TWI841958B - Temperature measurement circuit and method - Google Patents

Temperature measurement circuit and method Download PDF

Info

Publication number
TWI841958B
TWI841958B TW111116761A TW111116761A TWI841958B TW I841958 B TWI841958 B TW I841958B TW 111116761 A TW111116761 A TW 111116761A TW 111116761 A TW111116761 A TW 111116761A TW I841958 B TWI841958 B TW I841958B
Authority
TW
Taiwan
Prior art keywords
temperature
signal
circuit
sensing circuit
measurement
Prior art date
Application number
TW111116761A
Other languages
Chinese (zh)
Other versions
TW202344815A (en
Inventor
闖 張
盧山
俊謀 張
陳一敏
王劍
成園林
Original Assignee
開曼群島商臉萌有限公司
Filing date
Publication date
Application filed by 開曼群島商臉萌有限公司 filed Critical 開曼群島商臉萌有限公司
Priority to TW111116761A priority Critical patent/TWI841958B/en
Publication of TW202344815A publication Critical patent/TW202344815A/en
Application granted granted Critical
Publication of TWI841958B publication Critical patent/TWI841958B/en

Links

Abstract

Disclosed are a temperature measurement circuit and method. The circuit includes a first temperature sensing circuit, a second temperature sensing circuit and a data processing unit. The first temperature sensing circuit is configured to generate a first measurement signal for characterizing a temperature based on an inputted first current signal, a magnitude of the first current signal being correlated to temperature. The second temperature sensing circuit is configured to generate a second measurement signal for characterizing the temperature based on an inputted second current signal, the second current signal being independent of temperature. The data processing unit is configured to determine a current temperature based on a first characteristic parameter corresponding to the first measurement signal and a second characteristic parameter corresponding to the second measurement signal. Linearity of the temperature measurement circuit when measuring temperature and accuracy of temperature measurement results can be improved.

Description

溫度測量電路、方法Temperature measurement circuit and method

本發明涉及溫度測量技術領域,尤其涉及一種溫度測量電路、方法。 The present invention relates to the field of temperature measurement technology, and in particular to a temperature measurement circuit and method.

電路中常常需要進行溫度控制,採用高端類比數位轉換器ADC的溫度測量電路,占用面積較大且佈局比較困難。此外,溫度測量電路還常有測量的溫度不準確並存在非線性性能的缺點。 Temperature control is often required in circuits. Temperature measurement circuits using high-end analog-to-digital converters (ADCs) occupy a large area and are difficult to lay out. In addition, temperature measurement circuits often have the disadvantages of inaccurate temperature measurements and nonlinear performance.

提供該發明內容部分以便以簡要的形式介紹構思,這些構思將在後面的具體實施方式部分被詳細描述。該發明內容部分並不旨在標識要求保護的技術方案的關鍵特徵或必要特徵,也不旨在用於限制所要求的保護的技術方案的範圍。 This invention content section is provided to introduce the concepts in a concise form, which will be described in detail in the specific implementation section below. This invention content section is not intended to identify the key features or essential features of the technical solution claimed for protection, nor is it intended to be used to limit the scope of the technical solution claimed for protection.

本發明實施例提供了一種溫度測量電路、方法。 The present invention provides a temperature measurement circuit and method.

第一方面,本發明實施例提供了一種溫度測量電路,包括:第一溫度感測電路,第二溫度感測電路,以及資料處理單元;所述 第一溫度感測電路用於根據輸入的第一電流訊號產產生用於表示溫度的第一測量訊號,所述第一電流訊號的大小與溫度相關;所述第二溫度感測電路用於根據輸入的第二電流訊號產生用於表示溫度的第二測量訊號,所述第二電流訊號與溫度無關;所述第一溫度感測電路的輸出端、所述第二溫度感測電路的輸出端均與所述資料處理單元的輸入端連接;所述資料處理單元用於根據所述第一測量訊號對應的第一特徵參數和所述第二測量訊號對應的第二特徵參數確定當前溫度;其中所述第一溫度感測電路的電路參數與所述第二溫度感測電路的電路參數相同。 In the first aspect, an embodiment of the present invention provides a temperature measurement circuit, comprising: a first temperature sensing circuit, a second temperature sensing circuit, and a data processing unit; the first temperature sensing circuit is used to generate a first measurement signal for indicating temperature according to an input first current signal, and the magnitude of the first current signal is related to the temperature; the second temperature sensing circuit is used to generate a second measurement signal for indicating temperature according to an input second current signal, and the second current signal is independent of the temperature; the output end of the first temperature sensing circuit and the output end of the second temperature sensing circuit are both connected to the input end of the data processing unit; the data processing unit is used to determine the current temperature according to a first characteristic parameter corresponding to the first measurement signal and a second characteristic parameter corresponding to the second measurement signal; wherein the circuit parameters of the first temperature sensing circuit are the same as the circuit parameters of the second temperature sensing circuit.

第二方面,本發明實施例提供了一種溫度測量方法,用於第一方面所述的溫度測量電路中的資料處理單元,所述溫度測量電路包括第一溫度感測電路和第二溫度感測電路,該方法包括:接收第一溫度感測電路輸出的第一測量訊號以及第二溫度感測電路輸出的第二測量訊號;其中,所述第一溫度感測電路的輸入訊號為第一電流訊號,第一電流訊號的大小與溫度相關;所述第二溫度感測電路輸入第二電流訊號,所述第二電流訊號與溫度無關;提取第一測量訊號對應的第一特徵參數以及第二測量訊號對應的第二特徵參數;根據所述第一特徵參數和第二特徵參數,確定所述溫度測量電路所處環境的當前溫度。 In the second aspect, an embodiment of the present invention provides a temperature measurement method, which is used in a data processing unit in the temperature measurement circuit described in the first aspect, wherein the temperature measurement circuit includes a first temperature sensing circuit and a second temperature sensing circuit, and the method includes: receiving a first measurement signal output by the first temperature sensing circuit and a second measurement signal output by the second temperature sensing circuit; wherein the input signal of the first temperature sensing circuit is a first current signal, the magnitude of which is related to the temperature; the second temperature sensing circuit inputs a second current signal, which is independent of the temperature; extracting a first characteristic parameter corresponding to the first measurement signal and a second characteristic parameter corresponding to the second measurement signal; and determining the current temperature of the environment in which the temperature measurement circuit is located according to the first characteristic parameter and the second characteristic parameter.

