TWI840215B - 用電設備設定方法及電子裝置 - Google Patents
用電設備設定方法及電子裝置 Download PDFInfo
- Publication number
- TWI840215B TWI840215B TW112116865A TW112116865A TWI840215B TW I840215 B TWI840215 B TW I840215B TW 112116865 A TW112116865 A TW 112116865A TW 112116865 A TW112116865 A TW 112116865A TW I840215 B TWI840215 B TW I840215B
- Authority
- TW
- Taiwan
- Prior art keywords
- equipment
- power consumption
- power
- setting
- consuming
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000011156 evaluation Methods 0.000 claims description 42
- 230000006870 function Effects 0.000 claims description 24
- 238000004378 air conditioning Methods 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 21
- 238000004422 calculation algorithm Methods 0.000 claims description 11
- 238000012549 training Methods 0.000 claims description 9
- 238000010801 machine learning Methods 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims 1
- 239000000498 cooling water Substances 0.000 description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 230000005611 electricity Effects 0.000 description 12
- 238000012417 linear regression Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 4
- 238000005057 refrigeration Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
Images
Landscapes
- Feedback Control In General (AREA)
Abstract
本揭露提供一種用電設備設定方法及電子裝置。所述方法包括下列步驟。獲取多個用電設備的設備運作資訊。根據多個用電設備的設備運作資訊,建立各個用電設備的設備用電預測模型。各個用電設備的設備用電預測模型的多個輸入特徵變量包括各個用電設備的可調設定參數。將可調設定參數設置為多個設定值,並利用各個用電設備的設備用電預測模型來獲取分別對應於多個設定值的多個設備能效。透過比較各個用電設備的多個設備能效,決定可調設定參數的決策參數值。根據決策參數值控制多個用電設備。
Description
本揭露是有關於一種節能方法,且特別是有關於一種用電設備設定方法及電子裝置。
隨著溫室氣體減量與節能減碳的環保議題日趨重要,節能成為當今重點發展項目之一。若能有效找到浪費電的原因並給予合適的節能方式,不只對環保有所貢獻,也對於工廠成本與獲利有很大的助益。
用電設備都需要電力來維持運作。能效低下的用電設備需要耗費更多電力來達到運作目標,甚至是無法正常運作,進而導致電力的浪費。一般來說,工廠內具有多台用電設備,但生產過程中並非需要開啟所有用電設備。由於每一台用電設備的能效與設備狀態皆不同,因此設備管理人員選擇使用那一台用電設備將會直接影響電力成本與生產效率。可知的,用電設備的設備參數的設定也會直接影響電力成本與生產效率。目前需要專業設備人員憑藉長期累積的個人主觀經驗來嘗試透過調整用電設備的設備參數來達到節能目的。然而,設備人員往往不容易得知該如何設定工作場域中多台用電設備的設備參數來符合製造需求又盡量節省用電。
有鑑於此,本揭露提供一種用電設備設定方法及電子裝置,其可解決上述技術問題。
本發明實施例提供一種用電設備設定方法,其包括下列步驟。獲取多個用電設備的設備運作資訊。根據多個用電設備的設備運作資訊,建立各個用電設備的設備用電預測模型。各個用電設備的設備用電預測模型的多個輸入特徵變量包括各個用電設備的可調設定參數。將可調設定參數設置為多個設定值,並利用各個用電設備的設備用電預測模型來獲取分別對應於多個設定值的多個設備能效。透過比較各個用電設備的多個設備能效,決定可調設定參數的決策參數值。根據決策參數值控制多個用電設備。
本發明實施例提供一種電子裝置,其包括儲存裝置及處理器。儲存裝置儲存多個指令。處理器耦接儲存裝置,存取指令而經配置以執行下列操作。獲取多個用電設備的設備運作資訊。根據多個用電設備的設備運作資訊,建立各個用電設備的設備用電預測模型。各個用電設備的設備用電預測模型的多個輸入特徵變量包括各個用電設備的可調設定參數。將可調設定參數設置為多個設定值,並利用各個用電設備的設備用電預測模型來獲取分別對應於多個設定值的多個設備能效。透過比較各個用電設備的多個設備能效,決定可調設定參數的決策參數值。根據決策參數值控制多個用電設備。
基於上述,於本發明實施例中,各個用電設備的設備用電預測模型可根據各個用電設備的設備運作資訊建立,並可用於預測各個用電設備的預測用電量。透過將設置為多個設定值的可調設定參數設置輸入至用電預測模型,可獲取分別對應於多個設定值的多個設備能效。可調設定參數的決策參數值可透過比較各個用電設備的多個設備能效來決定。於是,根據可調設定參數的決策參數值來控制這些用電設備,可以達到有效節約用電與提昇能源使用效率的目標。
