TWI838037B - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TWI838037B
TWI838037B TW111149870A TW111149870A TWI838037B TW I838037 B TWI838037 B TW I838037B TW 111149870 A TW111149870 A TW 111149870A TW 111149870 A TW111149870 A TW 111149870A TW I838037 B TWI838037 B TW I838037B
Authority
TW
Taiwan
Prior art keywords
layer
gallium nitride
semiconductor
semiconductor device
base layer
Prior art date
Application number
TW111149870A
Other languages
Chinese (zh)
Inventor
陳政權
Original Assignee
創世電股份有限公司
Filing date
Publication date
Application filed by 創世電股份有限公司 filed Critical 創世電股份有限公司
Application granted granted Critical
Publication of TWI838037B publication Critical patent/TWI838037B/en

Links

Images

Abstract

A semiconductor device is provided. The semiconductor device includes a non-native substrate, a middle bonding layer configured on the non-native substrate, a gallium nitride base layer configured on the middle bonding layer and a semiconductor heterostructure formed on the gallium nitride base layer. The gallium nitride base layer has a mean carbon doping concentration between 8×1016cm-3 to 1×1018cm-3. The semiconductor heterostructure includes a gallium nitride carrier channel layer and an aluminum gallium nitride carrier barrier layer formed over the gallium nitride channel layer, in which a 2D electron gas is formed between the gallium nitride channel layer and the aluminum gallium nitride carrier barrier layer. The semiconductor device shows high voltage by using the non-native substrate with great thermal conductance.

Description

半導體元件 Semiconductor components

本發明是關於一種半導體元件及半導體磊晶圓,特別是關於一種配置在非原生基板上的半導體元件及具有二維材料層的半導體磊晶圓。 The present invention relates to a semiconductor element and a semiconductor epitaxial wafer, in particular to a semiconductor element disposed on a non-native substrate and a semiconductor epitaxial wafer having a two-dimensional material layer.

由於智慧型電網的興起,電動車所用的充電樁、太陽能及風能等所衍生的變流器等電力設備都須具有耐高壓的特性。因此,為了滿足市場需求,具有寬能隙的功率半導體為現今的研究重點。 With the rise of smart grids, power equipment such as charging piles used in electric vehicles, converters derived from solar and wind energy, etc., must have the characteristics of withstanding high voltage. Therefore, in order to meet market demand, power semiconductors with wide bandgap are the focus of current research.

習知能達到高壓的功率半導體可使用的基板材料包含矽、碳化矽及藍寶石等。然而,若要成長氮化鎵在前述基板材料上,矽基板由於材料本身的缺陷,無法進一步提升電壓;藍寶石基板有導熱性不佳的問題;碳化矽基板則因成本過高,而無法用來量產。 It is known that the substrate materials that can be used for high-voltage power semiconductors include silicon, silicon carbide and sapphire. However, if gallium nitride is to be grown on the above-mentioned substrate materials, the silicon substrate cannot further increase the voltage due to the defects of the material itself; the sapphire substrate has the problem of poor thermal conductivity; and the silicon carbide substrate cannot be used for mass production due to its high cost.

習知的氮化鎵半導體適用的基板脫離技術包含以研磨去除基板、光學剝離(即雷射剝離)及機械應力剝離。然而,研磨去除須耗費較高成本;光學剝離及機械應力剝離主要是應用於發光二極體,但皆不適用於高壓特性的功 率半導體。再者,前述研磨及機械應力剝離的方式皆可能產生缺陷中心,其通常具有施子(donor)的功能,故不適合應用在功率半導體。 The known substrate release technologies for gallium nitride semiconductors include substrate removal by grinding, optical stripping (i.e. laser stripping) and mechanical stress stripping. However, grinding removal requires high costs; optical stripping and mechanical stress stripping are mainly used in light-emitting diodes, but are not suitable for power semiconductors with high voltage characteristics. Furthermore, the aforementioned grinding and mechanical stress stripping methods may produce defect centers, which usually have the function of donors, so they are not suitable for use in power semiconductors.

本發明之一態樣是提供一種半導體元件,其係在非原生基板上配置氮化鎵功率元件。 One aspect of the present invention is to provide a semiconductor device that is a gallium nitride power device configured on a non-native substrate.

本發明之另一態樣是提供一種半導體磊晶圓,其係包含二維材料層在氮化鎵功率元件及成長基板之間。 Another aspect of the present invention is to provide a semiconductor epitaxial wafer, which includes a two-dimensional material layer between a gallium nitride power element and a growth substrate.

