TWI839031B - 檢測方法及檢測系統 - Google Patents

檢測方法及檢測系統 Download PDF

Info

Publication number
TWI839031B
TWI839031B TW111148938A TW111148938A TWI839031B TW I839031 B TWI839031 B TW I839031B TW 111148938 A TW111148938 A TW 111148938A TW 111148938 A TW111148938 A TW 111148938A TW I839031 B TWI839031 B TW I839031B
Authority
TW
Taiwan
Prior art keywords
wire
contact
transistors
semiconductor structure
conductor
Prior art date
Application number
TW111148938A
Other languages
English (en)
Other versions
TW202426909A (zh
Inventor
陳彥樵
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW111148938A priority Critical patent/TWI839031B/zh
Application granted granted Critical
Publication of TWI839031B publication Critical patent/TWI839031B/zh
Publication of TW202426909A publication Critical patent/TW202426909A/zh

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本揭露提供一種檢測方法,用於檢測半導體結構。半導體結構包括第一導線、第二導線、連接至第一導線的第一電晶體、連接至第二導線的第二電晶體,以及連接至第一導線的第一導線接點。第一電晶體包括第一接點。第二電晶體包括第二接點。檢測方法包括預充電操作,以電子束照射第一導線接點;成像操作,取得上述半導體結構的影像;以及判斷操作,判斷第二電晶體的第二接點是否變亮,當第二接點變亮,判斷第一導線與第二導線之間存在缺陷。

