TWI842520B - Asymmetric half-bridge flyback converter power supply and its control circuit - Google Patents

Asymmetric half-bridge flyback converter power supply and its control circuit Download PDF

Info

Publication number
TWI842520B
TWI842520B TW112117187A TW112117187A TWI842520B TW I842520 B TWI842520 B TW I842520B TW 112117187 A TW112117187 A TW 112117187A TW 112117187 A TW112117187 A TW 112117187A TW I842520 B TWI842520 B TW I842520B
Authority
TW
Taiwan
Prior art keywords
state
signal
transistor
control signal
voltage
Prior art date
Application number
TW112117187A
Other languages
Chinese (zh)
Other versions
TW202437657A (en
Inventor
方倩
孫運
劉拓夫
張秀紅
林元
Original Assignee
大陸商昂寶電子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商昂寶電子(上海)有限公司 filed Critical 大陸商昂寶電子(上海)有限公司
Application granted granted Critical
Publication of TWI842520B publication Critical patent/TWI842520B/en
Publication of TW202437657A publication Critical patent/TW202437657A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

提供了一種非對稱半橋返馳式變換器電源及其控制電路,控制電路被配置為在上電晶體從導通狀態變為關斷狀態之後並從關斷狀態變為導通狀態之前:基於用於控制上電晶體的導通與關斷的上電晶體控制信號,生成用於控制下電晶體首次從關斷狀態變為導通狀態的首次導通控制信號;基於表徵變壓器的退磁情況的退磁表徵信號,生成用於控制下電晶體首次從導通狀態變為關斷狀態的首次關斷控制信號;基於退磁表徵信號和表徵非對稱半橋返馳式變換器電源的輸出電壓的輸出回饋信號,生成用於控制下電晶體再次從關斷狀態變為導通狀態的再次導通控制信號;以及基於退磁表徵信號,生成用於控制下電晶體再次從導通狀態變為關斷狀態的再次關斷控制信號。 Provided is an asymmetric half-bridge flyback converter power supply and a control circuit thereof. The control circuit is configured to: after an upper transistor changes from an on state to an off state and before it changes from an off state to an on state, based on an upper transistor control signal for controlling the on and off state of the upper transistor, generate a first turn-on control signal for controlling the lower transistor to change from an off state to an on state for the first time; based on a demagnetization characteristic signal for characterizing the demagnetization condition of the transformer, generate a first turn-on control signal for controlling the lower transistor to change from an off state to an on state for the first time. A first turn-off control signal for controlling the lower transistor to change from the on state to the off state for the first time is generated; a re-conduction control signal for controlling the lower transistor to change from the off state to the on state again is generated based on the demagnetization characteristic signal and the output feedback signal representing the output voltage of the asymmetric half-bridge flyback converter power supply; and a re-turn-off control signal for controlling the lower transistor to change from the on state to the off state again is generated based on the demagnetization characteristic signal.

Description

非對稱半橋返馳式變換器電源及其控制電路 Asymmetric half-bridge flyback converter power supply and its control circuit

本發明涉及電路領域,更具體地涉及一種非對稱半橋返馳式變換器電源及其控制電路。 The present invention relates to the field of circuits, and more specifically to an asymmetric half-bridge flyback converter power supply and its control circuit.

開關電源又稱交換式電源、開關變換器,是電源供應器的一種。開關電源的功能是通過不同形式的架構(例如,返馳(fly-back)架構、降壓(BUCK)架構、或升壓(BOOST)架構等)將一個位準的電壓轉換為用戶端需要的電壓或電流。 A switching power supply, also known as an alternating current power supply or a switching converter, is a type of power supply. The function of a switching power supply is to convert a voltage level into the voltage or current required by the user through different forms of architecture (for example, fly-back architecture, buck architecture, or boost architecture, etc.).

根據本發明實施例的用於非對稱半橋返馳式變換器電源的控制電路,其中,該非對稱半橋返馳式變換器電源包括上電晶體、下電晶體、以及變壓器,該控制電路被配置為在上電晶體從導通狀態變為關斷狀態之後並從關斷狀態變為導通狀態之前:基於用於控制上電晶體的導通與關斷的上電晶體控制信號,生成用於控制下電晶體首次從關斷狀態變為導通狀態的首次導通控制信號;基於表徵變壓器的退磁情況的退磁表徵信號,生成用於控制下電晶體首次從導通狀態變為關斷狀態的首次關斷控制信號;基於退磁表徵信號和表徵非對稱半橋返馳式變換器電源的輸出電壓的輸出回饋信號,生成用於控制下電晶體再次從關斷狀態變為導通狀態的再次導通控制信號;以及基於退磁表徵信號,生成用於控制下電晶體再次從導通狀態變為關斷狀態的再次關斷控制信號。 According to a control circuit for an asymmetric half-bridge flyback converter power supply according to an embodiment of the present invention, wherein the asymmetric half-bridge flyback converter power supply includes an upper transistor, a lower transistor, and a transformer, the control circuit is configured to: after the upper transistor changes from an on state to an off state and before it changes from an off state to an on state: based on an upper transistor control signal for controlling the on and off state of the upper transistor, generate a first turn-on control signal for controlling the lower transistor to change from an off state to an on state for the first time; based on A demagnetization characteristic signal is used to characterize the demagnetization condition of the transformer, and a first turn-off control signal is generated for controlling the lower transistor to change from the on state to the off state for the first time; a re-conduction control signal is generated for controlling the lower transistor to change from the off state to the on state again based on the demagnetization characteristic signal and the output feedback signal characterizing the output voltage of the asymmetric half-bridge flyback converter power supply; and a re-turn-off control signal is generated based on the demagnetization characteristic signal for controlling the lower transistor to change from the on state to the off state again.

根據本發明實施例的非對稱半橋返馳式變換器電源,包括上述用於非對稱半橋返馳式變換器電源的控制電路。 According to the asymmetric half-bridge flyback converter power supply of the embodiment of the present invention, it includes the above-mentioned control circuit for the asymmetric half-bridge flyback converter power supply.

100:開關電源 100: Switch the power on or off

400:非對稱半橋返馳式變換器電源 400: Asymmetric half-bridge flyback converter power supply

402,404:電路部分 402,404: Circuit part

AC:交流電 AC: alternating current

C1:電容 C1: Capacitor

comp:比較器 comp: comparator

Coss:上電晶體Q1及下電晶體Q2的寄生電容之和 Coss: The sum of the parasitic capacitances of the upper transistor Q1 and the lower transistor Q2

Cr:諧振電容 Cr: resonant capacitor

CV_off:上電晶體關斷控制信號 CV_off: Power-on transistor shutdown control signal

DCM_on:模式/頻率控制信號 DCM_on: mode/frequency control signal

down_off,dem_off:首次關斷控制信號 down_off,dem_off: first turn off the control signal

down_on:首次導通控制信號 down_on: first turn-on control signal

FB:輸出回饋信號(電壓) FB: Output feedback signal (voltage)

gate_down:下電晶體控制信號 gate_down: down transistor control signal

gate_up:上電晶體控制信號 gate_up: power-on transistor control signal

HB:電壓 HB: Voltage

I1:電流 I1: Current

IDo:變壓器T的二次側電流 I Do : Secondary current of transformer T

ILm:變壓器T的一次側勵磁電流 I Lm : primary side magnetizing current of transformer T

ILr::變壓器T的一次側諧振電流 I Lr: primary resonant current of transformer T

In_zvs:負向電流幅值 In_zvs: Negative current amplitude

INV:退磁表徵信號(電壓) INV: Demagnetization characteristic signal (voltage)

Ip:正向峰值電流 Ip: forward peak current

Lm:一次側勵磁電感 Lm: primary side magnetic inductance

Lp:一次側電感 Lp: primary side inductance

Lr:一次側漏感 Lr: primary side leakage sense

Ls:二次側電感 Ls: Secondary inductance

Naux:輔助繞組圈數 Naux: Number of auxiliary winding turns

Q1 gate:用於控制上電晶體Q1的導通與關斷的上電晶體控制信號 Q1 gate: The power-on transistor control signal used to control the on and off of the power-on transistor Q1.

Q1:上電晶體 Q1: Power-on transistor

Q2 gate:用於控制下電晶體Q2的導通與關斷的下電晶體控制信號 Q2 gate: The lower transistor control signal used to control the on and off of the lower transistor Q2.

Q2:下電晶體 Q2: Lower transistor

Rcs:電流感測電阻 Rcs: Inductive flow measurement resistance

S1,S2:開關 S1, S2: switch

T:變壓器 T: Transformer

t0,t1,t2,t3,t4,t5,t6:時刻 t0,t1,t2,t3,t4,t5,t6: time

td:諧振週期 td: resonance period

Tdcm,Tdem,Tzvs:持續時長 Tdcm, Tdem, Tzvs: duration

TL431:穩壓器 TL431: Voltage regulator

Tzvs_ENA:再次導通使能信號 Tzvs_ENA: Turn on the enable signal again

up_on:上電晶體導通控制信號 up_on: Power-on transistor conduction control signal

V1:第一採樣信號(電壓) V1: First sampling signal (voltage)

V2:第二採樣信號(電壓) V2: Second sampling signal (voltage)

V3:第三採樣信號(電壓) V3: The third sampling signal (voltage)

V4:第四採樣信號(電壓) V4: The fourth sampling signal (voltage)

V5:第五採樣信號(電壓) V5: The fifth sampling signal (voltage)

Vaux:輔助繞組電壓 Vaux: Auxiliary winding voltage

Vcs:電流表徵信號(電壓) Vcs: current characteristic signal (voltage)

Vin:輸入電壓 Vin: Input voltage

Vm:時長相關信號(電壓) Vm: duration-related signal (voltage)

Vo:輸出電壓 Vo: output voltage

Vref:參考電壓(參考信號) Vref: reference voltage (reference signal)

Vs:HB電壓差值 Vs:HB voltage difference

ZVS_comp:補償控制信號(補償電壓) ZVS_comp: compensation control signal (compensation voltage)

ZVS_off:再次關斷控制信號 ZVS_off: Turn off the control signal again

ZVS_on:再次導通控制信號 ZVS_on: Turn on the control signal again

從下面結合圖式對本發明的具體實施方式的描述中可以更好地理解本發明,其中:圖1示出了傳統的非對稱半橋返馳式變換器電源的拓撲結構示意圖。 The present invention can be better understood from the following description of the specific implementation of the present invention in combination with the drawings, wherein: FIG1 shows a schematic diagram of the topological structure of a traditional asymmetric half-bridge flyback converter power supply.

圖2示出了圖1所示的開關電源工作於臨界導通模式時的多個信號的工作波形圖。 FIG2 shows the operating waveforms of multiple signals when the switching power supply shown in FIG1 operates in the critical conduction mode.

圖3示出了圖1所示的開關電源工作於非連續導通模式時的多個信號的工作波形圖。 FIG3 shows the operating waveforms of multiple signals when the switching power supply shown in FIG1 operates in a discontinuous conduction mode.

圖4示出了根據本發明實施例的用於非對稱半橋返馳式變換器電源的控制電路的電路原理圖。 FIG4 shows a circuit schematic diagram of a control circuit for an asymmetric half-bridge flyback converter power supply according to an embodiment of the present invention.

圖5示出了圖4所示的零電壓導通(Zero Voltage Switching,ZVS)使能模組的示例電路實現的電路原理圖。 FIG5 shows a circuit schematic diagram of an example circuit implementation of the zero voltage switching (ZVS) enabling module shown in FIG4.

圖6示出了在再次導通使能信號Tzvs_ENA為使能狀態的情況下,圖4所示的開關電源中的多個信號的工作波形圖。 FIG6 shows the operating waveforms of multiple signals in the switching power supply shown in FIG4 when the enable signal Tzvs_ENA is turned on again and is in the enabled state.

圖7示出了在再次導通使能信號Tzvs_ENA為非使能狀態的情況下,圖4所示的開關電源中的多個信號的工作波形圖。 FIG7 shows the operating waveforms of multiple signals in the switching power supply shown in FIG4 when the enable signal Tzvs_ENA is turned off again and is in a non-enabled state.

圖8示出了圖4所示的ZVS計算模組的示例電路實現的電路原理圖。 FIG8 shows a circuit schematic diagram of an example circuit implementation of the ZVS calculation module shown in FIG4.

圖9示出了在ZVS計算模組中的電壓V3高於參考電壓Vref的情況下,圖4所示的開關電源中的多個信號的工作波形圖。 FIG9 shows the operating waveforms of multiple signals in the switching power supply shown in FIG4 when the voltage V3 in the ZVS calculation module is higher than the reference voltage Vref.