本發明的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式。更確切的說,這些實施例只是本發明的專利申請範圍中的裝置與方法的範例。
請參照圖1,其是依據本發明之一實施例繪示的電子裝置示意圖。在不同的實施例中,電子裝置100例如是具有運算能力的筆記型電腦、桌上型電腦、伺服器、工作站等計算機裝置,但可不限於此。電子裝置100可包括顯示器110、儲存裝置120,以及處理器130。
顯示器110例如是內建於電子裝置100的液晶顯示器(Liquid Crystal Display,LCD)、發光二極體(Light Emitting Diode,LED)顯示器、有機發光二極體(Organic Light Emitting Diode,OLED)等各類型的顯示器,但可不限於此。在其他實施例中,顯示器110亦可以是外接於電子裝置100的任何顯示裝置。
儲存裝置120例如是任意型式的固定式或可移動式隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash memory)、硬碟或其他類似裝置或這些裝置的組合,而可用以記錄多個指令、程式碼或軟體模組。
處理器130例如是中央處理單元(central processing unit,CPU)、應用處理器(application processor,AP),或是其他可程式化之一般用途或特殊用途的微處理器(microprocessor)、數位訊號處理器(digital signal processor,DSP)、圖形處理器(graphics processing unit,GPU)或其他類似裝置、積體電路及其組合。處理器130可存取並執行記錄在儲存裝置120中的軟體模組,以實現本發明實施例中的用電設備設定方法。上述軟體模組可廣泛地解釋為意謂指令、指令集、代碼、程式碼、程式、應用程式、軟體套件、執行緒、程序、功能等,而不管其是被稱作軟體、韌體、中間軟體、微碼、硬體描述語言亦或其他者。
圖2是依據本發明一實施例繪示的用電設備設定方法的流程圖。請參圖1與圖2,本實施例的方式適用於上述實施例中的電子裝置100,以下即搭配電子裝置100中的各項元件說明本實施例之用電設備設定方法的詳細步驟。
於步驟S210,處理器130獲取多個用電設備的設備運作資訊。於此,多個用電設備為設置於某一場域內具有相同功能的設備,但這些用電設備的規格與型號可相同或不同。上述場域例如是工廠、賣場、百貨公司或室內健身房等等。這些用電設備可為多台空調設備。或者,這些用電設備可為多台空壓設備。用電設備的設備運作資訊可包括用電資料、設備狀態資料或設備產出資料等等。用電設備的設備運作資訊可由用電設備的感測器或量測儀器進行感測而獲得,上述感測器或量測儀器可包括電錶、溫度計、壓力計等等,本發明對此不限制。
從另一觀點來看,電子裝置100可直接或間接地連接至這些用電設備或量測儀器,以接收這些用電設備提供的設備運作資訊。或者,電子裝置100可透過輸入裝置(例如鍵盤或滑鼠等等)接收到操作人員所輸入的設備運作資訊。又或者,電子裝置100可自其他控制設備或資料伺服器接收這些用電設備的設備運作資訊。
於一些實施例中,這些用電設備包括多台空調設備,則這些空調設備的設備運作資訊可包括單位時段用電量、單位時間製冷量、單位時間冷凝器壓力、單位時間冷卻水回水溫度,以及單位時間冷卻水供水溫度等等。
於一些實施例中,這些用電設備包括多台空壓設備,則這些空調設備的設備運作資訊可包括單位時段用電量、單位時段排氣壓力、單位時間排氣量,以及單位時間排氣壓溫度等等。
於步驟S220,處理器130根據多個用電設備的設備運作資訊,建立各個用電設備的設備用電預測模型。具體來說,處理器130可根據各個用電設備的設備運作資訊來建立各個用電設備的設備用電預測模型,基於機器學習演算法訓練完成的設備用電預測模型的模型參數可記錄於儲存裝置120中。換言之,處理器130可依據過去一段時間的設備運作資訊(亦可稱為歷史設備運作資訊)做為訓練資料集進行機器學習,來創建用以根據輸入特徵變量預測出各個用電設備於一單位時段的預測用電量。
於一些實施例中,各個用電設備的設備用電預測模型可為線性迴歸模型。處理器130可利用訓練資料集以最小平方法估算線性迴歸模型中各特徵變量的權重,作為訓練用電預測模型的訓練產物。如此一來,處理器130可利用線性迴歸模型的多個權重與輸入特徵變量來預估單位時間用電量。須特別說明的是,各個用電設備的設備用電預測模型的多個輸入特徵變量包括各個用電設備的可調設定參數。舉例來說,各空調設備的可調設定參數可以是冷卻水回水溫度或冷凍水供水溫度。或者,各空壓設備的可調設定參數可以是排氣壓力。換言之,各個用電設備的可調設定參數與其他輸入特徵變量將被輸入至對應的設備用電預測模型,以使設備用電預測模型可對應輸出各個用電設備的預測用電量。於此,各個用電設備的可調設定參數為一個可由設備人員或電子裝置100自動調整的設備參數。
於一些實施例中,處理器130可根據環境參數來對應調整各個用電設備的可調設定參數。舉例來說,上述環境參數可以是環境溫度,而可調設定參數可以是冷卻水回水溫度。處理器130可根據環境溫度進行查表來調整對應的冷卻水回水溫度。或者,處理器130可將環境溫度輸入至預設函數來調整對應的冷卻水回水溫度。又或者,處理器130可根據環境溫度與預設基準溫度之間的溫差來調整冷卻水回水溫度。
請參照圖3,其是依據本發明一實施例繪示的建立設備用電預測模型的流程圖。於一些實施例,步驟S220可實施為步驟S221~步驟S222。須說明的是,各個用電設備的設備用電預測模型的建立方式相似,以下將以用電設備中的第一用電設備進行說明。
於步驟S221,處理器130可根據第一用電設備的設備運作資訊,產生多個先前單位時段的多個輸入特徵變量。詳細來說,根據第一用電設備於多個先前單位時段的設備運作資訊,處理器130可獲取對應於多個先前單位時段且關聯於第一用電設備的多個輸入特徵變量。先前單位時段的時間長度可以是一周、一日、半日或一小時等等,本發明對此不限制。也就是說,多個先前單位時段的多個輸入特徵變量是根據用電設備實際運作而產生的模型訓練資料。舉例來說,根據某一先前單位時段(例如前一小時)內冷凍水供水溫度與冷凍水回水溫度之間的溫差,處理器130可產生第一用電設備於該先前單位時段的單位時間製冷量。依據相同操作方式,處理器130可產生第一用電設備於多個先前單位時段(例如前三小時、前二小時、前一小時)內的單位時間製冷量。於此例中,多個輸入特徵變量包括第一用電設備於多個先前單位時段內的製冷量。
