TWI842006B - 石墨烯基板及其形成方法 - Google Patents

石墨烯基板及其形成方法 Download PDF

Info

Publication number
TWI842006B
TWI842006B TW111125501A TW111125501A TWI842006B TW I842006 B TWI842006 B TW I842006B TW 111125501 A TW111125501 A TW 111125501A TW 111125501 A TW111125501 A TW 111125501A TW I842006 B TWI842006 B TW I842006B
Authority
TW
Taiwan
Prior art keywords
graphene
layer
metal oxide
substrate
oxide layer
Prior art date
Application number
TW111125501A
Other languages
English (en)
Other versions
TW202314024A (zh
Inventor
賽巴斯汀 狄克森
潔思普莉 凱因特
艾弗 圭奈
湯瑪士詹姆斯 巴德柯克
Original Assignee
英商佩拉葛拉夫有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB2110031.8A external-priority patent/GB2608810A/en
Priority claimed from PCT/EP2022/056398 external-priority patent/WO2022200083A1/en
Application filed by 英商佩拉葛拉夫有限公司 filed Critical 英商佩拉葛拉夫有限公司
Publication of TW202314024A publication Critical patent/TW202314024A/zh
Application granted granted Critical
Publication of TWI842006B publication Critical patent/TWI842006B/zh

Links

Images

Abstract

提供了一種石墨烯基板,包含:直接位於一金屬氧化物層上的一石墨烯層結構,該金屬氧化物層直接位於一支撐層上;其中該金屬氧化物層具有小於5 nm的一厚度且選自由Al 2O 3、HfO 2、MgO、MgAl 2O 4、Ta 2O 5、Y 2O 3、ZrO 2及YSZ組成之群;且其中該支撐層為BN、AlN、GaN、SiC、金剛石或它們的組合。

