cavity 840. A diaphragm (not shown in FIG. 8 ) is provided at the position of the through hole 811. When the sound pressure of the first acoustic cavity 840 changes, the air inside the first acoustic cavity 840 vibrates and acts on the diaphragm through the through hole 811, causing the diaphragm to deform. The acoustic transducer 820 converts the vibration signal of the diaphragm into an electrical signal.

在一些實施例中,振動單元830可以包括質量元件831和至少一個彈性元件832,質量元件831和至少一個彈性元件832位於殼體結構810和聲學換能器820形成的聲學腔體中。在一些實施例中,至少一個彈性元件832可以在第一方向上分佈在質量元件831的相反兩側。第一方向可以是指質量元件831的厚度方向。例如,第一方向可以為圖8中箭頭所示的“第一方向”。在一些實施例中,質量元件831可以與殼體結構810和/或聲學換能器820通過至少一個彈性元件832連接。例如,至少一個彈性元件832可以包括第一彈性元件8321和第二彈性元件8322,第一彈性元件8321位於質量元件831背離聲學換能器820的一側,也可以理解為,第一彈性元件8321位於質量元件831的上表面,其中,第一彈性元件8321的一端與殼體結構810連接,第一彈性元件8321的另一端與質量元件831連接。第二彈性元件8322可以位於質量元件831靠近聲學換能器820的一側,也可以理解為,第二彈性元件8322位於質量元件831的下表面,其中,第二彈性元件8322的一端與聲學換能器820連接,第二彈性元件8322的另一端與質量元件831連接。在其它的實施例中,至少一個彈性元件832還可以位於質量元件831的周側,其中,至少一個彈性元件832的內側與質量元件831的周側連接,至少一個彈性元件832的外側與殼體結構810和/或聲學換能器820連接。這裡所說的質量元件831的周側是相對於質量元件831的振動方向(例如,第一方向)而言,為方便起見,可以認為質量元件831相對於殼體結構810振動的方向為軸線方向,此時,質量元件831的周側表示質量元件831上環繞所述軸線設置的一側。在一些實施例中,質量元件831可以為長方體、圓柱體等規則結構體或不規則結構體。在一些實施例中,質量元件831的材質可以金屬材料或非金屬材料。金屬材料可以包括但不限於鋼 材(例如,不銹鋼、碳素鋼等)、輕質合金(例如,鋁合金、鈹銅、鎂合金、鈦合金等)等,或其任意組合。非金屬材料可以包括但不限於聚氨酯發泡材料、玻璃纖維、碳纖維、石墨纖維、碳化矽纖維等。在一些實施例中,彈性元件832的形狀可以為圓管狀、方管狀、異形管狀、環狀、平板狀等。在一些實施例中,至少一個彈性元件832可以具有較容易發生彈性形變的結構(例如,彈簧結構、金屬環片、膜狀結構、柱狀結構等),其材質可以是容易發生彈性形變能力的材料,例如,矽膠、橡膠等。在本說明書的實施例中,至少一個彈性元件832相比於殼體結構810更容易發生彈性形變,使得振動元件830可以相對殼體結構810發生相對運動。需要注意的是,在一些實施例中,質量元件831和至少一個彈性元件832中的任一彈性元件832可以是由相同或不同的材料所組成,再通過組裝在一起形成振動單元830。在一些實施例中,質量元件831和至少一個彈性元件832中的任一彈性元件832也可以是由同種材料組成,再通過一體成型形成振動單元830。至少一個彈性元件832與質量元件831、聲學換能器820、殼體結構810之間可以採用黏結劑進行黏接,也可以採用本領域技術人員熟知的其它連接方式(例如,焊接、卡接等),對此不作限制。 In some embodiments, the vibration unit 830 may include a mass element 831 and at least one elastic element 832, and the mass element 831 and the at least one elastic element 832 are located in an acoustic cavity formed by the shell structure 810 and the acoustic transducer 820. In some embodiments, the at least one elastic element 832 may be distributed on opposite sides of the mass element 831 in a first direction. The first direction may refer to the thickness direction of the mass element 831. For example, the first direction may be the “first direction” indicated by the arrow in FIG. 8 . In some embodiments, the mass element 831 may be connected to the shell structure 810 and/or the acoustic transducer 820 through at least one elastic element 832. For example, at least one elastic element 832 may include a first elastic element 8321 and a second elastic element 8322, and the first elastic element 8321 is located on a side of the mass element 831 away from the acoustic transducer 820. It can also be understood that the first elastic element 8321 is located on the upper surface of the mass element 831, wherein one end of the first elastic element 8321 is connected to the shell structure 810, and the other end of the first elastic element 8321 is connected to the mass element 831. The second elastic element 8322 may be located on a side of the mass element 831 close to the acoustic transducer 820, and it may also be understood that the second elastic element 8322 is located on the lower surface of the mass element 831, wherein one end of the second elastic element 8322 is connected to the acoustic transducer 820, and the other end of the second elastic element 8322 is connected to the mass element 831. In other embodiments, at least one elastic element 832 may also be located around the mass element 831, wherein the inner side of at least one elastic element 832 is connected to the outer side of the mass element 831, and the outer side of at least one elastic element 832 is connected to the shell structure 810 and/or the acoustic transducer 820. The side of the mass element 831 mentioned here is relative to the vibration direction of the mass element 831 (for example, the first direction). For convenience, the direction of the mass element 831 relative to the vibration of the shell structure 810 can be considered as the axial direction. At this time, the side of the mass element 831 means a side of the mass element 831 arranged around the axis. In some embodiments, the mass element 831 can be a regular structure or an irregular structure such as a cuboid or a cylinder. In some embodiments, the material of the mass element 831 can be a metal material or a non-metal material. The metal material can include but is not limited to steel (for example, stainless steel, carbon steel, etc.), light alloy (for example, aluminum alloy, cobalt, magnesium alloy, titanium alloy, etc.), etc., or any combination thereof. Non-metallic materials may include but are not limited to polyurethane foam, glass fiber, carbon fiber, graphite fiber, silicon carbide fiber, etc. In some embodiments, the elastic element 832 may be in the shape of a round tube, a square tube, a special-shaped tube, a ring, a flat plate, etc. In some embodiments, at least one elastic element 832 may have a structure that is more prone to elastic deformation (e.g., a spring structure, a metal ring, a membrane structure, a columnar structure, etc.), and its material may be a material that is prone to elastic deformation, such as silicone, rubber, etc. In the embodiments of the present specification, at least one elastic element 832 is more likely to undergo elastic deformation than the shell structure 810, so that the vibration element 830 can move relative to the shell structure 810. It should be noted that in some embodiments, the mass element 831 and any one of the at least one elastic element 832 can be composed of the same or different materials, and then assembled together to form the vibration unit 830. In some embodiments, the mass element 831 and any one of the at least one elastic element 832 can also be composed of the same material, and then formed into a single piece to form the vibration unit 830. At least one elastic element 832 and the mass element 831, the acoustic transducer 820, and the housing structure 810 may be bonded by an adhesive, or other connection methods known to those skilled in the art (e.g., welding, clamping, etc.) may be used, without limitation.

在一些實施例中,第一彈性元件8321和第二彈性元件8322可以在第一方向上相對於質量元件831呈近似對稱分佈。在一些實施例中,第一彈性元件8321和第二彈性元件8322可以與殼體結構810或聲學換能器820連接。例如,第一彈性元件8321可以位於質量元件831背離聲學換能器820的一側,第一彈性元件8321的一端與殼體結構810連接,第一彈性元件8321的另一端與質量元件831的上表面連接。第二彈性元件8322可以位於質量元件831朝向聲學換能器820的一側,第二彈性元件8322的一端與聲學換能器820連接,第二彈性元件8322的另一端與質量元件831的下表面連接。在一些實施例中,通過在振動感測器800中設置相對於質量元件831在第一方向上呈近似對稱分佈的第一彈性元件8321和第 二彈性元件8322,使得質量元件831的重心與至少一個彈性元件832的形心近似重合,進而使得振動單元830在回應於殼體結構810的振動而產生振動時,可以降低質量元件831在第二方向上的振動,從而降低振動單元830對第二方向上殼體結構810振動的回應靈敏度,進而提高振動感測器800的方向選擇性。這裡的第二方向垂直於第一方向。在一些實施例中,至少一個彈性元件832的形心可以是指彈性元件832的幾何中心。彈性元件832的形心與彈性元件832的形狀和尺寸相關。例如,至少一個彈性元件832的長方形板狀結構時,至少一個彈性元件832的形心可以在長方形板狀結構的兩條對角線的交點位置。在一些實施例中,彈性元件832可以近似視為密度均勻的結構體,此時彈性元件832的形心可以近似視為彈性元件832的重心。 In some embodiments, the first elastic element 8321 and the second elastic element 8322 may be approximately symmetrically distributed relative to the mass element 831 in the first direction. In some embodiments, the first elastic element 8321 and the second elastic element 8322 may be connected to the housing structure 810 or the acoustic transducer 820. For example, the first elastic element 8321 may be located on a side of the mass element 831 away from the acoustic transducer 820, one end of the first elastic element 8321 is connected to the housing structure 810, and the other end of the first elastic element 8321 is connected to the upper surface of the mass element 831. The second elastic element 8322 can be located on a side of the mass element 831 facing the acoustic transducer 820 , one end of the second elastic element 8322 is connected to the acoustic transducer 820 , and the other end of the second elastic element 8322 is connected to the lower surface of the mass element 831 . In some embodiments, by providing the first elastic element 8321 and the second elastic element 8322 in the vibration sensor 800 and being approximately symmetrically distributed with respect to the mass element 831 in the first direction, the center of gravity of the mass element 831 and the centroid of at least one elastic element 832 are approximately coincident, so that when the vibration unit 830 vibrates in response to the vibration of the housing structure 810, the vibration of the mass element 831 in the second direction can be reduced, thereby reducing the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the second direction, thereby improving the directional selectivity of the vibration sensor 800. The second direction here is perpendicular to the first direction. In some embodiments, the centroid of at least one elastic element 832 can refer to the geometric center of the elastic element 832. The centroid of the elastic element 832 is related to the shape and size of the elastic element 832. For example, when at least one elastic element 832 is a rectangular plate structure, the centroid of at least one elastic element 832 can be located at the intersection of two diagonal lines of the rectangular plate structure. In some embodiments, the elastic element 832 can be approximately regarded as a structure with uniform density, and the centroid of the elastic element 832 can be approximately regarded as the center of gravity of the elastic element 832.

在一些實施例中,第一彈性元件8321和第二彈性元件8322的尺寸、形狀、材質、或厚度等可以相同。在一些實施例中,第一彈性元件8321的結構和第二彈性元件8322的結構可以是膜狀結構、柱狀結構、管狀結構等,或其任意組合結構。在一些實施例中,第一彈性元件8321和第二彈性元件8322的材質可以包括但不限於海綿、橡膠、矽膠、塑膠、泡沫、聚二甲基矽氧烷(PDMS)、聚醯亞胺(PI)等,或其任意組合。在一些實施例中,塑膠可以包括但不限於聚四氟乙烯(PTFE)、高分子聚乙烯、吹塑尼龍、工程塑料等或其任意組合。橡膠,可以是指能達到同樣性能的其他單一或複合材料,可以包括但不限於通用型橡膠和特種型橡膠。在一些實施例中,通用型橡膠可以包括但不限於天然橡膠、異戊橡膠、丁苯橡膠、順丁橡膠、氯丁橡膠等或其任意組合。在一些實施例中,特種型橡膠可以包括但不限於丁腈橡膠、矽橡膠、氟橡膠、聚硫橡膠、聚氨酯橡膠、氯醇橡膠、丙烯酸酯橡膠、環氧丙烷橡膠等或其任意組合。其中,丁苯橡膠可以包括但不限於乳液聚合丁苯橡膠和溶液聚合丁苯橡膠。在一些實施例中,複合材料可以包括但不限於玻璃纖維、碳纖維、硼纖維、石墨纖維、纖維、石墨烯纖維、 碳化矽纖維或芳綸纖維等增強材料。 In some embodiments, the size, shape, material, or thickness of the first elastic element 8321 and the second elastic element 8322 may be the same. In some embodiments, the structure of the first elastic element 8321 and the structure of the second elastic element 8322 may be a membrane structure, a columnar structure, a tubular structure, or any combination thereof. In some embodiments, the material of the first elastic element 8321 and the second elastic element 8322 may include but is not limited to sponge, rubber, silicone, plastic, foam, polydimethylsiloxane (PDMS), polyimide (PI), or any combination thereof. In some embodiments, plastic may include but is not limited to polytetrafluoroethylene (PTFE), high molecular polyethylene, blown nylon, engineering plastics, or any combination thereof. Rubber may refer to other single or composite materials that can achieve the same performance, and may include but not limited to general-purpose rubber and special-purpose rubber. In some embodiments, general-purpose rubber may include but not limited to natural rubber, isoprene rubber, styrene-butadiene rubber, cis-butadiene rubber, chloroprene rubber, etc. or any combination thereof. In some embodiments, special-purpose rubber may include but not limited to nitrile rubber, silicone rubber, fluororubber, polysulfide rubber, polyurethane rubber, epichlorohydrin rubber, acrylate rubber, propylene oxide rubber, etc. or any combination thereof. Among them, styrene-butadiene rubber may include but not limited to emulsion-polymerized styrene-butadiene rubber and solution-polymerized styrene-butadiene rubber. In some embodiments, the composite material may include but is not limited to reinforcing materials such as glass fiber, carbon fiber, boron fiber, graphite fiber, fiber, graphene fiber, silicon carbide fiber or aramid fiber.

僅作為示例性說明,第一彈性元件8321和第二彈性元件8322均為膜狀結構、採用相同材質(例如,聚四氟乙烯)、尺寸和厚度均相同時,由於第一彈性元件8321和第二彈性元件8322在第一方向上相對於質量元件831呈近似對稱分佈,可以使得至少一個彈性元件832的形心與質量元件831的重心重合或近似重合,進而使得振動單元830回應於殼體結構810的振動而產生振動時,可以降低質量元件831在第二方向上的振動,從而降低振動單元830對第二方向上殼體結構810振動的回應靈敏度,進而提高振動感測器800在接收振動信號時的方向選擇性。 For example, when the first elastic element 8321 and the second elastic element 8322 are both membrane structures, made of the same material (e.g., polytetrafluoroethylene), and have the same size and thickness, the first elastic element 8321 and the second elastic element 8322 are approximately symmetrically distributed relative to the mass element 831 in the first direction, so that the centroid of at least one elastic element 832 can coincide or approximately coincide with the center of gravity of the mass element 831, and thus when the vibration unit 830 vibrates in response to the vibration of the housing structure 810, the vibration of the mass element 831 in the second direction can be reduced, thereby reducing the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the second direction, and thus improving the direction selectivity of the vibration sensor 800 when receiving the vibration signal.

在一些實施例中,第一彈性元件8321和第二彈性元件8322在第一方向上分佈在質量元件831的相反兩側,這裡第一彈性元件8321和第二彈性元件8322可以近似視為一個彈性元件,該彈性元件的形心與質量元件的重心近似重合,可以使得目標頻率範圍(例如,3000Hz以下)內,振動單元830對第一方向上殼體結構810振動的回應靈敏度高於振動單元830對第二方向上殼體結構810振動的回應靈敏度。在一些實施例中,振動單元830對第二方向上殼體結構810振動的回應靈敏度與振動單元830對第一方向上殼體結構810振動的回應靈敏度的差值可以為-20dB~-60dB。在一些實施例中,振動單元830對第二方向上殼體結構810振動的回應靈敏度與振動單元830對第一方向上殼體結構810振動的回應靈敏度的差值可以為-25dB~-50dB。在一些實施例中,振動單元830對第二方向上殼體結構810振動的回應靈敏度與振動單元830對第一方向上殼體結構810振動的回應靈敏度的差值可以為-30dB~-40dB。在一些實施例中,目標頻率範圍可以指小於或等於3000Hz的頻率範圍。 In some embodiments, the first elastic element 8321 and the second elastic element 8322 are distributed on opposite sides of the mass element 831 in the first direction, where the first elastic element 8321 and the second elastic element 8322 can be approximately regarded as one elastic element, the centroid of the elastic element approximately coincides with the center of gravity of the mass element, so that within the target frequency range (for example, below 3000 Hz), the response sensitivity of the vibration unit 830 to the vibration of the shell structure 810 in the first direction is higher than the response sensitivity of the vibration unit 830 to the vibration of the shell structure 810 in the second direction. In some embodiments, the difference between the response sensitivity of the vibration unit 830 to the vibration of the shell structure 810 in the second direction and the response sensitivity of the vibration unit 830 to the vibration of the shell structure 810 in the first direction may be -20dB~-60dB. In some embodiments, the difference between the response sensitivity of the vibration unit 830 to the vibration of the shell structure 810 in the second direction and the response sensitivity of the vibration unit 830 to the vibration of the shell structure 810 in the first direction may be -25dB~-50dB. In some embodiments, the difference between the response sensitivity of the vibration unit 830 to the vibration of the shell structure 810 in the second direction and the response sensitivity of the vibration unit 830 to the vibration of the shell structure 810 in the first direction may be -30dB~-40dB. In some embodiments, the target frequency range may refer to a frequency range less than or equal to 3000 Hz.