Description

檢測方法及檢測系統
本揭露係關於一種檢測方法,特別係關於一種利用掃描式電子顯微鏡(SEM)影像中之源極/汲極接點的亮與暗狀態來判斷導線間之缺陷的檢測方法。
電子束檢測(e-beam inspection,EBI)常被用於線上(in line)檢查半導體裝置的缺陷,其利用掃描式電子顯微鏡(SEM)影像,以影像處理的方式尋找半導體裝置上的缺陷。
然而,由於半導體裝置及元件微縮,伴隨著缺陷的尺寸縮小,從SEM影像中找出缺陷也變得益發困難。舉例來說,當缺陷的尺寸在SEM影像中只占用了數個像素時,因解析度的限制,從SEM影像中發現缺陷是相當困難的。
本揭露實施例提供一種檢測方法,用於檢測一半導體結構。上述半導體結構包括第一導線以及第二導線,沿著第一方向延伸並沿著第二方向彼此間隔;複數第一電晶體,連接至第一導線,複數第一電晶體中的每一者包括第一接點;複數第二電晶體,連接至第二導線,複數第二電晶體中的每一者包括第二接點;以及第一導線接點,連接至第一導線。上述檢測方法包括預充電操作,以電子束照射第一導線接點;成像操作,取得上述半導體結構的影像;以及判斷操作,判斷在影像中,複數第二電晶體之任一者的第二接點是否變亮,並且作為對影像中複數第二電晶體之任一者的第二接點變亮的響應,判斷第一導線與第二導線之間存在缺陷。
本揭露實施例提供一種半導體結構,包括第一導線以及第二導線,沿著第一方向延伸並沿著第二方向彼此間隔;複數第一電晶體,連接至第一導線 ,第一電晶體中的每一者包括第一接點;複數第二電晶體,連接至第二導線 ,第二電晶體中的每一者包括第二接點;以及第一導線接點,連接至第一導線。
本揭露實施例提供一種檢測系統,用於檢測上述半導體結構。上述檢測系統包含電子束發射系統,具有電子源以及偵測器;載台,被配置以承載上述半導體結構;以及處理裝置。上述處理裝置執行預充電操作,藉由電子源向半導體結構的第一導線接點發射電子束;成像操作,掃描半導體結構,並藉由偵測器接收來自半導體結構的二次電子,以產生半導體結構的影像;以及判斷操作,判斷影像的亮與暗狀態,以判斷半導體結構的第一導線以及第二導線之間是否存在缺陷。
由於半導體裝置的尺寸微縮所伴隨的缺陷細微,使用EBI方法直接從SEM影像中找出缺陷也變得更加困難。有鑑於此,本揭露提供一種利用電壓對比(voltage contrast, VC)的間接檢測方法,以在使用EBI方法下,更容易且明確地從SEM影像中找出缺陷。
本揭露所提供的方法包括將複數導線(例如:字元線)彼此平行地設置。每條導線分別連接至(或是充當)對應之複數電晶體的閘極。接著,對複數導線中未相鄰的導線進行預充電(pre-charge),以導通經過預充電之導線所連接的電晶體。如此,在SEM影像中,這些電晶體的設置於源極/汲極區上的接點(contact)將會因為具有更多的電子而產生亮電壓對比,也就是在SEM影像中變「亮」。另一方面,因為與未被預充電之導線相連的電晶體仍舊處於關閉(turn-off)狀態,因此理論上這些電晶體的接點在SEM影像中應該要維持在「暗」的狀態。
然而,倘若這些導線之間存在缺陷(例如:隔離結構中的細縫),並且導電材料填入這些缺陷而使這些導線連接在一起(例如:短路),則未被預充電的導線將會因為連接到經過預充電的導線而獲得電壓。如此一來,與未被預充電之導線相連的電晶體將會被導通,並且在SEM影像中,這些電晶體的接點同樣會變亮。因此,藉由觀察這些理應維持在「暗」狀態的接點是否變「亮」,便可以判斷導線之間是否存在缺陷(例如:短路)。並且,因為源極/汲極之接點的尺寸遠大於缺陷的尺寸,因此可以更加容易且清楚地從SEM影像中發現缺陷的存在。
參照第1A圖,半導體結構100包括沿著第一方向X延伸並且沿著第二方向Y彼此間隔的第一導線110、第二導線112以及第三導線114。半導體結構100更包括複數第一電晶體130、複數第二電晶體132以及複數第三電晶體134,分別具有設置於源極/汲極區120上的複數第一接點140、複數第二接點142以及複數第三接點144。複數第一電晶體130沿著第一導線110設置(即:沿著第一方向X),且每個第一電晶體130的兩個第一接點140沿著第二方向Y設置於第一導線110的兩側。複數第二電晶體132沿著第二導線112設置,且每個第二電晶體132的兩個第二接點142沿著第二方向Y設置於第二導線112的兩側。複數第三電晶體134沿著第三導線114設置,且每個第三電晶體134的兩個第三接點144沿著第二方向Y設置於第三導線114的兩側。
在一些實施例中,第一導線110、第二導線112及第三導線114為字元線,且分別充當第一電晶體130、第二電晶體132以及第三電晶體134的閘極。在其他實施例中,第一導線110、第二導線112以及第三導線114分別連接至第一電晶體130、第二電晶體132以及第三電晶體134的閘極。於所示實施例中,第一電晶體130/第三電晶體134與第二電晶體132沿著第一方向X交錯地設置。如第1A圖所示,第二電晶體132的第一者設置於第一行中,第一電晶體130/第三電晶體134的第一者設置於第二行中,第二電晶體132的第二者設置於第三行中,並且第一電晶體130/第三電晶體134的第二者設置於第四行中,以此類推。