Description

石墨烯基板及其形成方法
本發明提供一種石墨烯基板,該石墨烯基板係在金屬氧化物層上包含石墨烯層結構的基板。特別地,該金屬氧化物層直接位於支撐層上。更特別地,支撐層係氮化硼、氮化鋁、氮化鎵、碳化矽、金剛石或它們的組合。本發明亦提供一種形成石墨烯基板之方法。特別地,該方法包含以下步驟:提供包含由BN、AlN、GaN、SiC、金剛石或它們的組合形成的支撐層或由該支撐層組成的生長基板,在生長基板上形成金屬氧化物層,之後是石墨烯層結構。更特別地,金屬氧化物層藉由ALD形成,而石墨烯層結構藉由CVD形成。
石墨烯由於其獨特電子特性及其在電子設備中的應用而作為二維材料備受關注。在所屬技術領域中,石墨烯常常藉由諸如剝離等技術或藉由CVD在諸如銅等催化金屬基板上製造。藉由此類方法產生的石墨烯然後經轉移至電子設備兼容的基板(諸如二氧化矽)以用於該電子設備之製造。
在所屬技術領域中亦已知,石墨烯可直接在基板之非金屬表面上合成、製造、形成。此等基板包括矽基板、藍寶石基板及III-V族半導體基板。本發明人已發現,用於尤其是直接在此類非金屬表面上製造高品質石墨烯之最有效方法係WO 2017/029470中所揭示之方法。本公佈揭示了用於製造石墨烯之方法;主要是依賴於以下步驟的此等方法:將保持在反應室內的基板加熱至在用於石墨烯生長的碳基前驅物之分解範圍內的溫度;經由相對冷的進口將前驅物引入反應室中,以便建立遠離基板表面朝向前驅物進入反應室所處的點延伸的足夠陡峭的熱梯度,使得在氣相中發生反應的前驅物之分數足夠低以允許自分解前驅物釋放的碳形成石墨烯。較佳地,裝置包含具有複數個前驅物入口點或進口的蓮蓬頭,該複數個前驅物入口點或進口與基板表面的間距可改變且較佳地小於100 mm。WO 2017/029470之方法理想地使用MOCVD反應器執行。雖然MOCVD由於其起源是為了用金屬有機前驅物(諸如AlMe 3(TMAI)及GaMe 3(TMGa))製造半導體材料(諸如AlN及GaN)之目的而代表金屬有機化學氣相沉積,但熟習此項技術者周知此類裝置及反應器適合與非金屬有機前驅物一起使用。MOCVD可與金屬有機氣相磊晶(MOVPE)同義地使用。
雖然WO 2017/029470之方法允許在沒有附加碳片段或島的情況下以優異均勻性及恆定層數(根據需要)跨基板上的整個區域產生高品質石墨烯,但電子設備製造技術領域中的嚴格要求意指仍然需要進一步改良石墨烯之電子特性,且為石墨烯、特別是非金屬基板上的大面積石墨烯之工業製造提供更可靠及更有效之方法。
然而,已知的是,與獨立式石墨烯之理論值相比,石墨烯與基板之間的電子聲子耦合可能對載子移動率產生有害影響。極性聲子能夠在相鄰層中感應出電場,該等電場導致該層中電子的遠程聲子散射。此種耦合係長程的且亦可稱為Frohlich耦合。
特別是關於諸如二氧化矽等基板對電子聲子耦合進行了理論及實驗兩方面研究。 Nature Nanotechnology3, 206-209 (2008)「Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO 2」及 Phys. Rev. B77, 195415 (2008)「Substrate limited electron dynamics in graphene」研究可極化基板(諸如SiO 2及SiC)對石墨烯中的載子動力學的影響。
Nature Nanotechnology5, 722-726 (2010)「Boron nitride substrates for high-quality graphene electronics」及 Appl. Phys. Lett.115, 043104 (2019)「Role of remote interfacial phonons in the resistivity of graphene」係證明六方氮化硼(h-BN)作為有前景的基板之益處之實例,因為h-BN之光學聲子模式之能量比其他介電質(諸如SiO 2及HfO 2)高得多。相關聲子模式之能量係SiO 2中的那些的約兩倍。氧化物基板中較低能量之聲子模式之普遍存在導致遠程聲子散射以及設置在基板上的石墨烯中的較大電阻率(即載子移動率降低)。
US 2012/261640 A1係關於採用石墨烯層作為電荷載子層的電子設備,該石墨烯層夾置在由具有高度有序之晶體結構及高介電常數的材料(諸如SiO 2、HfO 2及Al 2O 3)構成的層之間。在一些實施例中,石墨烯層設置在界面層而非高度有序之晶體材料上,該界面層係薄介電非極性材料層。合適之非極性材料包括聚合物,諸如聚乙烯、聚丙烯及聚苯乙烯。
US 2010/200839 A1係關於其上生長有石墨烯層的基板以及形成在此種基板中的電光積體電路。本文檔揭示了在單晶矽基板上形成的氧化鋁,該單晶矽基板具有10 nm或以上及500 nm或以下的平均厚度——小於10 nm的平均厚度係非期望的。
2015 10 thSpanish Conference on Electron Devices (CDE) 「Monte Carlo modeling of mobility and microscopic charge transport in supported graphene」藉助於積體蒙特卡洛模擬器評估下層基板(具體地h-BN、SiO 2、SiO 2及HfO 2)對石墨烯中的遷移率及電子輸運的影響。
