TWI847547B - Memory structure and manufacturing method thereof - Google Patents

Memory structure and manufacturing method thereof Download PDF

Info

Publication number
TWI847547B
TWI847547B TW112105227A TW112105227A TWI847547B TW I847547 B TWI847547 B TW I847547B TW 112105227 A TW112105227 A TW 112105227A TW 112105227 A TW112105227 A TW 112105227A TW I847547 B TWI847547 B TW I847547B
Authority
TW
Taiwan
Prior art keywords
layer
spacer
bit line
hard mask
upper electrode
Prior art date
Application number
TW112105227A
Other languages
Chinese (zh)
Other versions
TW202433554A (en
Inventor
林立涵
Original Assignee
南亞科技股份有限公司
Filing date
Publication date
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Application granted granted Critical
Publication of TWI847547B publication Critical patent/TWI847547B/en
Publication of TW202433554A publication Critical patent/TW202433554A/en

Links

Images

Abstract

A manufacturing method of a memory structure includes forming a hard mask layer on a spacer structure, wherein the spacer structure is located on a bit line structure, a lower electrode of the bit line structure is located in a first dielectric layer, and an upper electrode of the bit line structure is located in a second dielectric layer; removing the spacer structure not covered by the hard mask layer; removing the hard mask layer by using oxygen and ammonia as etching gases, wherein after removing the hard mask layer, an oxide layer is formed on a sidewall of the upper electrode, a top surface of the lower electrode, and a top surface and a sidewall of the spacer structure; and forming a spacer layer on the oxide layer.

Description

記憶體結構及其製造方法Memory structure and manufacturing method thereof

本揭露是有關一種記憶體結構及一種記憶體結構的製造方法。The present disclosure relates to a memory structure and a method for manufacturing the memory structure.

在記憶體結構的製程中,材料為碳(carbon)的硬遮罩(hard mask)用以定義記憶體的位元線(bit line),且可在後續的製程中使用以氧為主的電漿蝕刻(O-based plasma etching)移除。以氧為主的電漿蝕刻雖可有效地移除材料為碳的硬遮罩,卻會氧化在位元線的上電極與下電極之間的交界面,使位元線的電阻上升。In the process of memory structure manufacturing, a carbon hard mask is used to define the memory bit line, and can be removed using oxygen-based plasma etching in subsequent processes. Although oxygen-based plasma etching can effectively remove the carbon hard mask, it will oxidize the interface between the upper and lower electrodes of the bit line, increasing the resistance of the bit line.

雖可改用氫氣與氮氣作為蝕刻氣體以避免氧化上電極與下電極之間的交界面,然而,以氫氣與氮氣作為蝕刻氣體的電漿蝕刻使得記憶體結構的表面官能基(functional group)不具有氧,導致後續形成的間隔層的成長速率降低,使生產記憶體元件的時間成本增加。Although hydrogen and nitrogen can be used as etching gases to avoid oxidation of the interface between the upper electrode and the lower electrode, plasma etching using hydrogen and nitrogen as etching gases makes the surface functional groups of the memory structure without oxygen, resulting in a decrease in the growth rate of the spacer layer formed subsequently, increasing the time cost of producing memory devices.

本揭露之一技術態樣為一種記憶體結構的製造方法。One technical aspect of the present disclosure is a method for manufacturing a memory structure.

根據本揭露之一些實施方式,一種記憶體結構的製造方法包括形成硬遮罩層於間隔結構上,其中間隔結構位於位元線結構上,位元線結構的下電極位於第一介電層中,且位元線結構的上電極位於第二介電層中;移除未被硬遮罩層覆蓋的間隔結構;使用氧氣與氨氣作為蝕刻氣體以移除硬遮罩層,其中在移除硬遮罩層後,位元線結構的上電極的側壁、下電極的頂面、間隔結構的頂面與側壁及第二介電層的頂面與側壁上形成氧化層;以及形成間隔層於氧化層上。According to some embodiments of the present disclosure, a method for manufacturing a memory structure includes forming a hard mask layer on a spacer structure, wherein the spacer structure is located on a bit line structure, a lower electrode of the bit line structure is located in a first dielectric layer, and an upper electrode of the bit line structure is located in a second dielectric layer; removing the spacer structure not covered by the hard mask layer; using oxygen and ammonia as etching gases to remove the hard mask layer, wherein after removing the hard mask layer, an oxide layer is formed on the sidewalls of the upper electrode of the bit line structure, the top surface of the lower electrode, the top surface and sidewalls of the spacer structure, and the top surface and sidewalls of the second dielectric layer; and forming the spacer layer on the oxide layer.