本發明實施例提供的溫度測量電路、方法,藉由設置電路參數相同的第一溫度感測電路和第二溫度感測電路,分別對第一溫度感測電路和第二溫度感測電路輸入第一電流訊號和第二電流 訊號,第一電流訊號的大小與溫度相關,第二電流訊號的大小與溫度無關。利用第二溫度感測電路輸出的第二測量訊號消除第一溫度感測電路輸出的第一測量訊號中的、由第一溫度感測電路中的電路參數產生的影響,使得上述溫度測量電路的溫度測量結果的線性度較好,準確度較高。 The temperature measurement circuit and method provided by the embodiment of the present invention, by setting a first temperature sensing circuit and a second temperature sensing circuit with the same circuit parameters, input a first current signal and a second current signal to the first temperature sensing circuit and the second temperature sensing circuit respectively, the magnitude of the first current signal is related to the temperature, and the magnitude of the second current signal is independent of the temperature. The second measurement signal output by the second temperature sensing circuit is used to eliminate the influence of the circuit parameters in the first temperature sensing circuit in the first measurement signal output by the first temperature sensing circuit, so that the linearity of the temperature measurement result of the above temperature measurement circuit is better and the accuracy is higher.

10、20:溫度測量電路 10, 20: Temperature measurement circuit

11、21:第一溫度感測電路 11, 21: First temperature sensing circuit

12、22:第二溫度感測電路 12, 22: Second temperature sensing circuit

13、23:資料處理單元 13, 23: Data processing unit

211:第一環形振盪器 211: The first ring oscillator

221:第二環形振盪器 221: Second ring oscillator

24:PTAT電流源 24: PTAT current source

25:定電流源 25: Constant current source

301、302、303:步驟 301, 302, 303: Steps

結合附圖並參考以下具體實施方式,本發明各實施例的上述和其他特徵、優點及方面將變得更加明顯。貫穿附圖中,相同或相似的附圖標記表示相同或相似的元素。應當理解附圖是示意性的,原件和元素不一定按照比例繪製。 The above and other features, advantages and aspects of the various embodiments of the present invention will become more apparent in conjunction with the accompanying drawings and with reference to the following specific embodiments. Throughout the accompanying drawings, the same or similar figure markings represent the same or similar elements. It should be understood that the drawings are schematic and the originals and elements are not necessarily drawn to scale.

圖1是根據本發明提供的溫度測量電路的一些實施例的結構示意圖。 Figure 1 is a schematic diagram of the structure of some embodiments of the temperature measurement circuit provided by the present invention.

圖2是根據本發明提供的溫度測量電路的另外一些實施例的結構示意圖。 Figure 2 is a schematic diagram of the structure of some other embodiments of the temperature measurement circuit provided by the present invention.

圖3是根據本發明提供的溫度測量方法的一些實施例的流程示意圖。 Figure 3 is a schematic diagram of the process of some embodiments of the temperature measurement method provided by the present invention.

下面將參照附圖更詳細地描述本發明的實施例。雖然附圖中顯示了本發明的某些實施例,然而應當理解的是,本發明可以藉由各種形式來實現,而且不應該被解釋為限於這裏闡述的實施 例,相反提供這些實施例是為了更加透徹和完整地理解本發明。應當理解的是,本發明的附圖及實施例僅用於示例性作用,並非用於限制本發明的保護範圍。 The following will describe the embodiments of the present invention in more detail with reference to the accompanying drawings. Although the accompanying drawings show certain embodiments of the present invention, it should be understood that the present invention can be implemented in various forms and should not be interpreted as being limited to the embodiments described herein. On the contrary, these embodiments are provided for a more thorough and complete understanding of the present invention. It should be understood that the accompanying drawings and embodiments of the present invention are only for exemplary purposes and are not intended to limit the scope of protection of the present invention.

應當理解,本發明的方法實施方式中記載的各個步驟可以按照不同的順序執行,和/或並行執行。此外,方法實施方式可以包括附加的步驟和/或省略執行示出的步驟。本發明的範圍在此方面不受限制。 It should be understood that the various steps described in the method implementation of the present invention may be performed in different orders and/or in parallel. In addition, the method implementation may include additional steps and/or omit the steps shown. The scope of the present invention is not limited in this respect.

本文使用的術語「包括」及其變形是開放性包括,即「包括但不限於」。術語「基於」是「至少部分地基於」。術語「一個實施例」表示「至少一個實施例」;術語「另一實施例」表示「至少一個另外的實施例」;術語「一些實施例」表示「至少一些實施例」。其他術語的相關定義將在下文描述中給出。 The term "including" and its variations used in this article are open inclusions, that is, "including but not limited to". The term "based on" means "based at least in part on". The term "one embodiment" means "at least one embodiment"; the term "another embodiment" means "at least one other embodiment"; the term "some embodiments" means "at least some embodiments". The relevant definitions of other terms will be given in the following description.

需要注意,本發明中提及的「第一」、「第二」等概念僅用於對不同的裝置、模塊或單元進行區分,並非用於限定這些裝置、模塊或單元所執行的功能的順序或者相互依存關係。 It should be noted that the concepts of "first" and "second" mentioned in the present invention are only used to distinguish different devices, modules or units, and are not used to limit the order or interdependence of the functions performed by these devices, modules or units.

需要注意,本發明中提及的「一個」、「多個」的修飾是示意性而非限制性的,本領域技術人員應當理解,除非在上下文另有明確指出,否則應該理解為「一個或多個」。 It should be noted that the modifiers "one" and "multiple" mentioned in the present invention are illustrative rather than restrictive. Those skilled in the art should understand that unless otherwise clearly indicated in the context, they should be understood as "one or more".

本發明實施方式中的多個裝置之間所交互的消息或者信息的名稱僅用於說明性的目的,而並不是用於對這些消息或信息的範圍進行限制。 The names of the messages or information exchanged between multiple devices in the embodiments of the present invention are only used for illustrative purposes and are not used to limit the scope of these messages or information.

請參考圖1,其示出了根據本發明的溫度測量電路的一些 實施例的結構示意圖。如圖1所示,溫度測量電路10,包括: Please refer to Figure 1, which shows a schematic diagram of the structure of some embodiments of the temperature measurement circuit according to the present invention. As shown in Figure 1, the temperature measurement circuit 10 includes:

第一溫度感測電路11,第二溫度感測電路12,以及資料處理單元13。 A first temperature sensing circuit 11, a second temperature sensing circuit 12, and a data processing unit 13.

所述第一溫度感測電路11用於根據輸入的第一電流訊號產生用於表示溫度的第一測量訊號,所述第一電流訊號的大小與溫度相關,所述第一測量訊號與溫度和第一溫度感測電路的電路參數相關。 The first temperature sensing circuit 11 is used to generate a first measurement signal for indicating temperature according to the input first current signal. The magnitude of the first current signal is related to the temperature. The first measurement signal is related to the temperature and the circuit parameters of the first temperature sensing circuit.

所述第二溫度感測電路12用於根據輸入的第二電流訊號產生用於表示溫度的第二測量訊號,所述第二電流訊號與溫度無關,所述第二測量訊號與第二溫度感測電路的電路參數相關。 The second temperature sensing circuit 12 is used to generate a second measurement signal for indicating temperature according to the input second current signal. The second current signal is independent of the temperature, and the second measurement signal is related to the circuit parameters of the second temperature sensing circuit.

所述第一溫度感測電路11的輸出端、所述第二溫度感測電路12的輸出端均與所述資料處理單元13的輸入端連接。 The output end of the first temperature sensing circuit 11 and the output end of the second temperature sensing circuit 12 are both connected to the input end of the data processing unit 13.