於一些實施例中,第一用電設備為空調設備,則第一用電設備於多個先前單位時段的多個輸入特徵變量可包括單位時間製冷量、單位時間冷凝器壓力、單位時間冷卻水回水溫度,以及單位時間冷卻水供水溫度等等。
於一些實施例中,第一用電設備為空壓設備,則第一用電設備於多個先前單位時段的多個輸入特徵變量可包括單位時間排氣量、單位時間排氣壓力,以及單位時間排氣溫度等等。
於步驟S222,處理器130利用多個輸入特徵變量以及第一用電設備於多個先前單位時段的多個實際用電量,基於機器學習演算法訓練第一用電設備的設備用電預測模型。詳細來說,於模型訓練過程中,用於訓練設備用電預測模型的實際值(ground truth)為先前單位時段的實際用電量。舉例來說,處理器130會將某一先前單位時段(例如4月25日17:00~18:00)的輸入特徵變量輸入至訓練中的模型,並將第一用電設備於同一先前單位時段(即,4月25日17:00~18:00)的實際用電量為模型訓練所需的實際值(ground truth)。
用於訓練設備用電預測模型的機器學習演算法可包含但不限於隨機森林(Random Forest)演算法、線性回歸(Linear Regression)演算法,或支持向量機(support vector machine,SVM)演算法。然而,本發明對於用於訓練設備用電預測模型的機器學習演算法並不限制,其可視實際應用而設置。
舉例來說,假設用於訓練設備用電預測模型的機器學習演算法為線性回歸演算法,處理器130可以獲取線性回歸模型的多個係數與常數項以建立設備用電預測模型。也就說,處理器130可以取得各個輸入特徵變量對第一用電設備的耗電的影響程度。像是,處理器130可獲取如表1所示的模型參數(即,線性回歸模型中各個輸入特徵變量所對應的係數)與線性回歸模型的常數項「295」。
表1
輸入特徵變量 | 單位時間製冷量 | 單位時間冷凝器壓力 | 單位時間冷卻水回水溫度 | 單位時間冷卻水供水溫度 |
影響程度(係數) | 0.015 | 0.15 | -0.27 | -0.02 |
之後,於步驟S230,處理器130將可調設定參數設置為多個設定值,並利用各個用電設備的設備用電預測模型來獲取對應至各個設定值的多個設備能效。各用電設備的這些設備能效可代表將可調設定參數分別設置為這些設定值的條件下單位用電量可達成的設備運作效率。
詳細來說,在建立各個用電設備的設備用電預測模型之後,處理器130可將設置為多個設定值的可調設定參數分別輸入至設備用電預測模型而進行多次用電量預測,以獲取分別對應至多個設定值的預測用電量。之後,處理器130可根據分別對應至多個設定值的多個預測用電量與對應至多個設定值的產出統計量來計算出對應至各個設定值的多個設備能效。具體來說,處理器130可根據對應至某一設定值的一筆產出統計量與對應至該設定值的一筆預測用電量的比值獲取對應至該設定值的設備能效。
請參照圖4,其是依據本發明一實施例繪示的獲取設備能效的流程圖。於一些實施例,步驟S230可實施為步驟S231~步驟S233。須說明的是,產生各個用電設備的多個設備能效的方式相似,以下將以用電設備中的第一用電設備進行說明。
於步驟S231,處理器130對第一用電設備於多個先前單位時段的多個產出量進行統計運算,以獲取第一用電設備的多個產出統計量。於此,多個產出統計量分別應至多個設定值且包括第一產出統計量。第一產出統計量對應至這些設定值中的第一設定值。
於一些實施例中,若多個用電設備為多個空調設備,則多個產出量包括多個製冷量(即,單位時段製冷量)。或者,於一些實施例中,若多個用電設備為多個空壓設備,則多個產出量包括多個排氣量(即,單位時段排氣量)。
於一些實施例中,處理器130可根據第一設定值獲取對應至第一設定值的多個第一產出量。在可調設定參數設置為第一設定值的條件下,處理器130可自第一用電設備的歷史設備運作資訊獲取對應至第一設定值的多個第一產出量。舉例而言,處理器130可根據第一用電設備於近期幾個月內的歷史設備運作資訊擷取出對應至第一設定值的多個第一產出量,其中這些第一產出量為單位時間產出量。接著,處理器130可對多個第一產出量的進行統計運算,以獲取第一用電設備的第一產出統計量。上述統計運算例如是平均運算或眾數運算。也就是說,處理器130可計算多筆第一產出量的平均值或眾數以獲取對應至第一設定值的第一產出統計量。
於一些實施例中,以可調設定參數為冷卻水回水溫度為例,冷卻水回水溫度可被分別設定為多個溫度設定值,例如20度、22度、25度等等。在冷卻水回水溫度設定為25度的情況下,處理器130可自歷史設備運作資訊中擷取出對應至25度的多個單位時間製冷量,其為先前單位時段內冷卻水回水溫度設定為25度時的製冷量。
舉例來說,在冷卻水回水溫度設定為25度的情況下,處理器130可自第一用電設備的歷史設備運作資訊獲取如表2所示的多筆製冷量與多筆冷凝器壓力。於表2的範例中,處理器130例如可獲取符合冷卻水回水溫度設定為25度的100筆筆製冷量與100筆冷凝器壓力。根據表2為例,空調設備(即第一用電設備)於過去A月B日9點到10點(即某一先單位時段)的冷卻水回水溫度設定為25度,且此空調設備於A月B日9點到10點的單位時段製冷量與冷凝器壓力分別為「3600」與「5」。
表2
接著,處理器130可對這100筆的單位時段製冷量進行平均運算而獲取第一平均值(即第一產出統計量)例如為「2106」,並對這100筆的冷凝器壓力進行平均運算而獲取第二平均值例如為「5」。
編號 | 單位時段製冷量 | 冷凝器壓力 |
1 | 3600 | 5 |
2 | 3540 | 6 |
… | … | … |
100 | 3550 | 4 |
於一些實施例中,以可調設定參數為排氣壓力為例,排氣壓力可被分別設定為多個壓力設定值,例如6 bar、7 bar、8 bar等等。在排氣壓力設定為6 bar的情況下,處理器130可自歷史設備運作資訊中擷取出對應至6 bar的多個單位時間排氣量,其為先前單位時段內排氣壓力設定為6 bar時的排氣量。