所屬技術領域仍然需要設置在基板上的石墨烯具有減少之電子聲子耦合以便改良石墨烯之電子特性以及在合適基板上形成石墨烯之方法。為了解決至少此等問題,發明人開發出本發明。
根據本發明之第一態樣,提供了一種石墨烯基板,包含: 直接位於金屬氧化物層上的石墨烯層結構,該金屬氧化物層直接位於支撐層上; 其中該金屬氧化物層具有小於5 nm的厚度且選自由Al 2O 3、HfO 2、MgO、MgAl 2O 4、Ta 2O 5、Y 2O 3、ZrO 2及YSZ組成之群;且 其中該支撐層為BN、AlN、GaN、SiC、金剛石或它們的組合。
在另一態樣中,提供了一種形成石墨烯基板之方法,包含以下步驟: 提供生長基板,該生長基板包含由BN、AlN、GaN、SiC、金剛石或它們的組合形成的支撐層或由該支撐層組成; 藉由ALD在該支撐層上形成金屬氧化物層,其中該金屬氧化物層具有小於5 nm的厚度且選自由Al 2O 3、HfO 2、MgO、MgAl 2O 4、Ta 2O 5、Y 2O 3、ZrO 2及YSZ組成之群;及 藉由CVD在該金屬氧化物層上形成石墨烯層結構。
現將進一步描述本揭露。在以下段落中,更詳細地界定本揭露之不同態樣/實施例。除非明確地相反地指示,否則如此界定的各態樣/實施例都可與任何另一個或另一些態樣/實施例組合。具體地,被指示為較佳的或有利的任何特徵可與被指示為較佳的或有利的任何另一個或另一些特徵組合。
本發明係關於一種石墨烯基板本身以及包含形成石墨烯的形成石墨烯基板之方法。形成可被認為與合成、製造、產生及生長同義。石墨烯係知名二維材料,係指包含呈六方晶格的單層碳原子的碳同素異形體。如本文所用,石墨烯係指一層或多層石墨烯。因此,本發明係關於單層石墨烯以及多層石墨烯(其可稱為石墨烯層結構)之形成。如本文所用,石墨烯係指較佳地具有1個至10個單層石墨烯的石墨烯層結構。在石墨烯基板之許多後續應用中,一個單層石墨烯是特別較佳的。因此,石墨烯基板較佳地包含直接位於金屬氧化物層上的石墨烯單層。用本文所揭示之方法製造的石墨烯較佳地為單層石墨烯。然而,多層石墨烯對於其他應用係較佳的,且2或3層石墨烯可能係較佳的。如本文所述,石墨烯特別較佳地可藉由CVD (其中CVD係指石墨烯直接至金屬氧化物層上的CVD生長)獲得。
石墨烯基板將理解為包含石墨烯且適合後續使用的基板。特別地,石墨烯基板適合用於製備基於石墨烯之電子設備。如本文所用,術語基板可用於指代適合在其上沉積另一個層的材料。術語基板通常與晶圓同義。因此,支撐層及金屬氧化物中之各者可各自獨立地稱為基板。
石墨烯基板進一步包含金屬氧化物層及支撐層。石墨烯層結構直接設置在金屬氧化物層上。亦即,沒有中間層或材料,且石墨烯之一個表面與金屬氧化物層之表面直接實質上連續接觸。應當理解,石墨烯可包含褶皺,該等褶皺係石墨烯遠離基板表面的物理變形。然而,石墨烯較佳地係單個連續的碳原子片/層(或多個單獨堆疊的連續片/層,在此種情況下石墨烯係多層石墨烯)。類似地,金屬氧化物層直接設置在支撐層上。
發明人已發現,可跨支撐層設置薄金屬氧化物層以便提供用於石墨烯之形成的較佳表面,特別地藉由CVD,甚至更特別地藉由根據WO 2017/029470的CVD。發明人已發現,薄金屬氧化物層儘管由已知表現出適當能量的必要聲子模式以與相鄰層中之電子耦合的材料製成,但允許石墨烯經設置成緊鄰由表現出期望聲子能帶結構的材料製成的支撐層,這導致電子聲子耦合減少。因此,在提供足夠薄的金屬氧化物層的情況下,沒有明顯觀察到電子聲子耦合。發明人已發現,具有小於5 nm厚度的金屬氧化物層足以提供此種優點。甚至更佳地,金屬氧化物層具有小於4 nm的厚度。
雖然鑒於金屬氧化物與石墨烯之間的耦合的潛在性,較佳地具有儘可能小的厚度的金屬氧化物層,但需要足夠厚的金屬氧化物層以提供藉由CVD直接在層上生長石墨烯的改良。發明人已發現,至少0.5 nm的金屬氧化物層厚度足矣,但厚度較佳地為至少1 nm,更佳地為至少2 nm。因此,金屬氧化物層較佳地具有0.5 nm至5 nm、1 nm至4 nm、且最佳地2 nm至4 nm的厚度。
金屬氧化物層由Al 2O 3、HfO 2、MgO、MgAl 2O 4、Ta 2O 5、Y 2O 3、ZrO 2及YSZ組成之群形成。亦即,該層由該材料組成。發明人已發現,此類金屬氧化物特別適合藉由CVD直接在其上生長石墨烯。不希望受理論的束縛,發明人已發現,此等材料具有足夠低的碳溶解度,使得在CVD之高溫期間,可生長出高品質的均勻石墨烯,而沒有當直接在諸如支撐層之那些之材料上生長時可能存在的缺陷。因此,金屬氧化物層之使用為CVD生長的石墨烯提供優點,但存在有關電子聲子耦合的預期缺陷。然而,發明人已藉由使用足夠薄的金屬氧化物層克服了此問題。
如應當理解,金屬氧化物(例如Al 2O 3)之化學計量不需要精確。如所屬技術領域中已知,此類材料之化學計量可有所不同。例如,氧化鋁可稱為AlO x,其中x為約3/2。較佳地,金屬氧化物層係Al 2O 3、HfO 2或YSZ,它們係允許形成特別高品質的石墨烯的材料。