根據本發明之一態樣,提供一種半導體元件。半導體元件包含非原生基板、配置在非原生基板上的中間結合層、配置在中間結合層上的氮化鎵基礎層以及形成於氮化鎵基礎層上的半導體異質結構。氮化鎵基礎層具有8×1016cm-3至1×1018cm-3的平均碳摻雜濃度。半導體異質結構包含氮化鎵載子通道層及形成於氮化鎵載子通道層上的氮化鋁鎵載子阻障層,其中氮化鎵載子通道層與氮化鋁鎵載子阻障層之間形成二維電子氣(2DEG)。 According to one aspect of the present invention, a semiconductor device is provided. The semiconductor device includes a non-native substrate, an intermediate bonding layer disposed on the non-native substrate, a gallium nitride base layer disposed on the intermediate bonding layer, and a semiconductor heterostructure formed on the gallium nitride base layer. The gallium nitride base layer has an average carbon doping concentration of 8×10 16 cm -3 to 1×10 18 cm -3 . The semiconductor heterostructure includes a gallium nitride carrier channel layer and an aluminum gallium nitride carrier barrier layer formed on the gallium nitride carrier channel layer, wherein a two-dimensional electron gas (2DEG) is formed between the gallium nitride carrier channel layer and the aluminum gallium nitride carrier barrier layer.

根據本發明之一實施例,上述半導體元件更包含形成於半導體異質結構上的p型摻雜半導體層,其中半導體異質結構位於氮化鎵基礎層與p型摻雜半導體層之間。 According to one embodiment of the present invention, the semiconductor element further comprises a p-type doped semiconductor layer formed on a semiconductor heterostructure, wherein the semiconductor heterostructure is located between the gallium nitride base layer and the p-type doped semiconductor layer.

根據本發明之一實施例,上述半導體元件更包含形成於氮化鋁鎵載子阻障層上的本徵氮化鎵層,其中本徵氮化鎵層位於p型摻雜半導體層與半導體異質結構之間。 According to one embodiment of the present invention, the semiconductor device further comprises an intrinsic gallium nitride layer formed on the aluminum gallium nitride carrier barrier layer, wherein the intrinsic gallium nitride layer is located between the p-type doped semiconductor layer and the semiconductor heterostructure.

根據本發明之一實施例,上述非原生基板係選自於 由鉬、鎢、鉬銅合金、鎢銅合金、矽及碳化矽所組成之群組。 According to one embodiment of the present invention, the non-native substrate is selected from the group consisting of molybdenum, tungsten, molybdenum-copper alloy, tungsten-copper alloy, silicon and silicon carbide.

根據本發明之一實施例,上述中間結合層包含利用金屬鍵結、氧化物鍵結或金屬共晶鍵結來接合相鄰兩層。 According to one embodiment of the present invention, the intermediate bonding layer comprises metal bonding, oxide bonding or metal eutectic bonding to bond two adjacent layers.

根據本發明之一實施例,上述氮化鎵基礎層的厚度不大於5μm。 According to one embodiment of the present invention, the thickness of the above-mentioned gallium nitride base layer is not more than 5μm.

根據本發明之一實施例,上述半導體元件為蕭特基二極體(Schottky Barrier Diode,SBD)或高電子遷移率電晶體(High Electron Mobility Transistor,HEMT)。 According to one embodiment of the present invention, the semiconductor element is a Schottky Barrier Diode (SBD) or a High Electron Mobility Transistor (HEMT).

根據本發明之另一態樣,提供一種半導體磊晶圓。半導體磊晶圓包含成長基板、形成於成長基板上的第一平坦層、形成於成長基板上的二維材料層、形成在二維材料層上的氮化鎵基礎層以及形成於氮化鎵基礎層上的半導體異質結構。成長基板為藍寶石基板或碳化矽基板。第一平坦層包含氮化鋁或氮化鋁鎵。半導體異質結構包含氮化鎵載子通道層及形成於氮化鎵載子通道層上的氮化鋁鎵載子阻障層,其中氮化鎵載子通道層與氮化鋁鎵載子阻障層之間形成二維電子氣。 According to another aspect of the present invention, a semiconductor epitaxial wafer is provided. The semiconductor epitaxial wafer includes a growth substrate, a first flat layer formed on the growth substrate, a two-dimensional material layer formed on the growth substrate, a gallium nitride base layer formed on the two-dimensional material layer, and a semiconductor heterostructure formed on the gallium nitride base layer. The growth substrate is a sapphire substrate or a silicon carbide substrate. The first flat layer includes aluminum nitride or aluminum gallium nitride. The semiconductor heterostructure includes a gallium nitride carrier channel layer and an aluminum gallium nitride carrier barrier layer formed on the gallium nitride carrier channel layer, wherein a two-dimensional electron gas is formed between the gallium nitride carrier channel layer and the aluminum gallium nitride carrier barrier layer.