於步驟S232,處理器130利用第一用電設備的設備用電預測模型,來估測第一用電設備的多個預測用電量。於此,多個預測用電量分別應至多個設定值且包括第一預測用電量。第一預測用電量對應至這些設定值中的第一設定值。於一些實施例中,處理器130將第一產出統計量與設定為第一設定值的可調設定參數輸入至設備用電預測模型,以獲取對應至第一設定值的第一預測用電量。
以表1與表2的範例繼續說明,在冷卻水回水溫度設定為25度(即第一設定值)的情況下,處理器130可將100筆單位時段製冷量的第一平均值「2106」、100筆冷凝器壓力的第二平均值「5」,以及設定為25度的冷卻水回水溫度輸入至表1所示的線性回歸模型,進而獲取對應至25度的第一預測用電量。更具體來說,基於表1與表2的範例,處理器130例如可估測第一用電設備的第一預測用電量為295+ 0.015*2106+ 0.15*5- 0.27*25 -0.02*30=320度。其中,冷卻水供水溫度「30度」是根據冷卻水回水溫度而決定。
同理,處理器130可依據相同方式而獲取對應至其他溫度設定值(例如20度、22度與27度等等)的預測用電量與產出統計量。舉例來說,針對第一用電設備,處理器130可產生如下表3所示之對應至多個溫度設定值的多筆產出統計量與預測用電量。
表3
根據表3範例可知,隨著冷卻水回水溫度的上升,空調設備的預測用電量也會隨之上升。此外,於一些實施例中,當用電設備為空壓設備且可調設定參數為排氣壓力,處理器130可產生對應至多個壓力設定值的多筆排氣量與預測用電量。
冷卻水回水溫度 | 製冷量 | 預測用電量 |
20 | 2107 | 312 |
22 | 2107 | 327 |
25 | 2106 | 320 |
27 | 2108 | 324 |
28 | 2108 | 330 |
30 | 2109 | 350 |
32 | 2108 | 374 |
之後,於步驟S233,處理器130根據第一產出統計量與第一預測用電量之間的比值,決定第一用電設備的多個設備能效其中一者。透過將第一產出統計量除以第一預測用電量,處理器130可獲取第一用電設備的多個設備能效其中一者。例如,處理器130可將第一產出統計量「2106」除以第一預測用電量「320」而計算出對應於25度的設備效能為「6.58」。此外,於一些實施例中,當用電設備為空壓設備且可調設定參數為排氣壓力,處理器130可將多筆排氣量的平均值分別除以對應的預測用電量來獲取多筆設備效能。
請再次回到圖2,基於步驟S230的執行,處理器130可針對各個用電設備產生對應於不同設定值的多個設備能效。舉例來,在冷卻水回水溫度設定為多個設定值的情況下,處理器130可針對第一用電設備與第二用電設備獲取對應於不同設定值的預估用電量與設備能效,其如下表4所示。第一用電設備例如是包括定頻冰水主機的空調設備,而第二用電設備例如是包括變頻冰水主機的空調設備。
表4
冷卻水回水溫度 | 第一用電設備的預測用電量 (度) | 第一用電設備的設備能效 | 第二用電設備的預測用電量 (度) | 第二用電設備的設備能效 |
27 | 324 | 6.51 | 320 | 6.59 |
28 | 330 | 6.39 | 325 | 6.49 |
29 | 336 | 6.27 | 331 | 6.37 |
30 | 350 | 6.02 | 355 | 5.94 |
31 | 361 | 5.84 | 371 | 5.68 |
32 | 374 | 5.64 | 383 | 5.50 |
之後,於步驟S240,處理器130透過比較各個用電設備的多個設備能效,決定可調設定參數的決策參數值。詳細來說,處理器130可根據各個用電設備的多個設備能效來產生多個用電設備的多個函數線段。根據這些函數線段的交點,處理器130可獲取可調設定參數的一或多個決策參數值。此決策參數值的單位相同於可調設定參數的單位。舉例而言,假設可調設定參數為冷卻水回水溫度,則決策參數值也為一個溫度值。假設可調設定參數為排氣壓力,則決策參數值也為一個壓力值。
請參照圖5,其是依據本發明一實施例繪示的決定決策參數值的流程圖。於一些實施例,步驟S240可實施為步驟S241~步驟S243。須說明的是,以下將以第一用電設備與第二用電設備為例進行說明,但本發明對於用電設備的數目並不限制。為了方便說明,請一併參照圖5與圖6,其是依據本發明一實施例繪示的決定決策參數值的示意圖。
於步驟S241,處理器130可根據第一用電設備的多個設備能效與對應的設定值建立第一函數線段L1。於步驟S242,處理器130可根據第二用電設備的多個設備能效與對應的設定值建立第二函數線段L2。舉例來說,圖6是以表4的數據為範例。在冷卻水回水溫度為27度到32度的條件下,處理器130可根據第一用電設備的多個設備能效產生第一函數線段L1,並根據第二用電設備的多個設備能效產生第二函數線段L2。
於步驟S243,處理器130可根據第一函數線段L1與第二函數線段L2的交點P1決定可調設定參數的決策參數值。於圖6的範例中,第一函數線段L1與第二函數線段L2的交點P1所對應的決策參數值可例如為29.2度。參照圖6可知,冷卻水回水溫度小於決策參數值「29.2度」時,開啟第二用電設備較佳。反之,冷卻水回水溫度大於決策參數值「29.2度」時,開啟第一用電設備較佳。由此可見,對應於冷卻水回水溫度的決策參數值「29.2度」可作為決定開啟第一用電設備或第二用電設備的決策基準值。
於步驟S250,處理器130根據決策參數值控制多個用電設備。具體來說,當設備人員基於環境因素或其他種種因素決定可調設定參數的目標設定值之後,處理器130可比較目標設定值與決策參數值以決定使用某一用電設備並停用其他用電設備。也就是說,當確定可調設定參數的目標設定值之後,處理器130可得知在將可調設定參數設置為目標設定值的情況下,那一台用電設備可以具有較高的設備能效。此外,處理器130還可根據決策參數值對已經施行的設備設定方式進行效益評估。
請參照圖7,其是依據本發明一實施例繪示的控制多個用電設備的流程圖。於一些實施例,步驟S250可實施為步驟S251~步驟S252。須說明的是,以下將以第一用電設備與第二用電設備為例進行說明,但本發明對於用電設備的數目並不限制。