在一些實施方式中,上述使用氧氣與氨氣作為蝕刻氣體以移除硬遮罩層後,位元線結構的下電極與上電極之間無氧化層。In some embodiments, after the hard mask layer is removed by using oxygen and ammonia as etching gases, there is no oxide layer between the lower electrode and the upper electrode of the bit line structure.

在一些實施方式中,上述使用氧氣與氨氣作為蝕刻氣體以移除硬遮罩層後,位元線結構的上電極與間隔結構之間無氧化層。In some embodiments, after the hard mask layer is removed by using oxygen and ammonia as etching gases, there is no oxide layer between the upper electrode of the bit line structure and the spacer structure.

在一些實施方式中,上述氧氣與氨氣的體積比例在1:4至2:3的範圍中。In some embodiments, the volume ratio of oxygen to ammonia is in the range of 1:4 to 2:3.

在一些實施方式中,上述使用氧氣與氨氣作為蝕刻氣體以移除硬遮罩層是使用功率在3000瓦至5000瓦的範圍中的反應式離子蝕刻。In some embodiments, the use of oxygen and ammonia as etching gases to remove the hard mask layer is performed using reactive ion etching at a power in the range of 3000 watts to 5000 watts.

在一些實施方式中,上述形成間隔層於氧化層上使得間隔層的厚度大於該氧化層的厚度。In some embodiments, the forming of the spacer layer on the oxide layer makes the thickness of the spacer layer greater than the thickness of the oxide layer.

在一些實施方式中,上述硬遮罩層的材料包括碳。In some embodiments, the material of the hard mask layer includes carbon.

本揭露之另一技術態樣為一種記憶體結構。Another technical aspect of the present disclosure is a memory structure.

根據本揭露之一些實施方式,一種記憶體結構包括第一介電層、第二介電層、位元線結構、間隔結構、氧化層與間隔層。第二介電層位於位於第一介電層上,且具有開口。位元線結構具有下電極與上電極。下電極位於第一介電層中。上電極位於下電極上與第二介電層的開口中。間隔結構位於位元線結構上。氧化層覆蓋第二介電層的頂面與面對開口的側壁、位元線結構的上電極的側壁與下電極的頂面及間隔結構的頂面與側壁。間隔層覆蓋氧化層。According to some embodiments of the present disclosure, a memory structure includes a first dielectric layer, a second dielectric layer, a bit line structure, a spacer structure, an oxide layer, and a spacer layer. The second dielectric layer is located on the first dielectric layer and has an opening. The bit line structure has a lower electrode and an upper electrode. The lower electrode is located in the first dielectric layer. The upper electrode is located on the lower electrode and in the opening of the second dielectric layer. The spacer structure is located on the bit line structure. The oxide layer covers the top surface and side walls of the second dielectric layer facing the opening, the side walls of the upper electrode of the bit line structure, the top surface of the lower electrode, and the top surface and side walls of the spacer structure. The spacer layer covers the oxide layer.

在一些實施方式中,上述氧化層無位於下電極與上電極之間的部分以及位元線結構與間隔結構之間的部分。In some embodiments, the oxide layer does not have a portion between the lower electrode and the upper electrode and a portion between the bit line structure and the spacer structure.

在一些實施方式中,上述間隔層的材料包括氮化物。In some implementations, the material of the spacer layer includes nitride.

在本揭露上述實施方式中,由於在記憶體結構的製造方法中使用氧氣與氨氣作為蝕刻氣體以移除硬遮罩層,以使得在上電極的側壁、下電極的頂面、間隔結構的頂面與側壁及第二介電層的頂面與側壁上形成氧化層,接著間隔層便可形成於氧化層上,因此前述製造方法除了可移除硬遮罩層,更可藉由氧化層的官能基(functional group)提升間隔層的成長速率,以降低生產元件的時間成本,滿足量產需求。In the above-mentioned embodiment of the present disclosure, since oxygen and ammonia are used as etching gases to remove the hard mask layer in the manufacturing method of the memory structure, an oxide layer is formed on the side walls of the upper electrode, the top surface of the lower electrode, the top surface and side walls of the spacer structure, and the top surface and side walls of the second dielectric layer, and then the spacer layer can be formed on the oxide layer. Therefore, in addition to removing the hard mask layer, the above-mentioned manufacturing method can also increase the growth rate of the spacer layer through the functional groups of the oxide layer, so as to reduce the time cost of producing components and meet mass production requirements.