所述資料處理單元13用於根據所述第一測量訊號對應的第一特徵參數與所述第二測量訊號對應的第二特徵參數確定當前溫度;其中,所述第一溫度感測電路的電路參數與所述第二溫度感測電路的電路參數相同。 The data processing unit 13 is used to determine the current temperature according to the first characteristic parameter corresponding to the first measurement signal and the second characteristic parameter corresponding to the second measurement signal; wherein the circuit parameters of the first temperature sensing circuit are the same as the circuit parameters of the second temperature sensing circuit.

在一些應用場景中,上述溫度測量電路可以應用於積體電路設計中,用來檢測積體電路工作時的溫度。在這些應用場景中,上述溫度測量電路可以是固定設置在上述積體電路中的溫度檢測電路模塊。 In some application scenarios, the temperature measurement circuit can be applied to the integrated circuit design to detect the temperature of the integrated circuit when it is working. In these application scenarios, the temperature measurement circuit can be a temperature detection circuit module fixedly installed in the integrated circuit.

上述第一測量訊號可以是第一週期振盪訊號,第一特徵參數例如可以是第一週期振盪訊號的第一頻率。 The first measurement signal may be a first period oscillation signal, and the first characteristic parameter may be, for example, the first frequency of the first period oscillation signal.

上述第二測量訊號可以是第二週期振盪訊號,第二特徵參數例如可以是第二週期振盪訊號的第二頻率。 The second measurement signal may be a second period oscillation signal, and the second characteristic parameter may be, for example, the second frequency of the second period oscillation signal.

上述第一頻率可以與當前溫度和第一溫度感測電路的電路參數相關,第二頻率可以與第二溫度感測電路的電路參數相關。 The first frequency may be related to the current temperature and the circuit parameters of the first temperature sensing circuit, and the second frequency may be related to the circuit parameters of the second temperature sensing circuit.

上述第一溫度感測電路和第二溫度感測電路的電路參數相同。例如,對於第一溫度感測電路和第二溫度感測電路所需的相同的元件,可以使用相同的製作工藝製作。 The circuit parameters of the first temperature sensing circuit and the second temperature sensing circuit are the same. For example, the same components required for the first temperature sensing circuit and the second temperature sensing circuit can be manufactured using the same manufacturing process.

由於第一溫度感測電路11和第二溫度感測電路12的電路參數相同,對於輸入的電流訊號,第一溫度感測電路的電路參數對輸入到其中的第一電流訊號產生的輸出訊號,以及第二溫度感測電路的電路參數輸入到其中的第二電流訊號產生的輸出訊號可以近似視為相同。 Since the circuit parameters of the first temperature sensing circuit 11 and the second temperature sensing circuit 12 are the same, for the input current signal, the output signal generated by the circuit parameters of the first temperature sensing circuit for the first current signal input thereto, and the output signal generated by the circuit parameters of the second temperature sensing circuit for the second current signal input thereto can be approximately considered the same.

可以利用第二溫度感測電路對第二電流訊號產生的第二測量訊號,去除第一測量訊號中、由於第一溫度感測電路中的電路參數對電路訊號產生的輸出訊號。剩餘的第一測量訊號僅與第一電流訊號相關。而第一電流訊號是與溫度相關的訊號。因此的剩餘的第一測量訊號也可以視為僅與溫度相關。可以藉由剩餘的第一測量訊號來確定溫度測量電路所處環境的溫度。 The second measurement signal generated by the second temperature sensing circuit for the second current signal can be used to remove the output signal generated by the circuit parameters in the first temperature sensing circuit for the circuit signal in the first measurement signal. The remaining first measurement signal is only related to the first current signal. The first current signal is a signal related to temperature. Therefore, the remaining first measurement signal can also be regarded as only related to temperature. The temperature of the environment in which the temperature measurement circuit is located can be determined by the remaining first measurement signal.

本實施例提供的溫度測量電路,藉由設置電路參數相同的第一溫度感測電路和第二溫度感測電路,分別對第一溫度感測電路和第二溫度感測電路輸入第一電流訊號和第二電流訊號,第一電流訊號的大小與溫度相關,第二電流訊號的大小與溫度無關, 利用第二溫度感測電路輸出的第二測量訊號消除第一溫度感測電路輸出的第一測量訊號中的、由第一溫度感測電路中的電路參數產生的影響,使得藉由上述溫度測量電路所得到的溫度,可以提高溫度測量電路測量結果的線性度,同時可以提高溫度測量結果的準確度。 The temperature measurement circuit provided in this embodiment is configured with a first temperature sensing circuit and a second temperature sensing circuit having the same circuit parameters, and the first current signal and the second current signal are input to the first temperature sensing circuit and the second temperature sensing circuit respectively, the magnitude of the first current signal is related to the temperature, and the magnitude of the second current signal is independent of the temperature, and the second measurement signal output by the second temperature sensing circuit is used to eliminate the influence of the circuit parameters in the first temperature sensing circuit in the first measurement signal output by the first temperature sensing circuit, so that the temperature obtained by the above temperature measurement circuit can improve the linearity of the measurement result of the temperature measurement circuit, and at the same time, can improve the accuracy of the temperature measurement result.

請參考圖2,其示出了本發明提供的溫度測量電路另一個實施例的結構示意圖。 Please refer to Figure 2, which shows a schematic diagram of the structure of another embodiment of the temperature measurement circuit provided by the present invention.

與圖1所示實施例相比,如圖2所示,溫度測量電路20包括第一溫度感測電路21、第二溫度感測電路22、資料處理單元23、PTAT電流源24、定電流源25。 Compared with the embodiment shown in FIG1 , as shown in FIG2 , the temperature measurement circuit 20 includes a first temperature sensing circuit 21, a second temperature sensing circuit 22, a data processing unit 23, a PTAT current source 24, and a constant current source 25.

PTAT(Proportional To Absolute Temperature,與絕對溫度成正比)電流源24指的是輸出電流大小與絕對溫度(單位:開爾文)之間為正比例關係的電流源。 The PTAT (Proportional To Absolute Temperature) current source 24 refers to a current source in which the output current is proportional to the absolute temperature (unit: Kelvin).

也就是說,PTAT電流源24所輸出的電流大小I(單位:安培)和其所在環境溫度T(單位為開爾文)的關係滿足I=A×T(A為固定常量)。可以將PTAT電流源24輸出的電流視為PTAT電流。這裏的PTAT電流源24的實現電路可以是現有的各種PTAT電流源實現電路。 That is to say, the relationship between the current I (unit: ampere) output by the PTAT current source 24 and the ambient temperature T (unit: Kelvin) satisfies I=A×T (A is a fixed constant). The current output by the PTAT current source 24 can be regarded as the PTAT current. The implementation circuit of the PTAT current source 24 here can be various existing PTAT current source implementation circuits.