在一些實施例中,振動單元830回應於殼體結構810的振動在第一方向產生振動。第一方向上的振動可以視為振動感測器800所期待拾取的聲音信 號,第二方向上的振動可以視為雜訊信號。因此,在振動感測器800工作過程中,可以通過降低振動單元830在第二方向上產生的振動,從而降低振動單元830對第二方向上殼體結構810振動的回應靈敏度,進而提高振動感測器800的方向選擇性,降低雜訊信號對聲音信號的干擾。 In some embodiments, the vibration unit 830 generates vibration in a first direction in response to the vibration of the housing structure 810. The vibration in the first direction can be regarded as the sound signal that the vibration sensor 800 expects to pick up, and the vibration in the second direction can be regarded as a noise signal. Therefore, during the operation of the vibration sensor 800, the vibration generated by the vibration unit 830 in the second direction can be reduced, thereby reducing the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the second direction, thereby improving the directional selectivity of the vibration sensor 800 and reducing the interference of the noise signal on the sound signal.

在一些實施例中,至少一個彈性元件832的形心與質量元件831的重心可以重合或者近似重合。在一些實施例中,振動單元830回應於殼體結構810的振動而產生振動時,至少一個彈性元件832的形心與質量元件831的重心重合或者近似重合,可以在振動單元830對第一方向上殼體結構810振動的回應靈敏度基本不變的前提下,降低質量元件831在第二方向上的振動,從而降低振動單元830對第二方向上殼體結構810振動的回應靈敏度,進而提高振動感測器800的方向選擇性。在一些實施例中,可以通過調整彈性元件832的厚度、彈性係數、質量元件831的質量、尺寸等改變(例如,提高)振動單元830對第一方向上殼體結構810振動的回應靈敏度。 In some embodiments, the centroid of at least one elastic element 832 may coincide with or approximately coincide with the center of gravity of the mass element 831. In some embodiments, when the vibration unit 830 vibrates in response to the vibration of the housing structure 810, the centroid of at least one elastic element 832 coincides with or approximately coincides with the center of gravity of the mass element 831, which can reduce the vibration of the mass element 831 in the second direction while keeping the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the first direction substantially unchanged, thereby reducing the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the second direction, thereby improving the directional selectivity of the vibration sensor 800. In some embodiments, the response sensitivity of the vibration unit 830 to the vibration of the shell structure 810 in the first direction can be changed (for example, improved) by adjusting the thickness, elastic coefficient of the elastic element 832, the mass and size of the mass element 831, etc.

關於至少一個彈性元件832的形心與質量元件831的重心可以重合或者近似重合可以理解為彈性元件832的形心與質量元件831的重心在第一方向上和第二方向上滿足特定條件。在一些實施例中,特定條件可以為至少一個彈性元件832的形心與質量元件831的重心在第一方向上的距離可以不大於質量元件831厚度的1/4,且至少一個彈性元件832的形心與質量元件831的重心在第二方向上的距離不大於質量元件831的邊長或半徑的1/4。在一些實施例中,特定條件可以為至少一個彈性元件832的形心與質量元件831的重心在第一方向上的距離可以不大於質量元件831厚度的1/3,且至少一個彈性元件832的形心與質量元件831的重心在第二方向上的距離不大於質量元件831的邊長或半徑的1/3。在一些實施例中,至少一個彈性元件832的形心與質量元件831的重心在第一方向上的距離可以不大於質量元件831的厚度的1/2,且至少一個彈性元件832的形心與質 量元件831的重心在第二方向上的距離不大於質量元件831的邊長或半徑的1/2。例如,質量元件831為正方體時,至少一個彈性元件832的形心與質量元件831的重心在第一方向上的距離不大於質量元件831的厚度(邊長)的1/3,至少一個彈性元件832的形心與質量元件831的重心在第二方向上的距離不大於質量元件831的邊長的1/3。又例如,質量元件831為圓柱體時,至少一個彈性元件832的形心與質量元件831的重心在第一方向上的距離不大於質量元件831的厚度(高度)的1/4,至少一個彈性元件832的形心與質量元件831的重心在第二方向上的距離不大於質量元件831的上表面(或者下表面)的圓形半徑的1/4。 The fact that the centroid of at least one elastic element 832 and the center of gravity of the mass element 831 can coincide or approximately coincide can be understood as the centroid of the elastic element 832 and the center of gravity of the mass element 831 satisfying specific conditions in the first direction and the second direction. In some embodiments, the specific condition can be that the distance between the centroid of at least one elastic element 832 and the center of gravity of the mass element 831 in the first direction can be no greater than 1/4 of the thickness of the mass element 831, and the distance between the centroid of at least one elastic element 832 and the center of gravity of the mass element 831 in the second direction is no greater than 1/4 of the side length or radius of the mass element 831. In some embodiments, the specific condition may be that the distance between the centroid of at least one elastic element 832 and the center of gravity of the mass element 831 in the first direction may be no greater than 1/3 of the thickness of the mass element 831, and the distance between the centroid of at least one elastic element 832 and the center of gravity of the mass element 831 in the second direction may be no greater than 1/3 of the side length or radius of the mass element 831. In some embodiments, the distance between the centroid of at least one elastic element 832 and the center of gravity of the mass element 831 in the first direction may be no greater than 1/2 of the thickness of the mass element 831, and the distance between the centroid of at least one elastic element 832 and the center of gravity of the mass element 831 in the second direction may be no greater than 1/2 of the side length or radius of the mass element 831. For example, when the mass element 831 is a cube, the distance between the centroid of at least one elastic element 832 and the center of gravity of the mass element 831 in the first direction is no more than 1/3 of the thickness (side length) of the mass element 831, and the distance between the centroid of at least one elastic element 832 and the center of gravity of the mass element 831 in the second direction is no more than 1/3 of the side length of the mass element 831. For another example, when the mass element 831 is a cylinder, the distance between the centroid of at least one elastic element 832 and the center of gravity of the mass element 831 in the first direction is no more than 1/4 of the thickness (height) of the mass element 831, and the distance between the centroid of at least one elastic element 832 and the center of gravity of the mass element 831 in the second direction is no more than 1/4 of the circular radius of the upper surface (or lower surface) of the mass element 831.

在一些實施例中,當至少一個彈性元件832的形心與質量元件831的重心重合或者近似重合時,可以使得振動單元830在第二方向上振動的諧振頻率向高頻偏移,而不改變振動單元830在第一方向上振動的諧振頻率。在一些實施例中,當至少一個彈性元件832的形心與質量元件831的重心重合或者近似重合時,振動單元830在第一方向上振動的諧振頻率可以保持基本不變,例如,振動單元830在第一方向上振動的諧振頻率可以為人耳感知相對較強的頻率範圍(例如,20Hz-2000Hz、2000Hz-3000Hz等)內的頻率。振動單元830在第二方向上振動的諧振頻率可以向高頻偏移而位於人耳感知相對較弱的頻率範圍(例如,5000Hz-9000Hz、1kHz-14kHz等)內的頻率。基於振動單元830在第二方向上振動的諧振頻率向高頻偏移,振動單元830在第一方向上振動的諧振頻率保持基本不變,可以使得振動單元830在第二方向上振動的諧振頻率與振動單元830在第一方向上振動的諧振頻率的比值大於或等於2。在一些實施例中,振動單元830在第二方向上振動的諧振頻率與振動單元830在第一方向上振動的諧振頻率的比值也可以大於或等於其他數值。例如,振動單元830在第二方向上振動的諧振頻率與振動單元830在第一方向上振動的諧振頻率的比值也可以大於或等於1.5。 In some embodiments, when the centroid of at least one elastic element 832 coincides or approximately coincides with the center of gravity of the mass element 831, the harmonic frequency of the vibration unit 830 vibrating in the second direction can be shifted to a high frequency without changing the harmonic frequency of the vibration unit 830 vibrating in the first direction. In some embodiments, when the centroid of at least one elastic element 832 coincides or approximately coincides with the center of gravity of the mass element 831, the harmonic frequency of the vibration unit 830 vibrating in the first direction can remain substantially unchanged, for example, the harmonic frequency of the vibration unit 830 vibrating in the first direction can be a frequency within a relatively strong frequency range perceived by the human ear (for example, 20 Hz-2000 Hz, 2000 Hz-3000 Hz, etc.). The harmonic frequency of the vibration unit 830 vibrating in the second direction may be shifted to a high frequency and located in a frequency range (e.g., 5000 Hz-9000 Hz, 1 kHz-14 kHz, etc.) where human ear perception is relatively weak. Based on the shift of the harmonic frequency of the vibration unit 830 vibrating in the second direction to a high frequency, the harmonic frequency of the vibration unit 830 vibrating in the first direction remains substantially unchanged, so that the ratio of the harmonic frequency of the vibration unit 830 vibrating in the second direction to the harmonic frequency of the vibration unit 830 vibrating in the first direction may be greater than or equal to 2. In some embodiments, the ratio of the harmonic frequency of the vibration unit 830 vibrating in the second direction to the harmonic frequency of the vibration unit 830 vibrating in the first direction may also be greater than or equal to other values. For example, the ratio of the harmonic frequency of the vibration unit 830 vibrating in the second direction to the harmonic frequency of the vibration unit 830 vibrating in the first direction may also be greater than or equal to 1.5.

在一些實施例中,振動單元830在第二方向上振動的諧振頻率與振動單元830在第一方向上振動的諧振頻率的比值的大小可以反映振動感測器800拾取的雜訊信號對聲音信號的影響。例如,振動單元830在第二方向上振動的諧振頻率與振動單元830在第一方向上振動的諧振頻率的比值越大,則振動單元830在第二方向上振動的諧振頻率越高,此時,振動單元830對第一方向上較低頻段(例如,2000Hz以下)的聲音的靈敏度較高,振動單元830對第二方向上較高頻段(例如,2000Hz以上)的聲音的靈敏度較高,而人耳對較高頻段(例如,大於2000Hz)的聲音信號不敏感,而對較低頻段(例如,2000Hz以下)的聲音信號敏感,振動單元830拾取的第二方向的較高頻段範圍內的雜訊信號對第一方向上拾取的目標聲音信號的干擾較小。 In some embodiments, the ratio of the harmonic frequency of the vibration unit 830 vibrating in the second direction to the harmonic frequency of the vibration unit 830 vibrating in the first direction can reflect the influence of the noise signal picked up by the vibration sensor 800 on the sound signal. For example, the larger the ratio of the harmonic frequency of the vibration unit 830 vibrating in the second direction to the harmonic frequency of the vibration unit 830 vibrating in the first direction, the higher the harmonic frequency of the vibration unit 830 vibrating in the second direction. At this time, the vibration unit 830 is more sensitive to sounds in the lower frequency band (for example, below 2000 Hz) in the first direction, and the vibration unit 830 is more sensitive to sounds in the higher frequency band in the second direction. The sensitivity of high-frequency sounds (for example, above 2000Hz) is higher, while the human ear is insensitive to sound signals in the higher-frequency band (for example, greater than 2000Hz), but sensitive to sound signals in the lower-frequency band (for example, below 2000Hz). The noise signal in the higher-frequency band range in the second direction picked up by the vibration unit 830 has less interference with the target sound signal picked up in the first direction.

在一些實施例中,調整質量元件831的尺寸也可以降低振動單元830對第二方向上殼體結構810振動的回應靈敏度。例如,在不改變質量元件831的質量的條件下,可以通過降低質量元件831的厚度(或者增加質量元件831的上表面和/或下表面的面積),使得振動單元830在第二方向上振動的諧振頻率位於高頻頻率範圍(例如,大於3000Hz),從而降低目標頻率範圍(例如,小於3000Hz)內振動單元830對第二方向上的振動的回應靈敏度。 In some embodiments, adjusting the size of the mass element 831 can also reduce the response sensitivity of the vibration unit 830 to the vibration of the housing structure 810 in the second direction. For example, without changing the mass of the mass element 831, the thickness of the mass element 831 can be reduced (or the area of the upper surface and/or lower surface of the mass element 831 is increased) so that the resonant frequency of the vibration unit 830 in the second direction is in the high frequency range (for example, greater than 3000 Hz), thereby reducing the response sensitivity of the vibration unit 830 to the vibration in the second direction within the target frequency range (for example, less than 3000 Hz).

圖9是根據本說明書的一些實施例所示的振動感測器的結構示意圖。如圖9所示的振動感測器900可以包括殼體結構910、聲學換能器、振動單元930。在一些實施例中,殼體結構910的形狀可以是長方體、圓柱體或其他規則結構體或不規則結構體。在一些實施例中,殼體結構910可以為具有一定硬度的材料製成,從而使得殼體結構910對振動感測器900及其內部元件(例如,振動單元930)進行保護。在一些實施例中,殼體結構910的材質可以包括但不限於金屬、合金材料、高分子材料等中的一種或多種。在一些實施例中,殼體結構910可以與聲學換能器上表面的基板結構920連接,這裡的連接的方式可以包括但不限於 焊接、卡接、黏接或一體成型等連接方式。在一些實施例中,基板結構920可以為剛性電路板(例如,PCB)和/或撓性電路板(例如,FPC)。在一些實施例中,至少部分殼體結構910和聲學換能器上表面的基板結構920可以形成聲學腔體。在一些實施例中,殼體結構910可獨立形成具有聲學腔體的封裝結構,其中,聲學換能器可以位於封裝結構的聲學腔體內。在一些實施例中,殼體結構910可以是內部中空且其一端具有開放式敞口的結構,聲學換能器上表面的基板結構920與殼體結構910的敞口端實體連接實現封裝,從而形成聲學腔體。在一些實施例中,振動單元930可以位於聲學腔體內。振動單元930可以將聲學腔體分隔第一聲學腔體940和第二聲學腔體950。在一些實施例中,第一聲學腔體940可以通過位於基板結構920上的通孔921與聲學換能器聲學連通,第二聲學腔體950可以為聲學密封的腔體結構。需要說明的是,振動單元930將聲學腔體分隔為的多個聲學腔體不限於第一聲學腔體940、第二聲學腔體950,還可以包括更多個聲學腔體,例如,第三聲學腔體、第四聲學腔體等。 FIG. 9 is a schematic diagram of a structure of a vibration sensor according to some embodiments of the present specification. A vibration sensor 900 as shown in FIG. 9 may include a housing structure 910, an acoustic transducer, and a vibration unit 930. In some embodiments, the housing structure 910 may be in the shape of a cuboid, a cylinder, or other regular structures or irregular structures. In some embodiments, the housing structure 910 may be made of a material having a certain hardness, so that the housing structure 910 protects the vibration sensor 900 and its internal components (e.g., the vibration unit 930). In some embodiments, the material of the housing structure 910 may include but is not limited to one or more of metals, alloy materials, polymer materials, etc. In some embodiments, the shell structure 910 can be connected to the substrate structure 920 on the upper surface of the acoustic transducer, and the connection method here can include but is not limited to welding, clamping, bonding or integral molding. In some embodiments, the substrate structure 920 can be a rigid circuit board (e.g., PCB) and/or a flexible circuit board (e.g., FPC). In some embodiments, at least part of the shell structure 910 and the substrate structure 920 on the upper surface of the acoustic transducer can form an acoustic cavity. In some embodiments, the shell structure 910 can independently form a packaging structure with an acoustic cavity, wherein the acoustic transducer can be located in the acoustic cavity of the packaging structure. In some embodiments, the shell structure 910 may be a structure that is hollow inside and has an open opening at one end, and the substrate structure 920 on the upper surface of the acoustic transducer is physically connected to the open end of the shell structure 910 to achieve packaging, thereby forming an acoustic cavity. In some embodiments, the vibration unit 930 may be located in the acoustic cavity. The vibration unit 930 may separate the acoustic cavity into a first acoustic cavity 940 and a second acoustic cavity 950. In some embodiments, the first acoustic cavity 940 may be acoustically connected to the acoustic transducer through a through hole 921 located on the substrate structure 920, and the second acoustic cavity 950 may be an acoustically sealed cavity structure. It should be noted that the multiple acoustic cavities into which the vibration unit 930 divides the acoustic cavity are not limited to the first acoustic cavity 940 and the second acoustic cavity 950, but may also include more acoustic cavities, for example, the third acoustic cavity, the fourth acoustic cavity, etc.