圖10示出了在ZVS計算模組中的電壓V3低於參考電壓Vref的情況下,圖4所示的開關電源中的多個信號的工作波形圖。 FIG10 shows the operating waveforms of multiple signals in the switching power supply shown in FIG4 when the voltage V3 in the ZVS calculation module is lower than the reference voltage Vref.

圖11示出了在ZVS計算模組中的電壓V3等於參考電壓Vref的情況下,圖4所示的開關電源中的多個信號的工作波形圖。 FIG11 shows the operating waveforms of multiple signals in the switching power supply shown in FIG4 when the voltage V3 in the ZVS calculation module is equal to the reference voltage Vref.

圖12示出了圖4所示的ZVS計算模組的另一示例電路實現的電路原理圖。 FIG12 shows a circuit schematic diagram of another example circuit implementation of the ZVS calculation module shown in FIG4.

下面將詳細描述本發明的各個方面的特徵和示例性實施例。在下面的詳細描述中,提出了許多具體細節,以便提供對本發明的全面理 解。但是,對於本領域技術人員來說很明顯的是,本發明可以在不需要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是為了通過示出本發明的示例來提供對本發明的更好的理解。本發明決不限於下面所提出的任何具體配置和演算法,而是在不脫離本發明的精神的前提下覆蓋了元素、部件和演算法的任何修改、替換和改進。在圖式和下面的描述中,沒有示出公知的結構和技術,以便避免對本發明造成不必要的模糊。 The features and exemplary embodiments of various aspects of the present invention are described in detail below. In the detailed description below, many specific details are set forth in order to provide a comprehensive understanding of the present invention. However, it is obvious to a person skilled in the art that the present invention can be implemented without some of these specific details. The following description of the embodiments is merely to provide a better understanding of the present invention by illustrating examples of the present invention. The present invention is in no way limited to any specific configuration and algorithm set forth below, but covers any modification, substitution and improvement of elements, components and algorithms without departing from the spirit of the present invention. In the drawings and the following description, well-known structures and techniques are not shown in order to avoid unnecessary ambiguity of the present invention.

圖1示出了傳統的非對稱半橋返馳式變換器電源的拓撲結構示意圖。在圖1所示的開關電源100中,通過諧振電容Cr和變壓器T的一次側電感Lp及一次側漏感Lr的諧振可以實現上電晶體Q1和下電晶體Q2的零電壓導通(ZVS)。通常,圖1所示的開關電源100在系統重載的情況下工作於臨界導通模式(Critical Conduction Mode,CRM),在系統輕載的情況下工作於非連續導通模式(Discontinuous Conduction Mode,DCM),並且可以按照n(n

Figure 112117187-A0305-02-0006-13
1)個臨界導通模式加1個非連續導通模式的迴圈方式工作或者持續工作於非連續導通模式。 FIG1 shows a schematic diagram of the topological structure of a conventional asymmetric half-bridge flyback converter power supply. In the switching power supply 100 shown in FIG1 , the zero voltage conduction (ZVS) of the upper transistor Q1 and the lower transistor Q2 can be achieved through the resonance of the resonant capacitor Cr and the primary inductor Lp and the primary leakage inductor Lr of the transformer T. Typically, the switching power supply 100 shown in FIG1 operates in the critical conduction mode (CRM) when the system is overloaded, and in the discontinuous conduction mode (DCM) when the system is lightly loaded, and can be operated according to n(n
Figure 112117187-A0305-02-0006-13
1) It works in a loop mode of one critical conduction mode plus one discontinuous conduction mode or continuously works in discontinuous conduction mode.

圖2示出了圖1所示的開關電源工作於臨界導通模式時的多個信號的工作波形圖,其中:Q1 gate表示用於控制上電晶體Q1的導通與關斷的上電晶體控制信號,Q2 gate表示用於控制下電晶體Q2的導通與關斷的下電晶體控制信號,ILr表示變壓器T的一次側諧振電流、IDo表示變壓器T的二次側電流,HB電壓表示上電晶體Q1和下電晶體Q2之間的中間點處的電壓。 FIG2 shows operating waveforms of multiple signals when the switching power supply shown in FIG1 operates in a critical conduction mode, wherein: Q1 gate represents an upper transistor control signal for controlling the on and off of an upper transistor Q1, Q2 gate represents a lower transistor control signal for controlling the on and off of a lower transistor Q2, I Lr represents a primary side resonant current of the transformer T, I Do represents a secondary side current of the transformer T, and HB voltage represents a voltage at a midpoint between the upper transistor Q1 and the lower transistor Q2.

如圖1和圖2所示,圖1所示的開關電源100在臨界導通模式下的工作過程如下:t0時刻,上電晶體Q1從關斷狀態變為導通狀態,輸入電壓Vin通過諧振電容Cr給變壓器T的一次側勵磁電感Lm(Lm=Lp+Lr)充電,變壓器T的一次側諧振電流ILr正向上升;t1時刻,上電晶體Q1從導通狀態變為關斷狀態,輸入電壓Vin給變壓器T的一次側勵磁電感Lm充電的回路斷開,由於電感中的電流無法突變,變壓器T的一次側諧振電流ILr給下電晶體Q2的寄生電容放電並給上電晶體Q1的寄 生電容充電,HB電壓下降至0V,下電晶體Q2的體二極體從關斷狀態變為導通狀態;t2時刻,下電晶體Q2從關斷狀態變為導通狀態從而實現零電壓導通,之後諧振電容Cr和變壓器T的一次側漏感Lr諧振,變壓器T的一次側諧振電流ILr下降至0A後負向增大,同時變壓器T進行退磁,變壓器T的一次側勵磁電流ILm線性減小;t3時刻,變壓器T的一次側諧振電流ILr諧振至和一次側勵磁電流ILm同樣大,變壓器T退磁結束,變壓器T的二次側電流IDo回到0A,之後諧振電容Cr通過下電晶體Q2向變壓器T的一次側勵磁電感Lm放電,變壓器T的一次側諧振電流ILr負向增大;t4時刻,下電晶體Q2從導通狀態變為關斷狀態,諧振電容Cr向變壓器T的一次側勵磁電感Lm放電的回路斷開,由於電感中的電流無法突變,變壓器T的一次側諧振電流ILr給上電晶體Q1的寄生電容放電並給下電晶體Q2的寄生電容充電,HB電壓上升至輸入電壓Vin,上電晶體Q1的體二極體從關斷狀態變為導通狀態;t5時刻,上電晶體Q1從關斷狀態變為導通狀態從而實現零電壓導通。 As shown in FIG. 1 and FIG. 2 , the working process of the switching power supply 100 shown in FIG. 1 in the critical conduction mode is as follows: at time t0, the on-state transistor Q1 changes from the off state to the on state, and the input voltage Vin charges the primary-side magnetizing inductance Lm (Lm=Lp+Lr) of the transformer T through the resonant capacitor Cr, and the primary-side resonant current I Lr of the transformer T rises positively; at time t1, the on-state transistor Q1 changes from the on state to the off state, and the circuit for charging the primary-side magnetizing inductance Lm of the transformer T by the input voltage Vin is disconnected. Since the current in the inductor cannot suddenly change, the primary-side resonant current I Lr of the transformer T rises positively. Lr discharges the parasitic capacitance of the lower transistor Q2 and charges the parasitic capacitance of the upper transistor Q1. The HB voltage drops to 0V, and the body diode of the lower transistor Q2 changes from the off state to the on state. At t2, the lower transistor Q2 changes from the off state to the on state to achieve zero-voltage conduction. After that, the resonant capacitor Cr resonates with the primary leakage inductance Lr of the transformer T. The primary resonant current I Lr of the transformer T drops to 0A and then increases negatively. At the same time, the transformer T is demagnetized, and the primary excitation current I Lm of the transformer T decreases linearly. At t3, the primary resonant current I Lr of the transformer T resonates to the primary excitation current I Lm is also large, the demagnetization of transformer T is completed, and the secondary current I Do of transformer T returns to 0A. After that, the resonant capacitor Cr discharges to the primary magnetizing inductor Lm of transformer T through the lower transistor Q2, and the primary resonant current I Lr of transformer T increases negatively; at t4, the lower transistor Q2 changes from the on state to the off state, and the circuit for the resonant capacitor Cr to discharge to the primary magnetizing inductor Lm of transformer T is disconnected. Since the current in the inductor cannot change suddenly, the primary resonant current I Lr discharges the parasitic capacitance of the upper transistor Q1 and charges the parasitic capacitance of the lower transistor Q2. The HB voltage rises to the input voltage Vin, and the body diode of the upper transistor Q1 changes from the off state to the on state. At t5, the upper transistor Q1 changes from the off state to the on state, thereby achieving zero-voltage conduction.

圖3示出了圖1所示的開關電源工作於非連續導通模式時的多個信號的工作波形圖,其中:Q1 gate表示用於控制上電晶體Q1的導通與關斷的上電晶體控制信號,Q2 gate表示用於控制下電晶體Q2的導通與關斷的下電晶體控制信號,ILr表示變壓器T的一次側諧振電流、IDo表示變壓器T的二次側電流,HB電壓表示上電晶體Q1和下電晶體Q2之間的中間點處的電壓。 FIG3 shows operating waveforms of multiple signals when the switching power supply shown in FIG1 operates in a discontinuous conduction mode, wherein: Q1 gate represents an upper transistor control signal for controlling the on and off of an upper transistor Q1, Q2 gate represents a lower transistor control signal for controlling the on and off of a lower transistor Q2, I Lr represents a primary side resonant current of the transformer T, I Do represents a secondary side current of the transformer T, and HB voltage represents a voltage at a midpoint between the upper transistor Q1 and the lower transistor Q2.

如圖1和圖3所示,圖1所示的開關電源100在非連續導通模式下的工作過程如下:t0時刻,上電晶體Q1從關斷狀態變為導通狀態,輸入電壓Vin通過諧振電容Cr給變壓器T的一次側勵磁電感Lm(Lm=Lp+Lr)充電,變壓器T的一次側諧振電流ILr正向上升;t1時刻,上電晶體Q1從導通狀態變為關斷狀態,輸入電壓Vin給變壓器T的一次側勵磁電感Lm充電的回路斷開,由於電感中的電流無法突變,變壓器T的一次側諧振電流ILr給下電晶體Q2的寄生電容放電並給上電晶體Q1的寄 生電容充電,HB電壓下降至0V,下電晶體Q2的體二極體從關斷狀態變為導通狀態;t2時刻,下電晶體Q2從關斷狀態變為導通狀態從而實現零電壓導通,之後諧振電容Cr和變壓器T的一次側漏感Lr諧振,變壓器T的一次側諧振電流ILr下降至0A後負向增大,同時變壓器T的一次側勵磁電流ILm減小;t3時刻,下電晶體Q2從導通狀態變為關斷狀態,諧振電容Cr和變壓器T的一次側漏感Lr的諧振回路斷開,之後上電晶體Q1及下電晶體Q2的寄生電容和變壓器T的一次側勵磁電感Lm諧振;如果HB電壓的諧振幅度不夠大,諧振峰值無法達到輸入電壓Vin,則t4時刻,下電晶體Q2需再次從關斷狀態變為導通狀態,諧振電容Cr通過下電晶體Q2向變壓器T的一次側勵磁電感Lm放電,變壓器T的一次側諧振電流ILr負向增大;t5時刻,下電晶體Q2從導通狀態變為關斷狀態,諧振電容Cr向變壓器T的一次側勵磁電感Lm放電的回路斷開,變壓器T的一次側勵磁電感Lm和上電晶體Q1及下電晶體Q2的寄生電容諧振,由於電感中的電流無法突變,變壓器T的一次側諧振電流ILr給上電晶體Q1的寄生電容放電並給下電晶體Q2的寄生電容充電,若變壓器T的一次側諧振電流ILr足夠大,那麼HB電壓會上升至輸入電壓Vin,上電晶體Q1的體二極體從關斷狀態變為導通狀態;t6時刻,上電晶體Q1從關斷狀態變為導通狀態從而實現零電壓導通。 As shown in FIG. 1 and FIG. 3 , the operation process of the switching power supply 100 shown in FIG. 1 in the discontinuous conduction mode is as follows: at time t0, the on-state transistor Q1 changes from the off state to the on state, and the input voltage Vin charges the primary-side magnetizing inductance Lm (Lm=Lp+Lr) of the transformer T through the resonant capacitor Cr, and the primary-side resonant current I Lr of the transformer T rises positively; at time t1, the on-state transistor Q1 changes from the on state to the off state, and the circuit for charging the primary-side magnetizing inductance Lm of the transformer T by the input voltage Vin is disconnected. Since the current in the inductor cannot suddenly change, the primary-side resonant current I Lr of the transformer T rises positively. Lr discharges the parasitic capacitance of the lower transistor Q2 and charges the parasitic capacitance of the upper transistor Q1. The HB voltage drops to 0V, and the body diode of the lower transistor Q2 changes from the off state to the on state. At t2, the lower transistor Q2 changes from the off state to the on state, thereby realizing zero-voltage conduction. After that, the resonant capacitor Cr resonates with the primary leakage inductance Lr of the transformer T. The primary resonant current I Lr of the transformer T drops to 0A and then increases negatively. At the same time, the primary magnetizing current I Lm decreases; at t3, the lower transistor Q2 changes from the on state to the off state, and the resonant circuit of the resonant capacitor Cr and the primary leakage inductance Lr of the transformer T is broken. Then, the parasitic capacitance of the upper transistor Q1 and the lower transistor Q2 resonates with the primary magnetizing inductance Lm of the transformer T; if the resonance amplitude of the HB voltage is not large enough and the resonance peak value cannot reach the input voltage Vin, then at t4, the lower transistor Q2 needs to change from the off state to the on state again, and the resonant capacitor Cr discharges to the primary magnetizing inductance Lm of the transformer T through the lower transistor Q2, and the primary resonant current I of the transformer T Lr increases negatively; at t5, the lower transistor Q2 changes from the on state to the off state, and the circuit for the resonant capacitor Cr to discharge to the primary side magnetizing inductance Lm of the transformer T is broken. The primary side magnetizing inductance Lm of the transformer T resonates with the parasitic capacitance of the upper transistor Q1 and the lower transistor Q2. Since the current in the inductance cannot change suddenly, the primary side resonant current I Lr of the transformer T discharges the parasitic capacitance of the upper transistor Q1 and charges the parasitic capacitance of the lower transistor Q2. If the primary side resonant current I If Lr is large enough, the HB voltage will rise to the input voltage Vin, and the body diode of the power-on transistor Q1 will change from the off state to the on state; at t6, the power-on transistor Q1 changes from the off state to the on state, thereby achieving zero-voltage conduction.