以下揭示之實施方式內容提供了用於實施所提供的標的之不同特徵的許多不同實施方式,或實例。下文描述了元件和佈置之特定實例以簡化本案。當然,該等實例僅為實例且並不意欲作為限制。此外,本案可在各個實例中重複元件符號及/或字母。此重複係用於簡便和清晰的目的,且其本身不指定所論述的各個實施方式及/或配置之間的關係。The embodiments disclosed below provide many different embodiments, or examples, for implementing the different features of the subject matter provided. Specific examples of components and arrangements are described below to simplify the present invention. Of course, these examples are only examples and are not intended to be limiting. In addition, the present invention may repeat component symbols and/or letters in each example. This repetition is for the purpose of simplicity and clarity, and does not itself specify the relationship between the various embodiments and/or configurations discussed.

諸如「在……下方」、「在……之下」、「下部」、「在……之上」、「上部」等等空間相對術語可在本文中為了便於描述之目的而使用,以描述如附圖中所示之一個元件或特徵與另一元件或特徵之關係。空間相對術語意欲涵蓋除了附圖中所示的定向之外的在使用或操作中的裝置的不同定向。裝置可經其他方式定向(旋轉90度或以其他定向)並且本文所使用的空間相對描述詞可同樣相應地解釋。Spatially relative terms such as "below," "beneath," "lower," "above," "upper," and the like may be used herein for descriptive purposes to describe the relationship of one element or feature to another element or feature as illustrated in the accompanying figures. Spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the accompanying figures. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

第1圖繪示根據本揭露一些實施方式之記憶體結構的製造方法的流程圖。記憶體結構的製造方法包含下列幾個步驟。在步驟S1時,形成硬遮罩層於間隔結構上,其中間隔結構位於位元線結構上,位元線結構的下電極位於第一介電層中,且位元線結構的上電極位於第二介電層中。接著,在步驟S2時,移除未被硬遮罩層覆蓋的間隔結構。之後,在步驟S3時,使用氧氣與氨氣作為蝕刻氣體以移除硬遮罩層,其中在移除硬遮罩層後,位元線結構的上電極的側壁、下電極的頂面、間隔結構的頂面與側壁及第二介電層的頂面與側壁上形成氧化層。接著,在步驟S4時,形成間隔層於氧化層上。FIG. 1 is a flow chart of a method for manufacturing a memory structure according to some embodiments of the present disclosure. The method for manufacturing a memory structure comprises the following steps. In step S1, a hard mask layer is formed on a spacer structure, wherein the spacer structure is located on a bit line structure, a lower electrode of the bit line structure is located in a first dielectric layer, and an upper electrode of the bit line structure is located in a second dielectric layer. Then, in step S2, the spacer structure not covered by the hard mask layer is removed. Then, in step S3, oxygen and ammonia are used as etching gases to remove the hard mask layer, wherein after removing the hard mask layer, an oxide layer is formed on the sidewalls of the upper electrode of the bit line structure, the top surface of the lower electrode, the top surface and sidewalls of the spacer structure, and the top surface and sidewalls of the second dielectric layer. Then, in step S4, a spacer layer is formed on the oxide layer.

在一些實施方式中,記憶體結構的製造方法可更包括其他步驟於上述任兩步驟之間、步驟S1之前的步驟與步驟S4之後的步驟。此外,步驟S1至步驟S4可各包含多個詳細步驟。在以下的敘述中,至少說明上述的步驟S1至步驟S4。In some implementations, the method for manufacturing a memory structure may further include other steps between any two of the above steps, steps before step S1, and steps after step S4. In addition, steps S1 to S4 may each include multiple detailed steps. In the following description, at least steps S1 to S4 are described.

第2圖至第6圖繪示根據本揭露一些實施方式之記憶體結構100(見第6圖)的製造方法在中間階段的剖面圖。參閱第2圖,間隔結構120位於位元線結構130上。位元線結構130的下電極131位於第一介電層140中,且下電極131與第一介電層140彼此接觸。位元線結構130的上電極132位於下電極131上與第二介電層150的開口152中,且上電極132接觸第二介電層150。圖案化的硬遮罩層110可形成於間隔結構120上,使間隔結構120的一部分122暴露,以定義出間隔結構120的寬度與位元線結構130的上電極132的寬度。FIG. 2 to FIG. 6 illustrate cross-sectional views of a method for manufacturing a memory structure 100 (see FIG. 6 ) according to some embodiments of the present disclosure at an intermediate stage. Referring to FIG. 2 , the spacer structure 120 is located on the bit line structure 130. The lower electrode 131 of the bit line structure 130 is located in the first dielectric layer 140, and the lower electrode 131 and the first dielectric layer 140 are in contact with each other. The upper electrode 132 of the bit line structure 130 is located on the lower electrode 131 and in the opening 152 of the second dielectric layer 150, and the upper electrode 132 is in contact with the second dielectric layer 150. The patterned hard mask layer 110 may be formed on the spacer structure 120 to expose a portion 122 of the spacer structure 120 to define the width of the spacer structure 120 and the width of the upper electrode 132 of the bit line structure 130.