在石墨烯基板中,支撐層由選自由BN、AlN、GaN、SiC、金剛石或視情況它們的組合組成之群的材料形成。亦即,該層由該材料組成。發明人已將此類材料決定為具有期望聲子能帶結構的材料,其中活性聲子模式以及相關聯的對稱性及能量使得電子聲子耦合相對於用於電子設備製造的其他合適基板(即介電質及/或半導體基板)有利地減少。因此,雖然發明人已將BN、AlN、GaN、SiC、金剛石及它們的組合決定為展示出此類有利特性的合適材料,但熟習此項技術者可藉助常規實驗決定等效材料,使得可使用此種等效物來實現及利用本發明之技術益處。鑒於與相鄰石墨烯中之對應電子耦合的可用相關聲子模式之密度降低,此類材料可稱為「低聲子密度」材料。
較佳地,支撐層由BN、AlN、GaN或它們的組合形成。此等材料具有特別低的聲子密度,以便不抑制上覆石墨烯之遷移率。較佳地,BN係六方氮化硼(即h-BN),但亦可採用立方氮化硼(即c-BN)。已知AlN及GaN在立方空間群中結晶。最佳地,支撐層由AlN形成(實質上由其組成)。
雖然已知石墨烯可直接設置在「低聲子密度」材料(諸如氮化硼)及「高聲子密度」材料(諸如SiO 2及HfO 2)上,但所屬技術領域中不需要將本文所述之此類材料組合以提供多層基板。所屬技術領域中之石墨烯通常藉由在銅基板上生長來提供且藉由聚合物(通常為PMMA)直接轉移至所要基板上。雖然本發明人試圖藉由CVD直接在期望低聲子密度材料上製造石墨烯,但此等材料中的碳溶解度及/或強共價鍵(諸如當在SiC上生長時的Si-C鍵)之形成抑制基於石墨烯之電子應用所要的高均勻性之形成。諸如此等之缺陷引入降低載子移動率的電荷散射源。當石墨烯如所屬技術領域中通常那樣轉移至基板表面上時,此等問題不會出現。另一方面,石墨烯通常自銅的物理轉移引入許多對石墨烯之電子特性產生負面影響的缺陷。此外,此種處理不適合大規模製造(諸如在製造廠中的CMOS基板上)。特別是來自催化金屬基板及蝕刻溶液的無意摻雜亦導致石墨烯之生產在樣品之間的一致性與商業生產所要求的不夠一致。
發明人驚訝地發現,薄金屬氧化物層足以允許藉由CVD直接形成高品質石墨烯,而不會引入原本將降低載子移動率的非期望電子聲子耦合。
較佳地,支撐層具有至少5 nm、較佳地至少15 nm、更佳地至少50 nm的厚度。在一些實施例中,支撐層較佳地具有至少100 nm的厚度。在其他實施例中,例如,在金屬氧化物層特別薄的情況下,支撐層可具有至少2 nm的厚度。通常較佳的是,金屬氧化物層不厚於支撐層。
較佳地,支撐層設置在晶圓上。支撐層、金屬氧化物層及石墨烯的組合下面的晶圓並不特別受限制。較佳地,晶圓係藍寶石或矽晶圓。如應當理解,矽晶圓包括「純」矽晶圓(實質上由摻雜或未摻雜的矽組成)或可稱為CMOS晶圓的包括附加相關聯電路晶圓。
本發明之方法包含以下步驟:提供生長基板,該生長基板包含由BN、AlN、GaN、SiC、金剛石或它們的組合形成的支撐層或由該支撐層組成。生長基板較佳地進一步包含晶圓,該晶圓較佳地係藍寶石或矽晶圓。
在一些較佳實施例中,該方法進一步包含以下步驟:在形成該石墨烯層結構之後將該晶圓蝕刻掉或拆除。晶圓為石墨烯在CVD反應室中的生長提供支撐,然而,晶圓可藉由蝕刻或拆除移除以便減小石墨烯基板之厚度,這對於電子設備應用而言係較佳的。
該方法進一步包含以下步驟:藉由ALD在支撐層上形成金屬氧化物層,其中該金屬氧化物層具有小於5 nm的厚度且選自由Al 2O 3、HfO 2、MgO、MgAl 2O 4、Ta 2O 5、Y 2O 3、ZrO 2及YSZ組成之群。
發明人已發現,藉由ALD形成金屬氧化物層對於提供高度共形(均勻厚度)層特別有益,這在形成此類薄層(低至0.5 nm厚)時是必不可少的。如所屬技術領域中已知,ALD包含連續引入至少兩種化學前驅物(例如臭氧及三甲基鋁以便形成氧化鋁,但用於本文所述之金屬氧化物的其他合適材料係眾所周知的)。鑒於ALD生長之自限性,層之厚度可藉由改變此類週期之數目來控制。
該方法進一步包含以下步驟:藉由CVD在該金屬氧化物層上形成石墨烯層結構。CVD通常係指一系列化學氣相沉積技術,該等技術中之各者都涉及真空沉積以產生薄膜材料,諸如像石墨烯等二維晶體材料。揮發性前驅物(即呈氣相或懸浮在氣體中的那些)經分解以釋放必要的物質以便形成所要材料,在石墨烯的情況下係碳。
較佳地,該方法涉及藉由熱CVD形成石墨烯,使得分解係加熱前驅物之結果。較佳地,本文所揭示之方法中使用的CVD反應室係冷壁反應室,其中耦合至基板的加熱器係該室之唯一熱源。如應當理解,基板係指支撐層及金屬氧化物層連同在存在的情況下的下層晶圓。
在一個特別較佳的實施例中,CVD反應室包含具有多個前驅物入口點或前驅物入口點陣列的緊密耦合蓮蓬頭。此種包含緊密耦合蓮蓬頭的CVD裝置可已知用於MOCVD製程。因此,該方法可以替代地說是使用包含緊密耦合蓮蓬頭的MOCVD反應器來執行的。在任一種情況下,蓮蓬頭較佳地經組態以在基板表面與複數個前驅物入口點之間提供小於100 mm、更佳地小於25 mm、甚至更佳地小於10 mm的最小間距。如應當理解,恆定間距意指基板表面與每個前驅物入口點之間的最小間距實質上相同。最小間距係指前驅物入口點與基板表面(即金屬氧化物層之表面)之間的最小間距。因此,此種實施例涉及「垂直」佈置,其中包含前驅物入口點的平面實質上平行於基板表面之平面。
通向反應室的前驅物入口點較佳地被冷卻。進口或在使用時蓮蓬頭較佳地由外部冷卻劑(例如水)主動冷卻,以便保持前驅物入口點之相對冷的溫度,使得前驅物穿過複數個前驅物入口點並進入反應室時的溫度小於100℃,較佳地小於50℃。