在一些實施例中,振動單元930可以包括質量元件931和彈性元件932,其中,彈性元件932可以包括第一彈性元件9321和第二彈性元件9322。在一些實施例中,第一彈性元件9321和第二彈性元件9322可以為膜狀結構。在一些實施例中,第一彈性元件9321和第二彈性元件9322可以在第一方向上相對於質量元件931呈近似對稱分佈。第一彈性元件9321和第二彈性元件9322可以與殼體結構910連接。例如,第一彈性元件9321可以位於質量元件931背離基板結構920的一側,第一彈性元件9321的下表面可以和質量元件931的上表面連接,第一彈性元件9321的周側可以和殼體結構910的內壁連接。第二彈性元件9322可以位於質量元件931朝向基板結構920的一側,第二彈性元件9322的上表面可以和質量元件931的下表面連接,第二彈性元件9322的周側可以和殼體結構910的內壁連接。需要說明的是,第一彈性元件9321和第二彈性元件9322的膜狀結構可以為矩形、 圓形等規則和/或不規則結構,第一彈性元件9321和第二彈性元件9322的形狀可以根據殼體結構910的截面形狀進行適應性調整。 In some embodiments, the vibration unit 930 may include a mass element 931 and an elastic element 932, wherein the elastic element 932 may include a first elastic element 9321 and a second elastic element 9322. In some embodiments, the first elastic element 9321 and the second elastic element 9322 may be a membrane structure. In some embodiments, the first elastic element 9321 and the second elastic element 9322 may be approximately symmetrically distributed relative to the mass element 931 in the first direction. The first elastic element 9321 and the second elastic element 9322 may be connected to the shell structure 910. For example, the first elastic element 9321 may be located on a side of the mass element 931 facing away from the substrate structure 920, the lower surface of the first elastic element 9321 may be connected to the upper surface of the mass element 931, and the periphery of the first elastic element 9321 may be connected to the inner wall of the shell structure 910. The second elastic element 9322 may be located on a side of the mass element 931 facing the substrate structure 920, the upper surface of the second elastic element 9322 may be connected to the lower surface of the mass element 931, and the periphery of the second elastic element 9322 may be connected to the inner wall of the shell structure 910. It should be noted that the membrane structure of the first elastic element 9321 and the second elastic element 9322 can be a regular and/or irregular structure such as a rectangle or a circle, and the shapes of the first elastic element 9321 and the second elastic element 9322 can be adaptively adjusted according to the cross-sectional shape of the shell structure 910.

在一些實施例中,第一彈性元件9321和第二彈性元件9322為膜狀結構時,質量元件931的上表面或下表面的尺寸小於第一彈性元件9321和第二彈性元件9322的尺寸,質量元件931的側表面和殼體結構910的內壁形成間距相等的環形或矩形。在一些實施例中,質量元件931的厚度可以為10um~1000um。在一些實施例中,質量元件931的厚度可以為6um~500um。在一些實施例中,質量元件931的厚度可以為800um~1400um。在一些實施例中,第一彈性元件9321和第二彈性元件9322的厚度可以為0.1um~500um。在一些實施例中,第一彈性元件9321和第二彈性元件9322的厚度可以為0.05um~200um。在一些實施例中,第一彈性元件9321和第二彈性元件9322的厚度可以為300um~800um。在一些實施例中,每個彈性元件(例如,第一彈性元件9321或第二彈性元件9322)與質量元件931的厚度比可以為2~100。在一些實施例中,每個彈性元件與質量元件931的厚度比可以為10~50。在一些實施例中,每個彈性元件與質量元件931的厚度比可以為20~40。在一些實施例中,質量元件931與每個彈性元件(例如,第一彈性元件9321或第二彈性元件9322)的厚度差值可以為9um~500um。在一些實施例中,質量元件931與每個彈性元件的厚度差值可以為50um~400um。在一些實施例中,質量元件931與每個彈性元件的厚度差值可以為100um~300um。 In some embodiments, when the first elastic element 9321 and the second elastic element 9322 are membrane structures, the size of the upper surface or the lower surface of the mass element 931 is smaller than the size of the first elastic element 9321 and the second elastic element 9322, and the side surface of the mass element 931 and the inner wall of the shell structure 910 form a ring or rectangle with equal spacing. In some embodiments, the thickness of the mass element 931 can be 10um~1000um. In some embodiments, the thickness of the mass element 931 can be 6um~500um. In some embodiments, the thickness of the mass element 931 can be 800um~1400um. In some embodiments, the thickness of the first elastic element 9321 and the second elastic element 9322 can be 0.1um~500um. In some embodiments, the thickness of the first elastic element 9321 and the second elastic element 9322 may be 0.05um~200um. In some embodiments, the thickness of the first elastic element 9321 and the second elastic element 9322 may be 300um~800um. In some embodiments, the thickness ratio of each elastic element (e.g., the first elastic element 9321 or the second elastic element 9322) to the mass element 931 may be 2~100. In some embodiments, the thickness ratio of each elastic element to the mass element 931 may be 10~50. In some embodiments, the thickness ratio of each elastic element to the mass element 931 may be 20~40. In some embodiments, the thickness difference between the mass element 931 and each elastic element (e.g., the first elastic element 9321 or the second elastic element 9322) may be 9um~500um. In some embodiments, the thickness difference between the mass element 931 and each elastic element may be 50um~400um. In some embodiments, the thickness difference between the mass element 931 and each elastic element may be 100um~300um.

在一些實施例中,在第一彈性元件9321、第二彈性元件9322、質量元件931與聲學腔體對應的殼體結構910或聲學換能器之間可以形成間隙960。如圖9所示,在一些實施例中,間隙960可以位於質量元件931的周側,當質量元件931回應於外部振動信號時,質量元件931在相對於殼體結構910振動時,間隙960可以防止質量元件931振動時與殼體結構910發生碰撞。在一些實施例中,間隙960中可以包括填充物,通過在間隙960中設置填充物可以對振動感測器900的 品質因數進行調整。優選地,間隙960中設置填充物可以使得振動感測器900的品質因數為0.7~10。較為優選地,間隙960中設置填充物可以使得振動感測器900的品質因數為1~5。在一些實施例中,填充物可以是氣體、液體(例如,矽油)、彈性材料等中的一種或多種。示例性的氣體可以包括但不限於空氣、氬氣、氮氣、二氧化碳等中的一種或多種。示例性的彈性材料可以包括但不限於矽凝膠、矽橡膠等。 In some embodiments, a gap 960 may be formed between the first elastic element 9321, the second elastic element 9322, the mass element 931 and the housing structure 910 or the acoustic transducer corresponding to the acoustic cavity. As shown in FIG9 , in some embodiments, the gap 960 may be located around the mass element 931. When the mass element 931 responds to an external vibration signal, the mass element 931 vibrates relative to the housing structure 910. The gap 960 may prevent the mass element 931 from colliding with the housing structure 910 when vibrating. In some embodiments, the gap 960 may include a filler. By providing the filler in the gap 960, the quality factor of the vibration sensor 900 may be adjusted. Preferably, the filler is provided in the gap 960 so that the quality factor of the vibration sensor 900 is 0.7 to 10. More preferably, the filler is provided in the gap 960 so that the quality factor of the vibration sensor 900 is 1 to 5. In some embodiments, the filler may be one or more of a gas, a liquid (e.g., silicone oil), an elastic material, etc. Exemplary gases may include but are not limited to one or more of air, argon, nitrogen, carbon dioxide, etc. Exemplary elastic materials may include but are not limited to silicone gel, silicone rubber, etc.

在一些實施例中,在第一彈性元件9321與聲學腔體對應的殼體結構910之間形成的聲學腔體(例如,第二聲學腔體950)的體積可以大於或等於在第二彈性元件9322與聲學腔體對應的殼體結構910、基板結構920之間形成的第一聲學腔體940的體積,使得第一聲學腔體940的體積與第二聲學腔體950的體積相等或近似相等,從而提高振動感測器900的對稱性。具體地,第一聲學腔體940和第二聲學腔體950內部具有空氣,當振動單元930相對於殼體振動時,振動單元930壓縮兩個聲學腔體內部的空氣,第一聲學腔體940和第二聲學腔體950可以近似視為兩個空氣彈簧,第二聲學腔體950的體積大於或等於第一聲學腔體940的體積,使得振動單元930在振動時壓縮空氣帶來的空氣彈簧的係數近似相等,從而進一步提高質量元件931上下兩側彈性元件(包含空氣彈簧)的對稱性。在一些實施例中,第一聲學腔體940的體積和第二聲學腔體950的體積可以為10um3~1000um3。優選地,第一聲學腔體940的體積和第二聲學腔體950的體積可以為50um3~500um3。 In some embodiments, the volume of the acoustic cavity (for example, the second acoustic cavity 950) formed between the first elastic element 9321 and the shell structure 910 corresponding to the acoustic cavity can be greater than or equal to the volume of the first acoustic cavity 940 formed between the second elastic element 9322 and the shell structure 910 and the substrate structure 920 corresponding to the acoustic cavity, so that the volume of the first acoustic cavity 940 is equal to or approximately equal to the volume of the second acoustic cavity 950, thereby improving the symmetry of the vibration sensor 900. Specifically, there is air inside the first acoustic cavity 940 and the second acoustic cavity 950. When the vibration unit 930 vibrates relative to the shell, the vibration unit 930 compresses the air inside the two acoustic cavities. The first acoustic cavity 940 and the second acoustic cavity 950 can be approximately regarded as two air springs. The volume of the second acoustic cavity 950 is greater than or equal to the volume of the first acoustic cavity 940, so that the coefficients of the air springs brought by the compression of the air by the vibration unit 930 during vibration are approximately equal, thereby further improving the symmetry of the elastic elements (including air springs) on the upper and lower sides of the mass element 931. In some embodiments, the volume of the first acoustic cavity 940 and the volume of the second acoustic cavity 950 may be 10um3~1000um3. Preferably, the volume of the first acoustic cavity 940 and the volume of the second acoustic cavity 950 may be 50um3~500um3.

圖10是根據本說明書的一些實施例所示的振動感測器的頻率響應曲線圖。如圖10所示,橫軸表示頻率,單位為Hz,縱軸表示振動感測器的靈敏度,單位為dB。曲線1010表示包括一個彈性元件的振動感測器(例如,圖3的振動感測器300)在第一方向上的靈敏度。曲線1020表示包括兩個近似對稱的彈性元件(例如,圖9所示的第一彈性元件9321和第二彈性元件9322)的振動感測器 在第一方向上的靈敏度。曲線1030表示包括一個彈性元件的振動感測器(例如,圖3的振動感測器300)在第二方向上的靈敏度。曲線1040表示包括兩個近似對稱的彈性元件(例如,圖9所示的第一彈性元件9321和第二彈性元件9322)的振動感測器在第二方向上的靈敏度。曲線1010(或曲線1030)中對應的振動感測器的彈性元件與曲線1020(或曲線1040)中對應的振動感測器的兩個彈性元件的材質和形狀相同,區別之處在於曲線1010(或曲線1030)中對應的振動感測器的彈性元件的厚度近似等於曲線1020(或曲線1040)中對應的振動感測器的兩個彈性元件的總厚度。需要注意的是,這裡近似等於的誤差不超過50%。 FIG10 is a frequency response curve diagram of a vibration sensor according to some embodiments of the present specification. As shown in FIG10 , the horizontal axis represents frequency in Hz, and the vertical axis represents the sensitivity of the vibration sensor in dB. Curve 1010 represents the sensitivity of a vibration sensor including one elastic element (e.g., the vibration sensor 300 of FIG3 ) in a first direction. Curve 1020 represents the sensitivity of a vibration sensor including two approximately symmetrical elastic elements (e.g., the first elastic element 9321 and the second elastic element 9322 shown in FIG9 ) in a first direction. Curve 1030 represents the sensitivity of a vibration sensor including one elastic element (e.g., the vibration sensor 300 of FIG3 ) in a second direction. Curve 1040 represents the sensitivity of a vibration sensor including two approximately symmetrical elastic elements (e.g., the first elastic element 9321 and the second elastic element 9322 shown in FIG. 9 ) in the second direction. The elastic element of the vibration sensor corresponding to curve 1010 (or curve 1030) is the same in material and shape as the two elastic elements of the vibration sensor corresponding to curve 1020 (or curve 1040), and the difference is that the thickness of the elastic element of the vibration sensor corresponding to curve 1010 (or curve 1030) is approximately equal to the total thickness of the two elastic elements of the vibration sensor corresponding to curve 1020 (or curve 1040). It should be noted that the error of the approximate equality here does not exceed 50%.

對比曲線1010和曲線1020可以看出,在特定頻率範圍(例如,3000Hz以下)內,具有一個彈性元件的振動感測器在第一方向上的靈敏度(圖10中曲線1010)與具有兩個近似對稱的彈性元件的振動感測器在第一方向上的靈敏度(圖10中曲線1020)近似相等。也可以理解為,在特定頻率範圍(例如,3000Hz以下)內,振動感測器包括的彈性元件的數量及分佈情況對振動感測器在第一方向上的靈敏度的影響較小。另外,在曲線1010和曲線1020中,f1是具有一個彈性元件的振動感測器在第一方向上的諧振峰的諧振頻率,f2是具有兩個近似對稱的彈性元件的振動感測器在第一方向上諧振峰的諧振頻率,其中,具有一個彈性元件的振動感測器在第一方向上的諧振峰的諧振頻率f1與具有兩個近似對稱的彈性元件的振動感測器在第一方向上諧振峰的諧振頻率f2近似相等。也就是說,在特定頻率範圍內,具有一個彈性元件的振動感測器在第一方向的靈敏度與具有兩個近似對稱的彈性元件的振動感測器在第一方向的靈敏度近似相等。考慮到振動感測器為非理想性器件,導致振動感測器中第一方向的諧振頻率在第二方向中具有映射(也被稱為分量),相應地,在曲線1030中,f3用於表徵具有一個彈性元件的振動感測器中第一方向的諧振頻率在第二方向頻率響應曲線中的映射(也可以理解為第一方向的諧振頻率在第二方向頻率響應曲線中的分 量),f5是具有一個彈性元件的振動感測器在第二方向的諧振頻率,在曲線1040中,f4用於表徵包括兩個彈性元件的振動感測器中第一方向的諧振頻率在第二方向頻率響應曲線中的映射,f6是具有兩個近似對稱的彈性元件的振動感測器在第二方向的諧振頻率。由於映射關係的存在,第三曲線1030中的諧振頻率f3與第一曲線1010中的諧振頻率f1近似相等,第四曲線1040中的諧振頻率f4與第二曲線1020中的諧振頻率f2近似相等。對比曲線1030和曲線1040可以看出,在特定頻率範圍(例如,3000Hz以下)內,包括一個彈性元件的振動感測器中在第二方向上的靈敏度(圖10中曲線1030)大於包括兩個近似對稱的彈性元件的振動感測器在第二方向上的靈敏度(圖10中曲線1040)。也可以理解為,在特定頻率範圍(例如,3000Hz以下)內,振動感測器包括的彈性元件的數量及分佈情況對振動感測器在第二方向上的靈敏度的影響較大。另外,結合曲線1030和曲線1040可以看出,f1與f2近似相等(或者,f3與f4近似相等)時,在特定頻率範圍(例如,3000Hz以下)內,具有一個彈性元件的振動感測器中在第二方向上的諧振峰對應的諧振頻率f5明顯小於包括兩個近似對稱的彈性元件的振動感測器在第二方向上的諧振峰對應的諧振頻率f6。在一些實施例中,通過在振動感測器中設置兩個近似對稱的彈性元件,可以使得振動感測器在第二方向上的諧振峰的諧振頻率位於更高頻範圍,從而降低振動感測器在距離諧振頻率較遠位置的中低頻範圍內的靈敏度。進一步地,在特定頻率範圍(3000Hz)內,包括兩個近似對稱的彈性元件的振動感測器在第二方向上的靈敏度(圖10中曲線1040)相對於包括一個彈性元件的振動感測器在第二方向上的靈敏度(圖10中曲線1030)更加平坦。 By comparing curve 1010 and curve 1020, it can be seen that within a specific frequency range (e.g., below 3000 Hz), the sensitivity of the vibration sensor with one elastic element in the first direction (curve 1010 in FIG. 10 ) is approximately equal to the sensitivity of the vibration sensor with two approximately symmetrical elastic elements in the first direction (curve 1020 in FIG. 10 ). It can also be understood that within a specific frequency range (e.g., below 3000 Hz), the number and distribution of elastic elements included in the vibration sensor have little effect on the sensitivity of the vibration sensor in the first direction. In addition, in curves 1010 and 1020, f1 is the resonance frequency of the resonance peak in the first direction of the vibration sensor having one elastic element, and f2 is the resonance frequency of the resonance peak in the first direction of the vibration sensor having two approximately symmetrical elastic elements, wherein the resonance frequency f1 of the resonance peak in the first direction of the vibration sensor having one elastic element is approximately equal to the resonance frequency f2 of the resonance peak in the first direction of the vibration sensor having two approximately symmetrical elastic elements. That is, within a specific frequency range, the sensitivity of the vibration sensor having one elastic element in the first direction is approximately equal to the sensitivity of the vibration sensor having two approximately symmetrical elastic elements in the first direction. Considering that the vibration sensor is a non-ideal device, the resonant frequency in the first direction of the vibration sensor has a mapping (also called a component) in the second direction. Accordingly, in curve 1030, f3 is used to characterize the mapping of the resonant frequency in the first direction of the vibration sensor having an elastic element in the frequency response curve of the second direction (it can also be understood as the resonant frequency in the first direction in the second direction). In the curve 1040, f4 is used to characterize the mapping of the resonant frequency in the first direction of the vibration sensor including two elastic elements in the frequency response curve in the second direction, and f6 is the resonant frequency in the second direction of the vibration sensor having two approximately symmetrical elastic elements. Due to the existence of the mapping relationship, the resonant frequency f3 in the third curve 1030 is approximately equal to the resonant frequency f1 in the first curve 1010, and the resonant frequency f4 in the fourth curve 1040 is approximately equal to the resonant frequency f2 in the second curve 1020. By comparing curve 1030 and curve 1040, it can be seen that within a specific frequency range (for example, below 3000 Hz), the sensitivity of the vibration sensor including one elastic element in the second direction (curve 1030 in FIG. 10 ) is greater than the sensitivity of the vibration sensor including two approximately symmetrical elastic elements in the second direction (curve 1040 in FIG. 10 ). It can also be understood that within a specific frequency range (for example, below 3000 Hz), the number and distribution of elastic elements included in the vibration sensor have a greater impact on the sensitivity of the vibration sensor in the second direction. In addition, it can be seen from the combination of curve 1030 and curve 1040 that when f1 and f2 are approximately equal (or f3 and f4 are approximately equal), within a specific frequency range (for example, below 3000 Hz), the resonance frequency f5 corresponding to the resonance peak in the second direction of the vibration sensor having one elastic element is significantly smaller than the resonance frequency f6 corresponding to the resonance peak in the second direction of the vibration sensor including two approximately symmetrical elastic elements. In some embodiments, by providing two approximately symmetrical elastic elements in the vibration sensor, the resonance frequency of the resonance peak in the second direction of the vibration sensor can be located in a higher frequency range, thereby reducing the sensitivity of the vibration sensor in the medium and low frequency range far from the resonance frequency. Furthermore, within a specific frequency range (3000 Hz), the sensitivity of the vibration sensor including two approximately symmetrical elastic elements in the second direction (curve 1040 in FIG. 10 ) is flatter than the sensitivity of the vibration sensor including one elastic element in the second direction (curve 1030 in FIG. 10 ).