參閱第3圖,接著,可移除未被硬遮罩層110覆蓋的間隔結構120的部分122,使間隔結構120的寬度與硬遮罩層110的寬度大致相同。在一些實施方式中,硬遮罩層110的材料可包括碳(carbon),且間隔結構120的材料可包括氮化物介電質(nitride dielectric)。因此,可使用在硬遮罩層110與間隔結構120之間具有選擇比的反應離子蝕刻(reactive-ion etching) 移除未被硬遮罩層110覆蓋的間隔結構120的部分122。除此之外,可移除位於間隔結構120的部分122下方的位元線結構130的上電極132,使上電極132的寬度、間隔結構120的寬度與硬遮罩層110的寬度彼此大致相同,並使第二介電層150面對開口152的側壁與位元線結構130的上電極132的側壁分開而有間距,且第二介電層150的開口152可暴露下電極131的頂面。在一些實施方式中,第二介電層150朝向開口152的側壁底部可為弧形,使第二介電層150的開口152的剖面輪廓呈上寬下窄,以利後續沉積材料(例如氮化物)於開口152中。3 , the portion 122 of the spacer structure 120 not covered by the hard mask layer 110 may then be removed so that the width of the spacer structure 120 is substantially the same as the width of the hard mask layer 110. In some embodiments, the material of the hard mask layer 110 may include carbon, and the material of the spacer structure 120 may include a nitride dielectric. Therefore, the portion 122 of the spacer structure 120 not covered by the hard mask layer 110 may be removed using reactive-ion etching having a selectivity between the hard mask layer 110 and the spacer structure 120. In addition, the upper electrode 132 of the bit line structure 130 located below the portion 122 of the spacer structure 120 can be removed, so that the width of the upper electrode 132, the width of the spacer structure 120, and the width of the hard mask layer 110 are substantially the same, and the sidewall of the second dielectric layer 150 facing the opening 152 is separated from the sidewall of the upper electrode 132 of the bit line structure 130 and has a distance therebetween, and the opening 152 of the second dielectric layer 150 can expose the top surface of the lower electrode 131. In some embodiments, the bottom of the sidewall of the second dielectric layer 150 facing the opening 152 may be curved, so that the cross-sectional profile of the opening 152 of the second dielectric layer 150 is wider at the top and narrower at the bottom, so as to facilitate the subsequent deposition of materials (such as nitride) in the opening 152 .

同時參閱第4圖與第5圖,然後,可藉由反應離子蝕刻並使用氧氣(O 2)與氨氣(NH 3)作為蝕刻氣體G以移除硬遮罩層110。在一些實施方式中,由於硬遮罩層110的材料可包括碳,且氧氣可與碳反應產生二氧化碳,因此蝕刻氣體G可有效地移除硬遮罩層110。在移除硬遮罩層110後,間隔結構120的頂面與側壁、位元線結構130的下電極131的頂面、上電極132的側壁及第二介電層150的頂面與側壁可受蝕刻氣體G的氧氣氧化而形成氧化層160。在一些實施方式中,蝕刻氣體G的氧氣與氨氣的體積比例在1:4至2:3的範圍中,且反應離子蝕刻的功率在3000瓦至5000瓦的範圍中。與傳統以氧為主的電漿蝕刻(O-based plasma etching)相比,前述使用特定體積比例的氧氣與氨氣作為蝕刻氣體G的反應離子蝕刻可避免氧化各層之間的交界面,使位元線結構130的下電極131與上電極132之間無氧化層160,且位元線結構130的上電極132與間隔結構120之間無氧化層160。如此一來,氧化層160的形成便不會影響位元線結構130的電阻,並可維持其導電性以及訊號傳遞速度。 Referring to FIGS. 4 and 5 together, the hard mask layer 110 may then be removed by reactive ion etching using oxygen (O 2 ) and ammonia (NH 3 ) as etching gas G. In some embodiments, since the material of the hard mask layer 110 may include carbon, and oxygen may react with carbon to generate carbon dioxide, the etching gas G may effectively remove the hard mask layer 110. After the hard mask layer 110 is removed, the top surface and sidewalls of the spacer structure 120, the top surface of the lower electrode 131 of the bit line structure 130, the sidewalls of the upper electrode 132, and the top surface and sidewalls of the second dielectric layer 150 may be oxidized by the oxygen in the etching gas G to form an oxide layer 160. In some embodiments, the volume ratio of oxygen to ammonia in the etching gas G is in the range of 1:4 to 2:3, and the power of the reactive ion etching is in the range of 3000 W to 5000 W. Compared with conventional oxygen-based plasma etching (O-based plasma etching), the reactive ion etching using a specific volume ratio of oxygen to ammonia as the etching gas G can avoid oxidation of the interface between the layers, so that there is no oxide layer 160 between the lower electrode 131 and the upper electrode 132 of the bit line structure 130, and there is no oxide layer 160 between the upper electrode 132 of the bit line structure 130 and the spacer structure 120. As a result, the formation of the oxide layer 160 will not affect the resistance of the bit line structure 130, and its conductivity and signal transmission speed can be maintained.