較佳地,基板表面與複數個前驅物入口點之間的足夠小的間距及前驅物入口點之冷卻之組合與基板的加熱至前驅物之分解範圍結合產生自基板表面延伸至前驅物入口點的足夠陡峭的熱梯度,以允許在基板表面上形成石墨烯。如WO 2017/029470所揭示,非常陡峭的熱梯度可用於促進直接在非金屬基板上較佳地跨基板之整個表面形成高品質及均勻的石墨烯。基板可具有至少5 cm (2吋)、至少15 cm (6吋)或至少30 cm (12吋)的直徑。用於本文所述之方法的特別合適之裝置包括Aixtron® Close-Coupled Showerhead®反應器及Veeco® TurboDisk反應器。
因此,在其中本發明之方法涉及使用如WO 2017/029470所揭示之方法的特別較佳的實施例中,該方法包含: 將基板設置在緊密耦合反應室中的加熱承熱器上,該基板包含支撐層及金屬氧化物層,該緊密耦合反應室具有複數個冷卻進口,該等冷卻進口經佈置成使得在使用時,進口跨基板分佈且與基板表面(即金屬氧化物層)具有恆定間距; 將進口冷卻至小於100℃ (即以便冷卻前驅物); 將呈氣相及/或懸浮在氣體中的前驅物經由進口引入並進入CVD反應室中,以由此分解前驅物並在基板之金屬氧化物層上形成石墨烯;及 將承熱器加熱至超過前驅物分解溫度至少50℃的溫度,以提供基板表面與進口之間足夠陡峭以允許自分解前驅物釋放的碳形成石墨烯的熱梯度; 其中恆定間距小於100 mm,較佳地小於25 mm,甚至更佳地小於10 mm。
較佳地,該方法進一步包含以下步驟:在石墨烯層結構上形成一或多個另外的層。較佳地,這包含藉由ALD在石墨烯層結構上形成另外的金屬氧化物層,其中該金屬氧化物層具有小於5 nm的厚度且選自由Al 2O 3、HfO 2、MgO、MgAl 2O 4、Ta 2O 5、Y 2O 3、ZrO 2及YSZ組成之群。同樣地,該方法較佳地進一步包含以下步驟:在該另外的金屬氧化物層上形成另外的層,其中該另外的層為BN、AlN、GaN、SiC、金剛石或它們的組合。
在另一態樣中,提供了一種電子設備,包含如本文所述之石墨烯基板或可藉由本文所揭示之方法獲得的石墨烯基板。亦即,電子設備可由石墨烯基板製造,由此將石墨烯層結構直接結合在金屬氧化物層上,該金屬氧化物層直接位於支撐層上,如本文所述。用於形成電子設備的另外步驟在所屬技術領域中係已知的且可包括圖案化(諸如藉由微影術、雷射及/或電漿蝕刻)及/或沉積諸如介電質層及/或金屬歐姆觸點等附加層及材料。
鑒於石墨烯提供的有利特性,特別是載子移動率之改良,包含此種石墨烯基板的電子設備相比先前技術設備可得到改良。例如,電光調變器係可受益於更大載子移動率的一種較佳電子設備。特別地,包含石墨烯基板的電光調變器可以更大的帶寬操作。其他較佳電子設備包括電晶體(即石墨烯電晶體)諸如射頻石墨烯場效應電晶體(RF GFET)依賴於高載子移動率在此類高頻率下「開啟」及「關閉」。生物感測器亦係受益於石墨烯之更高遷移率的較佳電子設備,這是由於片電阻之相關聯降低降低了操作所需之功率。另一種特別較佳的電子設備係霍爾效應感測器。此類設備之靈敏度可在更高的載子移動率下得到改良。
第1圖及第2圖中所示之資料係獲自根據本發明之四個石墨烯基板。石墨烯基板包含其上具有AlN支撐層的藍寶石晶圓。然後藉由改變原子層沉積期間的週期數目以不同的厚度形成氧化鋁層。然後根據本文所述之方法藉由CVD在該氧化鋁層上形成石墨烯。
第1圖展示隨著金屬氧化物厚度之增加,在金屬氧化物層上形成的石墨烯之載子移動率增加之改良。金屬氧化物層之厚度(以nm為單位)為ALD週期數之大約1/10。儘管電子聲子耦合可能導致載子移動率降低,但發明人已發現,小於5 nm的金屬氧化物層可造成改良之載子移動率。發明人已發現,2 nm至4 nm提供關於載子移動率的最佳厚度。
第2圖類似地展示隨著金屬氧化物層之厚度增加直至約3 nm,載子散射時間之改良,此時增加之厚度導致載子散射時間之減少。因此,1 nm至4 nm、較佳地2 nm至3 nm提供關於載子散射時間的最佳厚度。
第3圖係使用根據實例之方法直接在AlN上生長的石墨烯的拉曼光譜,不同之處在於省略了金屬氧化物生長之ALD步驟。第4圖係同一樣品的AFM圖像。
第5圖係根據實例在AlO x/AlN堆疊中之AlO x層上生長的石墨烯的拉曼光譜。第6圖係同一樣品的AFM圖像。
第7圖係根據本文所述之實例製造的電解質閘控GFET 100的示意性橫截面。電晶體100包含根據本發明之石墨烯基板。石墨烯基板由藍寶石晶圓105、100 nm至250 nm厚的氮化鋁層110及約3 nm厚的氧化鋁層115與其上跨氧化鋁115之表面的最終石墨烯單層120形成。
電晶體100進一步包含塗在石墨烯單層120之表面上的塗銀(Ag)觸點125a及125b,以便在該等觸點之間留下石墨烯單層之曝露表面,該曝露表面可接收電解質130。觸點125a、125b用作電晶體之源極及汲極。在使用中,電解質130例如100 mM的氯化鉀(KCl)電解質經沉積至石墨烯單層120之表面上,且習知銀/氯化銀(Ag/AgCl)丸粒探針135經浸沒於電解質中並用作閘電極以提供閘極電壓。
第8圖至第12圖分別繪出在單個公共藍寶石晶圓上製造的複數個電解質閘控GFET 100之電流對閘極電壓。對於各電晶體,閘極電壓自-0.4 V至+0.6 V變化,且測量汲極源極電流(A) (汲極電壓為40 mV)。對於各電晶體,在10 μA範圍內繪製汲極源極電流。此等結果顯示,各電晶體都能夠用可感測狄拉克閘極電壓進行閘控。