在一些應用場景中,上述溫度測量電路應用於測量積體電路領域時,上述PTAT電流源24可以在積體電路中。PTAT電流源24可以以子電路的形式設置在積體電路,作為溫度傳感器的核心單元。由於其輸出電流與絕對溫度成正比,因此可以藉由某種機 制,藉由PTAT電流源24輸出電流大小,反映當前的環境溫度。 In some application scenarios, when the temperature measurement circuit is applied to measure the integrated circuit field, the PTAT current source 24 can be in the integrated circuit. The PTAT current source 24 can be set in the integrated circuit in the form of a sub-circuit as the core unit of the temperature sensor. Since its output current is proportional to the absolute temperature, the current output current of the PTAT current source 24 can be used to reflect the current ambient temperature through a certain mechanism.

上述PTAT電流源24用於產生大小隨溫度變化的第一電流訊號。 The above-mentioned PTAT current source 24 is used to generate a first current signal whose magnitude varies with temperature.

PTAT電流源24的輸出端與第一溫度感測電路的輸入端連接,用於向第一溫度感測電路輸入第一電流訊號。 The output end of the PTAT current source 24 is connected to the input end of the first temperature sensing circuit, and is used to input the first current signal to the first temperature sensing circuit.

上述定電流源25可以是由PTAT電流源和一個CTAT(Complementary to Absolute Temperature,絕對溫度補償)電路組成。上述CTAT電路是產生負溫度係數的電路。也即,由該電路產生的電流的大小於溫度負相關。在一些應用場景中,上述定電流源可以由上述PTAT電流源24與一個CTAT電路構成。例如將上述PTAT電流源輸出的第一電流訊號輸入到上述CTAT電路,由上述CTAT電路輸出不隨溫度變化的第二電流訊號。 The above-mentioned constant current source 25 can be composed of a PTAT current source and a CTAT (Complementary to Absolute Temperature) circuit. The above-mentioned CTAT circuit is a circuit that generates a negative temperature coefficient. That is, the magnitude of the current generated by the circuit is negatively related to the temperature. In some application scenarios, the above-mentioned constant current source can be composed of the above-mentioned PTAT current source 24 and a CTAT circuit. For example, the first current signal output by the above-mentioned PTAT current source is input into the above-mentioned CTAT circuit, and the above-mentioned CTAT circuit outputs a second current signal that does not change with temperature.

本實施例中CTAT電路可以使用現有的各種CTAT實現電路。 In this embodiment, the CTAT circuit can use various existing CTAT implementation circuits.

上述PTAT電流源24在電壓訊號的激發下輸出與溫度正相關的第一電流訊號。 The PTAT current source 24 outputs a first current signal positively correlated with temperature under the stimulation of the voltage signal.

上述CTAT電路在電壓訊號的激發下輸出於溫度負相關的用於校準的校準電流訊號。 The above CTAT circuit outputs a calibration current signal that is negatively correlated with temperature and is used for calibration when stimulated by a voltage signal.

可以為上述校準電流訊號與上述第一電流訊號分別賦予第一權重與第二權重。藉由校準訊號與第一權重的乘積、第一電流訊號與第二權重權重的乘積,來確定第二電流訊號。例如將上述校準訊號與第一權重的乘積與第一電流訊號與第二權重的乘積之和 作為第二電流訊號。 The calibration current signal and the first current signal may be assigned a first weight and a second weight respectively. The second current signal is determined by multiplying the calibration signal by the first weight and the first current signal by the second weight. For example, the sum of the product of the calibration signal and the first weight and the product of the first current signal and the second weight is taken as the second current signal.

藉由上述PTAT電流源24和上述CTAT電路可以得到電流不隨溫度變化的定電流訊號(第二電流訊號)。 By using the above-mentioned PTAT current source 24 and the above-mentioned CTAT circuit, a constant current signal (second current signal) that does not change with temperature can be obtained.

上述第二溫度感測電路可以是第一溫度感測電路的複製。具體地,第二溫度感測電路的電路結構可以與第一溫度感測電路的電路結構相同。第二溫度感測電路的電路結構所使用的每一元件的元件參數,可以與第二溫度感測電路的電路結構中的對應元件的元件參數相同。 The second temperature sensing circuit may be a copy of the first temperature sensing circuit. Specifically, the circuit structure of the second temperature sensing circuit may be the same as the circuit structure of the first temperature sensing circuit. The component parameters of each component used in the circuit structure of the second temperature sensing circuit may be the same as the component parameters of the corresponding component in the circuit structure of the second temperature sensing circuit.

在本實施例中,上述第一溫度感測電路21包括第一環形振盪器211。第二溫度感測電路22包括第二環形振盪器221。第一環形振盪器211的訊號輸入端與PTAT電流源24的輸出端連接。第二環形振盪器221的訊號輸入端與定電流訊號源25的輸出端連接。 In this embodiment, the first temperature sensing circuit 21 includes a first ring oscillator 211. The second temperature sensing circuit 22 includes a second ring oscillator 221. The signal input end of the first ring oscillator 211 is connected to the output end of the PTAT current source 24. The signal input end of the second ring oscillator 221 is connected to the output end of the constant current signal source 25.

第一環形振盪器211和第二環形振盪器221均可以包括奇數個反相器。第一環形振盪器211和第二環形振盪器221各自所包括的反相器的數量相同。進一步地,第一環形振盪器中的每一反相器的參數可以與第二環形振盪器中對應的反相器的參數相同。這裏的反相器的參數例如可以包括電容大小。 The first ring oscillator 211 and the second ring oscillator 221 may each include an odd number of inverters. The first ring oscillator 211 and the second ring oscillator 221 each include the same number of inverters. Furthermore, the parameters of each inverter in the first ring oscillator may be the same as the parameters of the corresponding inverter in the second ring oscillator. The parameters of the inverters here may include, for example, the size of the capacitor.

第一環形振盪器211根據輸入的第一電流訊號可以產生第一振盪電流訊號。這裏的第一振盪電流訊號可以為第一測量訊號。第一振盪電流訊號為第一週期脈衝訊號。第一週期脈衝訊號的頻率可以跟第一電流訊號的大小相關。 The first ring oscillator 211 can generate a first oscillating current signal according to the input first current signal. The first oscillating current signal here can be a first measurement signal. The first oscillating current signal is a first cycle pulse signal. The frequency of the first cycle pulse signal can be related to the magnitude of the first current signal.

第二環形振盪器221根據輸入的第二電流訊號可以產生第二振盪電流訊號。這裏的第二振盪電流訊號可以為第二測量訊號。第二振盪電流訊號的振盪頻率與第二電流訊號相關。 The second ring oscillator 221 can generate a second oscillating current signal according to the input second current signal. The second oscillating current signal here can be a second measurement signal. The oscillation frequency of the second oscillating current signal is related to the second current signal.