半導體結構100亦包括分別設置於第一導線110、第二導線112以及第三導線114上方的第一導線接點150、第二導線接點152以及第三導線接點154,且可分別連接第一導線110、第二導線112以及第三導線114,並分別被用於對第一導線110、第二導線112以及第三導線114進行預充電。在一些實施例中,第一導線接點150、第二導線接點152以及第三導線接點154被交替地沿著第一方向X設置於半導體結構100的兩側。舉例來說,第一導線接點150與第三導線接點154被設置於半導體結構100的一側,而第二導線接點152被設置於半導體結構100的另一側。在替代性實施例中,半導體結構100可以僅包括設置於一側上的導線接點。舉例來說,半導體結構100可以僅包括第一導線接點150與第三導線接點154,並且不包括第二導線接點152。
為使說明簡化,第1A圖僅顯示三條導線及對應的導線接點、電晶體和設置於源極/汲極區上的接點,但實際上半導體結構100可具有任何數量的導線,並且每條導線可以連接至任何數量之對應的電晶體與接點。
參照第1B圖,半導體結構100包括基板105及基板105上方的層間介電(interlayer dielectric, ILD)層190。第一導線110、第二導線112以及第三導線114設置於基板105中。第一隔離結構180、第二隔離結構182、第三隔離結構184設置於基板105中,且分別設置於第一導線110、第二導線112、第三導線114上方。
第一接點140(第1B圖中僅顯示一個)設置於基板105的源極/汲極區120上方、ILD層190之中以及第一導線110兩側。第三接點144(第1B圖中僅顯示一個)設置於基板105的源極/汲極區120上方、ILD層190之中以及第三導線114兩側。在第1B圖所示的截面圖中,線段A-A橫越第一電晶體130與第三電晶體134,因此並未顯示第二接點142。不過,在第二電晶體132的區域中,第二接點142同樣設置於基板105的源極/汲極區120上方、ILD層190之中以及第二導線112兩側。
因為線段A-A橫越第一電晶體130與第三電晶體134,因此在第1B圖中,半導體結構100包括設置於第一導線110、第一隔離結構180、第三導線114以及第三隔離結構184周圍的閘極介電層160,且包括設置於第二導線112以及第二隔離結構182周圍的隔離結構170。在第二電晶體132的區域中,半導體結構100包括設置於第二導線112以及第二隔離結構182周圍的閘極介電層160,並且包括設置於第一導線110、第一隔離結構180、第三導線114以及第三隔離結構184周圍的隔離結構170。在第一導線110、第二導線112以及第三導線114並未充當電晶體之閘極的實施例中,第一電晶體130、第二電晶體132以及第三電晶體具有附加的閘極結構,其中閘極介電層設置於這些閘極結構周圍,並且第一導線110、第二導線112以及第三導線114經由附加的組件(例如:閘極接點及/或閘極通孔)連接至這些閘極結構。
在一些實施例中,第一導線110、第二導線112以及第三導線114的材料,可包括多晶矽、鎢(W)、銅(Cu)、鋁(Al)、鈷(Co)、釕(Ru)、鉬(Mo)、鉭(Ta)、鈦(Ti)、其合金、及/或其組合。在一些實施例中,第一接點140、第二接點142以及第三接點144的材料,可包括W、Cu、Al、Co、Ru、Mo、Ta、Ti、其合金、及/或其組合。
根據本揭露一些實施例,第2A圖及第2B圖分別顯示了在正常狀態及非正常狀態下,半導體結構100之接點於SEM影像中的亮(例如:亮電壓對比)與暗狀態。
根據本揭露提供的檢測方法,首先以第一電子束照射導線接點以進行預充電。所述檢測方法以如第5圖所示之檢測系統500執行。在一些實施例中,第一電子束照射第一導線接點150與第三導線接點154以對第一導線110與第三導線114進行預充電,因而導通第一導線110與第三導線114所連接的第一電晶體130及第三電晶體134。
接著,以第二電子束掃描半導體結構100,並以偵測器接收來自半導體結構100的二次電子,以產生半導體結構100的SEM影像。然後,使用處理裝置對SEM影像進行影像處理,以判斷半導體結構100的第一導線110、第二導線112與第三導線114之間是否存在缺陷(例如:短路)。
如第2A圖所示,因為第一電晶體130以及第三電晶體134被導通,因此第一電晶體130與第三電晶體134的第一接點140與第三接點144具有更多的電子,並因而產生亮電壓對比。於是,在SEM影像中,第一接點140與第三接點144呈現「亮」的狀態。另一方面,在正常狀態下,因為第二導線接點152並未被第一電子束照射且第二電晶體132並未被導通,因此第二接點142並未獲得額外的電子,並因而維持在「暗」的狀態。
然而,在非正常狀態下,例如在第一導線110、第二導線112與第三導線114之間發生短路的狀態下,半導體結構100之接點於SEM影像中的亮與暗狀態,將會不同於第2A圖所示的示意圖。參照第2B圖,因為第一電晶體130以及第三電晶體134被導通,因此第一接點140與第三接點144同樣呈現「亮」的狀態,與第2A圖相同。