基於上述的曲線分析,可以知道,通過在振動感測器中設置近似對稱的第一彈性元件和第二彈性元件,可以實現在特定頻段(例如,3000Hz以下),在基本不改變振動感測器在第一方向上的靈敏度的同時降低振動感測器在第二方向上的靈敏度的前提下,進而增大振動感測器在第二方向上的靈敏度與 振動感測器在第一方向上的靈敏度的差值,提高振動感測器的方向選擇性,增強振動感測器的抗雜訊干擾能力。在一些實施例中,為了進一步降低第二方向的靈敏度,在特定頻率範圍(例如,3000Hz以下)內,具有兩個近似對稱的彈性元件的振動感測器中在第二方向上的諧振峰對應的諧振頻率f6與具有一個彈性元件的振動感測器在第二方向上的諧振峰對應的諧振頻率f5的比值可以大於2。在一些實施例中,在特定頻率範圍(例如,3000Hz以下)內,具有兩個近似對稱的彈性元件的振動感測器中在第二方向上的諧振峰對應的諧振頻率f6與具有一個彈性元件的振動感測器在第二方向上的諧振峰對應的諧振頻率f5的比值可以大於3.5。在一些實施例中,在特定頻率範圍(例如,3000Hz以下)內,具有兩個近似對稱的彈性元件的振動感測器中在第二方向上的諧振峰對應的諧振頻率f6與兩個近似對稱的彈性元件的振動感測器在第二方向上的諧振峰對應的諧振頻率f5的比值可以大於5。在一些實施例中,具有兩個近似對稱的彈性元件的振動感測器在第二方向上的諧振峰對應的諧振頻率f6與其在第一方向上的諧振峰對應的諧振頻率f2可以大於1。優選地,具有兩個近似對稱的彈性元件的振動感測器在第二方向上的諧振峰對應的諧振頻率f6與其在第一方向上的諧振峰對應的諧振頻率f2可以大於1.5。進一步優選地,具有兩個近似對稱的彈性元件的振動感測器在第二方向上的諧振峰對應的諧振頻率f6與其在第一方向上的諧振峰對應的諧振頻率f2可以大於2。 Based on the above curve analysis, it can be known that by setting the first elastic element and the second elastic element which are approximately symmetrical in the vibration sensor, it is possible to achieve in a specific frequency band (for example, below 3000 Hz), under the premise of substantially not changing the sensitivity of the vibration sensor in the first direction while reducing the sensitivity of the vibration sensor in the second direction, thereby increasing the difference between the sensitivity of the vibration sensor in the second direction and the sensitivity of the vibration sensor in the first direction, improving the directional selectivity of the vibration sensor, and enhancing the anti-noise interference capability of the vibration sensor. In some embodiments, in order to further reduce the sensitivity in the second direction, within a specific frequency range (for example, below 3000 Hz), the ratio of the resonance frequency f6 corresponding to the resonance peak in the second direction in the vibration sensor having two approximately symmetrical elastic elements to the resonance frequency f5 corresponding to the resonance peak in the second direction in the vibration sensor having one elastic element may be greater than 2. In some embodiments, within a specific frequency range (for example, below 3000 Hz), the ratio of the resonance frequency f6 corresponding to the resonance peak in the second direction in the vibration sensor having two approximately symmetrical elastic elements to the resonance frequency f5 corresponding to the resonance peak in the second direction in the vibration sensor having one elastic element may be greater than 3.5. In some embodiments, within a specific frequency range (for example, below 3000 Hz), a ratio of a resonance frequency f6 corresponding to a resonance peak in the second direction of a vibration sensor having two approximately symmetrical elastic elements to a resonance frequency f5 corresponding to a resonance peak in the second direction of the vibration sensor having two approximately symmetrical elastic elements may be greater than 5. In some embodiments, a ratio of a resonance frequency f6 corresponding to a resonance peak in the second direction of a vibration sensor having two approximately symmetrical elastic elements to a resonance frequency f2 corresponding to a resonance peak in the first direction of the vibration sensor having two approximately symmetrical elastic elements may be greater than 1. Preferably, the resonance frequency f6 corresponding to the resonance peak in the second direction of the vibration sensor having two approximately symmetrical elastic elements and the resonance frequency f2 corresponding to the resonance peak in the first direction can be greater than 1.5. Further preferably, the resonance frequency f6 corresponding to the resonance peak in the second direction of the vibration sensor having two approximately symmetrical elastic elements and the resonance frequency f2 corresponding to the resonance peak in the first direction can be greater than 2.

圖11是根據本說明書的一些實施例所示的振動感測器的動態類比圖;圖12是根據本說明書的一些實施例所示的振動感測器的動態類比圖。圖11中的(a)示出了包括一個彈性元件的振動感測器中質量元件在第一方向上振動的位移,其中,振動感測器在第一方向上的諧振頻率為1678.3Hz。圖11中的(b)示出了包括一個彈性元件的振動感測器中質量元件在第二方向上振動的位移,其中振動感測器在第二方向上的諧振頻率為2372.2Hz。圖12中的(a)示出了包 括兩個近似對稱的彈性元件的振動感測器中質量元件在第一方向上振動的位移,其中,振動感測器在第一方向上的諧振頻率為1678Hz。圖12中的(b)示出了包括兩個近似對稱的彈性元件的振動感測器中質量元件在第二方向上振動的位移,其中振動感測器在第二方向上的諧振頻率為14795Hz。需要說明的是,在圖11和圖12中,除彈性元件的厚度不同外,彈性元件的長度、寬度及質量元件的長度、寬度、厚度均相同。 FIG. 11 is a dynamic analog diagram of a vibration sensor according to some embodiments of the present specification; FIG. 12 is a dynamic analog diagram of a vibration sensor according to some embodiments of the present specification. FIG. 11 (a) shows the displacement of a mass element vibrating in a first direction in a vibration sensor including an elastic element, wherein the resonant frequency of the vibration sensor in the first direction is 1678.3 Hz. FIG. 11 (b) shows the displacement of a mass element vibrating in a second direction in a vibration sensor including an elastic element, wherein the resonant frequency of the vibration sensor in the second direction is 2372.2 Hz. FIG. 12 (a) shows the displacement of a mass element vibrating in a first direction in a vibration sensor including two approximately symmetrical elastic elements, wherein the resonant frequency of the vibration sensor in the first direction is 1678 Hz. (b) in Figure 12 shows the displacement of the mass element vibrating in the second direction in a vibration sensor including two approximately symmetrical elastic elements, wherein the resonant frequency of the vibration sensor in the second direction is 14795 Hz. It should be noted that in Figures 11 and 12, except for the different thicknesses of the elastic elements, the length, width, and thickness of the elastic elements and the length, width, and thickness of the mass element are the same.

參照圖11,包括一個彈性元件的振動感測器在第一方向上的諧振頻率(1678.3Hz)與包括一個彈性元件的振動感測器在第二方向上的諧振頻率(2372.2Hz)均位於目標頻率範圍(例如,0Hz-3000Hz)內。因此,質量元件在第二方向上的振動信號對振動感測器最終輸出的電信號的影響較大。參照圖12,包括兩個近似對稱的彈性元件的振動感測器在第一方向上的諧振頻率(1678Hz)位於目標頻率範圍(例如,0Hz-3000Hz)內,包括兩個近似對稱的彈性元件的振動感測器在第二方向上的諧振頻率(14795Hz)遠高於目標頻率。因此,質量元件在第二方向上的振動信號對振動感測器最終輸出的電信號的影響較小。 Referring to Fig. 11, the resonant frequency (1678.3 Hz) of the vibration sensor including an elastic element in the first direction and the resonant frequency (2372.2 Hz) of the vibration sensor including an elastic element in the second direction are both within the target frequency range (e.g., 0 Hz-3000 Hz). Therefore, the vibration signal of the mass element in the second direction has a greater impact on the electrical signal finally output by the vibration sensor. Referring to Figure 12, the resonant frequency (1678 Hz) of the vibration sensor including two approximately symmetrical elastic elements in the first direction is within the target frequency range (e.g., 0 Hz-3000 Hz), and the resonant frequency (14795 Hz) of the vibration sensor including two approximately symmetrical elastic elements in the second direction is much higher than the target frequency. Therefore, the vibration signal of the mass element in the second direction has less influence on the electrical signal finally output by the vibration sensor.

在一些實施例中,質量元件的位移與振動感測器在第一方向和/或第二方向的諧振頻率相關。具體地,質量元件的位移與振動感測器在第一方向和/或第二方向的諧振頻率的平方成反比。也就是說,振動感測器在第一方向和/或第二方向的諧振頻率越高,質量元件在第一方向和/或第二方向的位移越小。在一些實施例中,質量元件在第一方向和/或第二方向的位移越小,對振動感測器的輸出電信號的影響越小。因此,為了降低質量元件在第二方向上的振動信號對振動感測器輸出電信號的影響,可以減小質量元件在第二方向上的位移,即提高振動感測器在第二方向上的諧振頻率。對比圖11和圖12,圖12中的振動感測器的質量元件在第二方向上的位移小於圖11中的振動感測器的質量元件在第二方 向上的位移。因此,圖12中的振動感測器在第二方向上的靈敏度相對於圖11中的振動感測器在第二方向上的靈敏度更低,即,通過在振動感測器中設置近似對稱的兩個彈性元件,可以降低振動感測器在第二方向上的靈敏度,從而提高振動感測器的方向選擇性,增強振動感測器的抗雜訊干擾能力。 In some embodiments, the displacement of the mass element is related to the resonant frequency of the vibration sensor in the first direction and/or the second direction. Specifically, the displacement of the mass element is inversely proportional to the square of the resonant frequency of the vibration sensor in the first direction and/or the second direction. In other words, the higher the resonant frequency of the vibration sensor in the first direction and/or the second direction, the smaller the displacement of the mass element in the first direction and/or the second direction. In some embodiments, the smaller the displacement of the mass element in the first direction and/or the second direction, the smaller the impact on the output electrical signal of the vibration sensor. Therefore, in order to reduce the impact of the vibration signal of the mass element in the second direction on the output electrical signal of the vibration sensor, the displacement of the mass element in the second direction can be reduced, that is, the resonant frequency of the vibration sensor in the second direction can be increased. Comparing Figure 11 and Figure 12, the displacement of the mass element of the vibration sensor in Figure 12 in the second direction is smaller than the displacement of the mass element of the vibration sensor in Figure 11 in the second direction. Therefore, the sensitivity of the vibration sensor in Figure 12 in the second direction is lower than the sensitivity of the vibration sensor in Figure 11 in the second direction, that is, by setting two approximately symmetrical elastic elements in the vibration sensor, the sensitivity of the vibration sensor in the second direction can be reduced, thereby improving the directional selectivity of the vibration sensor and enhancing the anti-noise interference capability of the vibration sensor.

在一些實施例中,通過調整質量元件的尺寸(例如,長度、寬度)可以調整振動感測器在第一方向和第二方向上的諧振頻率。在一些實施例中,通過調整質量元件的尺寸(例如,長度、寬度)可以改變振動感測器在第二方向的諧振頻率與第一方向的諧振頻率的比值。在一些實施例中,振動感測器在第二方向上的振動頻率與第一方向上的振動頻率的比值可以為1-2.5。優選地,振動感測器在第二方向上的振動頻率與第一方向上的振動頻率的比值也可以為1.3-2.2。進一步優選地,振動感測器在第二方向上的振動頻率與第一方向上的振動頻率的比值也可以為1.5-2。關於通過調整質量元件的尺寸來調整振動感測器在第一方向和第二方向上的諧振頻率及其比值的內容可以參考圖13及其相關描述。 In some embodiments, the resonant frequency of the vibration sensor in the first direction and the second direction can be adjusted by adjusting the size (e.g., length, width) of the mass element. In some embodiments, the ratio of the resonant frequency of the vibration sensor in the second direction to the resonant frequency of the first direction can be changed by adjusting the size (e.g., length, width) of the mass element. In some embodiments, the ratio of the vibration frequency of the vibration sensor in the second direction to the vibration frequency in the first direction can be 1-2.5. Preferably, the ratio of the vibration frequency of the vibration sensor in the second direction to the vibration frequency in the first direction can also be 1.3-2.2. Further preferably, the ratio of the vibration frequency of the vibration sensor in the second direction to the vibration frequency in the first direction can also be 1.5-2. For details on adjusting the resonant frequency and ratio of the vibration sensor in the first direction and the second direction by adjusting the size of the mass element, please refer to Figure 13 and its related description.