實例
將包含支撐層或由該支撐層組成的生長基板放置至用於金屬氧化物(MO x)生長的ALD室中。在本文所述之兩個實例中,生長基板由矽或藍寶石晶圓上的氮化鋁支撐層組成。氮化鋁層之厚度可在100 nm與250 nm之間。將基板保持在沉積溫度為150℃、真空為約220 mTorr(約27 Pa)、氮氣流量為27 sccm的室內,以平衡室溫度及壓力以及使任何水分自樣品表面脫附。然後分別使用三甲基鋁(TMAI)及去離子水(DI H 2O)或臭氧(O 3)作為金屬有機前驅物及氧化劑前驅物來沉積Al 2O 3,使用氮氣作為載氣及吹掃氣體將該前驅物引入沉積室中。以3:2比例將前驅物脈衝到室中,脈衝時間為0.6秒,且吹掃時間對於TMAI及DI H 2O或O 3分別為20秒、18秒或25秒。在150℃下以根據所要膜厚度的變化數目的週期(5個至100個週期)沉積膜。
將ALD加蓋的基板定位在MOCVD反應器室內的碳化矽塗覆的石墨承熱器上。反應器室本身被保護在手套箱內的惰性氣氛中。然後將反應器密封閉合並在氮氣、氬氣或氫氣的流動下以10,000 sccm至60,000 sccm之速率吹掃。以40 rpm至60 rpm之速率旋轉承熱器。將反應室器內的壓力降低到30 mbar至100 mbar。使用光學探針來監測生長期間的基板反射率及溫度——基板仍處於它們的未加熱狀態,它們在探針下面旋轉以便建立基線信號。然後使用定位在承熱器下方的電阻加熱器線圈以0.1 K/s至3.0 K/s之速率將基板加熱至1,000℃至1,500℃之設定點。視情況在氫氣的流動下烘烤基板達10 min至60 min,之後將周圍氣體切換為氮氣或氬氣並將壓力降低至30 mbar至50 mbar。在生長溫度及壓力下對基板進行退火達5 min至10 min,之後允許碳氫化合物前驅物進入室內。藉由使載氣(氮氣、氬氣或氫氣)穿過保持在恆定溫度及壓力下的液體來將碳氫化合物前驅物自其在鼓泡器中的液態輸運。使蒸氣進入氣體混合歧管並穿過蓮蓬頭經由所屬技術領域中常常稱為增壓室的多個小進口前進至反應器室,這保證了跨基板表面的均勻蒸氣分佈及生長。在恆定流量、壓力及溫度下將基板曝露於烴蒸氣達1,800 s至10,800 s之持續時間,此時關斷前驅物供應閥。然後在氮氣、氬氣或氫氣的持續流動下以0.1 K/min至4 K/min之速率冷卻基板。一旦基板溫度達到低於200℃,就將室抽真空並用惰性氣體吹掃。停止旋轉並關斷加熱器。一旦加熱器溫度達到低於150℃,就打開反應器室並將石墨烯塗覆的基板自感受器移除。
然後,使用包括拉曼光譜及原子力顯微鏡(atomic force microscopy; AFM)的標準技術對所形成之石墨烯進行表徵。第6圖中之AFM資料顯示根據實例使用藍寶石晶圓在氮化鋁上之薄(<5 nm)氧化鋁層上生長的石墨烯之形態。石墨烯並非作為離散石墨烯鏈或薄片生長,而是作為連續單層生長,從而使得它可用於在電子設備中應用。當與直接在藍寶石晶圓上之氮化鋁上生長的石墨烯(第4圖)相比時,甚至在薄金屬氧化物層上生長的石墨烯亦表現出顯著改良之D/G比率以及改良之遷移率及載子散射時間,如第2圖及第3圖所示。
為了產生第7圖之電晶體,在執行上述步驟之後,然後刻劃出測得一條邊約6 mm而另一條邊約2 mm的矩形晶片。沿著短(2 mm)邊之邊緣施塗薄銀漆條以形成源極/汲極觸點。使漆乾燥。在晶片中心約2 mm 2的區域中,將幾μL之10 mM KCl移取至石墨烯表面上。將Ag/AgCl丸粒參考電極浸入電解質中,且將施加於電解質的電位用作閘極電壓。
如本文所用,除非上下文另外明確指出,否則單數形式「一個」、「一種」及「該」包括複數指代物。術語「包含」之使用意圖解釋為包括此類特徵但不排除其他特徵,且亦意圖包括必須限於所描述之那些的特徵之選項。換言之,除非上下文另外明確指出,否則術語亦包括以下的限制:「實質上由……組成」 (意圖意指可存在特定的另外成分,前提是它們不會實質上影響所描述之特徵)以及「由……組成」 (意圖意指不包括其他特徵,使得當考慮任何不可避免的雜質時,如果成分按其比例以百分數表示,則此等成分將加起來為100%)。
前述詳細描述已藉助於解釋及說明之方式提供,且不意圖限制所附申請專利範圍之範疇。本文所說明之目前較佳的實施例之許多變化對於熟習此項技術者將顯而易見,且保持在所附申請專利範圍及它們的等效物之範疇內。
100:電晶體 105:藍寶石晶圓 110:氮化鋁層 115:氧化鋁層 120:石墨烯單層 125a,125b:塗銀(Ag)觸點 130:電解質 135:銀/氯化銀(Ag/AgCl)丸粒探針
現將參考以下非限制性附圖進一步描述本發明,在附圖中:
第1圖係根據ALD週期之數目變化的石墨烯遷移率的圖。
第2圖係根據ALD週期之數目變化的載子散射時間的圖。
第3圖係直接在AlN上生長的石墨烯之拉曼光譜,且第4圖係該石墨烯之AFM圖像。
第5圖係在AlO x/AlN堆疊中之AlO x層上生長的石墨烯之拉曼光譜,且第6圖係該石墨烯之AFM圖像。
第7圖係包含本發明石墨烯基板的電解質閘控場效應電晶體的橫截面。
第8圖至第12圖分別係如第7圖所示之電晶體之電流對閘極電壓的圖。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無