參閱第6圖,在氧化層160形成後,可形成間隔層170於氧化層160上,以得到記憶體結構100。在一些實施方式中,間隔層170的材料可包括氮化物。由於氧化層160的官能基(functional group)可與氮化物鍵結,因此可提升間隔層170的成長速率。如此一來,有利於增加記憶體結構100的產出效率,以降低時間成本,滿足量產需求。在本實施方式中,形成間隔層170於氧化層160上的步驟可使間隔層170的厚度大於氧化層160的厚度。Referring to FIG. 6 , after the oxide layer 160 is formed, a spacer layer 170 may be formed on the oxide layer 160 to obtain the memory structure 100. In some embodiments, the material of the spacer layer 170 may include nitride. Since the functional groups of the oxide layer 160 can bond with the nitride, the growth rate of the spacer layer 170 can be increased. In this way, it is beneficial to increase the output efficiency of the memory structure 100, so as to reduce the time cost and meet the mass production requirements. In this embodiment, the step of forming the spacer layer 170 on the oxide layer 160 can make the thickness of the spacer layer 170 greater than the thickness of the oxide layer 160.

在以下敘述中,將進一步說明記憶體結構100的結構連接關係。In the following description, the structural connection relationship of the memory structure 100 will be further explained.

如第6圖所示,記憶體結構100包括第一介電層140、第二介電層150、位元線結構130、間隔結構120、氧化層160與間隔層170。第二介電層150位於第一介電層140上,且具有開口152。位元線結構130具有下電極131與上電極132。下電極131位於第一介電層140中,並被第一介電層140圍繞,且下電極131的頂面與第一介電層140的頂面可共平面。上電極132位於下電極131上與第二介電層150的開口152中。第二介電層150其面對開口152的側壁的底部往下電極131的頂面延伸。間隔結構120位於位元線結構130上。間隔結構120與位元線結構130於垂直方向重疊。氧化層160覆蓋第二介電層150的頂面與面對開口152的側壁、位元線結構130的上電極132的側壁與位元線結構130的下電極131的頂面及間隔結構120的頂面與側壁。間隔層170覆蓋氧化層160且沿氧化層160設置。由於間隔層170覆蓋於氧化層160上,且氧化層160的官能基可提升間隔層170的成長速率,因此可增加記憶體結構100的產出效率,以降低時間成本,滿足量產需求。在本實施方式中,間隔層170的厚度大於氧化層160的厚度。記憶體結構100可應用於動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)或其他半導體元件。As shown in FIG. 6 , the memory structure 100 includes a first dielectric layer 140, a second dielectric layer 150, a bit line structure 130, a spacer structure 120, an oxide layer 160, and a spacer layer 170. The second dielectric layer 150 is located on the first dielectric layer 140 and has an opening 152. The bit line structure 130 has a lower electrode 131 and an upper electrode 132. The lower electrode 131 is located in the first dielectric layer 140 and is surrounded by the first dielectric layer 140, and the top surface of the lower electrode 131 and the top surface of the first dielectric layer 140 may be coplanar. The upper electrode 132 is located on the lower electrode 131 and in the opening 152 of the second dielectric layer 150. The bottom of the second dielectric layer 150 facing the sidewall of the opening 152 extends toward the top surface of the lower electrode 131. The spacer structure 120 is located on the bit line structure 130. The spacer structure 120 and the bit line structure 130 overlap in the vertical direction. The oxide layer 160 covers the top surface of the second dielectric layer 150 and the sidewall facing the opening 152, the sidewall of the upper electrode 132 of the bit line structure 130, the top surface of the lower electrode 131 of the bit line structure 130, and the top surface and sidewall of the spacer structure 120. The spacer layer 170 covers the oxide layer 160 and is disposed along the oxide layer 160. Since the spacer layer 170 covers the oxide layer 160, and the functional groups of the oxide layer 160 can increase the growth rate of the spacer layer 170, the output efficiency of the memory structure 100 can be increased to reduce the time cost and meet the mass production requirements. In this embodiment, the thickness of the spacer layer 170 is greater than the thickness of the oxide layer 160. The memory structure 100 can be applied to dynamic random access memory (DRAM) or other semiconductor devices.