根據本發明之一實施例,上述二維材料層形成於第一平坦層上。 According to one embodiment of the present invention, the above-mentioned two-dimensional material layer is formed on the first flat layer.

根據本發明之一實施例,上述半導體磊晶圓更包含形成於二維材料層與氮化鎵基礎層之間的第二平坦層,其中第二平坦層包含氮化鋁或氮化鋁鎵。 According to one embodiment of the present invention, the semiconductor epitaxial wafer further includes a second flat layer formed between the two-dimensional material layer and the gallium nitride base layer, wherein the second flat layer includes aluminum nitride or aluminum gallium nitride.

根據本發明之一實施例,上述第一平坦層形成於二維材料層上。 According to one embodiment of the present invention, the first flat layer is formed on the two-dimensional material layer.

根據本發明之一實施例,上述二維材料層包含石墨烯、二硫化鉬(MoS2)、二硫化鎢(WS2)、二硒化鉬(MoSe2)或二硒化鎢(WSe2)。 According to an embodiment of the present invention, the two-dimensional material layer includes graphene, molybdenum disulfide (MoS 2 ), tungsten disulfide (WS 2 ), molybdenum diselenide (MoSe 2 ) or tungsten diselenide (WSe 2 ).

根據本發明之一實施例,上述二維材料層包含多層二維材料,且多層二維材料為不大於6層。 According to one embodiment of the present invention, the above-mentioned two-dimensional material layer includes multiple layers of two-dimensional material, and the multiple layers of two-dimensional material are no more than 6 layers.

根據本發明之一實施例,上述氮化鎵基礎層的厚度不大於5μm。 According to one embodiment of the present invention, the thickness of the above-mentioned gallium nitride base layer is not more than 5μm.

根據本發明之一實施例,上述氮化鎵基礎層具有8×1016cm-3至1×1018cm-3的平均碳摻雜濃度。 According to one embodiment of the present invention, the gallium nitride base layer has an average carbon doping concentration of 8×10 16 cm -3 to 1×10 18 cm -3 .

應用本發明之半導體元件,其係藉由二維材料層將氮化鎵功率元件移轉至非原生基板上,以實現具有高電壓特性的功率半導體元件,且兼具良好的導熱性質及低成本的優點。 The semiconductor device of the present invention is applied by transferring the gallium nitride power device to a non-native substrate through a two-dimensional material layer to realize a power semiconductor device with high voltage characteristics, and has the advantages of good thermal conductivity and low cost.