於步驟S251,處理器130獲取可調設定參數的目標設定值。須說明的是,對於各個用電設備來說,可調整設定參數的可調整範圍可相同或不同。假設可調整設定參數為空調設備的冷卻水回水溫度或冷凍水供水溫度,則可調整設定參數的可調整範圍也可能受到環境溫度的影響。舉例來說,在單一時間內,冷卻回水溫度不得低於20度也不得高於32度,超出此可調整範圍會對於水主機的冷熱交換效率有不良影響。因此,20度與32度可做為設置目標設定值的限制閥值,亦即設備人員可將目標設定值設定於20度至32度之間。
於步驟S252,處理器130根據決策參數值與目標設定值,啟動第一用電設備並關閉第二用電設備。具體來說,在決定目標設定值之後,處理器130可判斷目標設定值是否大於決策參數值。如圖6所示範例,反應於目標設定值大於決策參數值「29.2度」,處理器130可啟動第一用電設備並關閉第二用電設備。反之,反應於目標設定值小於決策參數值「29.2度」,處理器130可關閉第一用電設備並啟動第二用電設備。也就是說,當目標設定值大於決策參數值,第一用電設備可被啟動且其可調設定參數會被設置為目標設定值,與此同時,第二用電設備可被關閉。如此一來,透過選擇設備能效較佳的第一用電設備來運作,可達到節能與提高能源使用效率的目的。
於一些實施例中,處理器130可利用基於有線或無線傳輸標準的收發器來發送控制訊號至這些用電設備來開啟或關閉這些用電設備。這些用電設備將反應於控制訊號而關閉或開啟。此外,於一些實施例中,處理器130可根據決策參數值與目標設定值來決定各個用電設備的使用順序。
請參照圖8,其是依據本發明一實施例繪示的產生用電效益評估資訊的流程圖。於一些實施例,步驟S250可實施為步驟S253~步驟S256。
於一些實施例中,處理器130獲取多個先前單位時段的實際設備設定方式,並對取多個先前單位時段的設備設定方式進行檢視而產生用電效益評估資訊。
於步驟S253,處理器130根據決策參數值針對一評估時段自多個用電設備挑選推薦用電設備。此評估時段可包括一或多個先前單位時段。詳細來說,在各個先前單位時段中可調設定參數所應用的實際設定值已經確定的情況下,處理器130可比較評估時段實際所應用的實際設定值與決策參數值,並決定評估時段的推薦用電設備。以圖6所決定決策參數值「29.2度」為例,評估時段內第一用電設備的實際運作數據可如表5所示,而各個評估時段對應的推薦用電設備可如表6所示。
表5
表6
評估時段 | 實際開啟設備 | 單位時段 製冷量 | 冷卻水回水溫度 | 實際用電量 | 實際設備能效 |
14:00 | 1# | 2090 | 29.5 | 345 | 6.06 |
15:00 | 1# | 2095 | 29.0 | 348 | 6.02 |
16:00 | 1# | 2105 | 29.0 | 346 | 6.08 |
17:00 | 1# | 2086 | 28.5 | 343 | 6.08 |
評估時段 | 冷卻水回水溫度 | 推薦用電設備 | 推薦用電設備的設備能效 |
14:00 | 29.5 | 1# | 6.06 |
15:00 | 29.0 | 2# | 6.37 |
16:00 | 29.0 | 2# | 6.37 |
17:00 | 28.5 | 2# | 6.42 |
參照表5可知,第一用電設備於4個評估時段被實際開啟來降低環境溫度。然而,由於評估時段「15:00~16:00」、「16:00~17:00」、「17:00~18:00」所應用的目標設定值分別為「29.0」、「29.0」、「28.5」,因此在決策參數值「29.2度」的情況下,評估時段「15:00~16:00」、「16:00~17:00」、「17:00~18:00」所對應的推薦用電設備是第二用電設備。
於步驟S254,處理器130利用設備用電預測模型產生推薦用電設備於評估時段內的預測用電量。透過利用推薦用電設備的設備用電預測模型,處理器130可獲取評估時段內的預測用電量。舉例來說,根據表6的範例,處理器130可獲取推薦用電設備(即第二用電設備)於這些評估時段內的預測用電量,其如表7所示。須說明的是,處理器130可根據對應至可調設定參數所應用的實際設定值與推薦用電設備的歷史運作資訊,來預估推薦用電設備於這些評估時段內的預測用電量。
表7
評估時段 | 實際開啟設備 | 單位時段製冷量 | 實際用電量 | 推薦用電設備 | 推薦用電設備的設備能效 | 推薦用電設備的預估用電量 |
15:00 | 1# | 2095 | 348 | 2# | 6.37 | 329 |
16:00 | 1# | 2105 | 346 | 2# | 6.37 | 330 |
17:00 | 1# | 2086 | 343 | 2# | 6.42 | 325 |
於步驟S255,處理器130根據第一用電設備於評估時段內的實際用電量與推薦用電設備於評估時段內的預測用電量,產生用電效益評估資訊。舉例來說,處理器130可獲取如表7或表8所示的用電效益評估資訊。
表8
評估時段 | 開啟設備 | 冷卻水回水溫度 | 推薦用電設備的預估用電量 | 實際用電量 |
15:00 | 1# | 29.0 | 329 | 348 |
16:00 | 1# | 29.0 | 330 | 346 |
17:00 | 1# | 28.5 | 325 | 343 |
此外,於一些實施例中,處理器130還可根據第一用電設備於評估時段內的實際用電量與推薦用電設備於評估時段內的預測用電量計算用電效益評估資訊中的用電差距與成本節省效益。以表8為例,用電差距可為(348-329)+(346-330)+(343-325) =53度。對於單一單位時段來說,可節省約2%的用電量。於一些實施例中,處理器130還可根據用電差距與單位電費來計算出成本節省效益,成本節省效益可例如為成本節省金額。
於步驟S256,處理器130透過顯示器110顯示用電效益評估資訊。也就是說,處理器130可透過顯示器110提供用電效益評估資訊,讓設備管理人員可以根據用電效益評估資訊來調整用電設備的設定方式,以減少能源的浪費。舉例來說,顯示器110可將顯示用電效益評估資訊於一操作介面上,以供設備人員參考。
圖9是依據本發明一實施例繪示的空調設備的示意圖。請參照圖9,空調設備可包括冰水主機91、送風機93、與冷卻水塔92。冰水主機91可包括蒸發器911、冷凝器912與冷媒管線913。蒸發器911將冷凍水FW1供應至送風機93,並自送風機93接收冷凍水FW2。蒸發器911可透過冷媒來將冷凍水FW2降溫為冷凍水FW1。冷凍水FW1的冷凍水供水溫度可為空調設備的一可調設定參數。冷凝器912將冷卻水CW1供應至冷卻水塔92,並自冷卻水塔92接收冷卻水CW2。冷凝器912可使用來自冷卻水塔92的冷卻水CW2降溫冷媒而產生較高溫的冷卻水CW1。冷卻水CW2的冷卻水回水溫度可為空調設備的一可調設定參數。