在圖1所示的開關電源100工作於非連續導通模式時,下電晶體Q2能否在t2時刻實現零電壓導通取決於變壓器T的一次側諧振電流ILr在上電晶體Q1從導通狀態變為關斷狀態時的正向峰值電流Ip,即使在系統輕載的情況下正向峰值電流Ip也足夠讓HB電壓諧振到0V,因此下電晶體Q2肯定能實現零電壓開通;上電晶體Q1能否在t6時刻實現零電壓導通取決於在t5時刻下電晶體Q2再次從導通狀態變為關斷狀態時變壓器T的一次側諧振電流ILr的負向電流幅值In_zvs,即取決於下電晶體Q2處於關斷狀態的持續時長達Tdcm後再次處於導通狀態的持續時長Tzvs。Tzvs越短,負向電流幅值In_zvs越小,t5-t6期間變壓器T的一次側勵磁電感Lm 和上電晶體Q1及下電晶體Q2的寄生電容的諧振能量越小,而諧振能量太小會導致上電晶體Q1無法實現零電壓導通。Tzvs越長,負向電流幅值In_zvs越大,t5-t6期間變壓器T的一次側勵磁電感Lm和上電晶體Q1及下電晶體Q2的寄生電容的諧振能量越大,雖然諧振能量越大上電晶體Q1越容易實現零電壓導通,但是諧振過程中會有能量的損失,諧振能量越大損失的能量也會越多。另一方面,負向電流幅值In_zvs越大,要保持輸出恆定就需要正向峰值電流Ip越大,這會導致上電晶體Q1從導通狀態變為關斷狀態時的損耗變大,因此Tzvs時間過長反而會導致效率變低。因此,需要將Tzvs控制在上電晶體Q1剛好能實現零電壓導通。 When the switching power supply 100 shown in FIG1 operates in the discontinuous conduction mode, whether the lower transistor Q2 can achieve zero voltage conduction at time t2 depends on the forward peak current Ip of the primary side resonant current I Lr of the transformer T when the upper transistor Q1 changes from the on state to the off state. Even when the system is lightly loaded, the forward peak current Ip is sufficient to make the HB voltage resonate to 0V, so the lower transistor Q2 can definitely achieve zero voltage turn-on; whether the upper transistor Q1 can achieve zero voltage conduction at time t6 depends on the primary side resonant current I Lr of the transformer T when the lower transistor Q2 changes from the on state to the off state again at time t5. The negative current amplitude In_zvs of Lr depends on the duration Tzvs of the lower transistor Q2 being in the off state after the duration Tdcm. The shorter Tzvs is, the smaller the negative current amplitude In_zvs is, and the smaller the resonant energy of the primary-side excitation inductance Lm of the transformer T and the parasitic capacitance of the upper transistor Q1 and the lower transistor Q2 during t5-t6. If the resonant energy is too small, the upper transistor Q1 will not be able to achieve zero-voltage conduction. The longer Tzvs is, the larger the negative current amplitude In_zvs is, and the greater the resonant energy of the primary-side excitation inductance Lm of the transformer T and the parasitic capacitance of the upper transistor Q1 and the lower transistor Q2 during t5-t6. Although the greater the resonant energy, the easier it is for the upper transistor Q1 to achieve zero-voltage conduction, there will be energy loss during the resonance process, and the greater the resonant energy, the more energy will be lost. On the other hand, the larger the negative current amplitude In_zvs is, the larger the forward peak current Ip is required to keep the output constant, which will cause the upper transistor Q1 to lose more when it changes from the on state to the off state. Therefore, a too long Tzvs time will lead to lower efficiency. Therefore, Tzvs needs to be controlled so that the upper transistor Q1 can just achieve zero voltage conduction.

鑒於上述情況,提出了根據本發明實施例的用於非對稱半橋返馳式變換器電源的控制電路,能夠在非對稱半橋返馳式變換器電源工作於非連續導通模式時通過控制下電晶體Q2再次處於導通狀態的持續時長Tzvs,控制下電晶體Q2再次從導通狀態變為關斷狀態時變壓器T的一次側諧振電流ILr的負向電流幅值In_zvs,使得在系統輕載的情況下上電晶體Q1仍能實現零電壓導通,且無諧振能量的浪費,保證輕載效率最優。 In view of the above situation, a control circuit for an asymmetric half-bridge flyback converter power supply according to an embodiment of the present invention is proposed. When the asymmetric half-bridge flyback converter power supply operates in a discontinuous conduction mode, the control circuit can control the duration Tzvs of the lower transistor Q2 being in the on state again, and control the negative current amplitude In_zvs of the primary side resonant current I Lr of the transformer T when the lower transistor Q2 changes from the on state to the off state again, so that when the system is lightly loaded, the upper transistor Q1 can still achieve zero voltage conduction, and there is no waste of resonant energy, thereby ensuring the optimal light load efficiency.

圖4示出了根據本發明實施例的用於非對稱半橋返馳式變換器電源的控制電路的電路原理圖。如圖4所示,根據本發明實施例的用於非對稱半橋返馳式變換器電源400的控制電路包括用於控制上電晶體Q1的導通與關斷的電路部分402和用於控制下電晶體Q2的導通與關斷的電路部分404,其中:電路部分402被配置為基於表徵非對稱半橋返馳式變換器電源400的輸出電壓Vo的輸出回饋信號FB、表徵變壓器T的一次側的諧振電流的電流表徵信號Vcs、以及用於控制下電晶體Q2的導通與關斷的下電晶體控制信號gate_down,生成用於控制上電晶體Q2的導通與關斷的上電晶體控制信號gate_up;電路部分404被配置為基於輸出回饋信號FB、表徵變壓器T的退磁情況的退磁表徵信號INV、以及上電晶體控制信號gate_up,生成下電晶體控制信號gate_down。 FIG4 shows a circuit schematic diagram of a control circuit for an asymmetric half-bridge flyback converter power supply according to an embodiment of the present invention. As shown in FIG4 , the control circuit for an asymmetric half-bridge flyback converter power supply 400 according to an embodiment of the present invention includes a circuit portion 402 for controlling the on and off state of an upper transistor Q1 and a circuit portion 404 for controlling the on and off state of a lower transistor Q2, wherein: the circuit portion 402 is configured to control the on and off state of an upper transistor Q1 based on an output feedback signal FB representing an output voltage Vo of the asymmetric half-bridge flyback converter power supply 400, a current characterization representing a resonant current of the primary side of the transformer T, and a current characterization representing a resonant current of the primary side of the transformer T. The circuit part 404 is configured to generate the lower transistor control signal gate_down based on the output feedback signal FB, the demagnetization characteristic signal INV that characterizes the demagnetization condition of the transformer T, and the upper transistor control signal gate_up.

如圖4所示,在一些實施例中,電路部分402進一步被配置 為通過以下處理生成上電晶體控制信號gate_up:基於輸出回饋信號FB和電流表徵信號Vcs(例如,通過對輸出回饋信號FB的分壓信號和電流表徵信號Vcs進行比較)生成上電晶體關斷控制信號CV_off;基於下電晶體控制信號gate_down生成上電晶體導通控制信號up_on;以及基於上電晶體關斷控制信號CV_off和上電晶體導通控制信號up_on生成上電晶體控制信號gate_up。 As shown in FIG. 4 , in some embodiments, the circuit portion 402 is further configured to generate a power-on transistor control signal gate_up by the following processing: generating a power-on transistor off control signal CV_off based on the output feedback signal FB and the current characteristic signal Vcs (e.g., by comparing the voltage division signal of the output feedback signal FB with the current characteristic signal Vcs); generating a power-on transistor on control signal up_on based on the down transistor control signal gate_down; and generating a power-on transistor control signal gate_up based on the power-on transistor off control signal CV_off and the power-on transistor on control signal up_on.

如圖4所示,在一些實施例中,電路部分404進一步被配置為在上電晶體Q1從導通狀態變為關斷狀態之後並從關斷狀態變為導通狀態之前,通過以下處理生成下電晶體控制信號gate_down:基於上電晶體控制信號gate_up,生成用於控制下電晶體Q2首次從關斷狀態變為導通狀態的首次導通控制信號down_on;基於退磁表徵信號INV,生成用於控制下電晶體Q2首次從導通狀態變為關斷狀態的首次關斷控制信號down_off;基於退磁表徵信號INV和輸出回饋信號FB,生成用於控制下電晶體Q2再次從關斷狀態變為導通狀態的再次導通控制信號ZVS_on(圖中未示出);以及基於退磁表徵信號INV,生成用於控制下電晶體Q2再次從導通狀態變為關斷狀態的再次關斷控制信號ZVS_off。這裡,下電晶體控制信號gate_down是基於首次導通控制信號down_on、首次關斷控制信號down_off、再次導通控制信號ZVS_on、以及再次關斷控制信號ZVS_off生成的。 As shown in FIG. 4 , in some embodiments, the circuit portion 404 is further configured to generate a down transistor control signal gate_down by the following processing after the up transistor Q1 changes from the on state to the off state and before it changes from the off state to the on state: based on the up transistor control signal gate_up, generate a first turn-on control signal down_on for controlling the down transistor Q2 to change from the off state to the on state for the first time; based on the demagnetization characteristic signal INV, generate a first turn-on control signal gate_up for controlling the down transistor Q2 to change from the off state to the on state for the first time; The first turn-off control signal down_off is generated to control the lower transistor Q2 to change from the on state to the off state for the first time; based on the demagnetization characteristic signal INV and the output feedback signal FB, a re-conduction control signal ZVS_on (not shown in the figure) is generated to control the lower transistor Q2 to change from the off state to the on state again; and based on the demagnetization characteristic signal INV, a re-turn-off control signal ZVS_off is generated to control the lower transistor Q2 to change from the on state to the off state again. Here, the lower transistor control signal gate_down is generated based on the first turn-on control signal down_on, the first turn-off control signal down_off, the re-conduction control signal ZVS_on, and the re-turn-off control signal ZVS_off.