100,200,300:半導體磊晶圓 100,200,300:Semiconductor epitaxial wafer

110:成長基板 110: Growth substrate

120:第一平坦層 120: First flat layer

125:第二平坦層 125: Second flat layer

130:二維材料層 130: Two-dimensional material layer

140:氮化鎵功率元件 140: Gallium nitride power element

145:氮化鎵基礎層 145: Gallium nitride base layer

150:半導體異質結構 150: Semiconductor heterostructure

152:氮化鎵載子通道層 152: Gallium nitride carrier channel layer

154:氮化鋁鎵載子阻障層 154: Aluminum-gallium nitride carrier barrier layer

156:本徵氮化鎵層 156: Intrinsic gallium nitride layer

160:p型摻雜半導體層 160: p-type doped semiconductor layer

410:金屬應力層 410:Metal stress layer

420:膠帶層 420: Tape layer

500,600,700,800:半導體元件 500,600,700,800: semiconductor components

510:非原生基板 510: Non-native substrate

520:中間結合層 520: Middle bonding layer

740:氮化鎵功率元件 740: Gallium nitride power element

750:半導體異質結構 750: Semiconductor heterostructure

756:本徵氮化鎵層 756: Intrinsic gallium nitride layer

760:p型摻雜半導體層 760: p-type doped semiconductor layer

761:第一P型氮化物層 761: First P-type nitride layer

762:第二P型氮化物層 762: Second P-type nitride layer

790a:第一電極 790a: First electrode

790c:第二電極 790c: Second electrode

840:氮化鎵功率元件 840: Gallium nitride power element

850:半導體異質結構 850: Semiconductor heterostructure

856:本徵氮化鎵層 856: Intrinsic gallium nitride layer

860:p型摻雜半導體層 860: p-type doped semiconductor layer

865:閘極絕緣層 865: Gate insulation layer

890d:汲極 890d: Drain

890g:閘極 890g: Gate

890s:源極 890s: Source

根據以下詳細說明並配合附圖閱讀,使本揭露的態樣獲致較佳的理解。需注意的是,如同業界的標準作法,許多特徵並不是按照比例繪示的。事實上,為了進行清楚討論,許多特徵的尺寸可以經過任意縮放。 The following detailed description and accompanying drawings will provide a better understanding of the present disclosure. It should be noted that, as is standard practice in the industry, many features are not drawn to scale. In fact, for the sake of clarity of discussion, the dimensions of many features may be arbitrarily scaled.

[圖1]繪示根據本發明一些實施例之半導體磊晶圓的剖面視圖。 [Figure 1] shows a cross-sectional view of a semiconductor epitaxial wafer according to some embodiments of the present invention.

[圖2]繪示根據本發明另一些實施例之半導體磊晶圓的剖 面視圖。 [Figure 2] shows a cross-sectional view of a semiconductor epitaxial wafer according to other embodiments of the present invention.

[圖3]繪示根據本發明另一些實施例之半導體磊晶圓的剖面視圖。 [Figure 3] shows a cross-sectional view of a semiconductor epitaxial wafer according to other embodiments of the present invention.

[圖4A]及[圖4B]繪示根據本發明一些實施例之半導體磊晶圓轉移到非原生基板上的製程中間階段的剖面視圖。 [FIG. 4A] and [FIG. 4B] illustrate cross-sectional views of intermediate stages of a process of transferring a semiconductor epitaxial wafer to a non-native substrate according to some embodiments of the present invention.

[圖5]繪示根據本發明一些實施例之半導體元件的剖面視圖。 [Figure 5] shows a cross-sectional view of a semiconductor device according to some embodiments of the present invention.

[圖6]繪示根據本發明另一些實施例之半導體元件的剖面視圖。 [Figure 6] shows a cross-sectional view of a semiconductor device according to some other embodiments of the present invention.

[圖7]繪示根據本發明一些實施例之半導體元件的剖面視圖。 [Figure 7] shows a cross-sectional view of a semiconductor device according to some embodiments of the present invention.

[圖8]繪示根據本發明一些實施例之半導體元件的剖面視圖。 [Figure 8] shows a cross-sectional view of a semiconductor device according to some embodiments of the present invention.

以下揭露提供許多不同實施例或例示,以實施發明的不同特徵。以下敘述之組件和配置方式的特定例示是為了簡化本揭露。這些當然僅是做為例示,其目的不在構成限制。舉例而言,第一特徵形成在第二特徵之上或上方的描述包含第一特徵和第二特徵有直接接觸的實施例,也包含有其他特徵形成在第一特徵和第二特徵之間,以致第一特徵和第二特徵沒有直接接觸的實施例。除此之外,本揭露在各種具體例中重覆元件符號及/或字母。此重覆的目的是為了使說明簡化且清晰,並不表示各種討論的實施例及/ 或配置之間有關係。 The following disclosure provides many different embodiments or examples to implement different features of the invention. The specific examples of components and configurations described below are intended to simplify the disclosure. These are of course only examples and are not intended to be limiting. For example, a description of a first feature formed on or above a second feature includes embodiments in which the first feature and the second feature are in direct contact, and also includes embodiments in which other features are formed between the first feature and the second feature, so that the first feature and the second feature are not in direct contact. In addition, the disclosure repeats component symbols and/or letters in various specific examples. The purpose of this repetition is to simplify and clarify the description and does not indicate a relationship between the various discussed embodiments and/or configurations.

再者,空間相對性用語,例如「下方(beneath)」、「在...之下(below)」、「低於(lower)」、「在...之上(above)」、「高於(upper)」等,是為了易於描述圖式中所繪示的零件或特徵和其他零件或特徵的關係。空間相對性用語除了圖式中所描繪的方向外,還包含元件在使用或操作時的不同方向。裝置可以其他方式定向(旋轉90度或在其他方向),而本揭露所用的空間相對性描述也可以如此解讀。 Furthermore, spatially relative terms, such as "beneath", "below", "lower", "above", "upper", etc., are used to easily describe the relationship between a part or feature shown in a figure and other parts or features. Spatially relative terms include different orientations of the element when it is in use or operation in addition to the orientation depicted in the figure. The device can be oriented in other ways (rotated 90 degrees or in other orientations), and the spatially relative descriptions used in this disclosure can also be interpreted in this way.