此外,於一些實施例中,空調設備的製冷量可根據下列公式(1)產生。公式(1):製冷量=冷凍水的溫差*流量*水的比熱。上述冷凍水的溫差即冷凍水FW1與冷凍水FW2之間的溫差。
圖10是依據本發明一實施例繪示的決定決策參數值的示意圖。請參照圖10,於本實施例示範中,處理器130可根據3個用電設備的函數線段決定兩個決策參數值,其分別為「29.2度」與「28.5度」。於是,處理器130可根據這兩個決策參數值與可調設定參數的目標設定值來決定開起三台用電設備其中一者,並可根據這兩個決策參數值來產生用電效益評估資訊。於圖10的範例中,在根據環境溫度決定目標設定值之後,若處理器130判斷目標設定值小於「28.5度」,處理器130將開啟「2#設備」。若處理器130判斷目標設定值大於「28.5度」且小於「29.2度」,處理器130將開啟「3#設備」。若處理器130判斷目標設定值大於「29.2度」,處理器130將開啟「3#設備」。也就是說,反應於環境溫度的變化,當目標設定值自小於「28.5度」變換為大於「29.2度」,則處理器130可自開啟「2#設備」切換為開啟「3#設備」。
以至少一個處理器執行之用電設備設定方法的處理程序並不限於上述實施形態之例。舉例而言,可省略上述步驟(處理)之一部分,亦可以其他順序執行各步驟。又,可組合上述步驟中之任二個以上的步驟,亦可修正或刪除步驟之一部分。或者,亦可除了上述各步驟外還執行其他步驟。
綜上所述,於本發明實施例中,可根據多個用電設備的設備運作資訊來建立設備用電預測模型。在將可調設定參數分別設置於多個設定值的情況下,可利用各個用電設備的設備用電預測模型來產生對應至各個設定值的設備能效。多個用電設備的多個設備能效可用來決定關聯於可調設定參數的決策參數值,而此決策參數值可以決定這些用電設備的設定方式。由於本發明實施例可基於決策參數值推薦使用設備能效較高的用電設備,因此可在符合生產環境需求的條件下有效節省電力並提昇能源使用率。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100:電子裝置
110:顯示器
120:儲存裝置
130:處理器
L1:第一函數線段
L2:第二函數線段
P1:交點
91:冰水主機
92:冷卻水塔
93:送風機
911:蒸發器
912:冷凝器
913:冷媒管線
S210~S250,S221~S222,S231~S233,S241~S243,S251~S256:步驟
圖1是依據本發明一實施例繪示的電子裝置的示意圖。
圖2是依據本發明一實施例繪示的用電設備設定方法的流程圖。
圖3是依據本發明一實施例繪示的建立設備用電預測模型的流程圖。
圖4是依據本發明一實施例繪示的獲取設備能效的流程圖。
圖5是依據本發明一實施例繪示的決定決策參數值的流程圖。
圖6是依據本發明一實施例繪示的決定決策參數值的示意圖。
圖7是依據本發明一實施例繪示的控制多個用電設備的流程圖。
圖8是依據本發明一實施例繪示的產生用電效益評估資訊的流程圖。
圖9是依據本發明一實施例繪示的空調設備的示意圖。
圖10是依據本發明一實施例繪示的決定決策參數值的示意圖。
S210~S250:步驟
Claims (18)
- 一種用電設備設定方法,包括:獲取多個用電設備的設備運作資訊;根據所述多個用電設備的設備運作資訊,建立各所述多個用電設備的設備用電預測模型,其中各所述多個用電設備的所述設備用電預測模型的多個輸入特徵變量包括各所述多個用電設備的可調設定參數;將所述可調設定參數設置為多個設定值,並利用各所述多個用電設備的所述設備用電預測模型來獲取分別對應於所述多個設定值的多個設備能效;透過比較各所述多個用電設備的所述多個設備能效,決定所述可調設定參數的一決策參數值;以及根據所述決策參數值控制所述多個用電設備,其中所述多個用電設備包括第一用電設備與第二用電設備,且根據所述決策參數值控制所述多個用電設備的步驟包括:獲取所述可調設定參數的目標設定值;以及根據所述決策參數值與所述目標設定值,啟動所述第一用電設備並關閉所述第二用電設備。
- 如請求項1所述的用電設備設定方法,其中所述多個用電設備包括第一用電設備,且將所述可調設定參數設置為所述多個設定值,並利用各所述多個用電設備的所述設備用電預測模 型來獲取分別對應至所述多個設定值的所述多個設備能效的步驟包括:對所述第一用電設備於多個先前單位時段的多個產出量進行統計運算,以獲取所述第一用電設備的多個產出統計量,其中所述多個產出統計量分別應至所述多個設定值且包括第一產出統計量;利用所述第一用電設備的所述設備用電預測模型,來估測所述第一用電設備的多個預測用電量,其中所述多個預測用電量分別應至所述多個設定值且包括第一預測用電量;以及根據所述第一產出統計量與所述第一預測用電量之間的比值,決定所述第一用電設備的所述多個設備能效其中一者,其中所述第一產出統計量與所述第一預測用電量對應至所述設定值中的第一設定值。
- 如請求項2所述的用電設備設定方法,其中對所述第一用電設備於所述多個先前單位時段的所述多個產出量進行統計運算,以獲取所述第一用電設備的所述多個產出統計量的步驟包括:根據所述第一設定值獲取對應至所述第一設定值的多個第一產出量;以及對所述多個第一產出量的進行統計運算,以獲取所述第一用電設備的所述第一產出統計量。
- 如請求項2所述的用電設備設定方法,其中利用所述第一用電設備的所述設備用電預測模型,來估測所述第一用電設備的所述多個預測用電量的步驟包括:將所述第一產出統計量與設定為所述第一設定值的所述可調設定參數輸入至所述設備用電預測模型,以獲取對應至所述第一設定值的所述第一預測用電量。
- 如請求項2所述的用電設備設定方法,其中所述多個用電設備包括多個空調設備,且所述多個產出量包括多個製冷量。
- 如請求項2所述的用電設備設定方法,其中所述多個用電設備包括多個空壓設備,且所述多個產出量包括多個排氣量。
- 如請求項1所述的用電設備設定方法,其中所述多個用電設備包括第一用電設備與第二用電設備,且透過比較各所述多個用電設備的所述多個設備能效,決定所述可調設定參數的所述決策參數值的步驟包括:根據所述第一用電設備的所述多個設備能效與對應的所述設定值建立第一函數線段;根據所述第二用電設備的所述多個設備能效與對應的所述設定值建立第二函數線段;以及根據所述第一函數線段與所述第二函數線段的交點決定所述可調設定參數的所述決策參數值。