Claims (18)

  1. 一種石墨烯基板,包含:一石墨烯層結構,直接位於一金屬氧化物層上,該金屬氧化物層直接位於一支撐層上;其中該金屬氧化物層具有自0.5nm至5nm的一厚度且選自由Al2O3、HfO2、MgO、MgAl2O4、Ta2O5、Y2O3、ZrO2及YSZ組成之群;其中該支撐層為BN、AlN、GaN、SiC、金剛石或它們的組合;且其中該金屬氧化物層不厚於該支撐層。
  2. 如請求項1所述之石墨烯基板,其中該支撐層為BN、AlN、GaN或它們的組合。
  3. 如請求項1或請求項2所述之石墨烯基板,其中該支撐層設置在一晶圓上。
  4. 如請求項3所述之石墨烯基板,其中該晶圓為一藍寶石或矽晶圓。
  5. 如請求項1或請求項2所述之石墨烯基板,其中該石墨烯層結構為一石墨烯單層。
  6. 如請求項1或請求項2所述之石墨烯基板,其中該金屬氧化物層具有小於4nm的一厚度。
  7. 如請求項1所述之石墨烯基板,其中該金屬氧化物層具有至少1nm的一厚度。
  8. 如請求項7所述之石墨烯基板,其中該金屬氧化物層具有至少2nm的一厚度。
  9. 如請求項1或請求項2所述之石墨烯基板,其中該支撐層具有至少5nm的一厚度。
  10. 如請求項9所述之石墨烯基板,其中該支撐層具有至少15nm的一厚度。
  11. 如請求項10所述之石墨烯基板,其中該支撐層具有至少50nm的一厚度。
  12. 一種電子設備,包含如請求項1至11任一項所述之石墨烯基板。
  13. 一種形成石墨烯基板之方法,該方法包含以下步驟:提供一生長基板,該生長基板包含由BN、AlN、GaN、SiC、金剛石或它們的組合形成的一支撐層或由該支撐層組成;藉由ALD在該支撐層上形成一金屬氧化物層,其中該金屬氧化物層具有自0.5nm至5nm的一厚度且選自由Al2O3、HfO2、MgO、MgAl2O4、Ta2O5、Y2O3、ZrO2、及YSZ組成之群;及藉由CVD在該金屬氧化物層上形成一石墨烯層結構,其中該金屬氧化物層不厚於該支撐層。
  14. 如請求項13所述之方法,其中該生長基板進一步包含一晶圓。
  15. 如請求項14所述之方法,其中該晶圓為一藍寶石或矽晶圓。
  16. 如請求項14或請求項15所述之方法,其中該方法進一步包含以下步驟:在形成該石墨烯層結構之後將該晶圓蝕刻掉或拆除。
  17. 如請求項13所述之方法,其中該方法進一步包含以下步驟:在該石墨烯層結構上形成一或多個另外的層。
  18. 如請求項17所述之方法,其中該方法包含以下步驟:藉由ALD在該石墨烯層結構上形成一另外的金屬氧化物層,其中該另外的金屬氧化物層具有小於5nm的一厚度且選自由Al2O3、HfO2、MgO、MgAl2O4、Ta2O5、Y2O3、ZrO2及YSZ組成之群;及在該另外的金屬氧化物層上形成一另外的層,其中該另外的層為BN、AlN、GaN、SiC、金剛石或它們的組合。
TW111125501A 2021-07-12 2022-07-07 石墨烯基板及其形成方法 TWI842006B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB2110031.8A GB2608810A (en) 2021-07-12 2021-07-12 A graphene substrate and method of forming the same
GB2110031.8 2021-07-12
PCT/EP2022/056398 WO2022200083A1 (en) 2021-03-24 2022-03-11 A wafer for the cvd growth of uniform graphene and method of manufacture thereof
WOPCT/EP2022/056398 2022-03-11