圖13是根據本說明書的一些實施例所示的振動單元的諧振頻率圖。如圖13所示,橫軸表示質量元件的長度,單位為mm,縱軸表示不同長度的質量元件對應的頻率,單位為Hz。這裡以圖3中的振動感測器300作為示例性說明,這裡振動單元320中的質量元件3201的寬度為1.5mm、厚度為0.3mm,振動單元320彈性元件3202的長度為3mm、寬度為2mm、厚度為0.01mm。曲線1310表示振動感測器300在第一方向上的諧振頻率,曲線1320表示振動感測器300在第二方向上的諧振頻率。參照圖13中的曲線1310,質量元件3201的長度在0.6mm-0.8mm的範圍內時,振動感測器300在第一方向上的諧振頻率隨質量元件3201的長度的增大而降低。參照圖13中的曲線1320,質量元件3201的長度在0.6mm-1.2mm的範圍內時,振動感測器300在第二方向上的諧振頻率,隨質量元件931的長度的增大而降低。質量元件3201的長度在1.2mm-2.4mm的範圍內時,振動感測 器300在第一方向上的諧振頻率隨質量元件3201的長度的增大而增大。質量元件3201的長度在1.4mm-2.4mm的範圍內時,振動感測器300在第二方向上的諧振頻率隨質量元件3201的長度的增大而增大。在一些實施例中,振動感測器300在第二方向上的諧振頻率與第一方向上的諧振頻率的比值,可以隨質量元件3201的長度而改變,也就是說,通過調整質量元件3201的尺寸(例如,長度、寬度),可以改變振動感測器300在第二方向上的諧振頻率與第一方向上的諧振頻率的比值(也被稱為相對橫向靈敏度)。在一些實施例中,振動感測器在第二方向上的諧振頻率與第一方向上的諧振頻率的比值可以為1-2.5。優選地,振動感測器在第二方向上的諧振頻率與第一方向上的諧振頻率的比值可以為1.5-2.5。進一步優選地,振動感測器在第二方向上的諧振頻率與第一方向上的諧振頻率的比值可以大於2。例如,圖13中,當質量元件3201的長度約為0.2mm時,振動感測器300在第二方向上的諧振頻率約為2200Hz,振動感測器300在第一方向上的諧振頻率約為1000Hz,振動感測器300在第二方向上的諧振頻率與第一方向上的諧振頻率的比值約為2.2。進一步地,當質量元件3201的長度約為0.8mm時,振動感測器300在第二方向上的諧振頻率約為2000Hz,振動感測器300在第一方向上的諧振頻率約為800Hz,振動感測器300在第二方向上的諧振頻率與第一方向上的諧振頻率的比值約為2。 FIG13 is a harmonic frequency diagram of a vibration unit according to some embodiments of the present specification. As shown in FIG13 , the horizontal axis represents the length of the mass element, in mm, and the vertical axis represents the frequency corresponding to mass elements of different lengths, in Hz. The vibration sensor 300 in FIG3 is used as an example for illustration. Here, the mass element 3201 in the vibration unit 320 has a width of 1.5 mm and a thickness of 0.3 mm, and the elastic element 3202 of the vibration unit 320 has a length of 3 mm, a width of 2 mm, and a thickness of 0.01 mm. Curve 1310 represents the harmonic frequency of the vibration sensor 300 in the first direction, and curve 1320 represents the harmonic frequency of the vibration sensor 300 in the second direction. Referring to curve 1310 in FIG. 13 , when the length of mass element 3201 is in the range of 0.6 mm to 0.8 mm, the resonant frequency of vibration sensor 300 in the first direction decreases as the length of mass element 3201 increases. Referring to curve 1320 in FIG. 13 , when the length of mass element 3201 is in the range of 0.6 mm to 1.2 mm, the resonant frequency of vibration sensor 300 in the second direction decreases as the length of mass element 931 increases. When the length of mass element 3201 is in the range of 1.2 mm to 2.4 mm, the resonant frequency of vibration sensor 300 in the first direction increases as the length of mass element 3201 increases. When the length of the mass element 3201 is in the range of 1.4 mm to 2.4 mm, the resonant frequency of the vibration sensor 300 in the second direction increases with the increase in the length of the mass element 3201. In some embodiments, the ratio of the resonant frequency of the vibration sensor 300 in the second direction to the resonant frequency in the first direction can be changed with the length of the mass element 3201, that is, by adjusting the size (e.g., length, width) of the mass element 3201, the ratio of the resonant frequency of the vibration sensor 300 in the second direction to the resonant frequency in the first direction (also referred to as relative lateral sensitivity) can be changed. In some embodiments, the ratio of the resonant frequency of the vibration sensor in the second direction to the resonant frequency in the first direction may be 1-2.5. Preferably, the ratio of the resonant frequency of the vibration sensor in the second direction to the resonant frequency in the first direction may be 1.5-2.5. Further preferably, the ratio of the resonant frequency of the vibration sensor in the second direction to the resonant frequency in the first direction may be greater than 2. For example, in FIG13 , when the length of the mass element 3201 is about 0.2 mm, the resonant frequency of the vibration sensor 300 in the second direction is about 2200 Hz, the resonant frequency of the vibration sensor 300 in the first direction is about 1000 Hz, and the ratio of the resonant frequency of the vibration sensor 300 in the second direction to the resonant frequency in the first direction is about 2.2. Further, when the length of the mass element 3201 is about 0.8 mm, the resonant frequency of the vibration sensor 300 in the second direction is about 2000 Hz, the resonant frequency of the vibration sensor 300 in the first direction is about 800 Hz, and the ratio of the resonant frequency of the vibration sensor 300 in the second direction to the resonant frequency in the first direction is about 2.

通過改變質量元件的尺寸(長度或寬度)時,振動感測器在第二方向上的諧振頻率與第一方向上的諧振頻率的比值發生變化,這裡,質量元件的質量與彈性元件的剛性也會同時發生變化,從而對振動感測器在第二方向上的諧振頻率與第一方向上的諧振頻率產生影響。在一些實施例中,為了在目標頻率範圍內,保證振動感測器在第一方向上的靈敏度不發生較大變化的前提下,降低振動感測器在第二方向上的靈敏度,質量元件的尺寸(例如,長度或寬度)與彈性元件的尺寸的比值可以為0.2~0.9。優選地,質量元件的尺寸與彈性元件的尺寸 的比值可以為0.3~0.7。進一步優選地,質量元件的尺寸與彈性元件的尺寸的比值可以為0.5-0.7。僅作為具體示例,例如,質量元件的尺寸(例如,長度或寬度)可以是彈性元件的尺寸的1/2。又例如,質量元件的尺寸(例如,長度或寬度)可以是彈性元件的尺寸的3/4。 By changing the size (length or width) of the mass element, the ratio of the resonant frequency of the vibration sensor in the second direction to the resonant frequency in the first direction changes. Here, the mass of the mass element and the rigidity of the elastic element will also change at the same time, thereby affecting the resonant frequency of the vibration sensor in the second direction and the resonant frequency in the first direction. In some embodiments, in order to reduce the sensitivity of the vibration sensor in the second direction within the target frequency range while ensuring that the sensitivity of the vibration sensor in the first direction does not change significantly, the ratio of the size of the mass element (for example, length or width) to the size of the elastic element can be 0.2~0.9. Preferably, the ratio of the size of the mass element to the size of the elastic element can be 0.3~0.7. Further preferably, the ratio of the size of the mass element to the size of the elastic element may be 0.5-0.7. As a specific example only, for example, the size (e.g., length or width) of the mass element may be 1/2 of the size of the elastic element. For another example, the size (e.g., length or width) of the mass element may be 3/4 of the size of the elastic element.

圖14是根據本說明書的一些實施例所示的振動感測器的結構示意圖。如圖14所示,振動感測器1400可以包括殼體結構1410、聲學換能器、振動單元1430。圖14中所示的振動感測器1400可以與圖9中所示的振動感測器900相同或相似。例如,振動感測器1400的殼體結構1410可以與振動感測器900的殼體結構910相同或相似。又例如,振動感測器1400的第一聲學腔體1440可以與振動感測器900的第一聲學腔體940相同或相似。再例如,振動感測器1400的基板結構1420可以與振動感測器900的基板結構920相同或相似。關於振動感測器1400的更多結構(例如,第二聲學腔體1450、通孔1421、質量元件1431等)可以參考圖9及其相關描述。 FIG. 14 is a schematic diagram of a structure of a vibration sensor according to some embodiments of the present specification. As shown in FIG. 14 , a vibration sensor 1400 may include a housing structure 1410, an acoustic transducer, and a vibration unit 1430. The vibration sensor 1400 shown in FIG. 14 may be the same as or similar to the vibration sensor 900 shown in FIG. 9 . For example, the housing structure 1410 of the vibration sensor 1400 may be the same as or similar to the housing structure 910 of the vibration sensor 900. For another example, the first acoustic cavity 1440 of the vibration sensor 1400 may be the same as or similar to the first acoustic cavity 940 of the vibration sensor 900. For another example, the substrate structure 1420 of the vibration sensor 1400 may be the same as or similar to the substrate structure 920 of the vibration sensor 900. For more information about the vibration sensor 1400 (e.g., the second acoustic cavity 1450, the through hole 1421, the mass element 1431, etc.), please refer to FIG. 9 and its related description.

在一些實施例中,圖14中所示的振動感測器與圖9所示的振動感測器900的主要區別之處在於,振動感測器1400的第一彈性元件14321和第二彈性元件14322可以為柱狀結構,第一彈性元件14321和第二彈性元件14322可以分別沿著質量元件1431的厚度方向延伸並與殼體結構1410或聲學換能器上表面的基板結構1420連接。在一些實施例中,第一彈性元件14321和第二彈性元件14322可以在第一方向上相對於質量元件1431呈近似對稱分佈。在一些實施例中,第一彈性元件14321可以位於質量元件1431背離基板結構1420的一側,第一彈性元件14321的下表面可以和質量元件1431的上表面連接,第一彈性元件9321的上表面可以和殼體結構1410的內壁連接。在一些實施例中,第二彈性元件14322可以位於質量元件1431朝向基板結構1420的一側,第二彈性元件14322的上表面可以和質量元件1431的下表面連接,第二彈性元件14322的下表面可以和聲學換能器上 表面的基板結構1420連接。需要說明的是,第一彈性元件14321和第二彈性元件14322的柱狀結構可以為圓柱形、方柱形等規則和/或不規則結構,第一彈性元件14321和第二彈性元件14322的形狀可以根據殼體結構1410的截面形狀進行適應性調整。 In some embodiments, the main difference between the vibration sensor shown in FIG. 14 and the vibration sensor 900 shown in FIG. 9 is that the first elastic element 14321 and the second elastic element 14322 of the vibration sensor 1400 may be a columnar structure, and the first elastic element 14321 and the second elastic element 14322 may extend along the thickness direction of the mass element 1431 and be connected to the housing structure 1410 or the substrate structure 1420 on the upper surface of the acoustic transducer. In some embodiments, the first elastic element 14321 and the second elastic element 14322 may be approximately symmetrically distributed relative to the mass element 1431 in the first direction. In some embodiments, the first elastic element 14321 may be located on a side of the mass element 1431 facing away from the substrate structure 1420, the lower surface of the first elastic element 14321 may be connected to the upper surface of the mass element 1431, and the upper surface of the first elastic element 9321 may be connected to the inner wall of the housing structure 1410. In some embodiments, the second elastic element 14322 may be located on a side of the mass element 1431 facing the substrate structure 1420, the upper surface of the second elastic element 14322 may be connected to the lower surface of the mass element 1431, and the lower surface of the second elastic element 14322 may be connected to the substrate structure 1420 on the upper surface of the acoustic transducer. It should be noted that the columnar structure of the first elastic element 14321 and the second elastic element 14322 can be a regular and/or irregular structure such as a cylindrical shape or a square column shape, and the shapes of the first elastic element 14321 and the second elastic element 14322 can be adaptively adjusted according to the cross-sectional shape of the shell structure 1410.

在一些實施例中,第一彈性元件14321和第二彈性元件14322為柱狀結構時,質量元件1431的厚度可以為10um~1000um。在一些實施例中,質量元件1431的厚度可以為4um~500um。在一些實施例中,質量元件1431的厚度可以為600um~1400um。在一些實施例中,第一彈性元件14321和第二彈性元件14322的厚度可以為10um~1000um。在一些實施例中,第一彈性元件14321和第二彈性元件14322的厚度可以為4um~500um。在一些實施例中,第一彈性元件14321和第二彈性元件14322的厚度可以為600um~1400um。在一些實施例中,彈性元件1432中的每個彈性元件(例如,第一彈性元件14321和第二彈性元件14322)的厚度與質量元件1431的厚度的差值可以為0um~500um。在一些實施例中,彈性元件1432中的每個彈性元件的厚度與質量元件1431的厚度的差值可以為20um~400um。在一些實施例中,彈性元件1432中的每個彈性元件的厚度與質量元件1431的厚度的差值可以為50um~200um。在一些實施例中,彈性元件1432中的每個彈性元件的厚度與質量元件1431的厚度的比值可以為0.01~100。在一些實施例中,彈性元件1432中的每個彈性元件的厚度與質量元件1431的厚度的比值可以為0.5~80。在一些實施例中,彈性元件1432中的每個彈性元件的厚度與質量元件1431的厚度的比值可以為1~40。在一些實施例中,在第一彈性元件14321的外側、第二彈性元件14322的外側、質量元件1431的外側與聲學腔體對應的殼體結構1410或聲學換能器之間可以具有間隙1460。如圖14所示,在一些實施例中,間隙1460可以位於質量元件1431的周側,當質量元件1431回應於殼體結構1410的振動而振動時,間隙1460可以防止質量元件1431振動時與殼體結構1410 發生碰撞。在一些實施例中,間隙1460中可以包括填充物,關於填充物的更多描述可以參考圖9及其相關描述,在此不做贅述。 In some embodiments, when the first elastic element 14321 and the second elastic element 14322 are columnar structures, the thickness of the mass element 1431 may be 10um~1000um. In some embodiments, the thickness of the mass element 1431 may be 4um~500um. In some embodiments, the thickness of the mass element 1431 may be 600um~1400um. In some embodiments, the thickness of the first elastic element 14321 and the second elastic element 14322 may be 10um~1000um. In some embodiments, the thickness of the first elastic element 14321 and the second elastic element 14322 may be 4um~500um. In some embodiments, the thickness of the first elastic element 14321 and the second elastic element 14322 may be 600um~1400um. In some embodiments, the difference between the thickness of each elastic element in the elastic element 1432 (for example, the first elastic element 14321 and the second elastic element 14322) and the thickness of the mass element 1431 may be 0um~500um. In some embodiments, the difference between the thickness of each elastic element in the elastic element 1432 and the thickness of the mass element 1431 may be 20um~400um. In some embodiments, the difference between the thickness of each elastic element in the elastic element 1432 and the thickness of the mass element 1431 may be 50um~200um. In some embodiments, the ratio of the thickness of each elastic element in the elastic element 1432 to the thickness of the mass element 1431 may be 0.01~100. In some embodiments, the ratio of the thickness of each elastic element in the elastic element 1432 to the thickness of the mass element 1431 may be 0.5 to 80. In some embodiments, the ratio of the thickness of each elastic element in the elastic element 1432 to the thickness of the mass element 1431 may be 1 to 40. In some embodiments, a gap 1460 may be provided between the outer side of the first elastic element 14321, the outer side of the second elastic element 14322, the outer side of the mass element 1431, and the housing structure 1410 or the acoustic transducer corresponding to the acoustic cavity. As shown in FIG. 14 , in some embodiments, the gap 1460 may be located around the mass element 1431. When the mass element 1431 vibrates in response to the vibration of the housing structure 1410, the gap 1460 may prevent the mass element 1431 from colliding with the housing structure 1410 during vibration. In some embodiments, the gap 1460 may include a filler. For more description of the filler, please refer to FIG. 9 and its related description, which will not be elaborated here.

圖15是根據本說明書的一些實施例所示的振動感測器的結構示意圖。如圖15所示,振動感測器1500可以包括殼體結構1510、聲學換能器、振動單元1530。圖15中所示的振動感測器1500可以與圖9中所示的振動感測器900相同或相似。例如,振動感測器1500的殼體結構1510可以與振動感測器900的殼體結構910相同或相似。又例如,振動感測器1500的第一聲學腔體1540可以與振動感測器900的第一聲學腔體940相同或相似。再例如,振動感測器1500的基板結構1520可以與振動感測器900的基板結構920相同或相似。關於振動感測器1500的更多結構(例如,第二聲學腔體1550、通孔1521、質量元件1531等)可以參考圖9及其相關描述。 FIG. 15 is a schematic diagram of a structure of a vibration sensor according to some embodiments of the present specification. As shown in FIG. 15 , a vibration sensor 1500 may include a housing structure 1510, an acoustic transducer, and a vibration unit 1530. The vibration sensor 1500 shown in FIG. 15 may be the same as or similar to the vibration sensor 900 shown in FIG. 9 . For example, the housing structure 1510 of the vibration sensor 1500 may be the same as or similar to the housing structure 910 of the vibration sensor 900. For another example, the first acoustic cavity 1540 of the vibration sensor 1500 may be the same as or similar to the first acoustic cavity 940 of the vibration sensor 900. For another example, the substrate structure 1520 of the vibration sensor 1500 may be the same as or similar to the substrate structure 920 of the vibration sensor 900. For more information about the vibration sensor 1500 (e.g., the second acoustic cavity 1550, the through hole 1521, the mass element 1531, etc.), please refer to FIG. 9 and its related description.