另一方面,儘管第二導線接點152並未被第一電子束照射且因此第二導線112未被預充電,但因為第二導線112與第一導線110及/或第三導線114之間發生短路,因此第二導線112經由第一導線110及/或第三導線114而獲得了電壓。如此一來,與第二導線112連接的第二電晶體132被導通。因此,在SEM影像中,第二電晶體132的第二接點142不再維持在「暗」的狀態,而是由於具有更多的電子而呈現「亮」的狀態。由於第二接點142會因為第二導線112與其他導線之間的缺陷(例如:短路)而變亮,因此可以根據SEM影像中變亮的第二接點142,來判斷第二導線112與其他導線之間存在缺陷。
如上所述,在SEM影像中,導線之間的缺陷(例如:短路)會造成理應呈現「暗」狀態的接點轉變為「亮」狀態。因此,可以藉由對SEM進行影像處理,以根據接點的「亮」與「暗」狀態來判斷導線之間是否存在缺陷。藉由這種方法,可以利用遠比缺陷大上許多且因此更容易觀察的接點來判斷半導體結構中是否存在缺陷。進一步地,因為是藉由接點間接地對導線進行判斷,因此在進行本揭露所提供的檢測方法時,導線上方可以被其他元件所覆蓋。舉例來說,如第1B圖所示,在進行檢測時,第一導線110、第二導線112以及第三導線114上方已被第一隔離結構180、第二隔離結構182以及第三隔離結構184所覆蓋。這意味著本檢測方法無須在完成導線後,於導線曝露於半導體結構的表面的情況下立即進行檢測,而是可以在完成一段較為完整的製程程序後再行進行檢測。如此一來,可以避免重新設計製程、中途中斷製程及/或頻繁進出製程腔體的時間與成本。並且,由於本檢測方法利用了實際的半導體裝置所具有元件,因此無須特別設計用於檢測的測試結構。如此一來,作為測試鍵(test key)的半導體結構將具有與作為產品之有效晶片(real chip)極度相似的結構。這將會使得測試鍵的檢測結果與有效晶片高度吻合,並因此提高檢測的精準度。
在替代性實施例中,第一電子束照射第二導線接點152而非第一導線接點150及第三導線接點154,並因此導通第二導線112所連接的第二電晶體132,而第一電晶體130及第三電晶體134並未被導通。因此在正常狀態下,於SEM影像中,第二接點142呈現「亮」的狀態,而第一接點140與第三接點144則維持「暗」的狀態。另一方面,在非正常狀態下,於SEM影像中,第一接點140與第三接點144由於第一導線110、第二導線112與第三導線114之間的缺陷(例如:短路)而變亮。如此一來,同樣可以藉由接點(例如:第一接點140及/或第三接點144)之「亮」與「暗」的變化,來判斷導線之間是否存在缺陷。
在一些實施例中,可以進一步將未進行預充電的導線(例如:第二導線112)分割為複數子導線,以用於進一步判斷存在缺陷的區域。
參照第3A圖,第二導線112被分割為複數子導線112-1、112-2、112-3、…、112-N,其中N為任意正整數。在一些實施例中,第二導線被切斷的位置位於正常及非正常狀態下均為「亮」狀態的電晶體處,例如對第一導線110與第三導線114進行預充電的情況下的第一電晶體130及第三電晶體134處,而每個子導線的兩端均為正常狀態下呈現「暗」狀態的電晶體,例如第二電晶體132。換句話說,每個子導線跨越M組正常狀態下呈「暗」狀態的電晶體(例如:第二電晶體132)以及M-1組正常及非正常狀態下均為「亮」狀態的電晶體(例如:第一電晶體130與第三電晶體134,兩者為一組),其中M為任意正整數並取決於設計需求。在第3A圖中,為使說明簡化,M被顯示為2。然而,本揭露不以此為限。
第3B圖所示之半導體結構200是沿著第3A圖的線段B-B所截取的截面圖。沿著第3A圖之線段A-A截取的截面圖與第1B圖相同,因此不重述。在第3B圖中,半導體結構200具有與第1B圖之半導體結構100相似的結構,不同之處在於因為第二導線112被截斷,因此僅餘下隔離結構170。
第4A圖及第4B圖分別顯示了在正常狀態及非正常狀態下,半導體結構200之接點於SEM影像中的亮(例如:亮電壓對比)與暗狀態。為使說明簡化且清晰易懂,第4A圖及第4B圖省略了第3A圖中的一些特徵。
根據本揭露所提供的檢測方法,首先以第一電子束照射導線接點以進行預充電。在一些實施例中,所述檢測方法以如第5圖所示之檢測系統500執行。在一些實施例中,第一電子束照射第一導線接點150與第三導線接點154以對第一導線110與第三導線114進行預充電,並因此導通第一導線110與第三導線114所連接的第一電晶體130及第三電晶體134。接著,以第二電子束掃描半導體結構200,並以偵測器接收來自半導體結構200的二次電子,以產生半導體結構200的SEM影像。然後,使用處理裝置對SEM影像進行影像處理,以判斷半導體結構200的第一導線110、第二導線112與第三導線114之間是否存在缺陷(例如:短路)。
如同前文參照第2A圖所述,因為第一電晶體130以及第三電晶體134被導通,因此第一電晶體130與第三電晶體134的第一接點140與第三接點144在SEM影像中呈現「亮」的狀態,如第4A圖所示。另一方面,在正常狀態下,因為第二導線接點152並未被第一電子束照射且第二電晶體132並未被導通,因此第二接點142維持在「暗」的狀態。
參照第4B圖,在非正常狀態下,例如在第一導線110、第二導線112的子導線與第三導線114之間發生短路的狀態下,因為第一電晶體130以及第三電晶體134被導通,因此第一接點140以及第三接點144同樣呈現「亮」的狀態,與第4A圖相同。