在一些實施方式中,記憶體結構100的氧化層160無位於下電極131與上電極132之間的部分且無位於位元線結構130與間隔結構120之間的部分。如此一來,氧化層160不會影響位元線結構130的電阻,可維持其導電性與訊號傳遞速度。In some embodiments, the oxide layer 160 of the memory structure 100 has no portion between the lower electrode 131 and the upper electrode 132 and no portion between the bit line structure 130 and the spacer structure 120. In this way, the oxide layer 160 does not affect the resistance of the bit line structure 130, and its conductivity and signal transmission speed can be maintained.

此外,記憶體結構100的間隔結構120的材料可包括氮化物介電質,位元線結構130的下電極131的材料可包括多晶矽(polysilicon),上電極132的材料可為鎢,第一介電層140與第二介電層150的材料可包括氮化物介電質,且間隔層170的材料為氮化物,但並不用以限制本揭露。由於氧化層160的官能基可與氮化物鍵結,因此可提升間隔層170的成長速率。如此一來,將有利於提升記憶體結構100的產出效率,降低時間成本,滿足量產需求。In addition, the material of the spacer structure 120 of the memory structure 100 may include a nitride dielectric, the material of the lower electrode 131 of the bit line structure 130 may include polysilicon, the material of the upper electrode 132 may be tungsten, the materials of the first dielectric layer 140 and the second dielectric layer 150 may include a nitride dielectric, and the material of the spacer layer 170 is nitride, but this is not intended to limit the present disclosure. Since the functional groups of the oxide layer 160 can bond with the nitride, the growth rate of the spacer layer 170 can be increased. In this way, it will be beneficial to improve the output efficiency of the memory structure 100, reduce time costs, and meet mass production requirements.

在一些實施方式中,間隔結構120的寬度與位元線結構130的上電極132的寬度大致相同,且間隔結構120的寬度小於位元線結構130的下電極131的寬度。在一些實施方式中,間隔結構120的側壁與上電極132的側壁在垂直方向大致對齊,且上電極132的側壁、下電極131的頂面與側壁可定義階梯狀表面。第二介電層150的開口152的寬度大於上電極132的寬度,使上電極132的側壁不接觸第二介電層150面對開口152的側壁。In some embodiments, the width of the spacer structure 120 is substantially the same as the width of the upper electrode 132 of the bit line structure 130, and the width of the spacer structure 120 is smaller than the width of the lower electrode 131 of the bit line structure 130. In some embodiments, the sidewalls of the spacer structure 120 are substantially aligned with the sidewalls of the upper electrode 132 in the vertical direction, and the sidewalls of the upper electrode 132 and the top surface and sidewalls of the lower electrode 131 may define a stepped surface. The width of the opening 152 of the second dielectric layer 150 is greater than the width of the upper electrode 132, so that the sidewalls of the upper electrode 132 do not contact the sidewalls of the second dielectric layer 150 facing the opening 152.

綜上所述,由於在記憶體結構100的製造方法中使用氧氣與氨氣作為蝕刻氣體G以移除硬遮罩層110,以使得在上電極132的側壁、下電極131的頂面、間隔結構120的頂面與側壁及第二介電層150的頂面與側壁上形成氧化層160,接著間隔層170便可形成於氧化層160上,因此前述製造方法除了可移除硬遮罩層110,更可藉由氧化層160的官能基提升間隔層170的成長速率,以降低生產元件的時間成本,滿足量產需求。In summary, since oxygen and ammonia are used as etching gases G in the manufacturing method of the memory structure 100 to remove the hard mask layer 110, an oxide layer 160 is formed on the side walls of the upper electrode 132, the top surface of the lower electrode 131, the top surface and side walls of the spacer structure 120, and the top surface and side walls of the second dielectric layer 150, and then the spacer layer 170 can be formed on the oxide layer 160. Therefore, in addition to removing the hard mask layer 110, the aforementioned manufacturing method can also increase the growth rate of the spacer layer 170 through the functional groups of the oxide layer 160, so as to reduce the time cost of producing components and meet mass production requirements.

前述概述了幾個實施方式的特徵,使得本領域技術人員可以更好地理解本揭露的態樣。本領域技術人員應當理解,他們可以容易地將本揭露用作設計或修改其他過程和結構的基礎,以實現與本文介紹的實施方式相同的目的和/或實現相同的優點。本領域技術人員還應該認識到,這樣的等效構造不脫離本揭露的精神和範圍,並且在不脫離本揭露的精神和範圍的情況下,它們可以在這裡進行各種改變,替換和變更。The foregoing summarizes the features of several embodiments so that those skilled in the art can better understand the aspects of the present disclosure. Those skilled in the art should understand that they can easily use the present disclosure as a basis for designing or modifying other processes and structures to achieve the same purpose and/or achieve the same advantages as the embodiments described herein. Those skilled in the art should also recognize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they can make various changes, substitutions and modifications here without departing from the spirit and scope of the present disclosure.