在一些實施例中,與振動感測器900不同的是,振動感測器1500的第一彈性元件15321可以包括第一子彈性元件153211和第二子彈性元件153212。第一子彈性元件153211和聲學腔體對應的殼體結構1510通過第二子彈性元件153212連接,第一子彈性元件153211與質量元件1531的上表面連接。如圖15所示,質量元件1531的上表面與第一子彈性元件153211的下表面連接,第一子彈性元件153211的上表面與第二子彈性元件153212的下表面連接,第二子彈性元件153212的上表面與殼體結構1510的內壁連接。在一些實施例中,第一子彈性元件153211的周側與第二子彈性元件153212的周側可以重合或近似重合。在一些實施例中,振動感測器1500的第二彈性元件15322可以包括第三子彈性元件153221和第四子彈性元件153222。第三子彈性元件153221和聲學腔體對應的聲學換能器通過第四子彈性元件153222連接,第三子彈性元件153221與質量元件1531的下表面連接。如圖15所示,質量元件1531的下表面與第三子彈性元件153221的上表面連接,第三子彈性元件153221的下表面與第四子彈性元件 153222的上表面連接,第四子彈性元件153222的下表面通過聲學換能器上表面的基板結構1520與聲學換能器連接。在一些實施例中,第三子彈性元件153221的周側與第四子彈性元件153222的周側可以重合或近似重合。 In some embodiments, unlike the vibration sensor 900, the first elastic element 15321 of the vibration sensor 1500 may include a first sub-elastic element 153211 and a second sub-elastic element 153212. The first sub-elastic element 153211 and the shell structure 1510 corresponding to the acoustic cavity are connected through the second sub-elastic element 153212, and the first sub-elastic element 153211 is connected to the upper surface of the mass element 1531. As shown in FIG15 , the upper surface of the mass element 1531 is connected to the lower surface of the first sub-elastic element 153211, the upper surface of the first sub-elastic element 153211 is connected to the lower surface of the second sub-elastic element 153212, and the upper surface of the second sub-elastic element 153212 is connected to the inner wall of the shell structure 1510. In some embodiments, the periphery of the first sub-elastic element 153211 and the periphery of the second sub-elastic element 153212 may overlap or approximately overlap. In some embodiments, the second elastic element 15322 of the vibration sensor 1500 may include a third sub-elastic element 153221 and a fourth sub-elastic element 153222. The third sub-elastic element 153221 and the acoustic transducer corresponding to the acoustic cavity are connected through the fourth sub-elastic element 153222, and the third sub-elastic element 153221 is connected to the lower surface of the mass element 1531. As shown in FIG15, the lower surface of the mass element 1531 is connected to the upper surface of the third sub-elastic element 153221, the lower surface of the third sub-elastic element 153221 is connected to the upper surface of the fourth sub-elastic element 153222, and the lower surface of the fourth sub-elastic element 153222 is connected to the acoustic transducer through the substrate structure 1520 on the upper surface of the acoustic transducer. In some embodiments, the periphery of the third sub-elastic element 153221 and the periphery of the fourth sub-elastic element 153222 may overlap or approximately overlap.

在一些實施例中,第一子彈性元件153211的周側與第二子彈性元件153212的周側(或者第三子彈性元件153221的周側與第四子彈性元件153222的周側)也可以不重合。例如,當第一子彈性元件153211為膜狀結構、第二子彈性元件153212為柱狀結構時,第一子彈性元件153211的周側可以與殼體結構1510的內壁連接,在第二子彈性元件153212的周側與殼體結構1510的內壁之間可以具有間隙。 In some embodiments, the periphery of the first sub-elastic element 153211 and the periphery of the second sub-elastic element 153212 (or the periphery of the third sub-elastic element 153221 and the periphery of the fourth sub-elastic element 153222) may not overlap. For example, when the first sub-elastic element 153211 is a membrane structure and the second sub-elastic element 153212 is a columnar structure, the periphery of the first sub-elastic element 153211 may be connected to the inner wall of the shell structure 1510, and there may be a gap between the periphery of the second sub-elastic element 153212 and the inner wall of the shell structure 1510.

在一些實施例中,第一子彈性元件153211與第三子彈性元件153221可以在第一方向上相對於質量元件1531呈近似對稱分佈。第一子彈性元件153211與第三子彈性元件153221的尺寸、形狀、材質、或厚度可以相同。在一些實施例中,第二子彈性元件153212和第四子彈性元件153222可以在第一方向上相對於質量元件1531呈近似對稱分佈。第二子彈性元件153212和第四子彈性元件153222的尺寸、形狀、材質、或厚度可以相同。在一些實施例中,第一子彈性元件153211與第二子彈性元件153212(或者第三子彈性元件153221和第四子彈性元件153222)的尺寸、形狀、材質、或厚度可以相同。例如,第一子彈性元件153211與第二子彈性元件153212的材質均為聚四氟乙烯材料。在一些實施例中,第一子彈性元件153211與第二子彈性元件153212(或者第三子彈性元件153221和第四子彈性元件153222)的尺寸、形狀、材質、或厚度可以不同。例如,第一子彈性元件153211為膜狀結構,第二子彈性元件153212為柱狀結構。 In some embodiments, the first sub-elastic element 153211 and the third sub-elastic element 153221 may be approximately symmetrically distributed with respect to the mass element 1531 in the first direction. The size, shape, material, or thickness of the first sub-elastic element 153211 and the third sub-elastic element 153221 may be the same. In some embodiments, the second sub-elastic element 153212 and the fourth sub-elastic element 153222 may be approximately symmetrically distributed with respect to the mass element 1531 in the first direction. The size, shape, material, or thickness of the second sub-elastic element 153212 and the fourth sub-elastic element 153222 may be the same. In some embodiments, the size, shape, material, or thickness of the first sub-elastic element 153211 and the second sub-elastic element 153212 (or the third sub-elastic element 153221 and the fourth sub-elastic element 153222) may be the same. For example, the material of the first sub-elastic element 153211 and the second sub-elastic element 153212 is polytetrafluoroethylene. In some embodiments, the size, shape, material, or thickness of the first sub-elastic element 153211 and the second sub-elastic element 153212 (or the third sub-elastic element 153221 and the fourth sub-elastic element 153222) may be different. For example, the first sub-elastic element 153211 is a membrane structure, and the second sub-elastic element 153212 is a columnar structure.

在一些實施例中,振動感測器1500還可以包括固定片1570。固定片1570可以沿質量元件1531的周側分佈,固定片1570位於第一子彈性元件153211與第三子彈性元件153221之間,且固定片1570的上表面和下表面可以分 別與第一子彈性元件153211和第三子彈性元件153221連接。在一些實施例中,固定片1570可以是獨立的結構。例如,固定片1570可以是厚度與質量元件1531近似相同的柱狀結構,固定片1570的上表面可以與第一子彈性元件153211的下表面連接,固定片1570的下表面可以與第三子彈性元件153221的上表面連接。在一些實施例中,固定片1570也可以是與其他結構一體成型的結構。例如,固定片1570可以是與第一子彈性元件153211和/或第三子彈性元件153221一體成型的柱狀結構。在一些實施例中,固定片1570也可以為貫穿第一子彈性元件153211和/或第三子彈性元件153221的柱狀結構。例如,固定片1570可以貫穿第一子彈性元件153211與第二子彈性元件153212連接。在一些實施例中,固定片1570的結構除了柱狀結構,也可以是其他類型結構,例如,環狀結構等。在一些實施例中,固定片1570為環狀結構時,固定片1570均勻的分佈在質量元件1531的周側,固定片1570的上表面與第一子彈性元件153211的下表面連接,固定片1570的下表面與第三子彈性元件153221的上表面連接。 In some embodiments, the vibration sensor 1500 may further include a fixing plate 1570. The fixing plate 1570 may be distributed along the periphery of the mass element 1531, the fixing plate 1570 may be located between the first sub-elastic element 153211 and the third sub-elastic element 153221, and the upper surface and the lower surface of the fixing plate 1570 may be connected to the first sub-elastic element 153211 and the third sub-elastic element 153221, respectively. In some embodiments, the fixing plate 1570 may be an independent structure. For example, the fixing plate 1570 may be a columnar structure having a thickness approximately the same as that of the mass element 1531, the upper surface of the fixing plate 1570 may be connected to the lower surface of the first sub-elastic element 153211, and the lower surface of the fixing plate 1570 may be connected to the upper surface of the third sub-elastic element 153221. In some embodiments, the fixing piece 1570 may also be a structure integrally formed with other structures. For example, the fixing piece 1570 may be a columnar structure integrally formed with the first sub-elastic element 153211 and/or the third sub-elastic element 153221. In some embodiments, the fixing piece 1570 may also be a columnar structure penetrating the first sub-elastic element 153211 and/or the third sub-elastic element 153221. For example, the fixing piece 1570 may penetrate the first sub-elastic element 153211 and be connected to the second sub-elastic element 153212. In some embodiments, the structure of the fixing piece 1570 may be other types of structures in addition to the columnar structure, for example, a ring structure, etc. In some embodiments, when the fixing piece 1570 is a ring-shaped structure, the fixing piece 1570 is evenly distributed around the mass element 1531, the upper surface of the fixing piece 1570 is connected to the lower surface of the first sub-elastic element 153211, and the lower surface of the fixing piece 1570 is connected to the upper surface of the third sub-elastic element 153221.

在一些實施例中,固定片1570的厚度與質量元件1531的厚度可以相同。在一些實施例中,固定片1570的厚度與質量元件1531的厚度可以不同。例如,固定片1570的厚度可以大於質量元件1531的厚度。在一些實施例中,固定片1570的材料可以為彈性材料,例如,泡沫、塑膠、橡膠、矽膠等。在一些實施例中,固定片1570的材料也可以為剛性材料,例如,金屬、金屬合金等。優選地,固定片1570的材料可以與質量元件1531的材料相同。在一些實施例中,固定片1570可以實現間隙1560的固定作用,固定片1570還可以作為附加質量元件,從而調節振動感測器的諧振頻率,進而調節(例如,降低)振動感測器在第二方向上的靈敏度與振動感測器在第一方向上的靈敏度的差值。 In some embodiments, the thickness of the fixing plate 1570 may be the same as the thickness of the mass element 1531. In some embodiments, the thickness of the fixing plate 1570 may be different from the thickness of the mass element 1531. For example, the thickness of the fixing plate 1570 may be greater than the thickness of the mass element 1531. In some embodiments, the material of the fixing plate 1570 may be an elastic material, such as foam, plastic, rubber, silicone, etc. In some embodiments, the material of the fixing plate 1570 may also be a rigid material, such as metal, metal alloy, etc. Preferably, the material of the fixing plate 1570 may be the same as the material of the mass element 1531. In some embodiments, the fixing plate 1570 can realize the fixing effect of the gap 1560, and the fixing plate 1570 can also serve as an additional mass element to adjust the resonant frequency of the vibration sensor, thereby adjusting (for example, reducing) the difference between the sensitivity of the vibration sensor in the second direction and the sensitivity of the vibration sensor in the first direction.

在一些實施例中,在固定片1570、質量元件1531、第一子彈性元件153211、第二子彈性元件153212之間可以具有間隙1560。在一些實施例中,在 彈性元件1532的周側、固定片1570的周側、殼體結構1510的內壁、聲學換能器之間也可以具有間隙1560。在一些實施例中,當質量元件1531回應於殼體結構1510的振動而振動時,間隙1560可以防止質量元件1531振動時與殼體結構1510發生碰撞。在一些實施例中,間隙1560可以包括填充物,關於填充物的更多描述可以參考圖9及其相關描述,在此不做贅述。 In some embodiments, there may be a gap 1560 between the fixing plate 1570, the mass element 1531, the first sub-elastic element 153211, and the second sub-elastic element 153212. In some embodiments, there may also be a gap 1560 between the side of the elastic element 1532, the side of the fixing plate 1570, the inner wall of the shell structure 1510, and the acoustic transducer. In some embodiments, when the mass element 1531 vibrates in response to the vibration of the shell structure 1510, the gap 1560 can prevent the mass element 1531 from colliding with the shell structure 1510 when vibrating. In some embodiments, the gap 1560 may include a filler, and more descriptions of the filler can refer to FIG. 9 and its related descriptions, which are not repeated here.

圖16是根據本說明書的一些實施例所示的振動感測器的結構示意圖。如圖16所示,振動感測器1600可以包括殼體結構1610、聲學換能器和振動單元1630。圖16中所示的振動感測器1600可以與圖9中所示的振動感測器900相同或相似。例如,振動感測器1600的殼體結構1610可以與振動感測器900的殼體結構910相同或相似。又例如,振動感測器1600的第一聲學腔體1640可以與振動感測器900的第一聲學腔體940相同或相似。再例如,振動感測器1600的基板結構1620可以與振動感測器900的基板結構920相同或相似。關於振動感測器1600的更多結構(例如,第二聲學腔體1650、通孔1621、聲學換能器等)可以參考圖9及其相關描述。 FIG. 16 is a schematic diagram of a structure of a vibration sensor according to some embodiments of the present specification. As shown in FIG. 16 , a vibration sensor 1600 may include a housing structure 1610, an acoustic transducer, and a vibration unit 1630. The vibration sensor 1600 shown in FIG. 16 may be the same or similar to the vibration sensor 900 shown in FIG. 9 . For example, the housing structure 1610 of the vibration sensor 1600 may be the same or similar to the housing structure 910 of the vibration sensor 900. For another example, the first acoustic cavity 1640 of the vibration sensor 1600 may be the same or similar to the first acoustic cavity 940 of the vibration sensor 900. For another example, the substrate structure 1620 of the vibration sensor 1600 may be the same or similar to the substrate structure 920 of the vibration sensor 900. For more information about the vibration sensor 1600 (e.g., the second acoustic cavity 1650, the through hole 1621, the acoustic transducer, etc.), please refer to FIG. 9 and its related description.

在一些實施例中,振動感測器1600與振動感測器900的不同之處在於振動單元的結構不同。振動感測器1600的振動單元1630可以包括至少一個彈性元件1632和兩個質量元件(例如,第一質量元件16311和第二質量元件16312)。在一些實施例中,質量元件1631可以包括第一質量元件16311和第二質量元件16312。第一質量元件16311和第二質量元件16312在第一方向上相對於至少一個彈性元件1632呈對稱設置。在一些實施例中,第一質量元件16311可以位於至少一個彈性元件1632背離基板結構1620的一側,第一質量元件16311的下表面與至少一個彈性元件1632的上表面連接。第二質量元件16312可以位於至少一個彈性元件1632朝向基板結構1620的一側,第二質量元件16312的上表面與至少一個彈性元件1632的下表面連接。在一些實施例中,第一質量元件16311和第二 質量元件16312的尺寸、形狀、材質、或厚度可以相同。在一些實施例中,第一質量元件16311和第二質量元件16312在第一方向上相對於至少一個彈性元件1632呈對稱設置,可以使得質量元件1631的重心與至少一個彈性元件1632的形心近似重合,進而使得振動單元1630在回應與殼體結構1610的振動而產生振動時,可以降低質量元件1631在第二方向上的振動,從而降低振動單元1630對第二方向上殼體結構1610振動的回應靈敏度,進而提高振動感測器1600的方向選擇性。 In some embodiments, the vibration sensor 1600 is different from the vibration sensor 900 in that the structure of the vibration unit is different. The vibration unit 1630 of the vibration sensor 1600 may include at least one elastic element 1632 and two mass elements (e.g., a first mass element 16311 and a second mass element 16312). In some embodiments, the mass element 1631 may include a first mass element 16311 and a second mass element 16312. The first mass element 16311 and the second mass element 16312 are symmetrically arranged relative to the at least one elastic element 1632 in the first direction. In some embodiments, the first mass element 16311 may be located on a side of at least one elastic element 1632 facing away from the substrate structure 1620, and the lower surface of the first mass element 16311 is connected to the upper surface of at least one elastic element 1632. The second mass element 16312 may be located on a side of at least one elastic element 1632 facing the substrate structure 1620, and the upper surface of the second mass element 16312 is connected to the lower surface of at least one elastic element 1632. In some embodiments, the size, shape, material, or thickness of the first mass element 16311 and the second mass element 16312 may be the same. In some embodiments, the first mass element 16311 and the second mass element 16312 are symmetrically arranged relative to at least one elastic element 1632 in the first direction, so that the center of gravity of the mass element 1631 and the centroid of at least one elastic element 1632 can be approximately coincident, so that when the vibration unit 1630 vibrates in response to the vibration of the housing structure 1610, the vibration of the mass element 1631 in the second direction can be reduced, thereby reducing the response sensitivity of the vibration unit 1630 to the vibration of the housing structure 1610 in the second direction, thereby improving the directional selectivity of the vibration sensor 1600.