第二電流訊號可以由定電流源25產生。在一些應用場景中,PTAT電流源24的訊號輸入端和定電流源25的訊號輸入端可以輸入相同的激發訊號。在另外一些應用場景中,在這些應用場景中,組成定電流源的PTAT電流源可以是產生第一電流訊號的PTAT電流源的複製。 The second current signal can be generated by the constant current source 25. In some application scenarios, the signal input terminal of the PTAT current source 24 and the signal input terminal of the constant current source 25 can input the same excitation signal. In other application scenarios, in these application scenarios, the PTAT current source constituting the constant current source can be a copy of the PTAT current source that generates the first current signal.

在另外一些應用場景中,上述定電流源可以是由產生第一電流訊號的PTAT電流源與一個CTAT電路構成。也即,在這些應用場景中,上述第二電流訊號可以由上述第一電流訊號流過CTAT電路後產生。 In some other application scenarios, the above-mentioned constant current source can be composed of a PTAT current source that generates a first current signal and a CTAT circuit. That is, in these application scenarios, the above-mentioned second current signal can be generated after the above-mentioned first current signal flows through the CTAT circuit.

在上述兩種應用場景中,第二電流訊號與第一電流訊號之間有如下關係:PTAT電流源產生的第一電流訊號可以記為Iptat。定電流源產生的電流訊號可以記為Iabs。 In the above two application scenarios, the second current signal and the first current signal have the following relationship: the first current signal generated by the PTAT current source can be recorded as Iptat. The current signal generated by the constant current source can be recorded as Iabs.

Iptat=a×T (1);a是常數,T是絕對溫度。 Iptat = a × T (1); a is a constant and T is the absolute temperature.

第二電流訊號與第一電流訊號之間的關係可以由如下公式表示:Iabs=Iptat+△Iptat (2);△Iptat是Iptat與Iabs之間的差值。由於Iabs不隨溫度變化, 而Iptat隨溫度變化,因此,△Iptat隨溫度變化。 The relationship between the second current signal and the first current signal can be expressed by the following formula: Iabs = Iptat + △Iptat (2); △Iptat is the difference between Iptat and Iabs. Since Iabs does not change with temperature, but Iptat changes with temperature, △Iptat changes with temperature.

第一環形振盪器211在第一電流訊號的作用下輸出的第一測量訊號的第一特徵參數(也即第一振盪頻率)可以為:F1=Fabs+b×△Iptat (3);這裏的b為常數。 The first characteristic parameter (ie, the first oscillation frequency) of the first measurement signal output by the first ring oscillator 211 under the action of the first current signal can be: F1 = Fabs + b ×△ Iptat (3); where b is a constant.

第二環形振盪器221在第二電流訊號的作用下輸出的第二測量訊號的第二特徵參數(也即第二振盪頻率)可以為Fabs。 The second characteristic parameter (i.e., the second oscillation frequency) of the second measurement signal output by the second ring oscillator 221 under the action of the second current signal can be Fabs.

F2=Fabs (4);可以使用公式(4)減去公式(3),得到測溫頻率F3:F3=F1-F2=b×△Iptat=b×a'×T=b'×T (5);使用公式(5)來確定溫度,可以消除環形振盪器中的電路參數對結果造成的影響。從而可以提高測試結果的線性度。 F2=Fabs (4); Formula (4) can be used to subtract Formula (3) to obtain the temperature measurement frequency F3: F3=F1-F2= b × △Iptat = b × a' × T = b' × T (5); Using Formula (5) to determine the temperature can eliminate the impact of the circuit parameters in the ring oscillator on the results. This can improve the linearity of the test results.

實踐中,可以根據公式(5)先標定出溫度與測溫頻率F3之間的關係曲線,確定出b'的值。在實際測量溫度時,可以根據由上述溫度測量電路輸出的測溫頻率F3,來確定當前溫度T。 In practice, the relationship curve between temperature and temperature measurement frequency F3 can be calibrated according to formula (5) to determine the value of b' . When actually measuring temperature, the current temperature T can be determined according to the temperature measurement frequency F3 output by the above temperature measurement circuit.

本實施例提供的溫度測量電路,藉由在溫度測量電路中設置PTAT電流源和定電流源,將PTAT電流輸入到第一環形振盪器中得到第一測量訊號,將定電流源輸出的第二電流訊號輸入到第二環形振盪器得到第二測量訊號,根據第一測量訊號確定出第一振盪頻率,根據第二測量訊號確定出第二振盪頻率,利用第二振盪頻率從第一振盪頻率中提取中僅與溫度相關的測溫頻率,使用測溫頻率確定溫度,可以得到較為準確的測量結果。 The temperature measurement circuit provided in this embodiment provides a PTAT current source and a constant current source in the temperature measurement circuit, inputs the PTAT current into the first ring oscillator to obtain a first measurement signal, inputs the second current signal output by the constant current source into the second ring oscillator to obtain a second measurement signal, determines the first oscillation frequency according to the first measurement signal, determines the second oscillation frequency according to the second measurement signal, extracts only the temperature-related temperature measurement frequency from the first oscillation frequency using the second oscillation frequency, and determines the temperature using the temperature measurement frequency, thereby obtaining a more accurate measurement result.

下面參考圖3,其示出了根據本發明的溫度測量方法的一些實施例的流程示意圖。該溫度測量方法用於圖1所示的溫度測量電路的資料處理單元。 Reference is made to FIG3 below, which shows a schematic diagram of the process flow of some embodiments of the temperature measurement method according to the present invention. The temperature measurement method is used in the data processing unit of the temperature measurement circuit shown in FIG1.

電路測量電路包括第一溫度感測電路、第二溫度感測電路。該溫度測量方法包括如下步驟。 The circuit measurement circuit includes a first temperature sensing circuit and a second temperature sensing circuit. The temperature measurement method includes the following steps.

步驟301,接收第一溫度感測電路輸出的第一測量訊號以及第二溫度感測電路輸出的第二測量訊號。 Step 301, receiving a first measurement signal output by a first temperature sensing circuit and a second measurement signal output by a second temperature sensing circuit.

所述第一溫度感測電路的輸入訊號為第一電流訊號,第一電流訊號的大小與溫度相關。所述第一測量訊號與溫度和第一溫度感測電路的電路參數均相關。 The input signal of the first temperature sensing circuit is a first current signal, and the magnitude of the first current signal is related to the temperature. The first measurement signal is related to both the temperature and the circuit parameters of the first temperature sensing circuit.

所述第二溫度感測電路輸入第二電流訊號,所述第二電流訊號與溫度無關。所述第二測量訊號與第二溫度感測電路的電路參數相關。 The second temperature sensing circuit inputs a second current signal, and the second current signal is independent of temperature. The second measurement signal is related to the circuit parameters of the second temperature sensing circuit.

所述第一溫度感測電路和第二溫度感測電路的各自對應的電路參數相同。 The first temperature sensing circuit and the second temperature sensing circuit have the same corresponding circuit parameters.

步驟302,提取第一測量訊號對應的第一特徵參數以及第二測量訊號對應的第二特徵參數。 Step 302, extracting the first characteristic parameter corresponding to the first measurement signal and the second characteristic parameter corresponding to the second measurement signal.