如圖4所示,在一些實施例中,電路部分404進一步被配置為通過以下處理生成再次導通控制信號ZVS_on:基於退磁表徵信號INV,生成用於控制是否允許下電晶體Q2再次從關斷狀態變為導通狀態的再次導通使能信號Tzvs_ENA;基於輸出回饋信號FB,生成用於控制非對稱半橋返馳式變換器電源400的工作模式和工作頻率中的至少一者的模式/頻率控制信號DCM_on;以及基於再次導通使能信號Tzvs_ENA和模式/頻率控制信號DCM_on,生成再次導通控制信號ZVS_on。 As shown in FIG. 4 , in some embodiments, the circuit portion 404 is further configured to generate a re-conduction control signal ZVS_on by the following processing: based on the demagnetization characteristic signal INV, a re-conduction enable signal Tzvs_ENA is generated for controlling whether the lower transistor Q2 is allowed to change from the off state to the on state again; based on the output feedback signal FB, a mode/frequency control signal DCM_on is generated for controlling at least one of the operating mode and the operating frequency of the asymmetric half-bridge flyback converter power supply 400; and based on the re-conduction enable signal Tzvs_ENA and the mode/frequency control signal DCM_on, a re-conduction control signal ZVS_on is generated.

如圖4所示,在一些實施例中,在上電晶體控制信號gate_up控制上電晶體Q1從導通狀態變為關斷狀態的時刻開始的第一預定時長之 後,首次導通控制信號down_on控制下電晶體Q2從關斷狀態變為導通狀態。在下電晶體控制信號gate_down控制下電晶體Q2從導通狀態變為關斷狀態的時刻開始的第二預定時長之後,上電晶體導通控制信號up_on控制上電晶體Q1從關斷狀態變為導通狀態。 As shown in FIG. 4 , in some embodiments, after the first predetermined time period starting from the moment when the upper transistor control signal gate_up controls the upper transistor Q1 to change from the on state to the off state, the first turn-on control signal down_on controls the lower transistor Q2 to change from the off state to the on state. After the second predetermined time period starting from the moment when the lower transistor control signal gate_down controls the lower transistor Q2 to change from the on state to the off state, the upper transistor turn-on control signal up_on controls the upper transistor Q1 to change from the off state to the on state.

具體地,在圖4所示的非對稱半橋返馳式變換器電源400中:輸出電壓Vo通過電阻分壓以及TL431和光耦之後產生電壓FB(即,輸出回饋信號FB);在上電晶體Q1從關斷狀態變為導通狀態後,輸入電壓Vin通過諧振電容Cr給變壓器T的一次側勵磁電感Lm充電,變壓器T的一次側諧振電流ILr正向上升,電流感測電阻Rcs上的電壓Vcs(即,電流表徵信號Vcs)升高;當電流感測電阻Rcs上的電壓Vcs高於上電晶體Q1和下電晶體Q2之間的中間點處的電壓(即,HB電壓)經過分壓後的電壓時,上電晶體關斷控制信號CV_off從低位準變為高位準,上電晶體Q1從導通狀態變為關斷狀態;在上電晶體Q1從導通狀態變為關斷狀態後,變壓器T的一次側諧振電流ILr給下電晶體Q2的寄生電容放電並給上電晶體Q1的寄生電容充電,HB電壓下降至0V,下電晶體Q2的體二極體從關斷狀態變為導通狀態,死區時間模組在上電晶體Q1從導通狀態變為關斷狀態的時刻開始計時固定死區時間後控制下電晶體Q2從關斷狀態變為導通狀態,實現下電晶體Q2的零電壓開通;變壓器T的輔助繞組側的電壓INV(即,退磁表徵信號INV)送入退磁檢測模組產生的首次關斷控制信號down_off控制下電晶體Q2從導通狀態變為關斷狀態後,變壓器T的一次側勵磁電感Lm和上電晶體Q1及下電晶體Q2的寄生電容諧振;電壓INV送入ZVS使能模組產生的再次導通使能信號Tzvs_ENA控制是否允許下電晶體Q2再次從關斷狀態變為導通狀態;電壓FB經過分壓後的信號送入模式/頻率模組產生的模式/頻率控制信號DCM_on限制非對稱半橋返馳式變換器電源400的工作狀態及工作頻率(例如,模式/頻率控制信號DCM_on可以在系統負載降低時降低系統工作頻率);在模式/頻率控制信號DCM_on翻轉時,如果再次導通使能信號Tzvs_ENA為使能狀態,則下電 晶體Q2再次從關斷狀態變為導通狀態;電壓INV送入ZVS計算模組產生的再次關斷控制信號ZVS_off控制下電晶體Q2再次從導通狀態變為關斷狀態後,變壓器的一次側諧振電流ILr給上電晶體Q1的寄生電容放電並給下電晶體Q2的寄生電容充電,HB電壓上升至輸入電壓Vin,上電晶體Q1的體二極體從關斷狀態變為導通狀態,此時死區時間模組在下電晶體Q2從導通狀態變為關斷狀態的時刻開始計時固定死區時間後控制上電晶體Q1從關斷狀態變為導通狀態,實現上電晶體Q1的零電壓開通;在模式/頻率控制信號DCM_on翻轉時,如果再次導通使能信號Tzvs_ENA為非使能狀態,則下電晶體Q2不再從關斷狀態變為導通狀態,死區時間模組產生固定死區延時後在HB電壓諧振到最高值時控制上電晶體Q1從關斷狀態變為導通狀態,實現上電晶體Q1的零電壓導通。需要說明的是,零電壓導通並不一定是指開關導通前後壓差為0V,只要是一個較低電壓值都屬於零電壓導通。 Specifically, in the asymmetric half-bridge flyback converter power supply 400 shown in FIG4 : the output voltage Vo generates a voltage FB (i.e., an output feedback signal FB) after passing through a resistor divider and TL431 and an optocoupler; after the on-state transistor Q1 changes from an off state to an on state, the input voltage Vin charges the primary-side magnetizing inductance Lm of the transformer T through the resonant capacitor Cr, and the primary-side resonant current I of the transformer T Lr rises positively, and the voltage Vcs (i.e., the current characteristic signal Vcs) on the current flow sensing resistor Rcs increases; when the voltage Vcs on the current flow sensing resistor Rcs is higher than the voltage at the midpoint between the upper transistor Q1 and the lower transistor Q2 (i.e., the HB voltage) after voltage division, the upper transistor shutdown control signal CV_off changes from a low level to a high level, and the upper transistor Q1 changes from an on state to an off state; after the upper transistor Q1 changes from an on state to an off state, the primary resonant current I of the transformer T Lr discharges the parasitic capacitance of the lower transistor Q2 and charges the parasitic capacitance of the upper transistor Q1. The HB voltage drops to 0V, and the body diode of the lower transistor Q2 changes from the off state to the on state. The dead time module starts timing the fixed dead time at the moment when the upper transistor Q1 changes from the on state to the off state, and then controls the lower transistor Q2 to change from the off state to the on state, realizing the zero voltage turn-on of the lower transistor Q2. ; The voltage INV (i.e., demagnetization characteristic signal INV) on the auxiliary winding side of the transformer T is sent to the first shutdown control signal down_off generated by the demagnetization detection module to control the lower transistor Q2 from the on state to the off state, and the primary side magnetizing inductance Lm of the transformer T resonates with the parasitic capacitance of the upper transistor Q1 and the lower transistor Q2; the voltage INV is sent to the re-conduction enable signal generated by the ZVS enable module The signal Tzvs_ENA controls whether the lower transistor Q2 is allowed to change from the off state to the on state again; the voltage FB is sent to the mode/frequency module after voltage division to generate the mode/frequency control signal DCM_on to limit the working state and working frequency of the asymmetric half-bridge flyback converter power supply 400 (for example, the mode/frequency control signal DCM_on can reduce the system working state when the system load is reduced). operating frequency); when the mode/frequency control signal DCM_on flips, if the re-enabling enable signal Tzvs_ENA is enabled, the lower transistor Q2 changes from the off state to the on state again; after the voltage INV is sent to the ZVS calculation module to generate the re-off control signal ZVS_off to control the lower transistor Q2 to change from the on state to the off state again, the primary resonant current I Lr discharges the parasitic capacitance of the upper transistor Q1 and charges the parasitic capacitance of the lower transistor Q2. The HB voltage rises to the input voltage Vin, and the body diode of the upper transistor Q1 changes from the off state to the on state. At this time, the dead time module starts timing the fixed dead time at the moment when the lower transistor Q2 changes from the on state to the off state, and then controls the upper transistor Q1 to change from the off state to the on state, realizing the upper transistor Q1 is turned on at zero voltage; when the mode/frequency control signal DCM_on flips, if the enable signal Tzvs_ENA is turned off again, the lower transistor Q2 will no longer change from the off state to the on state. After the dead time module generates a fixed dead time delay, it controls the upper transistor Q1 to change from the off state to the on state when the HB voltage resonates to the highest value, thereby realizing zero voltage turn-on of the upper transistor Q1. It should be noted that zero voltage turn-on does not necessarily mean that the voltage difference before and after the switch is turned on is 0V. As long as it is a lower voltage value, it belongs to zero voltage turn-on.

在退磁檢測模組產生的首次關斷控制信號down_off控制下電晶體Q2從導通狀態變為關斷狀態後,變壓器T的一次側勵磁電感Lm和上電晶體Q1及下電晶體Q2的寄生電容之和Coss諧振,諧振回路中包含變壓器T的諧振電容Cr,且諧振電容Cr遠大於上電晶體Q1及下電晶體Q2的寄生電容之和Coss,諧振電容Cr兩端的電壓為NVo,若諧振回路初始時刻無負電流,則HB電壓的諧振中心值為NVo,諧振幅度也為NVo,因此諧振最高電壓可以達到2NVo。若Vin<2NVo,則無需控制下電晶體Q2再次從關斷狀態變為導通狀態也能基本實現上電晶體Q1的零電壓導通。 After the first shutdown control signal down_off generated by the demagnetization detection module controls the lower transistor Q2 to change from the on state to the off state, the primary side excitation inductance Lm of the transformer T and the sum of the parasitic capacitances Coss of the upper transistor Q1 and the lower transistor Q2 resonate. The resonant circuit includes the resonant capacitance Cr of the transformer T, and the resonant capacitance Cr is much larger than the sum of the parasitic capacitances Coss of the upper transistor Q1 and the lower transistor Q2 . The voltage across the resonant capacitance Cr is N.Vo. If there is no negative current in the resonant circuit at the initial moment, the resonant center value of the HB voltage is N.Vo , and the resonant amplitude is also N.Vo. Therefore, the highest resonant voltage can reach 2N.Vo. If Vin<2N . Vo, the upper transistor Q1 can be basically turned on at zero voltage without controlling the lower transistor Q2 to change from the off state to the on state again.

圖5示出了圖4所示的ZVS使能模組的示例電路實現的電路原理圖。如圖5所示,在一些實施例中,ZVS使能模組被配置為:通過在上電晶體Q1處於導通狀態且下電晶體Q2處於關斷狀態期間對退磁表徵信號INV進行採樣生成第一採樣信號V1;通過在上電晶體Q1處於關斷狀態且下電晶體Q2處於導通狀態期間對退磁表徵信號INV進行採樣生成第二採樣信號V2;以及通過對第一採樣信號V1和第二採樣信號V2進行比較, 生成再次導通使能信號Tzvs_ENA。 FIG5 shows a circuit schematic diagram of an example circuit implementation of the ZVS enable module shown in FIG4. As shown in FIG5, in some embodiments, the ZVS enable module is configured to: generate a first sampling signal V1 by sampling the demagnetization characteristic signal INV during the period when the upper transistor Q1 is in the on state and the lower transistor Q2 is in the off state; generate a second sampling signal V2 by sampling the demagnetization characteristic signal INV during the period when the upper transistor Q1 is in the off state and the lower transistor Q2 is in the on state; and generate a re-conduction enable signal Tzvs_ENA by comparing the first sampling signal V1 and the second sampling signal V2.