在一些實施例中,第一質量元件16311和第二質量元件16312在第一方向上分佈在至少一個彈性元件1632的相反兩側,這裡的第一質量元件16311和第二質量元件16312可以近似視為一個整體的質量元件,該整體的質量元件的重心與至少一個彈性元件1632的形心近似重合,可以使得目標頻率範圍(例如,3000Hz以下)內,振動單元1630對第一方向上殼體結構1610振動的回應靈敏度高於振動單元1630對第二方向上殼體結構1610振動的回應靈敏度。在一些實施例中,振動單元1630對第二方向上殼體結構1610振動的回應靈敏度與振動單元1630對第一方向上殼體結構1610振動的回應靈敏度的差值可以為-20dB~-60dB。在一些實施例中,振動單元1630對第二方向上殼體結構1610振動的回應靈敏度與振動單元1630對第一方向上殼體結構1610振動的回應靈敏度的差值可以為-25dB~-50dB。在一些實施例中,振動單元1630對第二方向上殼體結構1610振動的回應靈敏度與振動單元1630對第一方向上殼體結構1610振動的回應靈敏度的差值可以為-30dB~-40dB。 In some embodiments, the first mass element 16311 and the second mass element 16312 are distributed on opposite sides of at least one elastic element 1632 in a first direction. Here, the first mass element 16311 and the second mass element 16312 can be approximately regarded as an integral mass element, and the center of gravity of the integral mass element approximately coincides with the centroid of at least one elastic element 1632, so that within the target frequency range (for example, below 3000 Hz), the response sensitivity of the vibration unit 1630 to the vibration of the shell structure 1610 in the first direction is higher than the response sensitivity of the vibration unit 1630 to the vibration of the shell structure 1610 in the second direction. In some embodiments, the difference between the response sensitivity of the vibration unit 1630 to the vibration of the shell structure 1610 in the second direction and the response sensitivity of the vibration unit 1630 to the vibration of the shell structure 1610 in the first direction may be -20dB~-60dB. In some embodiments, the difference between the response sensitivity of the vibration unit 1630 to the vibration of the shell structure 1610 in the second direction and the response sensitivity of the vibration unit 1630 to the vibration of the shell structure 1610 in the first direction may be -25dB~-50dB. In some embodiments, the difference between the response sensitivity of the vibration unit 1630 to the vibration of the shell structure 1610 in the second direction and the response sensitivity of the vibration unit 1630 to the vibration of the shell structure 1610 in the first direction can be -30dB~-40dB.

在一些實施例中,在振動感測器1600工作過程中,可以通過降低振動單元1630在第二方向上產生的振動,從而降低振動單元1630對第二方向上殼體結構1610振動的回應靈敏度,進而提高振動感測器1600的方向選擇性,降低雜訊信號對聲音信號的干擾。 In some embodiments, during the operation of the vibration sensor 1600, the vibration generated by the vibration unit 1630 in the second direction can be reduced, thereby reducing the response sensitivity of the vibration unit 1630 to the vibration of the housing structure 1610 in the second direction, thereby improving the directional selectivity of the vibration sensor 1600 and reducing the interference of noise signals on sound signals.

在一些實施例中,至少一個彈性元件1632的形心與質量元件1631的重心可以重合或者近似重合。在一些實施例中,振動單元1630回應於殼體結構1610的振動而產生振動時,至少一個彈性元件1632的形心與質量元件1631的重心重合或者近似重合,可以在振動單元1630對第一方向上殼體結構1610振動的回應靈敏度基本不變的前提下,降低質量元件1631在第二方向上的振動,從而降低振動單元1630對第二方向上殼體結構1610振動的回應靈敏度,進而提高振動感測器1600的方向選擇性。在一些實施例中,可以通過調整彈性元件1632的厚度、彈性係數、質量元件1631的質量、尺寸等改變(例如,提高)振動單元1630對第一方向上殼體結構1610振動的回應靈敏度。 In some embodiments, the centroid of at least one elastic element 1632 may coincide with or approximately coincide with the center of gravity of the mass element 1631. In some embodiments, when the vibration unit 1630 vibrates in response to the vibration of the housing structure 1610, the centroid of at least one elastic element 1632 coincides with or approximately coincides with the center of gravity of the mass element 1631, and the vibration of the mass element 1631 in the second direction may be reduced while the response sensitivity of the vibration unit 1630 to the vibration of the housing structure 1610 in the first direction remains substantially unchanged, thereby reducing the response sensitivity of the vibration unit 1630 to the vibration of the housing structure 1610 in the second direction, thereby improving the directional selectivity of the vibration sensor 1600. In some embodiments, the response sensitivity of the vibration unit 1630 to the vibration of the shell structure 1610 in the first direction can be changed (for example, improved) by adjusting the thickness, elastic coefficient of the elastic element 1632, the mass and size of the mass element 1631, etc.

在一些實施例中,至少一個彈性元件1632的形心與質量元件1631的重心在第一方向上的距離可以不大於質量元件1631的厚度的1/3。在一些實施例中,至少一個彈性元件1632的形心與質量元件1631的重心在第一方向上的距離可以不大於質量元件1631的厚度的1/2。在一些實施例中,至少一個彈性元件1632的形心與質量元件1631的重心在第一方向上的距離可以不大於質量元件1631的厚度的1/4。在一些實施例中,至少一個彈性元件1632的形心與質量元件1631的重心在第二方向上的距離不大於質量元件1631的邊長或半徑的1/3。在一些實施例中,至少一個彈性元件1632的形心與質量元件1631的重心在第二方向上的距離不大於質量元件1631的邊長或半徑的1/2。在一些實施例中,至少一個彈性元件1632的形心與質量元件1631的重心在第二方向上的距離不大於質量元件1631的邊長或半徑的1/4。例如,質量元件1631為正方體時,至少一個彈性元件1632的形心與質量元件1631的重心在第二方向上的距離不大於質量元件1631的邊長的1/3。又例如,質量元件1631為圓柱體時,至少一個彈性元件1632的形心與質量元件1631的重心在第二方向上的距離不大於質量元件1631的上表面(或者下表面)的圓形半徑的1/3。 In some embodiments, the distance between the centroid of at least one elastic element 1632 and the center of gravity of the mass element 1631 in the first direction may be no greater than 1/3 of the thickness of the mass element 1631. In some embodiments, the distance between the centroid of at least one elastic element 1632 and the center of gravity of the mass element 1631 in the first direction may be no greater than 1/2 of the thickness of the mass element 1631. In some embodiments, the distance between the centroid of at least one elastic element 1632 and the center of gravity of the mass element 1631 in the first direction may be no greater than 1/4 of the thickness of the mass element 1631. In some embodiments, the distance between the centroid of at least one elastic element 1632 and the center of gravity of the mass element 1631 in the second direction may be no greater than 1/3 of the side length or radius of the mass element 1631. In some embodiments, the distance between the centroid of at least one elastic element 1632 and the center of gravity of the mass element 1631 in the second direction is not greater than 1/2 of the side length or radius of the mass element 1631. In some embodiments, the distance between the centroid of at least one elastic element 1632 and the center of gravity of the mass element 1631 in the second direction is not greater than 1/4 of the side length or radius of the mass element 1631. For example, when the mass element 1631 is a cube, the distance between the centroid of at least one elastic element 1632 and the center of gravity of the mass element 1631 in the second direction is not greater than 1/3 of the side length of the mass element 1631. For another example, when the mass element 1631 is a cylinder, the distance between the centroid of at least one elastic element 1632 and the center of gravity of the mass element 1631 in the second direction is no more than 1/3 of the circular radius of the upper surface (or lower surface) of the mass element 1631.

在一些實施例中,當至少一個彈性元件1632的形心與質量元件1631的重心重合或者近似重合時,可以使得振動單元1630在第二方向上振動的諧振頻率向高頻偏移,而不改變振動單元1630在第一方向上振動的諧振頻率。在一些實施例中,當至少一個彈性元件1632的形心與質量元件1631的重心重合或者近似重合時,振動單元1630在第一方向上振動的諧振頻率可以保持基本不變,例如,振動單元1630在第一方向上振動的諧振頻率可以為人耳感知相對較強的頻率範圍(例如,20Hz-2000Hz、2000Hz-3000Hz等)內的頻率。振動單元1630在第二方向上振動的諧振頻率可以向高頻偏移而位於人耳感知相對較弱的頻率範圍(例如,5000Hz-9000Hz、1kHz-14kHz等)內的頻率。基於振動單元1630在第二方向上振動的諧振頻率向高頻偏移,振動單元1630在第一方向上振動的諧振頻率保持基本不變,可以使得振動單元1630在第二方向上振動的諧振頻率與振動單元1630在第一方向上振動的諧振頻率的比值大於或等於2。在一些實施例中,振動單元1630在第二方向上振動的諧振頻率與振動單元1630在第一方向上振動的諧振頻率的比值也可以大於或等於其他數值。例如,振動單元1630在第二方向上振動的諧振頻率與振動單元1630在第一方向上振動的諧振頻率的比值也可以大於或等於1.5。 In some embodiments, when the centroid of at least one elastic element 1632 coincides or approximately coincides with the center of gravity of the mass element 1631, the harmonic frequency of the vibration unit 1630 vibrating in the second direction can be shifted to a high frequency without changing the harmonic frequency of the vibration unit 1630 vibrating in the first direction. In some embodiments, when the centroid of at least one elastic element 1632 coincides or approximately coincides with the center of gravity of the mass element 1631, the harmonic frequency of the vibration unit 1630 vibrating in the first direction can remain substantially unchanged, for example, the harmonic frequency of the vibration unit 1630 vibrating in the first direction can be a frequency within a relatively strong frequency range perceived by the human ear (for example, 20 Hz-2000 Hz, 2000 Hz-3000 Hz, etc.). The harmonic frequency of the vibration unit 1630 vibrating in the second direction may be shifted toward high frequencies and located in a frequency range (e.g., 5000 Hz-9000 Hz, 1 kHz-14 kHz, etc.) where human ear perception is relatively weak. Based on the shift of the harmonic frequency of the vibration unit 1630 vibrating in the second direction toward high frequencies, the harmonic frequency of the vibration unit 1630 vibrating in the first direction remains substantially unchanged, and the ratio of the harmonic frequency of the vibration unit 1630 vibrating in the second direction to the harmonic frequency of the vibration unit 1630 vibrating in the first direction may be greater than or equal to 2. In some embodiments, the ratio of the harmonic frequency of the vibration unit 1630 vibrating in the second direction to the harmonic frequency of the vibration unit 1630 vibrating in the first direction may also be greater than or equal to other values. For example, the ratio of the harmonic frequency of the vibration unit 1630 vibrating in the second direction to the harmonic frequency of the vibration unit 1630 vibrating in the first direction may also be greater than or equal to 1.5.

圖17是根據本說明書的一些實施例所示的振動感測器的結構示意圖。如圖17所示,振動感測器1700可以包括殼體結構1710、聲學換能器、振動單元1730。圖17中所示的振動感測器1700可以與圖16中所示的振動感測器1600相同或相似。例如,振動感測器1700的殼體結構1710可以與振動感測器1600的殼體結構1610相同或相似。又例如,振動感測器1700的第一聲學腔體1740可以與振動感測器1600的第一聲學腔體1640相同或相似。再例如,振動感測器1700的聲學換能器可以與振動感測器1600的聲學換能器相同或相似。關於振動感測器1700的更多結構(例如,第二聲學腔體1750、通孔1721、質量元件1731、第一質量元 件17311、第二質量元件17312等)可以參考圖16及其相關描述。 FIG. 17 is a schematic diagram of a structure of a vibration sensor according to some embodiments of the present specification. As shown in FIG. 17 , a vibration sensor 1700 may include a housing structure 1710, an acoustic transducer, and a vibration unit 1730. The vibration sensor 1700 shown in FIG. 17 may be the same or similar to the vibration sensor 1600 shown in FIG. 16 . For example, the housing structure 1710 of the vibration sensor 1700 may be the same or similar to the housing structure 1610 of the vibration sensor 1600. For another example, the first acoustic cavity 1740 of the vibration sensor 1700 may be the same or similar to the first acoustic cavity 1640 of the vibration sensor 1600. For another example, the acoustic transducer of the vibration sensor 1700 may be the same or similar to the acoustic transducer of the vibration sensor 1600. For more structures of the vibration sensor 1700 (e.g., the second acoustic cavity 1750, the through hole 1721, the mass element 1731, the first mass element 17311, the second mass element 17312, etc.), please refer to FIG. 16 and its related description.

與振動感測器1600不同的是,振動感測器1700的彈性元件1732還可以包括第二彈性元件17322和第三彈性元件17323。在一些實施例中,第一彈性元件17321可以分別通過第二彈性元件17322和第三彈性元件17323與殼體結構1710和/或聲學換能器連接。如圖17所示,第一彈性元件17321為膜狀結構,第二彈性元件17322和第三彈性元件17323為柱狀結構。第一彈性元件17321的上表面與第二彈性元件17322的下表面連接,第二彈性元件17322的上表面與殼體結構1710的內壁連接。第一彈性元件17321的下表面與第三彈性元件17323的上表面連接,第三彈性元件17323的下表面通過聲學換能器上表面的基板結構1720與聲學換能器連接。在一些實施例中,第一彈性元件17321、第二彈性元件17322和第三彈性元件17323的周側可以重合或近似重合。在一些實施例中,第一彈性元件17321、第二彈性元件17322和第三彈性元件17323的周側可以不重合。例如,第一彈性元件17321為膜狀結構,第二彈性元件17322和第三彈性元件17323為柱狀結構時,第一彈性元件17321的周側可以與殼體結構1710的內壁連接,而在第二彈性元件17322和第三彈性元件17323的周側與殼體結構1710的內壁之間存在空隙。 Unlike the vibration sensor 1600, the elastic element 1732 of the vibration sensor 1700 may further include a second elastic element 17322 and a third elastic element 17323. In some embodiments, the first elastic element 17321 may be connected to the housing structure 1710 and/or the acoustic transducer through the second elastic element 17322 and the third elastic element 17323, respectively. As shown in FIG. 17 , the first elastic element 17321 is a membrane structure, and the second elastic element 17322 and the third elastic element 17323 are columnar structures. The upper surface of the first elastic element 17321 is connected to the lower surface of the second elastic element 17322, and the upper surface of the second elastic element 17322 is connected to the inner wall of the housing structure 1710. The lower surface of the first elastic element 17321 is connected to the upper surface of the third elastic element 17323, and the lower surface of the third elastic element 17323 is connected to the acoustic transducer through the substrate structure 1720 on the upper surface of the acoustic transducer. In some embodiments, the peripheries of the first elastic element 17321, the second elastic element 17322, and the third elastic element 17323 may overlap or approximately overlap. In some embodiments, the peripheries of the first elastic element 17321, the second elastic element 17322, and the third elastic element 17323 may not overlap. For example, when the first elastic element 17321 is a membrane structure, and the second elastic element 17322 and the third elastic element 17323 are columnar structures, the periphery of the first elastic element 17321 can be connected to the inner wall of the shell structure 1710, and there is a gap between the periphery of the second elastic element 17322 and the third elastic element 17323 and the inner wall of the shell structure 1710.

在一些實施例中,第一彈性元件17321與第二彈性元件17322和第三彈性元件17323的結構也可以相同。例如,第一彈性元件17321與第二彈性元件17322和第三彈性元件17323均為膜狀結構。在一些實施例中,第一彈性元件17321與第二彈性元件17322和第三彈性元件17323的材質可以相同。在一些實施例中,第一彈性元件17321與第二彈性元件17322和第三彈性元件17323的材質可以不同。 In some embodiments, the structures of the first elastic element 17321, the second elastic element 17322 and the third elastic element 17323 may also be the same. For example, the first elastic element 17321, the second elastic element 17322 and the third elastic element 17323 are all membrane structures. In some embodiments, the materials of the first elastic element 17321, the second elastic element 17322 and the third elastic element 17323 may be the same. In some embodiments, the materials of the first elastic element 17321, the second elastic element 17322 and the third elastic element 17323 may be different.

在一些實施例中,在第一彈性元件17321的外側、第二彈性元件17322的外側、第三彈性元件17323的外側與聲學腔體對應的殼體結構1710或聲 學換能器之間可以具有間隙1760。在一些實施例中,當質量元件1731回應於殼體結構1710的振動而振動時,間隙1760可以防止質量元件1731與殼體結構1710發生碰撞。在一些實施例中,間隙1760中可以包括填充物,關於填充物的具體描述可以參考圖9及其相關內容,在此不做贅述。 In some embodiments, there may be a gap 1760 between the outer side of the first elastic element 17321, the outer side of the second elastic element 17322, the outer side of the third elastic element 17323 and the shell structure 1710 or the acoustic transducer corresponding to the acoustic cavity. In some embodiments, when the mass element 1731 vibrates in response to the vibration of the shell structure 1710, the gap 1760 can prevent the mass element 1731 from colliding with the shell structure 1710. In some embodiments, the gap 1760 may include a filler, and the specific description of the filler can refer to Figure 9 and its related content, which will not be repeated here.