步驟303,根據所述第一特徵參數和第二特徵參數,確定所述溫度測量電路所處環境的當前溫度。 Step 303, determining the current temperature of the environment in which the temperature measurement circuit is located based on the first characteristic parameter and the second characteristic parameter.

具體地,可以從第一特徵參數中取出與第二特徵參數相同的部分,根據剩餘的部分特徵參數來確定溫度測量電路所處環境的當前溫度。 Specifically, the part that is the same as the second characteristic parameter can be taken out from the first characteristic parameter, and the current temperature of the environment in which the temperature measurement circuit is located can be determined based on the remaining characteristic parameters.

這裏的剩餘的部分特徵參數僅與溫度相關。 The remaining characteristic parameters here are only related to temperature.

在一些應用場景中,溫度測量電路包括PTAT電流源和定電流源。第一溫度感測電路包括第一環形振盪器,第二溫度感測電路包括第二環形振盪器。所述第一環形振盪器的訊號輸入端與PTAT電流源的輸出端連接;所述第二環形振盪器的訊號輸入端與定電流源的輸出端連接;第一環形振盪器和第二環形振盪器分別所包括的反相器的數量相同。第一環形振盪器和第二環形振盪器各自包括奇數個反相器。第二環形振盪器可以為第一環形振盪器的鏡像。 In some application scenarios, the temperature measurement circuit includes a PTAT current source and a constant current source. The first temperature sensing circuit includes a first ring oscillator, and the second temperature sensing circuit includes a second ring oscillator. The signal input terminal of the first ring oscillator is connected to the output terminal of the PTAT current source; the signal input terminal of the second ring oscillator is connected to the output terminal of the constant current source; the first ring oscillator and the second ring oscillator respectively include the same number of inverters. The first ring oscillator and the second ring oscillator each include an odd number of inverters. The second ring oscillator can be a mirror image of the first ring oscillator.

第一環形振盪器和第二環形振盪器各自對應的反相器的參數相同。 The parameters of the inverters corresponding to the first ring oscillator and the second ring oscillator are the same.

第一測量訊號可以是第一環形振盪器輸出的第一週期振盪訊號。第二測量訊號可以是第二環形振盪器輸出的第二週期振盪器訊號。第一週期振盪訊號為週期脈衝訊號。第二週期振盪訊號也為週期脈衝訊號。上述步驟302可以包括:從第一測量訊號提取出第一振盪頻率作為第一特徵參數。從第二測量訊號提取出第二振盪頻率作為第二特徵參數。 The first measurement signal may be a first period oscillation signal output by the first ring oscillator. The second measurement signal may be a second period oscillator signal output by the second ring oscillator. The first period oscillation signal is a period pulse signal. The second period oscillation signal is also a period pulse signal. The above step 302 may include: extracting a first oscillation frequency from the first measurement signal as a first characteristic parameter. Extracting a second oscillation frequency from the second measurement signal as a second characteristic parameter.

第一振盪頻率可以與溫度以及第一環形振盪器的電路參數相關。 The first oscillation frequency may be related to temperature and circuit parameters of the first ring oscillator.

第二振盪頻率與第二環形振盪器的電路參數相關。 The second oscillation frequency is related to the circuit parameters of the second ring oscillator.

第一環形振盪器和第二環形振盪器的電路參數相同。第一環形振盪器和第二環形振盪器各自包括的反相器的數量相同。 第一環形振盪器和第二環形振盪器均包括奇數個反相器。 The first ring oscillator and the second ring oscillator have the same circuit parameters. The first ring oscillator and the second ring oscillator each include the same number of inverters. The first ring oscillator and the second ring oscillator each include an odd number of inverters.

在這些應用場景中,上述步驟303進一步包括如下步驟: In these application scenarios, the above step 303 further includes the following steps:

首先,利用所述第二特徵參數從所述第一特徵參數中提取僅與溫度相關部分特徵參數。 First, the second characteristic parameter is used to extract only the characteristic parameters related to temperature from the first characteristic parameter.

其次,利用僅與溫度相關的部分特徵參數確定所述當前溫度。 Secondly, the current temperature is determined using some characteristic parameters related only to temperature.

具體地,PTAT電流源產生的第一電流訊號可以記為Iptat。定電流源產生的電流訊號可以記為Iabs。 Specifically, the first current signal generated by the PTAT current source can be recorded as Iptat. The current signal generated by the constant current source can be recorded as Iabs.

Iptat=a×T (6);a是常數,T是絕對溫度。 Iptat = a × T (6); a is a constant and T is the absolute temperature.

第二電流訊號與第一電流訊號之間的關係可以由如下公式表示:Iabs=Iptat+△Iptat (7);△Iptat是Iptat與Iabs之間的差值。由於Iabs不隨溫度變化,而Iptat隨溫度變化,因此,△Iptat隨溫度變化。 The relationship between the second current signal and the first current signal can be expressed by the following formula: Iabs = Iptat + △Iptat (7); △Iptat is the difference between Iptat and Iabs. Since Iabs does not change with temperature, but Iptat changes with temperature, △Iptat changes with temperature.

第一環形振盪器在第一電流訊號的作用下輸出的第一測量訊號的第一特徵參數(第一振盪頻率)可以為:F1=Fabs+b×△Iptat (8);這裏的b為常數。 The first characteristic parameter (first oscillation frequency) of the first measurement signal output by the first ring oscillator under the action of the first current signal can be: F1 = Fabs + b × △Iptat (8); where b is a constant.

第二環形振盪器在第二電流訊號的作用下輸出的第二測量訊號的第二特徵參數(第二振盪頻率)可以為Fabs。 The second characteristic parameter (second oscillation frequency) of the second measurement signal output by the second ring oscillator under the action of the second current signal can be Fabs.

F2=Fabs (9); 可以使用公式(9)減去公式(8),得到測溫頻率F3:F3=F1-F2=b×△Iptat=b×a'×T=b'×T (10);使用公式(10)來確定溫度,可以消除環形振盪器中的電路參數對結果造成的影響,從而可以提高測試結果的線性度。 F2=Fabs (9); Formula (9) can be used to subtract formula (8) to obtain the temperature measurement frequency F3: F3=F1-F2= b × △Iptat = b × a' × T = b'×T (10); Using formula (10) to determine the temperature can eliminate the impact of the circuit parameters in the ring oscillator on the results, thereby improving the linearity of the test results.

實踐中,可以根據公式(10)先標定出溫度與測溫頻率F3之間的關係曲線,確定出b'的值。在實際測量溫度時,可以根據由上述溫度測量電路輸出的測溫頻率,來確定溫度測量電路所處環境的當前溫度T。 In practice, the relationship curve between temperature and temperature measurement frequency F3 can be calibrated according to formula (10) to determine the value of b' . When actually measuring temperature, the current temperature T of the environment in which the temperature measurement circuit is located can be determined according to the temperature measurement frequency output by the above temperature measurement circuit.