- 如請求項1所述的用電設備設定方法,其中所述多個用電設備包括第一用電設備,且根據所述決策參數值控制所述多個用電設備的步驟包括:根據所述決策參數值針對一評估時段自所述多個用電設備挑選一推薦用電設備;利用所述設備用電預測模型產生所述推薦用電設備於一評估時段內的預測用電量;以及根據所述第一用電設備於所述評估時段內的實際用電量與所述推薦用電設備於所述評估時段內的預測用電量,產生用電效益評估資訊。
- 如請求項1所述的用電設備設定方法,其中所述多個用電設備包括第一用電設備,根據所述多個用電設備的設備運作資訊,建立各所述多個用電設備的所述設備用電預測模型的步驟包括:根據所述第一用電設備的設備運作資訊,產生多個先前單位時段的所述多個輸入特徵變量;以及利用所述多個輸入特徵變量以及所述第一用電設備於所述多個先前單位時段的多個實際用電量,基於機器學習演算法訓練所述第一用電設備的所述設備用電預測模型。
- 一種電子裝置,包括:一儲存裝置,儲存多個指令;一處理器,其耦接所述儲存裝置,並存取所述指令而執行: 獲取多個用電設備的設備運作資訊;根據所述多個用電設備的設備運作資訊,建立各所述多個用電設備的設備用電預測模型,其中各所述多個用電設備的所述設備用電預測模型的多個輸入特徵變量包括各所述多個用電設備的可調設定參數;將所述可調設定參數設置為多個設定值,並利用各所述多個用電設備的所述設備用電預測模型來獲取分別對應至所述多個設定值的多個設備能效;透過比較各所述多個用電設備的所述多個設備能效,決定所述可調設定參數的一決策參數值;以及根據所述決策參數值控制所述多個用電設備,其中所述多個用電設備包括第一用電設備與第二用電設備,且所述處理器更執行:獲取所述可調設定參數的目標設定值;以及根據所述決策參數值與所述目標設定值,啟動所述第一用電設備並關閉所述第二用電設備。
- 如請求項10所述的電子裝置,其中所述多個用電設備包括第一用電設備,且所述處理器更執行:對所述第一用電設備於多個先前單位時段的多個產出量進行統計運算,以獲取所述第一用電設備的多個產出統計量,其中所述多個產出統計量分別應至所述多個設定值且包括第一產出統計量;利用所述第一用電設備的所述設備用電預測模型,來估測所 述第一用電設備的多個預測用電量,其中所述多個預測用電量分別應至所述多個設定值且包括第一預測用電量;以及根據所述第一產出統計量與所述第一預測用電量之間的比值,決定所述第一用電設備的所述多個設備能效其中一者,其中所述第一產出統計量與所述第一預測用電量對應至所述設定值中的第一設定值。
- 如請求項11所述的電子裝置,其中所述處理器更執行:根據所述第一設定值獲取對應至所述第一設定值的多個第一產出量;以及對所述多個第一產出量的進行統計運算,以獲取所述第一用電設備的所述第一產出統計量。
- 如請求項11所述的電子裝置,其中所述處理器更執行:將所述第一產出統計量與設定為所述第一設定值的所述可調設定參數輸入至所述設備用電預測模型,以獲取對應至所述第一設定值的所述第一預測用電量。
- 如請求項11所述的電子裝置,其中所述多個用電設備包括多個空調設備,且所述多個產出量包括多個製冷量。
- 如請求項11所述的電子裝置,其中所述多個用電設備包括多個空壓設備,且所述多個產出量包括多個排氣量。
- 如請求項10所述的電子裝置,其中所述多個用電設備包括第一用電設備與第二用電設備,且所述處理器更執行:根據所述第一用電設備的所述多個設備能效與對應的所述設定值建立第一函數線段;根據所述第二用電設備的所述多個設備能效與對應的所述設定值建立第二函數線段;以及根據所述第一函數線段與所述第二函數線段的交點決定所述可調設定參數的所述決策參數值。
- 如請求項10所述的電子裝置,其中所述多個用電設備包括第一用電設備,且所述處理器更執行:根據所述決策參數值針對一評估時段自所述多個用電設備挑選一推薦用電設備;利用所述設備用電預測模型產生所述推薦用電設備於所述評估時段內的預測用電量;以及根據所述第一用電設備於所述評估時段內的實際用電量與所述推薦用電設備於所述評估時段內的預測用電量,產生用電效益評估資訊。
- 如請求項10所述的電子裝置,其中所述多個用電設備包括第一用電設備,且所述處理器更執行:根據所述第一用電設備的設備運作資訊,產生多個先前單位時段的所述多個輸入特徵變量;以及利用所述多個輸入特徵變量以及所述第一用電設備於所述多 個先前單位時段的多個實際用電量,基於機器學習演算法訓練所述第一用電設備的所述設備用電預測模型。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112116865A TWI840215B (zh) | 2023-05-05 | 2023-05-05 | 用電設備設定方法及電子裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112116865A TWI840215B (zh) | 2023-05-05 | 2023-05-05 | 用電設備設定方法及電子裝置 |
Publications (1)
Publication Number | Publication Date |
---|---|
TWI840215B true TWI840215B (zh) | 2024-04-21 |
Family
ID=91618816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112116865A TWI840215B (zh) | 2023-05-05 | 2023-05-05 | 用電設備設定方法及電子裝置 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI840215B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201507309A (zh) * | 2013-08-02 | 2015-02-16 | 元智大學 | 電力負載監控及預測系統及其方法 |