如圖4和圖5所示,電壓INV經過採樣單元採樣產生電壓V1和V2(即,第一採樣信號V1和第二採樣信號V2),電壓V1=m1.(Vin-N˙Vo)是在上電晶體Q1處於導通狀態且下電晶體Q2處於關斷狀態期間採樣得到的、與充磁電壓(Vin-N.Vo)成比例的電壓,電壓V2=m2.N.Vo是在上電晶體Q1處於關斷狀態且下電晶體Q2處於導通狀態期間採樣得到的、與退磁電壓(N.Vo)成比例的電壓;電壓V1和V2經過運算比較單元的簡單運算轉化後比較或者直接比較,可以產生用於控制是否允許下電晶體Q2再次從關斷狀態變為導通狀態的再次導通使能信號Tzvs_ENA。 As shown in Figures 4 and 5, the voltage INV is sampled by the sampling unit to generate voltages V1 and V2 (i.e., the first sampling signal V1 and the second sampling signal V2). The voltage V1 = m1. (Vin-N˙Vo) is a voltage proportional to the magnetizing voltage (Vin-N.Vo) obtained by sampling when the upper transistor Q1 is in the on state and the lower transistor Q2 is in the off state. The voltage V2 = m2. N. Vo is a voltage proportional to the demagnetization voltage (N.Vo) sampled when the upper transistor Q1 is in the off state and the lower transistor Q2 is in the on state; the voltages V1 and V2 are compared after simple calculation conversion by the operation comparison unit or directly compared to generate a re-conduction enable signal Tzvs_ENA for controlling whether the lower transistor Q2 is allowed to change from the off state to the on state again.

圖6示出了在再次導通使能信號Tzvs_ENA為使能狀態的情況下,圖4所示的開關電源中的多個信號的工作波形圖,其中:Q1 gate表示用於控制上電晶體Q1的導通與關斷的上電晶體控制信號,Q2 gate表示用於控制下電晶體Q2的導通與關斷的下電晶體控制信號,ILr表示變壓器T的一次側諧振電流、DCM_on表示模式/頻率控制信號,ZVS_off表示再次關斷控制信號,INV表示退磁表徵信號。 FIG6 shows the operating waveforms of multiple signals in the switching power supply shown in FIG4 when the re-conduction enable signal Tzvs_ENA is in the enabled state, wherein: Q1 gate represents the upper transistor control signal for controlling the on and off of the upper transistor Q1, Q2 gate represents the lower transistor control signal for controlling the on and off of the lower transistor Q2, I Lr represents the primary side resonant current of the transformer T, DCM_on represents the mode/frequency control signal, ZVS_off represents the re-turn-off control signal, and INV represents the demagnetization characteristic signal.

如圖4和圖6所示,在再次導通使能信號Tzvs_ENA為使能狀態的情況下,圖4所示的非對稱半橋返馳式變換器電源400的工作過程如下:t0時刻,上電晶體Q1從關斷狀態變為導通狀態,變壓器T的一次側諧振電流ILr正向上升,電流感測電阻Rcs上的電壓Vcs變高;當電流感測電阻Rcs上的電壓Vcs升高至高於FB電壓的分壓時,t1時刻,上電晶體Q1從導通狀態變為關斷狀態,由於電感中的電流無法突變,變壓器T的一次側諧振電流ILr給下電晶體Q2的寄生電容放電並給上電晶體Q1的寄生電容充電,HB電壓下降至0V,下電晶體Q2的體二極體從關斷狀態變為導通狀態;t2時刻,首次導通控制信號down_on翻轉,下電晶體Q2從關斷狀態變為導通狀態從而實現零電壓導通,之後諧振電容Cr和變壓器T的一次側漏感Lr諧振,同時變壓器T進行退磁,變壓器T的一次側勵磁電流ILm減小;t3時刻,首次關斷控制信號dem_off翻轉,下電晶體Q2從導通 狀態變為關斷狀態,之後上電晶體Q1及下電晶體Q2的寄生電容和變壓器T的一次側勵磁電感Lm諧振,諧振週期為td;t4時刻,模式/頻率控制信號DCM_on翻轉,而再次導通使能信號Tzvs_ENA處於使能狀態,下電晶體Q2再次從關斷狀態變為導通狀態,諧振電容Cr通過下電晶體Q2向變壓器T的一次側勵磁電感Lm放電,變壓器T的一次側諧振電流ILr負向增大;t5時刻,再次關斷控制信號ZVS_off翻轉,下電晶體Q2再次從導通狀態變為關斷狀態,諧振電容Cr向變壓器T的一次側勵磁電感Lm放電的回路斷開,變壓器T的一次側勵磁電感Lm和上電晶體Q1及下電晶體Q2的寄生電容諧振,由於電感中的電流無法突變,變壓器T的一次側諧振電流ILr給上電晶體Q1的寄生電容放電並下電晶體Q2的寄生電容充電,HB電壓上升至輸入電壓Vin,上電晶體Q1的體二極體從關斷狀態變為導通狀態;t6時刻,上電晶體導通控制信號up_on翻轉,上電晶體Q1再次從關斷狀態變為導通狀態從而實現零電壓導通。 As shown in FIG4 and FIG6 , when the enable signal Tzvs_ENA is turned on again and is in the enabled state, the working process of the asymmetric half-bridge flyback converter power supply 400 shown in FIG4 is as follows: at t0, the upper transistor Q1 changes from the off state to the on state, the primary resonant current I Lr of the transformer T rises positively, and the voltage Vcs on the current flow sensing resistor Rcs increases; when the voltage Vcs on the current flow sensing resistor Rcs increases to a voltage higher than the FB voltage, at t1, the upper transistor Q1 changes from the on state to the off state, and since the current in the inductor cannot suddenly change, the primary resonant current I Lr of the transformer T increases. Lr discharges the parasitic capacitance of the lower transistor Q2 and charges the parasitic capacitance of the upper transistor Q1. The HB voltage drops to 0V, and the body diode of the lower transistor Q2 changes from the off state to the on state. At t2, the first turn-on control signal down_on flips, and the lower transistor Q2 changes from the off state to the on state, thereby realizing zero-voltage turn-on. After that, the resonant capacitor Cr resonates with the primary leakage inductance Lr of the transformer T. At the same time, the transformer T is demagnetized, and the primary magnetizing current I of the transformer T is Lm decreases; at t3, the first shutdown control signal dem_off flips, and the lower transistor Q2 changes from the on state to the off state. After that, the parasitic capacitance of the upper transistor Q1 and the lower transistor Q2 resonates with the primary side excitation inductance Lm of the transformer T, and the resonance period is td; at t4, the mode/frequency control signal DCM_on flips, and the turn-on enable signal Tzvs_ENA is in the enabled state, and the lower transistor Q2 changes from the off state to the on state again. The resonant capacitor Cr discharges to the primary side excitation inductance Lm of the transformer T through the lower transistor Q2, and the primary side resonant current I of the transformer T Lr increases in a negative direction; at t5, the control signal ZVS_off is turned off again, and the lower transistor Q2 changes from the on state to the off state again. The circuit of the resonant capacitor Cr discharging to the primary side magnetizing inductance Lm of the transformer T is broken, and the primary side magnetizing inductance Lm of the transformer T resonates with the parasitic capacitance of the upper transistor Q1 and the lower transistor Q2. Since the current in the inductor cannot change suddenly, the primary side resonant current I of the transformer T Lr discharges the parasitic capacitance of the upper transistor Q1 and charges the parasitic capacitance of the lower transistor Q2. The HB voltage rises to the input voltage Vin, and the body diode of the upper transistor Q1 changes from the off state to the on state. At t6, the upper transistor conduction control signal up_on flips, and the upper transistor Q1 changes from the off state to the on state again, thereby achieving zero-voltage conduction.

圖7示出了在再次導通使能信號Tzvs_ENA為非使能狀態的情況下,圖4所示的開關電源中的多個信號的工作波形圖,其中:Q1 gate表示用於控制上電晶體Q1的導通與關斷的上電晶體控制信號,Q2 gate表示用於控制下電晶體Q2的導通與關斷的下電晶體控制信號,ILr表示變壓器T的一次側諧振電流、DCM_on表示模式/頻率控制信號,ZVS_off表示再次關斷控制信號,INV表示退磁表徵信號。 FIG7 shows the operating waveforms of multiple signals in the switching power supply shown in FIG4 when the re-enable signal Tzvs_ENA is in a non-enabled state, wherein: Q1 gate represents an upper transistor control signal for controlling the on and off of the upper transistor Q1, Q2 gate represents a lower transistor control signal for controlling the on and off of the lower transistor Q2, I Lr represents the primary side resonant current of the transformer T, DCM_on represents a mode/frequency control signal, ZVS_off represents a re-enable control signal, and INV represents a demagnetization characteristic signal.

如圖4和圖7所示,在再次導通使能信號Tzvs_ENA為非使能狀態的情況下,圖4所示的非對稱半橋返馳式變換器電源400的工作過程如下:t0時刻,上電晶體Q1從關斷狀態變為導通狀態,變壓器T的一次側諧振電流ILr正向上升,電流感測電阻Rcs上的電壓Vcs變高;當電流感測電阻Rcs上的電壓Vcs升高至高於FB電壓的分壓時,t1時刻,上電晶體Q1從導通狀態變為關斷狀態,由於電感中的電流無法突變,變壓器T的一次側諧振電流ILr給下電晶體Q2的寄生電容放電並給上電晶體Q1的寄生電容充電,HB電壓下降至0V,下電晶體Q2的體二極體從關斷狀態變為 導通狀態;t2時刻,首次導通控制信號down_on翻轉,下電晶體Q2從關斷狀態變為導通狀態從而實現零電壓導通,之後諧振電容Cr和變壓器T的一次側漏感Lr諧振,同時變壓器T進行退磁,變壓器T的一次側勵磁電流ILm減小;t3時刻,首次關斷控制信號dem_off翻轉,下電晶體Q2從導通狀態變為關斷狀態,之後上電晶體Q1及下電晶體Q2的寄生電容和變壓器T的一次側勵磁電感Lm諧振,諧振週期為td;t4時刻,模式/頻率控制信號DCM_on翻轉,而再次導通使能信號Tzvs_ENA處於非使能狀態,下電晶體Q2不再從關斷狀態變為導通狀態;t5時刻,上電晶體導通控制信號up_on翻轉,上電晶體Q1再次從關斷狀態變為導通狀態從而實現低電壓導通。 As shown in FIG. 4 and FIG. 7 , when the enable signal Tzvs_ENA is turned off again, the working process of the asymmetric half-bridge flyback converter power supply 400 shown in FIG. 4 is as follows: at t0, the upper transistor Q1 changes from the off state to the on state, the primary resonant current I Lr of the transformer T rises positively, and the voltage Vcs on the current flow sensing resistor Rcs increases; when the voltage Vcs on the current flow sensing resistor Rcs increases to a voltage higher than the FB voltage, at t1, the upper transistor Q1 changes from the on state to the off state, and since the current in the inductor cannot suddenly change, the primary resonant current I Lr of the transformer T increases. Lr discharges the parasitic capacitance of the lower transistor Q2 and charges the parasitic capacitance of the upper transistor Q1. The HB voltage drops to 0V, and the body diode of the lower transistor Q2 changes from the off state to the on state. At t2, the first turn-on control signal down_on flips, and the lower transistor Q2 changes from the off state to the on state, thereby realizing zero-voltage turn-on. After that, the resonant capacitor Cr resonates with the primary leakage inductance Lr of the transformer T. At the same time, the transformer T is demagnetized, and the primary magnetizing current I of the transformer T is Lm decreases; at t3, the first shutdown control signal dem_off flips, and the lower transistor Q2 changes from the on state to the off state. After that, the parasitic capacitance of the upper transistor Q1 and the lower transistor Q2 and the primary side excitation inductance Lm of the transformer T resonate, and the resonance period is td; at t4, the mode/frequency control signal DCM_on flips, and the turn-on enable signal Tzvs_ENA is in the non-enabled state, and the lower transistor Q2 no longer changes from the off state to the on state; at t5, the upper transistor turn-on control signal up_on flips, and the upper transistor Q1 changes from the off state to the on state again, thereby realizing low-voltage turn-on.

圖8示出了圖4所示的ZVS計算模組的示例電路實現的電路原理圖。如圖8所示,在一些實施例中,ZVS計算模組被配置為:通過對退磁表徵信號INV進行採樣生成第三採樣信號V3,其中,第三採樣信號V3能夠反映在上電晶體Q1從關斷狀態變為導通狀態之前上電晶體Q1和下電晶體Q2之間的中間點處的電壓(即,HB電壓)或者在上電晶體Q1從關斷狀態變為導通狀態之前和之後上電晶體Q1和下電晶體Q2之間的中間點處的電壓(即,HB電壓)變化幅度;通過對第三採樣信號V3和參考信號Vref(即,參考電壓Vref)之間的差值進行積分生成補償控制信號ZVS_comp;以及通過對補償控制信號ZVS_comp和預定斜坡信號進行比較生成再次關斷控制信號ZVS_off。 FIG8 shows a circuit schematic diagram of an example circuit implementation of the ZVS calculation module shown in FIG4. As shown in FIG8, in some embodiments, the ZVS calculation module is configured to: generate a third sampling signal V3 by sampling the demagnetization characteristic signal INV, wherein the third sampling signal V3 can reflect the voltage at the midpoint between the upper transistor Q1 and the lower transistor Q2 before the upper transistor Q1 changes from the off state to the on state (i.e., the HB voltage) or before and after the upper transistor Q1 changes from the off state to the on state. The voltage at the midpoint between the upper transistor Q1 and the lower transistor Q2 (i.e., the HB voltage) changes in amplitude; the compensation control signal ZVS_comp is generated by integrating the difference between the third sampling signal V3 and the reference signal Vref (i.e., the reference voltage Vref); and the re-off control signal ZVS_off is generated by comparing the compensation control signal ZVS_comp and the predetermined ramp signal.