另一方面,儘管第二導線接點152並未被第一電子束照射,及/或第二導線112被分割為複數子導線因此無法自導線接點獲得電壓,但因為第二導線112的子導線112-1~112-N中的一或多者與第一導線110及/或第三導線114之間發生短路,因此子導線112-1~112-N中發生短路的一或多者經由第一導線110及/或第三導線114獲得了電壓。如此一來,與導線112-1~112-N中發生短路的一或多者連接的第二電晶體132被導通。因此,在SEM影像中,被導通的第二電晶體132的第二接點142不再維持在「暗」的狀態,而是由於具有更多的電子而呈現「亮」的狀態。舉例來說,假設子導線112-2與第一導線110及/或第三導線114之間發生短路,則與子導線112-2相連的第二電晶體132-3及132-4被導通,因此第二電晶體132-3及132-4的第二接點142呈現「亮」的狀態,由此判斷第二導線112的子導線112-2與其他導線之間存在缺陷。
藉由將第二導線112分割為複數子導線112-1 ~ 112-N,可以更精準地判斷缺陷所在的區域。當與一個子導線相連之第二電晶體132的第二接點142變亮時,代表該子導線與其他導線之間存在缺陷(例如:短路),即,缺陷出現在該子導線所處的區域中。如此一來,可以有助於後續的缺陷分析。
在替代性實施例中,可以改為將第一導線110及第三導線114分割為複數子導線且維持第二導線112的完整,並以第一電子束照射第二導線接點152,使第二電晶體132被導通,而第一電晶體130及第三電晶體134並未被導通。因此在正常狀態下,於SEM影像中,第二接點142呈現「亮」的狀態,而第一接點140與第三接點144則維持「暗」的狀態。另一方面,在非正常狀態下,於SEM影像中,與發生短路之第一導線110的子導線相關的第一接點140及/或與發生短路之第三導線114的子導線相關的第三接點144會呈現「亮」的狀態。如此一來,同樣可以藉由接點(例如:第一接點140及/或第三接點144)之「亮」與「暗」的變化,來判斷導線之間是否存在缺陷(例如:短路),並且進一步藉由第一導線110及第三導線114的複數子導線來判斷缺陷所存在的區域。
為使說明簡化且清晰易懂,第1A圖至第4B圖僅顯示了必要的特徵,然而,本揭露所屬技術領域具通常知識者應當理解,他們可以輕易地添加其他特徵以完善半導體裝置,亦可以在半導體結構100及200上添加其他元件以形成其他半導體應用。
參照第5圖,檢測系統500可包括掃描式電子顯微鏡的功能。檢測系統500包含電子束發射系統,電子束發射系統包括電子源510、第一孔徑光欄(aperture diaphragm)520、聚光透鏡(condenser lens)530、第二孔徑光欄525、偏轉器(deflector) 540與偵測器570。檢測系統500更包括載台550以及處理裝置580。載台550可被用於承載試片560。試片560例如為半導體結構100、200。
電子源510可被用於向試片560發射電子束,例如用於對導線接點進行預充電的第一電子束,以及用於掃描試片以產生SEM影像的第二電子束。第一孔徑光欄520與第二孔徑光欄525可被用於控制電子束的收斂角(converge angle)。聚光透鏡530以及較為靠近試片560的物鏡(未圖示)可被用於聚焦電子束。諸如線圈的偏轉器540可被用於控制電子束的路徑。
偵測器570可接收試片560因電子源510之第二電子束所產生的二次電子,並產生試片560的SEM影像,例如藉由處理裝置580產生SEM影像。處理裝置580可用於執行本揭露所提供之檢測方法,例如下文參照第6圖所述之方法600。舉例來說,方法600可被實施為一電腦程式產品,並被儲存於檢測系統500的一儲存裝置(未圖示)中。儲存於儲存裝置中的上述電腦程式產品可由處理裝置580載入並執行,以在檢測系統500中執行方法600。
第6圖係根據本揭露實施例所示,用於檢測半導體結構(例如:半導體結構100、200)之方法600的流程圖。應注意的是,附加的操作可被提供於方法600之前、之中或是之後,且對於方法600的附加實施例,所述的一些操作可被移動、替換或是消除。下文將同時參照第1A圖至第5圖對第6圖進行說明。
在操作610中,首先接收一半導體結構。半導體結構至少包括第一導線、第二導線、連接至第一導線且具有第一接點的第一電晶體、連接至第二導線且具有第二接點的第二電晶體、以及連接至第一導線的第一導線接點。
在操作620中,以電子束照射半導體結構的至少一個導線接點以對與該至少一個導線接點連接的導線進行預充電,並且導通與該導線連接的電晶體。舉例來說,可藉由電子源510以第一電子束對半導體結構100及/或半導體結構200的至少一個導線進行預充電,並導通與該至少一個導線連接的電晶體。
在操作630中,以電子束掃描半導體結構,以取得半導體結構的影像,例如SEM影像。舉例來說,可藉由電子源510以第二電子束掃描半導體結構100及/或半導體結構200,並藉由偵測器570接收來自半導體結構100及/或半導體結構200的二次電子以產生半導體結構100及/或半導體結構200的SEM影像。