如本發明所使用的「大約(around)」、「約(about)」、「近乎(approximately)」或「實質上(substantially)」一般係代表在所述之數值或範圍的百分之20以內、或百分之10以內、或百分之5以內。 As used in the present invention, "around", "about", "approximately" or "substantially" generally means within 20%, within 10%, or within 5% of the value or range described.

承上所述,本發明係藉由製備氮化鎵功率元件於合適的成長基板之二維材料層上,以製得半導體磊晶圓。接著,藉由二維材料層將半導體磊晶圓中的氮化鎵功率元件剝離,並轉移到具有導熱特性的基板上,並利用中間結合層將氮化鎵功率元件接合在基板上。如此,可製得在導熱基板上的高壓氮化鎵功率半導體元件。 As mentioned above, the present invention prepares a semiconductor epitaxial wafer by preparing a gallium nitride power element on a two-dimensional material layer of a suitable growth substrate. Then, the gallium nitride power element in the semiconductor epitaxial wafer is peeled off by the two-dimensional material layer and transferred to a substrate with thermal conductivity, and the gallium nitride power element is bonded to the substrate using an intermediate bonding layer. In this way, a high-voltage gallium nitride power semiconductor element on a thermally conductive substrate can be obtained.

請參閱圖1,其繪示根據本發明一些實施例之半導體磊晶圓100的剖面視圖。半導體磊晶圓100包含成長基板110、第一平坦層120、二維材料層130及氮化鎵功率元件140。氮化鎵功率元件140包含氮化鎵基礎層145及半導體異質結構150。 Please refer to FIG. 1, which shows a cross-sectional view of a semiconductor epitaxial wafer 100 according to some embodiments of the present invention. The semiconductor epitaxial wafer 100 includes a growth substrate 110, a first flat layer 120, a two-dimensional material layer 130, and a gallium nitride power device 140. The gallium nitride power device 140 includes a gallium nitride base layer 145 and a semiconductor heterostructure 150.

在一些實施例中,成長基板110為藍寶石基板或碳化矽基板,較佳為藍寶石基板。第一平坦層120係形成在成長基板110上,以做為水平成核層,有利於後續氮化鎵基礎層145的成長(以下說明)。在一些實施例中,第一平坦層120包含氮化鋁或氮化鋁鎵(AlxGa(1-x)N,其中x>0,較佳為x

Figure 111149870-A0305-02-0009-2
0.5),其中氮化鋁的效果優於氮化鋁鎵,所以採用氮化鋁製成的第一平坦層120有利於成長出品質較佳的氮化鎵基礎層145。 In some embodiments, the growth substrate 110 is a sapphire substrate or a silicon carbide substrate, preferably a sapphire substrate. The first flat layer 120 is formed on the growth substrate 110 to serve as a horizontal nucleation layer, which is beneficial to the subsequent growth of the gallium nitride base layer 145 (described below). In some embodiments, the first flat layer 120 comprises aluminum nitride or aluminum gallium nitride (Al x Ga (1-x) N, where x>0, preferably x
Figure 111149870-A0305-02-0009-2
0.5), wherein the effect of aluminum nitride is better than that of aluminum gallium nitride, so the first flat layer 120 made of aluminum nitride is conducive to growing a gallium nitride base layer 145 with better quality.