100:記憶體結構 110:硬遮罩層 120:間隔結構 122:部分 130:位元線結構 131:下電極 132:上電極 140:第一介電層 150:第二介電層 152:開口 160:氧化層 170:間隔層 G:蝕刻氣體 S1,S2,S3,S4:步驟 100: memory structure 110: hard mask layer 120: spacer structure 122: part 130: bit line structure 131: lower electrode 132: upper electrode 140: first dielectric layer 150: second dielectric layer 152: opening 160: oxide layer 170: spacer layer G: etching gas S1, S2, S3, S4: steps

當與隨附圖示一起閱讀時,可由後文實施方式最佳地理解本揭露內容的態樣。注意到根據此行業中之標準實務,各種特徵並未按比例繪製。實際上,為論述的清楚性,可任意增加或減少各種特徵的尺寸。 第1圖繪示根據本揭露一些實施方式之記憶體結構的製造方法的流程圖。 第2圖至第6圖繪示根據本揭露一些實施方式之記憶體結構的製造方法在中間階段的剖面圖。 The disclosure is best understood from the following embodiments when read in conjunction with the accompanying illustrations. Note that various features are not drawn to scale in accordance with standard practice in the industry. In fact, the sizes of various features may be arbitrarily increased or decreased for clarity of discussion. FIG. 1 illustrates a flow chart of a method for manufacturing a memory structure according to some embodiments of the disclosure. FIGS. 2 to 6 illustrate cross-sectional views of intermediate stages of a method for manufacturing a memory structure according to some embodiments of the disclosure.

S1:步驟 S1: Steps

S2:步驟 S2: Step

S3:步驟 S3: Step

S4:步驟 S4: Step

Claims (10)

一種記憶體結構的製造方法,包括: 形成一硬遮罩層於一間隔結構上,其中該間隔結構位於一位元線結構上,該位元線結構的一下電極位於一第一介電層中,且該位元線結構的一上電極位於一第二介電層中; 移除未被該硬遮罩層覆蓋的該間隔結構; 使用一氧氣與一氨氣作為一蝕刻氣體以移除該硬遮罩層,其中在移除該硬遮罩層後,該位元線結構的該上電極的側壁、該下電極的頂面、該間隔結構的頂面與側壁及該第二介電層的頂面與側壁上形成一氧化層;以及 形成一間隔層於該氧化層上。 A method for manufacturing a memory structure, comprising: forming a hard mask layer on a spacer structure, wherein the spacer structure is located on a bit line structure, a lower electrode of the bit line structure is located in a first dielectric layer, and an upper electrode of the bit line structure is located in a second dielectric layer; removing the spacer structure not covered by the hard mask layer; using an oxygen gas and an ammonia gas as an etching gas to remove the hard mask layer, wherein after removing the hard mask layer, an oxide layer is formed on the sidewalls of the upper electrode of the bit line structure, the top surface of the lower electrode, the top surface and sidewalls of the spacer structure, and the top surface and sidewalls of the second dielectric layer; and A spacer layer is formed on the oxide layer. 如請求項1所述之記憶體結構的製造方法,其中使用該氧氣與該氨氣作為該蝕刻氣體以移除該硬遮罩層後,該位元線結構的該下電極與該上電極之間無該氧化層。The method for manufacturing a memory structure as described in claim 1, wherein after using the oxygen gas and the ammonia gas as the etching gas to remove the hard mask layer, there is no oxide layer between the lower electrode and the upper electrode of the bit line structure. 如請求項1所述之記憶體結構的製造方法,其中使用該氧氣與該氨氣作為該蝕刻氣體以移除該硬遮罩層後,該位元線結構的該上電極與該間隔結構之間無該氧化層。The method for manufacturing a memory structure as described in claim 1, wherein after using the oxygen gas and the ammonia gas as the etching gas to remove the hard mask layer, there is no oxide layer between the upper electrode of the bit line structure and the spacer structure. 如請求項1所述之記憶體結構的製造方法,其中該氧氣與該氨氣的體積比例在1:4至2:3的範圍中。A method for manufacturing a memory structure as described in claim 1, wherein the volume ratio of the oxygen gas to the ammonia gas is in the range of 1:4 to 2:3. 如請求項1所述之記憶體結構的製造方法,其中使用該氧氣與該氨氣作為該蝕刻氣體以移除該硬遮罩層是使用功率在3000瓦至5000瓦的範圍中的反應離子蝕刻。A method for manufacturing a memory structure as described in claim 1, wherein using the oxygen gas and the ammonia gas as the etching gas to remove the hard mask layer is a reactive ion etching method with a power in the range of 3000 watts to 5000 watts. 如請求項1所述之記憶體結構的製造方法,其中形成該間隔層於該氧化層上使得該間隔層的厚度大於該氧化層的厚度。A method for manufacturing a memory structure as described in claim 1, wherein the spacer layer is formed on the oxide layer so that the thickness of the spacer layer is greater than the thickness of the oxide layer. 如請求項1所述之記憶體結構的製造方法,其中該硬遮罩層的材料包括碳。A method for manufacturing a memory structure as described in claim 1, wherein the material of the hard mask layer includes carbon. 一種記憶體結構,包括: 一第一介電層; 一第二介電層,位於該第一介電層上,且具有一開口; 一位元線結構,具有一下電極與一上電極,其中該下電極位於該第一介電層中,且該上電極位於該下電極上與該第二介電層的該開口中; 一間隔結構,位於該位元線結構上; 一氧化層,覆蓋該第二介電層的頂面與面對該開口的側壁、該位元線結構的該上電極的側壁與該下電極的頂面及該間隔結構的頂面與側壁;以及 一間隔層,覆蓋該氧化層。 A memory structure includes: a first dielectric layer; a second dielectric layer, located on the first dielectric layer and having an opening; a bit line structure, having a lower electrode and an upper electrode, wherein the lower electrode is located in the first dielectric layer, and the upper electrode is located on the lower electrode and in the opening of the second dielectric layer; a spacer structure, located on the bit line structure; an oxide layer, covering the top surface of the second dielectric layer and the sidewalls facing the opening, the sidewalls of the upper electrode of the bit line structure, the top surface of the lower electrode, and the top surface and sidewalls of the spacer structure; and a spacer layer, covering the oxide layer. 如請求項8所述之記憶體結構,其中該氧化層無位於該下電極與該上電極之間的部分以及該位元線結構與該間隔結構之間的部分。A memory structure as described in claim 8, wherein the oxide layer has no portion between the lower electrode and the upper electrode and no portion between the bit line structure and the spacer structure. 如請求項8所述之記憶體結構,其中該間隔層的材料包括氮化物。A memory structure as described in claim 8, wherein the material of the spacer layer includes nitride.
TW112105227A 2023-02-14 Memory structure and manufacturing method thereof TWI847547B (en)