在操作640中,根據操作630中所獲得的影像,判斷目標接點是否變亮。作為對目標接點變亮的響應,進入操作650,而作為對目標接點並未變亮的響應,進入操作660。舉例來說,可藉由處理裝置580對影像進行處理,以判斷目標接點是否變亮。
如同前文所述,可以藉由SEM影像中接點的「亮」與「暗」來判斷電晶體是否導通。可將與未被預充電之導線相連的電晶體設定為目標電晶體,使得目標電晶體不會因為預充電而被導通。同時,可將目標電晶體的接點設定為目標接點,並將與目標電晶體相連之未被預充電的導線設定為目標導線。如此一來,在正常狀態下,目標電晶體的目標接點在SEM影像中應該呈現「暗」的狀態。倘若目標接點在SEM影像中變亮,也就是呈現代表導通的「亮」狀態,則代表目標電晶體的目標導線因為存在缺陷而從其他地方獲得了電壓並將目標電晶體導通。藉此,可以判斷目標電晶體的目標導線存在缺陷(例如:與其他經過預充電的導線發生短路)。
在判斷目標接點變亮之後,進入操作650。在操作650中,判斷與目標接點連接的導線發生短路。如上所述,目標接點在SEM影像中呈現「亮」的狀態代表目標導線存在缺陷。因此,作為對目標接點變亮的響應,方法600在操作650中判斷半導體結構中的導線存在缺陷(例如:短路)。
在判斷目標接點並未變亮之後,進入操作660。在操作660中,判斷半導體結構的導線並未發生短路。如上所述,在正常狀態下,目標電晶體的接點在SEM影像中應該呈現「暗」的狀態。因此,作為對目標接點並未變亮的響應,方法600在操作660中判斷半導體結構處於正常狀態,也就是半導體結構的導線之間並未發生短路。
在進一步的實施例中,方法600可以進一步地將連接至目標電晶體的目標導線分割為複數子導線。如上所述,藉此可以更精準地判斷缺陷所在的區域。
在操作650之後,可以執行進一步的操作,例如對半導體結構進行缺陷分析(例如:物性故障分析(physical failure analysis, PFA)),以利於後續改善製程。如上所述,藉由將目標電晶體的目標導線分割為複數子導線可以更精準地判斷缺陷所在的區域,因此能夠更加有利於缺陷分析的進行。舉例來說,可以在根據子導線判斷出缺陷所在的區域後,針對該區域進行缺陷分析。
本揭露提供一種檢測方法以及利用此檢測方法的檢測系統。此檢測方法利用電晶體之接點在SEM影像中的「亮」與「暗」的變化,判斷連接至該電晶體之閘極或是充當該電晶體之閘極的導線與其他導線之間是否存在會造成短路的缺陷。如上所述,在SEM影像中,導線之間的缺陷(例如:短路)會導致理應呈現「暗」狀態的接點轉變為「亮」狀態。因此,可以根據接點的「亮」與「暗」狀態來判斷導線之間是否存在缺陷。藉由本揭露所提供的檢測方法,可以提供如同前文所述的諸多益處,例如更加容易發現缺陷的存在、可在導線上覆蓋有其他組件的情況下進行檢測、避免重新設計製程和中途中斷製程及頻繁進出製程腔體的時間與成本、測試鍵的檢測結果與有效晶片高度吻合並因此提高檢測的精準度、以及更精準地判斷缺陷所在的區域。
前述內文概述多項實施例或範例之特徵,如此可使於本技術領域中具有通常知識者更佳地瞭解本揭露。本技術領域中具有通常知識者應當理解他們可輕易地以本揭露為基礎設計或修改其他製程及結構,以完成相同之目的及/或達到與本文介紹之實施例或範例相同之優點。本技術領域中具有通常知識者亦需理解,這些等效結構並未脫離本揭露之精神及範圍,且在不脫離本揭露之精神及範圍之情況下,可對本揭露進行各種改變、置換以及變更。
100:半導體結構 105:基板 110:第一導線 112:第二導線 112-1~112-N:子導線 114:第三導線 120:源極/汲極區 130:第一電晶體 132:第二電晶體 134:第三電晶體 140:第一接點 142:第二接點 144:第三接點 150:第一導線接點 152:第二導線接點 154:第三導線接點 160:閘極介電層 170:隔離結構 180:第一隔離結構 182:第二隔離結構 184:第三隔離結構 190:ILD層 A-A:線段 B-B:線段 X:第一方向 Y:第二方向 200:半導體結構 500:檢測系統 510:電子源 520:第一孔徑光欄 525:第二孔徑光欄 530:聚光透鏡 540:偏轉器 550:載台 560:試片 570:偵測器 580:處理裝置 600:方法 610~660:操作
第1A圖係根據本揭露一些實施例之半導體結構的俯視圖。 第1B圖係根據本揭露一些實施例之半導體結構沿著第1A圖的線段A-A所截取的截面圖。 第2A圖係根據本揭露一些實施例,顯示了在正常狀態下,半導體結構的接點於SEM影像中的亮與暗狀態的示意圖。 第2B圖係根據本揭露一些實施例,顯示了在非正常狀態下,半導體結構的接點於SEM影像中的亮與暗狀態的示意圖。 第3A圖係根據本揭露一些實施例之半導體結構的俯視圖。 第3B圖係根據本揭露一些實施例之半導體結構沿著第3A圖的線段B-B所截取的截面圖。 第4A圖係根據本揭露一些實施例,顯示了在正常狀態下,半導體結構的接點於SEM影像中的亮與暗狀態的示意圖。 第4B圖係根據本揭露一些實施例,顯示了在非正常狀態下,半導體結構的接點於SEM影像中的亮與暗狀態的示意圖。 第5圖係根據本揭露一些實施例的檢測系統的方塊圖。 第6圖係根據本揭露一些實施例的檢測半導體結構之方法的流程圖。
600:方法
610~660:操作