以上描述僅為本發明的較佳實施例以及對所運用技術原理的說明。本領域技術人員應當理解,本發明中所涉及的公開範圍,並不限於上述技術特徵的特定組合而成的技術方案,同時也應涵蓋在不脫離上述發明構思的情況下,由上述技術特徵或其等同特徵進行任意組合而形成的其它技術方案。例如上述特徵與本發明中公開的(但不限於)具有類似功能的技術特徵進行互相替換而形成的技術方案。 The above description is only a preferred embodiment of the present invention and an explanation of the technical principles used. Those skilled in the art should understand that the disclosure scope involved in the present invention is not limited to the technical solutions formed by a specific combination of the above technical features, but should also cover other technical solutions formed by any combination of the above technical features or their equivalent features without departing from the above invention concept. For example, the above features and the technical features disclosed in the present invention (but not limited to) with similar functions are replaced with each other to form a technical solution.

此外,雖然採用特定次序描繪了各操作,但是這不應當理解為要求這些操作以所示出的特定次序或以順序次序執行來執行。在一定環境下,多任務和並行處理可能是有利的。同樣地,雖然在上面論述中包含了若干具體實現細節,但是這些不應當被解釋為對本發明的範圍的限制。在單獨的實施例的上下文中描述的某些特徵還可以組合地實現在單個實施例中。相反地,在單個實施例的上下文中描述的各種特徵也可以單獨地或以任何合適的子組合的 方式實現在多個實施例中。 Furthermore, although the operations are depicted in a particular order, this should not be understood as requiring that the operations be performed in the particular order shown or in a sequential order. In certain circumstances, multitasking and parallel processing may be advantageous. Similarly, although several specific implementation details are included in the above discussion, these should not be interpreted as limiting the scope of the invention. Certain features described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features described in the context of a single embodiment may also be implemented in multiple embodiments, either individually or in any suitable subcombination.

儘管已經採用特定於結構特徵和/或方法邏輯動作的語言描述了本主題,但是應當理解所附申請專利範圍中所限定的主題未必局限於上面描述的特定特徵或動作。相反,上面所描述的特定特徵和動作僅僅是實現申請專利範圍的示例形式。 Although the subject matter has been described using language specific to structural features and/or methodological logic acts, it should be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are merely example forms of implementing the claims.

10:溫度測量電路 10: Temperature measurement circuit

11:第一溫度感測電路 11: First temperature sensing circuit

12:第二溫度感測電路 12: Second temperature sensing circuit

13:資料處理單元 13: Data processing unit

Claims (10)