Publications (2)

Publication Number Publication Date
TWI847547B true TWI847547B (en) 2024-07-01
TW202433554A TW202433554A (en) 2024-08-16

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202220111A (en) 2020-11-09 2022-05-16 南亞科技股份有限公司 Semiconductor structure and method of manufacturing thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202220111A (en) 2020-11-09 2022-05-16 南亞科技股份有限公司 Semiconductor structure and method of manufacturing thereof

Similar Documents

Publication Publication Date Title
CN109585296A (en) The forming method of semiconductor device
WO2022012169A1 (en) Forming method for semiconductor structure, and semiconductor structure
WO2022012128A1 (en) Method for forming semiconductor structure, and semiconductor structure
WO2022160556A1 (en) Gaa transistor and preparation method therefor, and electronic device
JP2000196071A (en) Manufacture of semiconductor device, and the semiconductor device
TWI847547B (en) Memory structure and manufacturing method thereof
US6083845A (en) Etching method
US11456174B2 (en) Semiconductor structure and formation method thereof
TW202433554A (en) Memory structure and manufacturing method thereof
US6211008B1 (en) Method for forming high-density high-capacity capacitor
WO2006006424A1 (en) Field effect transistor and manufacturing method thereof
US7741223B2 (en) Semiconductor device with bulb type recess gate and method for fabricating the same
JPS63166230A (en) Dry etching method
CN109524405A (en) The manufacturing method of semiconductor element
JP2007096214A (en) Manufacturing method for semiconductor device
JP2001127039A (en) Manufacturing method of semiconductor device
US20060141719A1 (en) Method of fabricating semiconductor device
JP2888213B2 (en) Method for manufacturing semiconductor device
KR20020050697A (en) Semiconductor device and method of manufacturing the same
CN220510043U (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
TWI813200B (en) Integrated circuit structure and method forming same
CN110875426B (en) Nanotube random access memory and method of forming the same
WO2023212988A1 (en) Method for manufacturing semiconductor structure, and semiconductor structure
JPH03147364A (en) Manufacture of semiconductor device
TWI635599B (en) Method of manufacturing memory device