在一些實施例中,第一平坦層120可利用物理氣相沉積(physical vapor deposition,PVD)的方式成長在成長基板110上,其中較佳為使用濺鍍的方式。由於濺鍍具有較佳的沉積效率、易控制大尺寸的沉積厚度、精確的成份控制及較低的製造成本等優點,故適合用來沉積第一平坦層120。在一些實施例中,第一平坦層120係以約400℃至約600℃(例如約550℃)的低溫濺鍍成長約100nm的厚度。由於第一平坦層120是在平坦的成長基板110上成長而成,因此採用在上述成長溫度下的濺鍍所製成的第一平坦層120基本上是以二維方式成長,以使第一平坦層120具有相當小的晶格尺寸(grain size)。在一些實施例中,前述晶格尺寸為小於約20nm。在一些實施例中,第一平坦層120的方均根粗糙度(root mean square roughness,RMS roughness)為約1Å至約10Å。須注意的是,本實施例的第一平坦層120不採用例如有機金屬化學氣相沉積法(Metal-Organic Chemical Vapor Deposition,MOCVD)來形成,因為MOCVD無法形成具有平坦表面的第一平坦層120。 In some embodiments, the first flat layer 120 can be grown on the growth substrate 110 by physical vapor deposition (PVD), preferably by sputtering. Sputtering is suitable for depositing the first flat layer 120 because of its advantages such as better deposition efficiency, easy control of large-scale deposition thickness, precise composition control and lower manufacturing cost. In some embodiments, the first flat layer 120 is grown by sputtering at a low temperature of about 400° C. to about 600° C. (e.g., about 550° C.) to a thickness of about 100 nm. Since the first flat layer 120 is grown on a flat growth substrate 110, the first flat layer 120 formed by sputtering at the above growth temperature is basically grown in a two-dimensional manner so that the first flat layer 120 has a relatively small grain size. In some embodiments, the above-mentioned grain size is less than about 20nm. In some embodiments, the root mean square roughness (RMS roughness) of the first flat layer 120 is about 1Å to about 10Å. It should be noted that the first flat layer 120 of the present embodiment is not formed by, for example, Metal-Organic Chemical Vapor Deposition (MOCVD), because MOCVD cannot form a first flat layer 120 with a flat surface.

二維材料層130係成長在第一平坦層120上。在一些實施例中,二維材料層130包含至少一層二維材料,例如1層至6層。若二維材料層130包含超過6層的二維材料,則在成長氮化鎵基礎層145的過程中,氮化鎵基礎層145難以依照第一平坦層120的晶格成長,從而影響氮化鎵功率元件140的功能,甚至可能造成氮化鎵功率元件140失效。 The two-dimensional material layer 130 is grown on the first flat layer 120. In some embodiments, the two-dimensional material layer 130 includes at least one layer of two-dimensional material, for example, 1 to 6 layers. If the two-dimensional material layer 130 includes more than 6 layers of two-dimensional material, during the process of growing the gallium nitride base layer 145, the gallium nitride base layer 145 is difficult to grow according to the lattice of the first flat layer 120, thereby affecting the function of the gallium nitride power device 140, and may even cause the gallium nitride power device 140 to fail.

在一些實施例中,二維材料層130包含石墨烯、二硫化鉬(MoS2)、二硫化鎢(WS2)、二硒化鉬(MoSe2)或二硒化鎢(WSe2)或其他過渡金屬硫屬化物的二維材料。須注意的是,二維材料層130不適合包含氮基材料(例如六方氮化硼(hexagonal boron nitride,h-BN)),由於氮基材料會與第一平坦層120的氮化鋁或氮化鋁鎵產生鍵結,從而影響後續的結構成長。 In some embodiments, the two-dimensional material layer 130 includes graphene, molybdenum disulfide (MoS 2 ), tungsten disulfide (WS 2 ), molybdenum diselenide (MoSe 2 ) or tungsten diselenide (WSe 2 ) or other two-dimensional materials of transition metal chalcogenides. It should be noted that the two-dimensional material layer 130 is not suitable to include nitrogen-based materials (such as hexagonal boron nitride (h-BN)) because the nitrogen-based materials will form bonds with the aluminum nitride or aluminum gallium nitride of the first flat layer 120, thereby affecting the subsequent structure growth.

在一些實施例中,可利用有機金屬化學氣相沉積法(MOCVD)來形成二維材料層130。在二維材料層130為石墨烯的一些實施例中,可利用化學氣相沉積法(chemical vapor deposition,CVD)或碳化矽磊晶成長法(growth on SiC)或其他合適的方法來形成。二維材料層130除了可直接成長在成長基板110上之外,亦可利用轉貼的方式形成在成長基板110上。 In some embodiments, metal organic chemical vapor deposition (MOCVD) can be used to form the two-dimensional material layer 130. In some embodiments where the two-dimensional material layer 130 is graphene, it can be formed by chemical vapor deposition (CVD) or growth on SiC or other suitable methods. In addition to being directly grown on the growth substrate 110, the two-dimensional material layer 130 can also be formed on the growth substrate 110 by transfer.