如圖4和圖8所示,電壓INV經過採樣單元採樣產生電壓V3(即,第三採樣信號V3),電壓V3與上電晶體Q1從關斷狀態變為導通狀態之前和之後的HB電壓差值成正比或者僅與上電晶體Q1從關斷狀態變為導通狀態之前的HB電壓成正比,參考電壓Vref既可以是設定的固定電壓也可以由採樣單元在上電晶體Q1處於導通狀態期間對電壓INV進行採樣生成。電壓V3與參考電壓Vref一起送入積分器產生補償電壓ZVS_comp(即,補償控制信號ZVS_comp)。補償電壓ZVS_comp與斜坡發生器產 生的預定斜坡電壓比較決定下電晶體Q2的關斷時刻(即,處於導通狀態的持續時長)。這種方法可以精準控制上電晶體Q1從關斷狀態變為導通狀態之前和之後的HB電壓差值,將上電晶體Q1的導通電壓控制在目標值。上電晶體Q1的導通電壓並不是0V效率最優,因此目標值通常都是高於0V的電壓。 As shown in FIG4 and FIG8, the voltage INV is sampled by the sampling unit to generate the voltage V3 (i.e., the third sampling signal V3), and the voltage V3 is proportional to the difference between the HB voltages before and after the on-state of the on-state transistor Q1 changes from the off state to the on-state, or is proportional only to the HB voltage before the on-state transistor Q1 changes from the off state to the on-state, and the reference voltage Vref can be either a set fixed voltage or generated by the sampling unit sampling the voltage INV during the on-state of the on-state transistor Q1. The voltage V3 and the reference voltage Vref are sent to the integrator together to generate the compensation voltage ZVS_comp (i.e., the compensation control signal ZVS_comp). The compensation voltage ZVS_comp is compared with the predetermined ramp voltage generated by the ramp generator to determine the turn-off moment of the lower transistor Q2 (i.e., the duration of the on-state). This method can accurately control the HB voltage difference before and after the upper transistor Q1 changes from the off state to the on state, and control the on-state voltage of the upper transistor Q1 to the target value. The on-state voltage of the upper transistor Q1 is not 0V for the best efficiency, so the target value is usually a voltage higher than 0V.

圖9示出了在ZVS計算模組中的電壓V3高於參考電壓Vref的情況下,圖4所示的開關電源中的多個信號的工作波形圖,其中:Q1 gate表示用於控制上電晶體Q1的導通與關斷的上電晶體控制信號,Q2 gate表示用於控制下電晶體Q2的導通與關斷的下電晶體控制信號,ILr表示變壓器T的一次側諧振電流,ZVS_comp表示補償電壓,INV表示電壓INV,HB電壓表示上電晶體Q1和下電晶體Q2之間的中間點處的電壓。 FIG9 shows the operating waveforms of multiple signals in the switching power supply shown in FIG4 when the voltage V3 in the ZVS calculation module is higher than the reference voltage Vref, wherein: Q1 gate represents the upper transistor control signal for controlling the on and off of the upper transistor Q1, Q2 gate represents the lower transistor control signal for controlling the on and off of the lower transistor Q2, I Lr represents the primary side resonant current of the transformer T, ZVS_comp represents the compensation voltage, INV represents the voltage INV, and HB voltage represents the voltage at the midpoint between the upper transistor Q1 and the lower transistor Q2.

如圖4和圖9所示,當電壓V3高於參考電壓Vref時,上電晶體Q1從關斷狀態變為導通狀態之前和之後的HB電壓差值Vs高於目標值,補償電壓ZVS_comp上升,下電晶體Q2再次處於導通狀態的持續時長Tzvs變長,因此上電晶體Q1從關斷狀態變為導通狀態之前和之後的HB電壓差值會變低直至達到目標值。 As shown in Figure 4 and Figure 9, when the voltage V3 is higher than the reference voltage Vref, the HB voltage difference Vs before and after the upper transistor Q1 changes from the off state to the on state is higher than the target value, the compensation voltage ZVS_comp rises, and the duration Tzvs of the lower transistor Q2 being in the on state again becomes longer, so the HB voltage difference before and after the upper transistor Q1 changes from the off state to the on state will become lower until it reaches the target value.

圖10示出了在ZVS計算模組中的電壓V3低於參考電壓Vref的情況下,圖4所示的開關電源中的多個信號的工作波形圖,其中:Q1 gate表示用於控制上電晶體Q1的導通與關斷的上電晶體控制信號,Q2 gate表示用於控制下電晶體Q2的導通與關斷的下電晶體控制信號,ILr表示變壓器T的一次側諧振電流,ZVS_comp表示補償電壓,INV表示電壓INV,HB電壓表示上電晶體Q1和下電晶體Q2之間的中間點處的電壓。 FIG10 shows the operating waveforms of multiple signals in the switching power supply shown in FIG4 when the voltage V3 in the ZVS calculation module is lower than the reference voltage Vref, wherein: Q1 gate represents the upper transistor control signal for controlling the on and off of the upper transistor Q1, Q2 gate represents the lower transistor control signal for controlling the on and off of the lower transistor Q2, I Lr represents the primary side resonant current of the transformer T, ZVS_comp represents the compensation voltage, INV represents the voltage INV, and HB voltage represents the voltage at the midpoint between the upper transistor Q1 and the lower transistor Q2.

如圖4和圖10所示,當電壓V3低於參考電壓Vref時,上電晶體Q1從關斷狀態變為導通狀態之前和之後的HB電壓差值Vs低於目標值,補償電壓ZVS_comp下降,下電晶體Q2再次處於導通狀態的持續時長Tzvs變短,因此上電晶體Q1從關斷狀態變為導通狀態之前和之後的HB電壓差值會變高直至達到目標值。 As shown in Figure 4 and Figure 10, when the voltage V3 is lower than the reference voltage Vref, the HB voltage difference Vs before and after the upper transistor Q1 changes from the off state to the on state is lower than the target value, the compensation voltage ZVS_comp decreases, and the duration Tzvs of the lower transistor Q2 being in the on state again becomes shorter, so the HB voltage difference before and after the upper transistor Q1 changes from the off state to the on state becomes higher until it reaches the target value.

圖11示出了在ZVS計算模組中的電壓V3等於參考電壓Vref的情況下,圖4所示的開關電源中的多個信號的工作波形圖,其中:Q1 gate表示用於控制上電晶體Q1的導通與關斷的上電晶體控制信號,Q2 gate表示用於控制下電晶體Q2的導通與關斷的下電晶體控制信號,ILr表示變壓器T的一次側諧振電流,ZVS_comp表示補償電壓,INV表示電壓INV,HB電壓表示上電晶體Q1和下電晶體Q2之間的中間點處的電壓。 FIG11 shows the operating waveforms of multiple signals in the switching power supply shown in FIG4 when the voltage V3 in the ZVS calculation module is equal to the reference voltage Vref, wherein: Q1 gate represents the upper transistor control signal for controlling the on and off of the upper transistor Q1, Q2 gate represents the lower transistor control signal for controlling the on and off of the lower transistor Q2, I Lr represents the primary side resonant current of the transformer T, ZVS_comp represents the compensation voltage, INV represents the voltage INV, and HB voltage represents the voltage at the midpoint between the upper transistor Q1 and the lower transistor Q2.

如圖4和圖11所示,當電壓V3電壓等於參考電壓Vref時,上電晶體Q1從關斷狀態變為導通狀態之前和之後的HB電壓差值Vs等於目標值,補償電壓ZVS_comp保持不變,下電晶體Q2再次處於導通狀態的持續時長Tzvs也保持不變,因此上電晶體Q1從關斷狀態變為導通狀態之前和之後的HB電壓差值會穩定在目標值。 As shown in Figure 4 and Figure 11, when the voltage V3 is equal to the reference voltage Vref, the HB voltage difference Vs before and after the upper transistor Q1 changes from the off state to the on state is equal to the target value, the compensation voltage ZVS_comp remains unchanged, and the duration Tzvs of the lower transistor Q2 being in the on state again remains unchanged, so the HB voltage difference before and after the upper transistor Q1 changes from the off state to the on state will be stable at the target value.

針對下電晶體Q2從導通狀態變為關斷狀態之後、上電晶體Q1從關斷狀態變為導通狀態之前,上電晶體Q1及下電晶體Q2的寄生電容之和Coss與變壓器T的一次側勵磁電感Lm之間的諧振,HB電壓諧振到輸入電壓Vin所需要的負向電流可以通過計算得到。 After the lower transistor Q2 changes from the on state to the off state and before the upper transistor Q1 changes from the off state to the on state, the resonance between the sum of the parasitic capacitances Coss of the upper transistor Q1 and the lower transistor Q2 and the primary side excitation magnetic inductance Lm of the transformer T, the negative current required for the HB voltage to resonate to the input voltage Vin can be calculated.

根據能量守恆:

Figure 112117187-A0305-02-0017-1
I n_zvs 2 According to the law of conservation of energy:
Figure 112117187-A0305-02-0017-1
I n_zvs 2

因此,上電晶體Q1實現零電壓導通所需的負向電流為:

Figure 112117187-A0305-02-0017-2
Therefore, the negative current required for the on-state transistor Q1 to achieve zero voltage conduction is:
Figure 112117187-A0305-02-0017-2

下電晶體Q2再次處於導通狀態的持續時長為:

Figure 112117187-A0305-02-0017-3
The duration of the lower transistor Q2 being in the on state again is:
Figure 112117187-A0305-02-0017-3

通過線性擬合得到:

Figure 112117187-A0305-02-0017-4
Through linear fitting, we get:
Figure 112117187-A0305-02-0017-4

其中,

Figure 112117187-A0305-02-0017-6
,td為上電晶體Q1及下電晶體Q2的寄生電容與變壓器T的一次側勵磁電感Lm的諧振週期。 in,
Figure 112117187-A0305-02-0017-6
, td is the resonant period of the parasitic capacitance of the upper transistor Q1 and the lower transistor Q2 and the primary side magnetizing inductance Lm of the transformer T.

圖12示出了圖4所示的ZVS計算模組的另一示例電路實現 的電路原理圖。如圖12所示,在一些實施例中,ZVS計算模組被配置為:通過在上電晶體Q1處於導通狀態且下電晶體Q2處於關斷狀態期間對退磁表徵信號INV進行採樣生成第四採樣信號V4;通過在上電晶體Q1處於關斷狀態且下電晶體Q2處於導通狀態期間對退磁表徵信號INV進行採樣生成第五採樣信號V5;通過基於第五採樣信號V5和再次導通控制信號ZVS_on控制預定電容C1的充電,生成與下電晶體Q2再次處於導通狀態的持續時長Tzvs有關的時長相關信號Vm;以及基於第四採樣信號V4和時長相關信號Vm生成再次關斷控制信號ZVS_off。 FIG12 shows a circuit schematic diagram of another example circuit implementation of the ZVS calculation module shown in FIG4. As shown in FIG. 12 , in some embodiments, the ZVS calculation module is configured to: generate a fourth sampling signal V4 by sampling the demagnetization characteristic signal INV when the upper transistor Q1 is in the on state and the lower transistor Q2 is in the off state; generate a fifth sampling signal V5 by sampling the demagnetization characteristic signal INV when the upper transistor Q1 is in the off state and the lower transistor Q2 is in the on state; generate a duration-related signal Vm related to the duration Tzvs of the lower transistor Q2 being in the on state again by controlling the charging of the predetermined capacitor C1 based on the fifth sampling signal V5 and the re-conduction control signal ZVS_on; and generate a re-off control signal ZVS_off based on the fourth sampling signal V4 and the duration-related signal Vm.