CN109213033A (zh) * | 2018-08-23 | 2019-01-15 | 深圳供电局有限公司 | 一种楼宇智慧能源管理方法及系统 |
US11003239B2 (en) * | 2018-04-30 | 2021-05-11 | Dell Products, L.P. | Power consumption management in an information handling system |
TWI736420B (zh) * | 2020-09-17 | 2021-08-11 | 中華電信股份有限公司 | 自適應環境控制系統、裝置及其方法 |
TW202227975A (zh) * | 2021-01-07 | 2022-07-16 | 廣達電腦股份有限公司 | 機架管理系統、方法及控制器 |
CN116045461A (zh) * | 2023-03-07 | 2023-05-02 | 广东热矩智能科技有限公司 | 一种基于给回水温度调节的风冷空调节能控制方法及装置 |
-
2023
- 2023-05-05 TW TW112116865A patent/TWI840215B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201507309A (zh) * | 2013-08-02 | 2015-02-16 | 元智大學 | 電力負載監控及預測系統及其方法 |
US11003239B2 (en) * | 2018-04-30 | 2021-05-11 | Dell Products, L.P. | Power consumption management in an information handling system |
CN109213033A (zh) * | 2018-08-23 | 2019-01-15 | 深圳供电局有限公司 | 一种楼宇智慧能源管理方法及系统 |
TWI736420B (zh) * | 2020-09-17 | 2021-08-11 | 中華電信股份有限公司 | 自適應環境控制系統、裝置及其方法 |
TW202227975A (zh) * | 2021-01-07 | 2022-07-16 | 廣達電腦股份有限公司 | 機架管理系統、方法及控制器 |
CN116045461A (zh) * | 2023-03-07 | 2023-05-02 | 广东热矩智能科技有限公司 | 一种基于给回水温度调节的风冷空调节能控制方法及装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8180493B1 (en) | Method and apparatus for effecting temperature difference in a respective zone | |
US9429921B2 (en) | Method and system for energy control management | |
WO2020199648A1 (zh) | 空调的控制方法和装置 | |
JP5914860B2 (ja) | 管理装置 | |
WO2023040694A1 (zh) | 制冷机房能效计算方法、装置和电子设备 | |
Fan et al. | Model-based predictive control optimization of chiller plants with water-side economizer system | |
CN105091076B (zh) | 节能效果计算方法以及装置 | |
CN113739360B (zh) | 基于冷站多智能体的节能控制方法、装置、设备及介质 | |
CN108759256A (zh) | 一种冰箱的化霜方法及冰箱 | |
KR20130117188A (ko) | 가변풍량 방식을 이용한 에너지 관리 방법 및 이를 위한 에너지관리장치 | |
CN105423492B (zh) | 机房监测系统及方法 | |
CN108195221A (zh) | 变频风机控制方法及装置 | |
CN114135980A (zh) | 温度调节系统冷却侧优化参数确定及控制方法、相关设备 | |
TWI840215B (zh) | 用電設備設定方法及電子裝置 | |
Wang et al. | A global optimization method for data center air conditioning water systems based on predictive optimization control | |
WO2024093410A1 (zh) | 空调器的控制方法、空调器及计算机可读存储介质 | |
Aravelli et al. | Energy optimization in chiller plants: A novel formulation and solution using a hybrid optimization technique | |
CN118017097A (zh) | 一种混合自然冷却的储能冷水机控制方法及系统 | |
US20140039688A1 (en) | Air-conditioning controlling solution displaying device and method | |
TWI833604B (zh) | 設備參數推薦方法、電子裝置及非暫態電腦可讀取記錄媒體 | |
JP7385099B2 (ja) | 情報処理装置、空気調和装置、情報処理方法、空気調和方法、及びプログラム | |
CN114934895A (zh) | 一种空压机恒温节能方法、装置、设备以及存储介质 | |
TWI825844B (zh) | 工廠用電的節能預估方法及電子裝置 | |
Chen et al. | To enhance the energy efficiency of chiller plants with system optimization theory | |
Wu et al. | Data center job scheduling algorithm based on temperature prediction |