一種溫度測量電路,包括:第一溫度感測電路,第二溫度感測電路,以及資料處理單元,所述第一溫度感測電路用於根據輸入的第一電流訊號產生用於表示溫度的第一測量訊號,所述第一電流訊號的大小與溫度相關,所述第二溫度感測電路用於根據輸入的第二電流訊號產生用於表示溫度的第二測量訊號,所述第二電流訊號與溫度無關,所述第一溫度感測電路的輸出端、所述第二溫度感測電路的輸出端均與所述資料處理單元的輸入端連接,所述資料處理單元用於根據所述第一測量訊號對應的第一特徵參數和所述第二測量訊號對應的第二特徵參數確定當前溫度,所述第一溫度感測電路的電路參數與所述第二溫度感測電路的電路參數相同;其中所述第一測量訊號與溫度和第一溫度感測電路的電路參數相關,所述第二測量訊號與第二溫度感測電路的電路參數相關。 A temperature measurement circuit includes: a first temperature sensing circuit, a second temperature sensing circuit, and a data processing unit, wherein the first temperature sensing circuit is used to generate a first measurement signal for indicating temperature according to an input first current signal, and the magnitude of the first current signal is related to the temperature, and the second temperature sensing circuit is used to generate a second measurement signal for indicating temperature according to an input second current signal, and the second current signal is independent of the temperature, and the output end of the first temperature sensing circuit, the second temperature sensing circuit and the data processing unit are connected to each other. The output ends of the sensing circuit are connected to the input ends of the data processing unit, and the data processing unit is used to determine the current temperature according to the first characteristic parameter corresponding to the first measurement signal and the second characteristic parameter corresponding to the second measurement signal, and the circuit parameters of the first temperature sensing circuit are the same as the circuit parameters of the second temperature sensing circuit; wherein the first measurement signal is related to the temperature and the circuit parameters of the first temperature sensing circuit, and the second measurement signal is related to the circuit parameters of the second temperature sensing circuit. 如請求項1所述的溫度測量電路,其中所述溫度測量電路還包括與絕對溫度成正比PTAT電流源和定電流源,所述PTAT電流源用於產生大小隨溫度變化的第一電流訊號,所述定電流源用於產生大小恆定的第二電流源,所述PTAT電流源的輸出端與所述第一溫度感測電路的輸入端連接, 所述定電流源的輸出端與所述第二溫度感測電路的輸入端連接。 A temperature measurement circuit as described in claim 1, wherein the temperature measurement circuit further includes a PTAT current source and a constant current source that are proportional to the absolute temperature, the PTAT current source is used to generate a first current signal whose magnitude varies with temperature, the constant current source is used to generate a second current source whose magnitude is constant, the output end of the PTAT current source is connected to the input end of the first temperature sensing circuit, the output end of the constant current source is connected to the input end of the second temperature sensing circuit. 如請求項2所述的溫度測量電路,其中所述定電流源由所述PTAT電流源和絕對溫度補償電路組成。 A temperature measurement circuit as described in claim 2, wherein the constant current source is composed of the PTAT current source and an absolute temperature compensation circuit. 如請求項2所述的溫度測量電路,其中所述第一溫度感測電路包括第一環形振盪器,所述第二溫度感測電路包括第二環形振盪器,所述第一環形振盪器的訊號輸入端與PTAT電流源的輸出端連接,所述第二環形振盪器的訊號輸入端與定電流源的輸出端連接。 The temperature measurement circuit as described in claim 2, wherein the first temperature sensing circuit includes a first ring oscillator, the second temperature sensing circuit includes a second ring oscillator, the signal input terminal of the first ring oscillator is connected to the output terminal of the PTAT current source, and the signal input terminal of the second ring oscillator is connected to the output terminal of the constant current source. 如請求項4所述的溫度測量電路,其中所述第一測量訊號為由所述第一環形振盪器根據所述第一電流訊號產生的第一週期振盪訊號,所述第二測量訊號為由所述第二環形振盪器根據所述第二電流訊號產生的第二週期振盪訊號,所述第一特徵參數為第一振盪頻率,所述第二特徵參數為第二振盪頻率,所述資料處理單元用於根據所述第一週期振盪訊號的第一振盪頻率和第二週期振盪訊號的第二振盪頻率確定所述當前溫度。 The temperature measurement circuit as described in claim 4, wherein the first measurement signal is a first period oscillation signal generated by the first ring oscillator according to the first current signal, the second measurement signal is a second period oscillation signal generated by the second ring oscillator according to the second current signal, the first characteristic parameter is a first oscillation frequency, the second characteristic parameter is a second oscillation frequency, and the data processing unit is used to determine the current temperature according to the first oscillation frequency of the first period oscillation signal and the second oscillation frequency of the second period oscillation signal. 如請求項4所述的溫度測量電路,其中所述第一環形振盪器與所述第二環形振盪器各自包括奇數個反相器。 A temperature measurement circuit as described in claim 4, wherein the first ring oscillator and the second ring oscillator each include an odd number of inverters. 如請求項6所述的溫度測量電路,其中所述第一環形振盪器與所述第二環形振盪器各自包括的反相器的數量相等。 A temperature measurement circuit as described in claim 6, wherein the first ring oscillator and the second ring oscillator each include an equal number of inverters. 如請求項1所述的溫度測量電路,其中第二溫度感測電路為所述第一溫度感測電路的鏡像電路。 A temperature measurement circuit as described in claim 1, wherein the second temperature sensing circuit is a mirror image circuit of the first temperature sensing circuit. 一種溫度測量方法,用於如請求項1至8中任一項所述的溫度測量電路中的資料處理單元,所述溫度測量電路包括第一溫度感測電路和第二溫度感測電路,所述方法包括:接收第一溫度感測電路輸出的第一測量訊號以及第二溫度感測電路輸出的第二測量訊號,其中,所述第一溫度感測電路的輸入訊號為第一電流訊號,第一電流訊號的大小與溫度相關,所述第二溫度感測電路輸入第二電流訊號,所述第二電流訊號與溫度無關;提取第一測量訊號對應的第一特徵參數以及第二測量訊號對應的第二特徵參數;以及根據所述第一特徵參數和所述第二特徵參數,確定所述溫度測量電路所處環境的當前溫度。 A temperature measurement method is used in a data processing unit in a temperature measurement circuit as described in any one of claims 1 to 8, wherein the temperature measurement circuit includes a first temperature sensing circuit and a second temperature sensing circuit, and the method includes: receiving a first measurement signal output by the first temperature sensing circuit and a second measurement signal output by the second temperature sensing circuit, wherein the input signal of the first temperature sensing circuit is a first current signal, the magnitude of the first current signal is related to the temperature, and the second temperature sensing circuit inputs a second current signal, and the second current signal is independent of the temperature; extracting a first characteristic parameter corresponding to the first measurement signal and a second characteristic parameter corresponding to the second measurement signal; and determining the current temperature of the environment in which the temperature measurement circuit is located according to the first characteristic parameter and the second characteristic parameter. 如請求項9所述的方法,其中所述溫度測量電路包括與絕對溫度成正比PTAT電流源和定電流源,所述第一溫度感測電路包括第一環形振盪器,所述第二溫度感測電路包括第二環形振盪器,所述第一環形振盪器的訊號輸入端與PTAT電流源的輸出端連接,所述第二環形振盪器的訊號輸入端與定電流源的輸出端連接,所述第一測量訊號為第一週期振盪訊號,所述第二測量訊號為第二週期振盪訊號,所述提取第一測量訊號對應的第一特徵參數和第二測量訊號對應的第二特徵參數的步驟更包括: 從第一週期振盪訊號中提取第一振盪頻率作為第一特徵參數,從第二週期振盪訊號中提取第二振盪頻率作為第二特徵參數;所述根據所述第一特徵參數和第二特徵參數,確定所述溫度測量電路所處環境的當前溫度的步驟更包括:利用所述第二特徵參數從所述第一特徵參數中提取僅與溫度相關部分特徵參數;以及利用僅與溫度相關的部分特徵參數確定所述當前溫度。 A method as described in claim 9, wherein the temperature measurement circuit includes a PTAT current source and a constant current source that are proportional to the absolute temperature, the first temperature sensing circuit includes a first ring oscillator, the second temperature sensing circuit includes a second ring oscillator, the signal input end of the first ring oscillator is connected to the output end of the PTAT current source, the signal input end of the second ring oscillator is connected to the output end of the constant current source, the first measurement signal is a first period oscillation signal, the second measurement signal is a second period oscillation signal, and the first measurement signal corresponding to the second period oscillation signal is extracted. The step of determining a characteristic parameter and a second characteristic parameter corresponding to the second measurement signal further includes: extracting a first oscillation frequency from the first period oscillation signal as a first characteristic parameter, and extracting a second oscillation frequency from the second period oscillation signal as a second characteristic parameter; the step of determining the current temperature of the environment in which the temperature measurement circuit is located based on the first characteristic parameter and the second characteristic parameter further includes: extracting only a portion of characteristic parameters related to temperature from the first characteristic parameter using the second characteristic parameter; and determining the current temperature using only a portion of characteristic parameters related to temperature.
TW111116761A 2022-05-04 Temperature measurement circuit and method TWI841958B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111116761A TWI841958B (en) 2022-05-04 Temperature measurement circuit and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111116761A TWI841958B (en) 2022-05-04 Temperature measurement circuit and method

Publications (2)

Publication Number Publication Date
TW202344815A TW202344815A (en) 2023-11-16
TWI841958B true TWI841958B (en) 2024-05-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021276A1 (en) 2009-08-18 2011-02-24 富士通株式会社 Temperature detection device, information processing equipment and method for controlling temperature detection device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021276A1 (en) 2009-08-18 2011-02-24 富士通株式会社 Temperature detection device, information processing equipment and method for controlling temperature detection device

Similar Documents

Publication Publication Date Title
CN113358899B (en) Accelerometer and temperature self-compensation method thereof
JP2008166644A (en) Integrated circuit device abnormality detection apparatus, method and program
Vasilevskyi et al. Spectral method to evaluate the uncertainty of dynamic measurements
TWI841958B (en) Temperature measurement circuit and method
JP5737210B2 (en) Temperature measuring method and temperature measuring system using radiation thermometer
TW202344815A (en) Temperature measurement circuit and method
JP2021119347A (en) Diagnostic device
KR20100020865A (en) Partial discharge corrector with self correction and tracing management
CN105759089A (en) Temperature compensated real-time clock
US20220357215A1 (en) Temperature measurement circuit and method
CN107607143B (en) Method for correcting baseline drift of sensor and detection equipment
KR100746390B1 (en) Radio frequency power measurement
JP2013024808A (en) Measuring apparatus and measuring method
JP2001356059A (en) Torque measuring apparatus and method
JP6568486B2 (en) Temperature change prediction analysis apparatus and temperature change prediction analysis method
Solomons et al. Electronic Recording Differential Potentiometer
JPS5895230A (en) Method and apparatus for electronic type temperature measurement
JP2014228508A (en) Measurement device and measurement method
RU2714039C1 (en) Smart sensor development system
RU2229692C2 (en) Procedure establishing temperature
CN111811561B (en) Method for measuring background noise of optical fiber sensor demodulation device
JP3210222B2 (en) Temperature measuring device
JP3985366B2 (en) Sensor device
FR3116604B1 (en) Method for calibrating a ring oscillator temperature sensor
JP2009192409A (en) Strain measuring device and measuring method