如圖12所示,在一些實施例中,ZVS計算模組進一步被配置為通過以下處理生成時長相關信號Vm(即,電壓Vm):利用壓控電流源生成與第五採樣信號V5成比例的充電電流I1;以及利用再次導通控制信號ZVS_on控制充電電流I1對預定電容C1的充電。例如,利用再次導通控制信號ZVS_on控制開關S1在下電晶體Q2再次處於導通狀態期間也處於導通狀態,從而控制充電電流I1在下電晶體Q2再次處於導通狀態期間對預定電容C1充電,直至電壓Vm高於電壓V4、再次關斷控制信號ZVS_off由低位準變為高位準。這時,再次關斷控制信號ZVS_off控制開關S2從關斷狀態變為導通狀態,使得預定電容C1放電從而為下一次的充電做準備。 As shown in FIG. 12 , in some embodiments, the ZVS calculation module is further configured to generate a duration-related signal Vm (i.e., voltage Vm) by the following processing: using a voltage-controlled current source to generate a charging current I1 proportional to the fifth sampling signal V5; and using a re-conduction control signal ZVS_on to control the charging current I1 to charge the predetermined capacitor C1. For example, the re-conduction control signal ZVS_on is used to control the switch S1 to be in a conducting state during the period when the lower transistor Q2 is in a conducting state again, thereby controlling the charging current I1 to charge the predetermined capacitor C1 during the period when the lower transistor Q2 is in a conducting state again, until the voltage Vm is higher than the voltage V4 and the re-turn-off control signal ZVS_off changes from a low level to a high level. At this time, the control signal ZVS_off is turned off again to control the switch S2 from the off state to the on state, so that the predetermined capacitor C1 is discharged to prepare for the next charging.

如圖4和圖12所示,電壓INV經過採樣單元採樣產生電壓V4和V5(即,第四採樣信號V4和第五採樣信號V5),其中,V4=m3.(Vin-N.Vo)為上電晶體Q1處於導通狀態且下電晶體處於關斷狀態期間採樣得到的、與充磁電壓(Vin-N.Vo)成比例的電壓,V5=m4.N.Vo為上電晶體Q1處於關斷狀態且下電晶體Q2處於導通狀態期間採樣得到的、與退磁電壓(N.Vo)成比例的電壓。 As shown in Figure 4 and Figure 12, the voltage INV is sampled by the sampling unit to generate voltages V4 and V5 (i.e., the fourth sampling signal V4 and the fifth sampling signal V5), wherein V4=m3. (Vin-N.Vo) is the voltage proportional to the magnetizing voltage (Vin-N.Vo) obtained by sampling when the upper transistor Q1 is in the on state and the lower transistor is in the off state, and V5=m4. N.Vo is the voltage proportional to the demagnetizing voltage (N.Vo) obtained by sampling when the upper transistor Q1 is in the off state and the lower transistor Q2 is in the on state.

需要說明的是,ZVS計算模組中的採樣單元可以和ZVS使能模組中的採樣單元共用。在這種情況下,m3=m1,m4=m2,V4=V1,V5=V2。電壓V5通過壓控電流源轉換為電流I1(I1=k.V3),在下電晶體 Q2再次處於導通狀態期間,電流I1對電容C1充電產生電壓Vm,電壓Vm和V4通過比較決定下電晶體Q2的關斷時刻(即,下電晶體Q2再次處於導通狀態的持續時長)。這裡,下電晶體Q2再次處於導通狀態的持續時 長

Figure 112117187-A0305-02-0019-7
,C1、m1、m2、k均為內部參數,只需讓
Figure 112117187-A0305-02-0019-8
Figure 112117187-A0305-02-0019-9
即可剛好實現上電晶體Q1的零電壓導通。
Figure 112117187-A0305-02-0019-10
既可通過外部設置調整讓等式滿足,也可通過退磁表徵信號INV檢測諧振週期td自動調節來實現上電晶體Q1的零電壓導通,優化系統輕載效率。 It should be noted that the sampling unit in the ZVS calculation module can be shared with the sampling unit in the ZVS enable module. In this case, m3=m1, m4=m2, V4=V1, V5=V2. The voltage V5 is converted into the current I1 (I1=k.V3) through the voltage-controlled current source. During the period when the lower transistor Q2 is in the on state again, the current I1 charges the capacitor C1 to generate the voltage Vm. The voltage Vm and V4 are compared to determine the turn-off moment of the lower transistor Q2 (that is, the duration of the lower transistor Q2 being in the on state again). Here, the duration of the lower transistor Q2 being in the on state again is
Figure 112117187-A0305-02-0019-7
, C1, m1, m2, k are all internal parameters, just let
Figure 112117187-A0305-02-0019-8
Figure 112117187-A0305-02-0019-9
This can just achieve zero-voltage turn-on of the upper transistor Q1.
Figure 112117187-A0305-02-0019-10
The equation can be satisfied through external adjustment, or the resonant period td can be automatically adjusted by detecting the demagnetization characteristic signal INV to achieve zero-voltage turn-on of the upper transistor Q1 and optimize the light-load efficiency of the system.

本發明可以以其他的具體形式實現,而不脫離其精神和本質特徵。例如,特定實施例中所描述的演算法可以被修改,而系統體系結構並不脫離本發明的基本精神。因此,當前的實施例在所有方面都被看作是示例性的而非限定性的,本發明的範圍由所附請求項而非上述描述定義,並且,落入請求項的含義和等同物的範圍內的全部改變從而都被包括在本發明的範圍之中。 The present invention may be implemented in other specific forms without departing from its spirit and essential features. For example, the algorithm described in a specific embodiment may be modified, and the system architecture does not deviate from the basic spirit of the present invention. Therefore, the present embodiments are considered to be exemplary rather than restrictive in all aspects, the scope of the present invention is defined by the attached claims rather than the above description, and all changes that fall within the meaning and scope of equivalents of the claims are therefore included in the scope of the present invention.

400:非對稱半橋返馳式變換器電源 400: Asymmetric half-bridge flyback converter power supply

402,404:電路部分 402,404: Circuit part

AC:交流電 AC: alternating current

comp:比較器 comp: comparator

Cr:諧振電容 Cr: resonant capacitor

CV_off:上電晶體關斷控制信號 CV_off: Power-on transistor shutdown control signal

DCM_on:模式/頻率控制信號 DCM_on: mode/frequency control signal

down_off:首次關斷控制信號 down_off: Turn off the control signal for the first time

down_on:首次導通控制信號 down_on: first turn-on control signal

FB:輸出回饋信號(電壓) FB: Output feedback signal (voltage)

gate_down:下電晶體控制信號 gate_down: down transistor control signal

gate_up:上電晶體控制信號 gate_up: power-on transistor control signal

HB:電壓 HB: Voltage

IDo:變壓器T的二次側電流 I Do : Secondary current of transformer T

ILr:變壓器T的一次側諧振電流 I Lr : primary resonant current of transformer T

INV:退磁表徵信號(電壓) INV: Demagnetization characteristic signal (voltage)

Lp:一次側電感 Lp: primary side inductance

Lr:一次側漏感 Lr: primary side leakage sense

Ls:二次側電感 Ls: Secondary inductance

Naux:輔助繞組圈數 Naux: Number of auxiliary winding turns

Q1:上電晶體 Q1: Power-on transistor

Q2:下電晶體 Q2: Lower transistor

Rcs:電流感測電阻 Rcs: Inductive flow measurement resistance

T:變壓器 T: Transformer

TL431:穩壓器 TL431: Voltage regulator

Tzvs_ENA:再次導通使能信號 Tzvs_ENA: Turn on the enable signal again

up_on:上電晶體導通控制信號 up_on: Power-on transistor conduction control signal

Vaux:輔助繞組電壓 Vaux: Auxiliary winding voltage

Vcs:電流表徵信號(電壓) Vcs: current characteristic signal (voltage)

Vin:輸入電壓 Vin: Input voltage

Vo:輸出電壓 Vo: output voltage

ZVS_off:再次關斷控制信號 ZVS_off: Turn off the control signal again

Claims (13)