Publications (2)

Publication Number Publication Date
TW202314024A TW202314024A (zh) 2023-04-01
TWI842006B true TWI842006B (zh) 2024-05-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201940422A (zh) 2018-01-11 2019-10-16 英商佩拉葛拉夫有限公司 用於製造石墨烯電晶體及裝置之方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201940422A (zh) 2018-01-11 2019-10-16 英商佩拉葛拉夫有限公司 用於製造石墨烯電晶體及裝置之方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 Dong-WookPark Bottom-gate coplanar graphene transistors with enhanced graphene adhesion on atomic layer deposition Al2O3 Applied Physics Letters 106 AIP 12 March 2015 102106 page1-5

Similar Documents

Publication Publication Date Title
US8310014B2 (en) Field effect transistors, methods of fabricating a carbon-insulating layer using molecular beam epitaxy and methods of fabricating a field effect transistor
Ngo et al. Epitaxial growth of LaAlO3 on SrTiO3-buffered Si (001) substrates by atomic layer deposition
US20240166521A1 (en) A method of forming a graphene layer structure and a graphene substrate
US11869768B2 (en) Method of forming transition metal dichalcogenide thin film
Kao et al. AlN epitaxy on SiC by low-temperature atomic layer deposition via layer-by-layer, in situ atomic layer annealing
EP3662505B1 (en) Mono- and multilayer silicene prepared by plasma-enhanced chemical vapor deposition
TWI842006B (zh) 石墨烯基板及其形成方法
GB2607410A (en) A method of forming a graphene layer structure and a graphene substrate
KR20150130256A (ko) 이종 적층 구조체 및 그 제조방법, 및 상기 이종 적층 구조체를 구비하는 전기소자
Mandracci et al. Growth and characterization of SiC layers obtained by microwave-CVD
TW202314024A (zh) 石墨烯基板及其形成方法
CN117678054A (zh) 石墨烯基板及其形成方法
Zhao et al. Salt-promoted growth of monolayer tungsten disulfide on hexagonal boron nitride using all chemical vapor deposition approach
TWI809778B (zh) 用於均勻石墨烯cvd生長的晶圓以及製造其的方法
TWI836383B (zh) 形成石墨烯層結構之方法及石墨烯基板
Tao et al. A novel method for in situ growing Ge-rich polycrystalline SiGe thin films on glass at low temperature
US20240153762A1 (en) Wafer for the cvd growth of uniform graphene and method of manufacture thereof
US11837635B2 (en) Method of forming graphene on a silicon substrate
TW202413717A (zh) 含石墨烯積層物
WO2023202944A1 (en) A graphene-containing laminate
GB2624474A (en) A method of forming a graphene layer structure and a graphene substrate
CN114530374A (zh) 基于溅射AlON/金刚石基板的HEMT器件及其制备方法
CN114284349A (zh) 石墨烯晶体管和制造石墨烯晶体管的方法
TW202343799A (zh) 電晶體及製造電晶體之方法
Kim Wafer-scale and selective-area growth of high-quality hexagonal boron nitride on Ni (111) by metal-organic chemical vapor deposition