氮化鎵功率元件140係形成在二維材料層130上。 氮化鎵功率元件140包含形成在二維材料層130上的氮化鎵基礎層145及形成在氮化鎵基礎層145上的半導體異質結構150。在一些實施例中,氮化鎵基礎層145係利用有機金屬化學氣相沉積法(MOCVD)來形成,例如可利用約1000℃的溫度進行沉積。氮化鎵基礎層145包含至少一層碳摻雜氮化鎵層。換言之,氮化鎵基礎層145可為單一層碳摻雜氮化鎵層或多層碳摻雜氮化鎵層。具體而言,氮化鎵基礎層145可包含N個彼此堆疊的碳摻雜氮化鎵層,且這N個碳摻雜氮化鎵層滿足以下數學式:

Figure 111149870-A0305-02-0011-1
在上式中,Di代表第i個碳摻雜氮化鎵層的厚度,Ci代表第i個碳摻雜氮化鎵層的碳摻雜濃度,而T為N個碳摻雜氮化鎵層的總厚度,例如氮化鎵基礎層145的整體厚度。此外,N與i皆為正整數,且N大於1,而i代表碳摻雜氮化鎵層的編號。 The gallium nitride power device 140 is formed on the two-dimensional material layer 130. The gallium nitride power device 140 includes a gallium nitride base layer 145 formed on the two-dimensional material layer 130 and a semiconductor heterostructure 150 formed on the gallium nitride base layer 145. In some embodiments, the gallium nitride base layer 145 is formed by metal organic chemical vapor deposition (MOCVD), for example, at a temperature of about 1000° C. The gallium nitride base layer 145 includes at least one carbon-doped gallium nitride layer. In other words, the gallium nitride base layer 145 may be a single carbon-doped gallium nitride layer or multiple carbon-doped gallium nitride layers. Specifically, the gallium nitride base layer 145 may include N carbon-doped gallium nitride layers stacked on each other, and the N carbon-doped gallium nitride layers satisfy the following mathematical formula:
Figure 111149870-A0305-02-0011-1
In the above formula, Di represents the thickness of the i-th carbon-doped gallium nitride layer, Ci represents the carbon doping concentration of the i-th carbon-doped gallium nitride layer, and T is the total thickness of N carbon-doped gallium nitride layers, such as the total thickness of the gallium nitride base layer 145. In addition, N and i are both positive integers, and N is greater than 1, and i represents the number of the carbon-doped gallium nitride layer.

在一些實施例中,氮化鎵基礎層145的平均碳摻雜濃度為約8×1016cm-3至約1×1018cm-3,較佳為約1×1017cm-3至約8×1017cm-3In some embodiments, the average carbon doping concentration of the gallium nitride base layer 145 is about 8×10 16 cm -3 to about 1×10 18 cm -3 , preferably about 1×10 17 cm -3 to about 8×10 17 cm -3 .

由於二維材料層130的厚度很薄,故氮化鎵基礎層145可依照第一平坦層120的晶格成長。在一些實施例中,氮化鎵基礎層145的厚度不大於約5μm,較佳為不大於約3μm,例如可為約2μm或約1.5μm。若氮化鎵基礎層145的厚度太高(例如大於約5μm),則於後續製 程或應用中有溫度變化時,會因為晶格應力差異而導致磊晶薄膜彎曲,並使半導體異質結構150中的電壓特性不均(影響二維電子氣),甚至可能造成下方的二維材料層130的應力剝離。 Since the thickness of the two-dimensional material layer 130 is very thin, the gallium nitride base layer 145 can grow according to the lattice of the first flat layer 120. In some embodiments, the thickness of the gallium nitride base layer 145 is not more than about 5μm, preferably not more than about 3μm, for example, about 2μm or about 1.5μm. If the thickness of the gallium nitride base layer 145 is too high (for example, greater than about 5μm), when there is a temperature change in the subsequent process or application, the epitaxial film will bend due to the lattice stress difference, and the voltage characteristics in the semiconductor heterostructure 150 will be uneven (affecting the two-dimensional electron gas), and may even cause stress peeling of the two-dimensional material layer 130 below.

藉由平坦的第一平坦層120,可利用較高的溫度成長氮化鎵基礎層145,氮化鎵基礎層145可以不用太高的碳摻雜濃度,且可具有絕緣的效果以及具有平整的表面。 By using the flat first flat layer 120, the gallium nitride base layer 145 can be grown at a higher temperature. The gallium nitride base layer 145 does not need to have a too high carbon doping concentration and can have an insulating effect and a flat surface.