Claims (10)

  1. 一種檢測方法,用於檢測一半導體結構,該半導體結構包括:一第一導線以及一第二導線,沿著一第一方向延伸並沿著一第二方向彼此間隔;複數第一電晶體,連接至該第一導線,該等第一電晶體中的每一者包括一第一接點;複數第二電晶體,連接至該第二導線,該等第二電晶體中的每一者包括一第二接點;以及一第一導線接點,連接至該第一導線;該檢測方法包括:一預充電操作,以一電子束照射該第一導線接點;一成像操作,取得該半導體結構的一影像;以及一判斷操作,判斷在該影像中,該等第二電晶體之任一者的該第二接點是否變亮,且作為對該影像中該等第二電晶體之該任一者的該第二接點變亮的響應,判斷該第一導線與該第二導線間存在缺陷。
  2. 如請求項1之檢測方法,其中該第二導線包括複數子導線,其中該等子導線至少包括一第一子導線及一第二子導線,並且該判斷操作更包括:作為對該影像中,連接至該第一子導線之該等第二電晶體的該第二接點變亮的響應,判斷該第一子導線與該第一導線之間存在缺陷。
  3. 如請求項2之檢測方法,更包括對該半導體結構 中,該第一子導線所處的區域進行一物性故障分析。
  4. 如請求項1之檢測方法,其中該等第一電晶體與該等第二電晶體沿著該第一方向彼此交錯設置。
  5. 如請求項1之檢測方法,其中該半導體結構更包括一第二導線接點,連接至該第二導線,其中該第一導線接點設置於該半導體結構的一側,並且該第二導線接點設置於該半導體結構之沿著該第一方向的相對側。
  6. 如請求項1之檢測方法,其中該第一導線作為該等第一電晶體的閘極,並且該第二導線作為該等第二電晶體的閘極。
  7. 如請求項6之檢測方法,其中:該等第一電晶體中的每一者更包括一第一隔離結構,該第一隔離結構設置於該第一導線上方;以及該等第二電晶體中的每一者更包括一第二隔離結構,該第二隔離結構設置於該第二導線上方。
  8. 如請求項7之檢測方法,其中該半導體結構更包括一基板,其中該第一隔離結構、該第一導線、該第二隔離結構以及該第二導線設置於該基板中,且該第一接點及該第二接點設置於該基板上方的一層間介電層中。
  9. 如請求項1之檢測方法,其中:該等第一電晶體中的每一者更包括一第三接點,其中該第一接點與該第三接點沿著該第二方向設置於該第一導線的兩側;以及該等第二電晶體中的每一者更包括一第四接點,其中該第二接點 與該第四接點沿著該第二方向設置於該第二導線的兩側。
  10. 一種檢測系統,用於檢測一半導體結構,該半導體結構包括:一第一導線以及一第二導線,沿著一第一方向延伸並沿著一第二方向彼此間隔;複數第一電晶體,連接至該第一導線,該等第一電晶體中的每一者包括一第一接點;複數第二電晶體,連接至該第二導線,該等第二電晶體中的每一者包括一第二接點;以及一第一導線接點,連接至該第一導線;該檢測系統包括:一電子束發射系統,具有一電子源以及一偵測器;一載台,被配置以承載該半導體結構;以及一處理裝置,執行下列操作:一預充電操作,藉由該電子源向該半導體結構的該第一導線接點發射一電子束;一成像操作,掃描該半導體結構,並藉由該偵測器接收來自該半導體結構的二次電子,以產生該半導體結構的一影像;以及一判斷操作,判斷該影像的亮與暗狀態,以判斷該半導體結構的該第一導線以及該第二導線之間是否存在缺陷。
TW111148938A 2022-12-20 2022-12-20 檢測方法及檢測系統 TWI839031B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111148938A TWI839031B (zh) 2022-12-20 2022-12-20 檢測方法及檢測系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111148938A TWI839031B (zh) 2022-12-20 2022-12-20 檢測方法及檢測系統