一種用於非對稱半橋返馳式變換器電源的控制電路,所述非對稱半橋返馳式變換器電源包括上電晶體、下電晶體、以及變壓器,所述控制電路被配置為在所述上電晶體從導通狀態變為關斷狀態之後並從關斷狀態變為導通狀態之前:基於用於控制所述上電晶體的導通與關斷的上電晶體控制信號,生成用於控制所述下電晶體首次從關斷狀態變為導通狀態的首次導通控制信號;基於表徵所述變壓器的退磁情況的退磁表徵信號,生成用於控制所述下電晶體首次從導通狀態變為關斷狀態的首次關斷控制信號;基於所述退磁表徵信號和表徵所述非對稱半橋返馳式變換器電源的輸出電壓的輸出回饋信號,生成用於控制所述下電晶體再次從關斷狀態變為導通狀態的再次導通控制信號;以及基於所述退磁表徵信號,生成用於控制所述下電晶體再次從導通狀態變為關斷狀態的再次關斷控制信號;其中,生成所述再次導通控制信號的處理包括:基於所述退磁表徵信號,生成用於控制是否允許所述下電晶體再次從關斷狀態變為導通狀態的再次導通使能信號;基於所述輸出回饋信號,生成用於控制所述非對稱半橋返馳式變換器電源的工作模式和工作頻率中的至少一者的模式/頻率控制信號;以及基於所述再次導通使能信號和所述模式/頻率控制信號,生成所述再次導通控制信號。 A control circuit for an asymmetric half-bridge flyback converter power supply, the asymmetric half-bridge flyback converter power supply comprising an upper transistor, a lower transistor, and a transformer, the control circuit being configured to: after the upper transistor changes from an on state to an off state and before the upper transistor changes from an off state to an on state, based on an upper transistor control signal for controlling the on and off state of the upper transistor, Generate a first turn-on control signal for controlling the lower transistor to change from an off state to an on state for the first time; based on a demagnetization characteristic signal representing the demagnetization condition of the transformer, generate a first turn-off control signal for controlling the lower transistor to change from an on state to an off state for the first time; based on the demagnetization characteristic signal and an output feedback characteristic signal representing the output voltage of the asymmetric half-bridge flyback converter power supply, generate a first turn-off control signal for controlling the lower transistor to change from an on state to an off state for the first time The output feedback signal is used to generate a re-conduction control signal for controlling the lower transistor to change from the off state to the on state again; and based on the demagnetization characteristic signal, a re-off control signal is generated for controlling the lower transistor to change from the on state to the off state again; wherein the process of generating the re-conduction control signal includes: based on the demagnetization characteristic signal, generating a re-conduction enable signal for controlling whether to allow the lower transistor to change from the off state to the on state again; based on the output feedback signal, generating a mode/frequency control signal for controlling at least one of the working mode and working frequency of the asymmetric half-bridge flyback converter power supply; and based on the re-conduction enable signal and the mode/frequency control signal, generating the re-conduction control signal. 如請求項1所述的用於非對稱半橋返馳式變換器電源的控制電路,其中,在所述上電晶體控制信號控制所述上電晶體從導通狀態變為關斷狀態的時刻開始的第一預定時長之後,所述首次導通控制信號控制所述下電晶體從關斷狀態變為導通狀態。 A control circuit for an asymmetric half-bridge flyback converter power supply as described in claim 1, wherein after a first predetermined time period starting from the moment when the upper transistor control signal controls the upper transistor to change from the on state to the off state, the first turn-on control signal controls the lower transistor to change from the off state to the on state. 如請求項1所述的用於非對稱半橋返馳式變換器電源的 控制電路,其中,生成所述再次導通使能信號的處理包括:通過在所述上電晶體處於導通狀態且所述下電晶體處於關斷狀態期間對所述退磁表徵信號進行採樣,生成第一採樣信號;通過在所述上電晶體處於關斷狀態且所述下電晶體處於導通狀態期間對所述退磁表徵信號進行採樣,生成第二採樣信號;以及通過對所述第一採樣信號和所述第二採樣信號進行運算比較,生成所述再次導通使能信號。 A control circuit for an asymmetric half-bridge flyback converter power supply as described in claim 1, wherein the process of generating the re-conduction enable signal includes: generating a first sampling signal by sampling the demagnetization characteristic signal during the period when the upper transistor is in the on state and the lower transistor is in the off state; generating a second sampling signal by sampling the demagnetization characteristic signal during the period when the upper transistor is in the off state and the lower transistor is in the on state; and generating the re-conduction enable signal by performing an operation comparison on the first sampling signal and the second sampling signal. 如請求項1所述的用於非對稱半橋返馳式變換器電源的控制電路,其中,生成所述再次關斷控制信號的處理包括:通過對所述退磁表徵信號進行採樣,生成第三採樣信號,其中,所述第三採樣信號能夠反映在所述上電晶體從關斷狀態變為導通狀態之前所述上電晶體和所述下電晶體之間的中間點處的電壓或者在所述上電晶體從關斷狀態變為導通狀態之前和之後所述上電晶體和所述下電晶體之間的中間點處的電壓變化幅度;通過對所述第三採樣信號和參考信號之間的差值進行積分,生成補償控制信號;以及通過對所述補償控制信號和預定斜坡信號進行比較,生成所述再次關斷控制信號。 A control circuit for an asymmetric half-bridge flyback converter power supply as described in claim 1, wherein the process of generating the shut-down control signal again includes: generating a third sampling signal by sampling the demagnetization characteristic signal, wherein the third sampling signal can reflect the voltage at the midpoint between the upper transistor and the lower transistor before the upper transistor changes from the off state to the on state or the voltage change amplitude at the midpoint between the upper transistor and the lower transistor before and after the upper transistor changes from the off state to the on state; generating a compensation control signal by integrating the difference between the third sampling signal and the reference signal; and generating the shut-down control signal again by comparing the compensation control signal with a predetermined ramp signal. 如請求項4所述的用於非對稱半橋返馳式變換器電源的控制電路,其中,所述參考信號是設定的固定電壓或者是通過在所述上電晶體處於導通狀態期間對所述退磁表徵信號進行採樣生成的。 A control circuit for an asymmetric half-bridge flyback converter power supply as described in claim 4, wherein the reference signal is a set fixed voltage or is generated by sampling the demagnetization characteristic signal while the upper transistor is in the on state. 如請求項1所述的用於非對稱半橋返馳式變換器電源的控制電路,其中,生成所述再次關斷控制信號的處理包括:通過在所述上電晶體處於導通狀態且所述下電晶體處於關斷狀態期間對所述退磁表徵信號進行採樣,生成第四採樣信號;通過在所述上電晶體處於關斷狀態且所述下電晶體處於導通狀態期間對所述退磁表徵信號進行採樣,生成第五採樣信號; 通過基於所述第五採樣信號和所述再次導通控制信號控制預定電容的充電,生成與所述下電晶體再次處於導通狀態的持續時長有關的時長相關信號;以及基於所述第四採樣信號和所述時長相關信號,生成所述再次關斷控制信號。 A control circuit for an asymmetric half-bridge flyback converter power supply as described in claim 1, wherein the process of generating the re-shutdown control signal includes: generating a fourth sampling signal by sampling the demagnetization characteristic signal during the period when the upper transistor is in the on state and the lower transistor is in the off state; generating a fifth sampling signal by sampling the demagnetization characteristic signal during the period when the upper transistor is in the off state and the lower transistor is in the on state; generating a duration-related signal related to the duration of the re-on state of the lower transistor by controlling the charging of a predetermined capacitor based on the fifth sampling signal and the re-shutdown control signal; and generating the re-shutdown control signal based on the fourth sampling signal and the duration-related signal. 如請求項6所述的用於非對稱半橋返馳式變換器電源的控制電路,其中,生成所述時長相關信號的處理包括:利用壓控電流源生成與所述第五採樣信號成比例的充電電流;以及利用所述再次導通控制信號控制與所述第五採樣信號成比例的充電電流對所述預定電容的充電。 A control circuit for an asymmetric half-bridge flyback converter power supply as described in claim 6, wherein the process of generating the duration-related signal includes: using a voltage-controlled current source to generate a charging current proportional to the fifth sampling signal; and using the re-conduction control signal to control the charging current proportional to the fifth sampling signal to charge the predetermined capacitor. 如請求項7所述的用於非對稱半橋返馳式變換器電源的控制電路,其中,在所述再次導通控制信號控制所述下電晶體再次處於導通狀態期間,與所述第五採樣信號成比例的充電電流對所述預定電容進行充電。 A control circuit for an asymmetric half-bridge flyback converter power supply as described in claim 7, wherein during the period in which the lower transistor is controlled by the re-conduction control signal to be in the on state again, a charging current proportional to the fifth sampling signal charges the predetermined capacitor. 如請求項1所述的用於非對稱半橋返馳式變換器電源的控制電路,還被配置為:基於所述輸出回饋信號、表徵所述變壓器的一次側的諧振電流的電流表徵信號、以及用於控制所述下電晶體的導通與關斷的下電晶體控制信號,生成所述上電晶體控制信號。 The control circuit for the asymmetric half-bridge flyback converter power supply as described in claim 1 is also configured to generate the upper transistor control signal based on the output feedback signal, the current characterization signal characterizing the resonant current on the primary side of the transformer, and the lower transistor control signal for controlling the on and off of the lower transistor. 如請求項9所述的用於非對稱半橋返馳式變換器電源的控制電路,其中,所述下電晶體控制信號是基於所述首次導通控制信號、所述首次關斷控制信號、所述再次導通控制信號、以及所述再次關斷控制信號生成的,並且生成所述上電晶體控制信號的處理包括:基於所述輸出回饋信號和所述電流表徵信號,生成上電晶體關斷控制信號;基於所述下電晶體控制信號,生成上電晶體導通控制信號;以及基於所述上電晶體關斷控制信號和所述上電晶體導通控制信號,生成 所述上電晶體控制信號。 A control circuit for an asymmetric half-bridge flyback converter power supply as described in claim 9, wherein the lower transistor control signal is generated based on the first turn-on control signal, the first turn-off control signal, the turn-on control signal again, and the turn-off control signal again, and the process of generating the upper transistor control signal includes: generating an upper transistor turn-off control signal based on the output feedback signal and the current characterization signal; generating an upper transistor turn-on control signal based on the lower transistor control signal; and generating the upper transistor control signal based on the upper transistor turn-off control signal and the upper transistor turn-on control signal. 如請求項10所述的用於非對稱半橋返馳式變換器電源的控制電路,其中,通過對所述輸出回饋信號的分壓信號和所述電流表徵信號進行比較,生成所述上電晶體關斷控制信號。 A control circuit for an asymmetric half-bridge flyback converter power supply as described in claim 10, wherein the upper transistor shutdown control signal is generated by comparing the voltage division signal of the output feedback signal and the current characteristic signal. 如請求項10所述的用於非對稱半橋返馳式變換器電源的控制電路,其中,在所述下電晶體控制信號控制所述下電晶體從導通狀態變為關斷狀態的時刻開始的第二預定時長之後,所述上電晶體導通控制信號控制所述上電晶體從關斷狀態變為導通狀態。 A control circuit for an asymmetric half-bridge flyback converter power supply as described in claim 10, wherein after a second predetermined time period starting from the moment when the lower transistor control signal controls the lower transistor to change from the on state to the off state, the upper transistor conduction control signal controls the upper transistor to change from the off state to the on state. 一種非對稱半橋返馳式變換器電源,包括請求項1至12中任一項所述的用於非對稱半橋返馳式變換器電源的控制電路。 An asymmetric half-bridge flyback converter power supply, comprising a control circuit for an asymmetric half-bridge flyback converter power supply as described in any one of claims 1 to 12.
TW112117187A 2023-03-14 2023-05-09 Asymmetric half-bridge flyback converter power supply and its control circuit TWI842520B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310246278.6A CN116260318A (en) 2023-03-14 2023-03-14 Asymmetric half-bridge flyback switching power supply and control circuit thereof
CN2023102462786 2023-03-14

Publications (2)

Publication Number Publication Date
TWI842520B true TWI842520B (en) 2024-05-11
TW202437657A TW202437657A (en) 2024-09-16

Family

ID=86680781

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112117187A TWI842520B (en) 2023-03-14 2023-05-09 Asymmetric half-bridge flyback converter power supply and its control circuit

Country Status (2)

Country Link
CN (1) CN116260318A (en)
TW (1) TWI842520B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140140109A1 (en) * 2012-11-20 2014-05-22 Texas Instruments Incorporated Flyback power supply regulation apparatus and methods
TW201603444A (en) * 2014-07-09 2016-01-16 昂寶電子(上海)有限公司 Charge control circuit, flyback type power source transformation system and charge control method
JP2016042765A (en) * 2014-08-18 2016-03-31 富士電機株式会社 Switching power supply apparatus
TW202008703A (en) * 2018-07-27 2020-02-16 立錡科技股份有限公司 ZVS control circuit for use in a flyback power converter
TW202201891A (en) * 2020-06-29 2022-01-01 立錡科技股份有限公司 Resonant half-bridge flyback power converter and primary controller circuit and control method thereof
TW202230940A (en) * 2021-01-18 2022-08-01 大陸商昂寶電子(上海)有限公司 Flyback switching power supply and control method thereof
CN115224951A (en) * 2022-08-23 2022-10-21 无锡市德科立光电子技术股份有限公司 Constant-voltage control system of primary-side feedback flyback converter
CN115360918A (en) * 2022-08-24 2022-11-18 南京理工大学 Primary side sampling resistor-based constant current control system, method and medium of primary side feedback flyback converter
CN115694145A (en) * 2022-11-01 2023-02-03 昂宝电子(上海)有限公司 Circuit for asymmetric half-bridge flyback power supply

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140140109A1 (en) * 2012-11-20 2014-05-22 Texas Instruments Incorporated Flyback power supply regulation apparatus and methods
TW201603444A (en) * 2014-07-09 2016-01-16 昂寶電子(上海)有限公司 Charge control circuit, flyback type power source transformation system and charge control method
JP2016042765A (en) * 2014-08-18 2016-03-31 富士電機株式会社 Switching power supply apparatus
TW202008703A (en) * 2018-07-27 2020-02-16 立錡科技股份有限公司 ZVS control circuit for use in a flyback power converter
TW202201891A (en) * 2020-06-29 2022-01-01 立錡科技股份有限公司 Resonant half-bridge flyback power converter and primary controller circuit and control method thereof
TW202230940A (en) * 2021-01-18 2022-08-01 大陸商昂寶電子(上海)有限公司 Flyback switching power supply and control method thereof
CN115224951A (en) * 2022-08-23 2022-10-21 无锡市德科立光电子技术股份有限公司 Constant-voltage control system of primary-side feedback flyback converter
CN115360918A (en) * 2022-08-24 2022-11-18 南京理工大学 Primary side sampling resistor-based constant current control system, method and medium of primary side feedback flyback converter
CN115694145A (en) * 2022-11-01 2023-02-03 昂宝电子(上海)有限公司 Circuit for asymmetric half-bridge flyback power supply

Also Published As

Publication number Publication date
CN116260318A (en) 2023-06-13

Similar Documents

Publication Publication Date Title
US10224828B1 (en) DC-DC power converters and methods of operating DC-DC power converters
US7965523B2 (en) Switching power supply device
US8665614B2 (en) Control method and device for switching power supplies having more than one control mode
CN110752750B (en) Resonant converter and control circuit and control method thereof
TWI811910B (en) Isolated switching converter with secondary side modulation and control method
TWI626821B (en) Flyback power converter circuit with active clamping and zero voltage switching and conversion control circuit thereof
TWI664801B (en) Switching power, control apparatus and control method
CN209748411U (en) Electronic system and controller for operating a converter
TWI777412B (en) Resonant half-bridge flyback power converter and primary controller circuit and control method thereof
TWI836980B (en) Asymmetric half-bridge flyback converter power supply and its control chip and control method
US11437918B2 (en) LLC resonant converter
KR20090011715A (en) Converter and the driving method thereof
CN111669055A (en) Voltage conversion circuit and control method thereof
TWI699957B (en) A quasi-resonant power supply controller
TWI841989B (en) Asymmetric half-bridge flyback converter power supply and control chip and control method thereof
TWI842520B (en) Asymmetric half-bridge flyback converter power supply and its control circuit
TWI669893B (en) LLC quasi-resonant switching power supply
CN113992018B (en) Quasi-resonant switching power supply, control chip and control method thereof
CN116647096A (en) Control chip and control method of switching power supply
Koo et al. A new valley-detection method for the quasi-resonance switching
CN116191834A (en) Control method and device and switching power supply
CN113708633B (en) Flyback converter control method, flyback converter and control device
US20220190704A1 (en) Switching converter and control circuit thereof
CN115706517A (en) Resonant half-bridge flyback converter with omitted period and control method thereof
CN118282217B (en) Asymmetric half-bridge flyback converter, control circuit and control method thereof