需要說明的是,本說明書實施例所示的振動感測器的振動單元(例如,圖8所示的振動單元830、圖9所示的振動單元930、圖14所示的振動單元1430等)的設置方向為橫向設置,在一些實施例中,振動單元的設置方向也可以為其他方向設置(例如,縱向設置或斜向設置),相應地,第一方向和第二方向隨質量元件(例如,圖8所示的質量元件831、圖9所示的質量元件931、圖14所示的質量元件1431等)的變化而改變。例如,振動感測器800的振動單元830(的質量元件831)縱向處置時,這裡可以近似視為圖8所示的振動單元830整體沿順時針(或逆時針)方向旋轉90°,相應地,第一方向和第二方向也隨振動單元830的旋轉而發生變化。振動單元縱向設置時的振動感測器的工作原理與振動單元橫向設置時的振動感測器的工作原理相似,在此不做贅述。 It should be noted that the vibration unit of the vibration sensor shown in the embodiments of this specification (for example, the vibration unit 830 shown in Figure 8, the vibration unit 930 shown in Figure 9, the vibration unit 1430 shown in Figure 14, etc.) is set in a horizontal direction. In some embodiments, the setting direction of the vibration unit can also be set in other directions (for example, longitudinally or obliquely). Correspondingly, the first direction and the second direction change with the change of the mass element (for example, the mass element 831 shown in Figure 8, the mass element 931 shown in Figure 9, the mass element 1431 shown in Figure 14, etc.). For example, when the vibration unit 830 (mass element 831) of the vibration sensor 800 is disposed longitudinally, it can be approximately regarded as the vibration unit 830 shown in FIG8 being rotated 90° in the clockwise (or counterclockwise) direction as a whole. Correspondingly, the first direction and the second direction also change with the rotation of the vibration unit 830. The working principle of the vibration sensor when the vibration unit is disposed longitudinally is similar to the working principle of the vibration sensor when the vibration unit is disposed transversely, and will not be elaborated here.

本說明書實施例可能帶來的有益效果包括但不限於:(1)通過在振動感測器中設置相對於質量元件在第一方向上呈近似對稱分佈的至少一個彈性元件,或者設置相對於彈性元件在第一方向上呈近似對稱分佈的至少一個質量元件,使得在質量元件的重心與至少一個彈性元件的形心之間的距離限定在特定範圍(例如,至少一個彈性元件的形心與質量元件的重心在第一方向上的距離不大於質量元件厚度的1/3)內,從而可以降低振動感測器在第二方向上的靈敏度,進而提高振動感測器的方向選擇性,增強振動感測器的抗雜訊干擾能力;(2)通過在振動感測器中設置相對於質量元件在第一方向上呈近似對稱分佈的至少一個彈性元件,使得質量元件受到至少一個彈性元件的作用力可以近似對稱,從而提高振動感測器的穩定性和可靠性,進而提高振動感測器的抗衝擊能 力。需要說明的是,不同實施例可能產生的有益效果不同,在不同的實施例裡,可能產生的有益效果可以是以上任意一種或幾種的組合,也可以是其他任何可能獲得的有益效果。 The beneficial effects that may be brought about by the embodiments of this specification include but are not limited to: (1) by providing at least one elastic element in the vibration sensor that is approximately symmetrically distributed with respect to the mass element in the first direction, or providing at least one mass element in the vibration sensor that is approximately symmetrically distributed with respect to the elastic element in the first direction, the distance between the center of gravity of the mass element and the centroid of the at least one elastic element is limited to a specific range (for example, the distance between the centroid of the at least one elastic element and the center of gravity of the mass element in the first direction is not greater than the distance between the centroid of the at least one elastic element and the mass element); (1/3 of the thickness of the mass element), thereby reducing the sensitivity of the vibration sensor in the second direction, thereby improving the directional selectivity of the vibration sensor and enhancing the anti-noise interference capability of the vibration sensor; (2) by providing at least one elastic element in the vibration sensor that is approximately symmetrically distributed relative to the mass element in the first direction, the force exerted on the mass element by at least one elastic element can be approximately symmetrical, thereby improving the stability and reliability of the vibration sensor, thereby improving the anti-shock capability of the vibration sensor. It should be noted that different embodiments may produce different beneficial effects. In different embodiments, the beneficial effects that may be produced may be any one or a combination of the above, or any other beneficial effects that may be obtained.

以上僅為本發明的較佳實施例而已,並不用以限制本發明,凡在本發明的精神和原則之內所作的任何修改、等同替換和改進等,均應包含在本發明的保護範圍之內。 The above is only a preferred embodiment of the present invention and is not intended to limit the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention shall be included in the protection scope of the present invention.

800:振動感測器 800: Vibration sensor

810:殼體結構 810: Shell structure

811:聲學換能器 811:Acoustic transducer

820:聲學換能器 820:Acoustic transducer

830:振動單元 830: Vibration unit

831:質量元件 831:Mass element

832:彈性元件 832: Elastic element

840:第一聲學腔體 840: The first acoustic cavity

850:第二聲學腔體 850: Second acoustic cavity

8321:第一彈性元件 8321: First elastic element

8322:第二彈性元件 8322: Second elastic element

Claims (10)

一種振動感測器,所述振動感測器包括:殼體結構和聲學換能器,所述聲學換能器與所述殼體結構實體連接,其中,至少部分所述殼體結構與所述聲學換能器形成聲學腔體;振動單元,將所述聲學腔體分隔為包含第一聲學腔體的多個聲學腔體,所述第一聲學腔體與所述聲學換能器聲學連通,所述振動單元包括至少一個彈性元件和質量元件,所述至少一個彈性元件和所述質量元件位於所述聲學腔體中,所述質量元件與所述殼體結構或所述聲學換能器通過所述至少一個彈性元件連接;所述殼體結構被配置為基於外部振動信號產生振動,所述振動單元回應於所述殼體結構的所述振動使所述第一聲學腔體的體積改變,所述聲學換能器基於所述第一聲學腔體的所述體積的改變產生電信號,其中,所述至少一個彈性元件在第一方向上分佈在所述質量元件的相反兩側,使得目標頻率範圍內,所述振動單元在所述第一方向上對所述殼體結構的所述振動的回應靈敏度高於所述振動單元在第二方向上對所述殼體結構的所述振動的所述回應靈敏度,所述第二方向垂直於所述第一方向;所述振動單元在所述第二方向上振動的諧振頻率與所述振動單元在所述第一方向上振動的所述諧振頻率的比值大於或等於2。 A vibration sensor, the vibration sensor comprising: a shell structure and an acoustic transducer, the acoustic transducer being physically connected to the shell structure, wherein at least a portion of the shell structure and the acoustic transducer form an acoustic cavity; a vibration unit, which divides the acoustic cavity into a plurality of acoustic cavities including a first acoustic cavity, the first acoustic cavity being acoustically connected to the acoustic transducer, the vibration unit comprising at least one elastic element and a mass element, the at least one elastic element and the mass element being located in the acoustic cavity, the mass element being connected to the shell structure or the acoustic transducer via the at least one elastic element; the shell structure being configured to generate vibration based on an external vibration signal, the vibration unit In response to the vibration of the housing structure, the volume of the first acoustic cavity changes, and the acoustic transducer generates an electrical signal based on the change in the volume of the first acoustic cavity, wherein the at least one elastic element is distributed on opposite sides of the mass element in a first direction, so that within a target frequency range, the response sensitivity of the vibration unit to the vibration of the housing structure in the first direction is higher than the response sensitivity of the vibration unit to the vibration of the housing structure in a second direction, and the second direction is perpendicular to the first direction; the ratio of the harmonic frequency of the vibration unit vibrating in the second direction to the harmonic frequency of the vibration unit vibrating in the first direction is greater than or equal to 2. 如請求項1之振動感測器,其中,所述振動單元對所述第二方向上的所述殼體結構的所述振動的所述回應靈敏度與所述振動單元對所述第一方向上的所述殼體結構的所述振動的所述回應靈敏度的差值為-20dB~-40dB。 As in claim 1, the vibration sensor, wherein the difference between the response sensitivity of the vibration unit to the vibration of the shell structure in the second direction and the response sensitivity of the vibration unit to the vibration of the shell structure in the first direction is -20dB~-40dB. 如請求項1之振動感測器,其中,所述第一方向為所述質量元件的厚度方向,所述至少一個彈性元件的形心與所述質量元件的重心在所述第一方向上的距離不大於所述質量元件厚度的1/3,所述至少一個彈性元件的形心與 所述質量元件的重心在所述第二方向上的距離不大於所述質量元件的邊長或半徑的1/3。 The vibration sensor of claim 1, wherein the first direction is the thickness direction of the mass element, the distance between the centroid of the at least one elastic element and the center of gravity of the mass element in the first direction is no more than 1/3 of the thickness of the mass element, and the distance between the centroid of the at least one elastic element and the center of gravity of the mass element in the second direction is no more than 1/3 of the side length or radius of the mass element. 如請求項1之振動感測器,其中,所述至少一個彈性元件包括第一彈性元件和第二彈性元件,所述第一彈性元件和所述第二彈性元件與所述聲學腔體對應的所述殼體結構或所述聲學換能器連接;所述第一彈性元件和所述第二彈性元件在所述第一方向上相對於所述質量元件呈近似對稱分佈,其中,所述第一方向為所述質量元件的厚度方向,所述質量元件的上表面與所述第一彈性元件連接,所述質量元件的下表面與所述第二彈性元件連接。 As in the vibration sensor of claim 1, the at least one elastic element includes a first elastic element and a second elastic element, the first elastic element and the second elastic element are connected to the shell structure or the acoustic transducer corresponding to the acoustic cavity; the first elastic element and the second elastic element are approximately symmetrically distributed relative to the mass element in the first direction, wherein the first direction is the thickness direction of the mass element, the upper surface of the mass element is connected to the first elastic element, and the lower surface of the mass element is connected to the second elastic element. 如請求項4之振動感測器,其中,所述第一彈性元件和所述第二彈性元件為膜狀結構,所述質量元件的所述上表面或所述下表面的尺寸小於所述第一彈性元件和所述第二彈性元件的尺寸。 As in the vibration sensor of claim 4, the first elastic element and the second elastic element are membrane structures, and the size of the upper surface or the lower surface of the mass element is smaller than the size of the first elastic element and the second elastic element. 如請求項5之振動感測器,其中,在所述第一彈性元件、所述第二彈性元件、所述質量元件與所述聲學腔體對應的所述殼體結構或所述聲學換能器之間具有間隙,所述間隙中具有用於調節所述振動感測器的品質因數的填充物。 As in claim 5, the vibration sensor has a gap between the first elastic element, the second elastic element, the mass element and the shell structure or the acoustic transducer corresponding to the acoustic cavity, and the gap has a filler for adjusting the quality factor of the vibration sensor. 如請求項4之振動感測器,其中,所述第一彈性元件和所述第二彈性元件為柱狀結構,所述第一彈性元件和所述第二彈性元件分別沿著所述質量元件的厚度方向延伸並與所述殼體結構連接。 As in claim 4, the first elastic element and the second elastic element are columnar structures, and the first elastic element and the second elastic element extend along the thickness direction of the mass element and are connected to the shell structure. 如請求項7之振動感測器,其中,在所述第一彈性元件的外側、所述第二彈性元件的外側、所述質量元件的外側與所述聲學腔體對應的所述殼體結構或所述聲學換能器之間具有間隙,所述間隙中具有用於調節所述振動感測器的品質因數的填充物。 As in claim 7, the vibration sensor has a gap between the outer side of the first elastic element, the outer side of the second elastic element, the outer side of the mass element, and the shell structure or the acoustic transducer corresponding to the acoustic cavity, and the gap has a filler for adjusting the quality factor of the vibration sensor. 如請求項4之振動感測器,其中,所述第一彈性元件包括第一子 彈性元件和第二子彈性元件,所述第一子彈性元件與所述聲學腔體對應的所述殼體結構或所述聲學換能器通過所述第二子彈性元件連接,所述第一子彈性元件與所述質量元件的上表面連接;所述第二彈性元件包括第三子彈性元件和第四子彈性元件,所述第三子彈性元件與所述聲學腔體對應的所述殼體結構或所述聲學換能器通過所述第四子彈性元件連接,所述第三子彈性元件與所述質量元件的下表面連接。 The vibration sensor of claim 4, wherein the first elastic element includes a first sub-elastic element and a second sub-elastic element, the first sub-elastic element is connected to the shell structure corresponding to the acoustic cavity or the acoustic transducer through the second sub-elastic element, and the first sub-elastic element is connected to the upper surface of the mass element; the second elastic element includes a third sub-elastic element and a fourth sub-elastic element, the third sub-elastic element is connected to the shell structure corresponding to the acoustic cavity or the acoustic transducer through the fourth sub-elastic element, and the third sub-elastic element is connected to the lower surface of the mass element. 一種振動感測器,所述振動感測器包括:殼體結構和聲學換能器,所述聲學換能器與所述殼體結構實體連接,其中,至少部分所述殼體結構與所述聲學換能器形成聲學腔體;振動單元,將所述聲學腔體分隔為包含第一聲學腔體的多個聲學腔體,所述第一聲學腔體與所述聲學換能器聲學連通,所述振動單元包括至少一個彈性元件和質量元件,所述至少一個彈性元件和所述質量元件位於所述聲學腔體中,所述質量元件與所述殼體結構或所述聲學換能器通過所述至少一個彈性元件連接;所述殼體結構被配置為基於外部振動信號產生振動,所述振動單元回應於所述殼體結構的所述振動使所述第一聲學腔體的體積改變,所述聲學換能器基於所述第一聲學腔體的所述體積的改變產生電信號;其中,所述至少一個質量元件在第一方向上分佈在所述彈性元件的相反兩側,使得目標頻率範圍內,所述振動單元對所述第一方向上的所述殼體結構的所述振動的回應靈敏度高於所述振動單元對第二方向上的所述殼體結構的所述振動的所述回應靈敏度,所述第二方向垂直於所述第一方向;所述振動單元在所述第二方向上振動的諧振頻率與所述振動單元在所述第一方向上振動的所述諧振頻率的比值大於或等於2。 A vibration sensor, the vibration sensor comprising: a shell structure and an acoustic transducer, the acoustic transducer being physically connected to the shell structure, wherein at least a portion of the shell structure and the acoustic transducer form an acoustic cavity; a vibration unit, which divides the acoustic cavity into a plurality of acoustic cavities including a first acoustic cavity, the first acoustic cavity being acoustically connected to the acoustic transducer, the vibration unit comprising at least one elastic element and a mass element, the at least one elastic element and the mass element being located in the acoustic cavity, the mass element being connected to the shell structure or the acoustic transducer via the at least one elastic element; the shell structure being configured to generate vibration based on an external vibration signal, the vibration unit In response to the vibration of the shell structure, the volume of the first acoustic cavity changes, and the acoustic transducer generates an electrical signal based on the change in the volume of the first acoustic cavity; wherein the at least one mass element is distributed on opposite sides of the elastic element in a first direction, so that within a target frequency range, the response sensitivity of the vibration unit to the vibration of the shell structure in the first direction is higher than the response sensitivity of the vibration unit to the vibration of the shell structure in a second direction, and the second direction is perpendicular to the first direction; the ratio of the harmonic frequency of the vibration unit vibrating in the second direction to the harmonic frequency of the vibration unit vibrating in the first direction is greater than or equal to 2.
TW111116126A 2021-06-18 2022-04-28 Vibration sensor TWI853238B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110677119.2A CN113286213A (en) 2021-06-18 2021-06-18 Vibration sensor
CN202121366390.6U CN215300865U (en) 2021-06-18 2021-06-18 Vibration sensor
CN202110677119.2 2021-06-18
CN202121366390.6 2021-06-18

Publications (2)

Publication Number Publication Date
TW202301882A TW202301882A (en) 2023-01-01
TWI853238B true TWI853238B (en) 2024-08-21

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213186548U (en) 2020-09-08 2021-05-11 无锡韦尔半导体有限公司 MEMS sound sensor and MEMS microphone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213186548U (en) 2020-09-08 2021-05-11 无锡韦尔半导体有限公司 MEMS sound sensor and MEMS microphone

Similar Documents

Publication Publication Date Title
US11977275B2 (en) Glasses
US7324655B2 (en) Electroacoustic transducer
JP6100730B2 (en) earphone
CN218162856U (en) Vibration sensor
US10735844B2 (en) Wearable device
WO2022262639A1 (en) Vibration sensor
US20100092011A1 (en) Membrane for an electroacoustic transducer and acoustic device
CN215300865U (en) Vibration sensor
CN114697824B (en) Vibration sensor
US20190132670A1 (en) Speaker Box
US12072228B2 (en) Vibration sensors
TWI853238B (en) Vibration sensor
CN114765715A (en) Bone conduction loudspeaker
CN219499492U (en) Transducer fixing device with vibration supporting arm
CN218888677U (en) Earphone set
TW202301882A (en) Vibration sensor
KR20230091147A (en) vibration sensor
CN114697823A (en) Vibration sensor
TW202308402A (en) Vibration sensor
CN116636235A (en) Vibration sensor
CN118044223A (en) Earphone
JP2023055104A (en) Acoustic equipment
CN116389961A (en) Bone conduction loudspeaker and earphone
CN116250253A (en) Vibration sensor
CN117319858A (en) Earphone