Publications (2)

Publication Number Publication Date
TWI839031B true TWI839031B (zh) 2024-04-11
TW202426909A TW202426909A (zh) 2024-07-01

Family

ID=91618546

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111148938A TWI839031B (zh) 2022-12-20 2022-12-20 檢測方法及檢測系統

Country Status (1)

Country Link
TW (1) TWI839031B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030003611A1 (en) * 2001-06-29 2003-01-02 Kla-Tencor Corporation Apparatus and methods for monitoring self-aligned contact arrays
US20080237586A1 (en) * 2007-03-30 2008-10-02 Min Chul Sun Semiconductor Integrated Test Structures For Electron Beam Inspection of Semiconductor Wafers
TW201037778A (en) * 2009-04-08 2010-10-16 Hermes Microvision Inc Test structure for charged particle beam inspection and method for defect determination using the same
US20170154687A1 (en) * 2015-11-30 2017-06-01 Globalfoundries Inc. Sram-like ebi structure design and implementation to capture mosfet source-drain leakage eariler
CN109712904A (zh) * 2018-12-27 2019-05-03 上海华力集成电路制造有限公司 半导体器件接触孔开路检测结构及开路检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030003611A1 (en) * 2001-06-29 2003-01-02 Kla-Tencor Corporation Apparatus and methods for monitoring self-aligned contact arrays
US20080237586A1 (en) * 2007-03-30 2008-10-02 Min Chul Sun Semiconductor Integrated Test Structures For Electron Beam Inspection of Semiconductor Wafers
TW201037778A (en) * 2009-04-08 2010-10-16 Hermes Microvision Inc Test structure for charged particle beam inspection and method for defect determination using the same
US20170154687A1 (en) * 2015-11-30 2017-06-01 Globalfoundries Inc. Sram-like ebi structure design and implementation to capture mosfet source-drain leakage eariler
CN109712904A (zh) * 2018-12-27 2019-05-03 上海华力集成电路制造有限公司 半导体器件接触孔开路检测结构及开路检测方法

Similar Documents

Publication Publication Date Title
JP5059297B2 (ja) 電子線式観察装置
US9437395B2 (en) Method and compound system for inspecting and reviewing defects
JP2019505089A (ja) 領域適応的欠陥検出を行うシステムおよび方法
JP2007281136A (ja) 半導体基板および基板検査方法
JP2001159616A (ja) パターン検査方法及びパターン検査装置
JP2007500954A (ja) 高電流電子ビーム検査
TWI763614B (zh) 半導體晶圓的檢查系統及非暫態電腦可讀媒體
CN104376878B (zh) 一种半导体器件失效分析的方法
US10593032B2 (en) Defect inspection method and defect inspection apparatus
US8759762B2 (en) Method and apparatus for identifying plug-to-plug short from a charged particle microscopic image
JP4695909B2 (ja) 半導体集積回路装置の製造方法
US20110293167A1 (en) Defect inspecting method, defect inspecting apparatus, and recording medium
US11861818B2 (en) Cascade defect inspection
TWI839031B (zh) 檢測方法及檢測系統
JP3836735B2 (ja) 回路パターンの検査装置
US8526708B2 (en) Measurement of critical dimensions of semiconductor wafers
US9779910B1 (en) Utilization of voltage contrast during sample preparation for transmission electron microscopy
JP4230899B2 (ja) 回路パターン検査方法
JP2003133379A (ja) 半導体装置の検査装置及び半導体装置の製造方法
US20160266191A1 (en) Inspection apparatus and inspection method
JP5013656B2 (ja) 欠陥位置特定の方法および装置
US20060098862A1 (en) Nanoscale defect image detection for semiconductors
US6774648B1 (en) Apparatus and methods for optically detecting defects in voltage contrast test structures
CN113937024A (zh) 一种半导体器件的检测方法及检测系统
US7135675B1 (en) Multi-pixel and multi-column electron emission inspector