半導體異質結構150包含氮化鎵載子通道層152及形成在氮化鎵載子通道層152上的氮化鋁鎵載子阻障層154。氮化鎵載子通道層152及氮化鋁鎵載子阻障層154之間形成二維電子氣(two-dimensional electron gas,2DEG)。二維電子氣係水平分布,其可作為載子傳遞的通道,以使電訊號能在水平方向上傳遞。在一些實施例中,半導體異質結構150還包含在氮化鋁鎵載子阻障層154上的本徵氮化鎵層156,即氮化鋁鎵載子阻障層154係在氮化鎵載子通道層152及本徵氮化鎵層156之間。在一些實施例中,本徵氮化鎵層156的碳摻雜濃度小於或等於約6×1016cm-3The semiconductor heterostructure 150 includes a gallium nitride carrier channel layer 152 and an aluminum gallium nitride carrier barrier layer 154 formed on the gallium nitride carrier channel layer 152. A two-dimensional electron gas (2DEG) is formed between the gallium nitride carrier channel layer 152 and the aluminum gallium nitride carrier barrier layer 154. The two-dimensional electron gas is horizontally distributed and can serve as a channel for carrier transmission so that electrical signals can be transmitted in the horizontal direction. In some embodiments, the semiconductor heterostructure 150 further includes an intrinsic gallium nitride layer 156 on the aluminum gallium nitride carrier barrier layer 154, that is, the aluminum gallium nitride carrier barrier layer 154 is between the gallium nitride carrier channel layer 152 and the intrinsic gallium nitride layer 156. In some embodiments, the carbon doping concentration of the intrinsic gallium nitride layer 156 is less than or equal to about 6×10 16 cm -3 .

在一些實施例中,氮化鎵功率元件140還包含在半導體異質結構150上的p型摻雜半導體層160,即半導體異質結構150位於氮化鎵基礎層145與p型摻雜半導體層160之間。 In some embodiments, the gallium nitride power device 140 further includes a p-type doped semiconductor layer 160 on the semiconductor heterostructure 150, that is, the semiconductor heterostructure 150 is located between the gallium nitride base layer 145 and the p-type doped semiconductor layer 160.

圖2及圖3係分別繪示根據本發明另一些實施例 之半導體磊晶圓200及半導體磊晶圓300的剖面視圖。請參閱圖2,半導體磊晶圓200係與圖1中的半導體磊晶圓100具有相似的配置,不同之處僅在於,圖2中的第一平坦層120形成於二維材料層130上。換言之,半導體磊晶圓200的二維材料層130位於成長基板110及第一平坦層120之間。由於二維材料層130僅為不大於6層的二維材料,故第一平坦層120可依照成長基板110的晶格成長。在一些實施例中,第一平坦層120的厚度可約為50nm。氮化鎵基礎層145係直接成長在第一平坦層120上,且在一些實施例中,氮化鎵基礎層145的厚度為不大於約5μm,較佳為不大於3μm,例如約2.5μm。 FIG. 2 and FIG. 3 are cross-sectional views of a semiconductor epitaxial wafer 200 and a semiconductor epitaxial wafer 300 according to other embodiments of the present invention. Referring to FIG. 2 , the semiconductor epitaxial wafer 200 has a similar configuration to the semiconductor epitaxial wafer 100 in FIG. 1 , except that the first flat layer 120 in FIG. 2 is formed on the two-dimensional material layer 130. In other words, the two-dimensional material layer 130 of the semiconductor epitaxial wafer 200 is located between the growth substrate 110 and the first flat layer 120. Since the two-dimensional material layer 130 is only a two-dimensional material of no more than 6 layers, the first flat layer 120 can grow according to the lattice of the growth substrate 110. In some embodiments, the thickness of the first flat layer 120 can be about 50 nm. The gallium nitride base layer 145 is directly grown on the first planar layer 120, and in some embodiments, the thickness of the gallium nitride base layer 145 is not more than about 5μm, preferably not more than 3μm, such as about 2.5μm.

請參閱圖3,半導體磊晶圓300係與半導體磊晶圓100具有相似的配置,不同之處僅在於,半導體磊晶圓300除了具有在成長基板110與二維材料層130之間的第一平坦層120之外,還具有在二維材料層130上的第二平坦層125,即二維材料層130位於第一平坦層120及第二平坦層125之間。氮化鎵功率元件140係形成在第二平坦層125上。 Referring to FIG. 3 , the semiconductor epitaxial wafer 300 has a similar configuration to the semiconductor epitaxial wafer 100 , except that the semiconductor epitaxial wafer 300 has a second flat layer 125 on the two-dimensional material layer 130 in addition to the first flat layer 120 between the growth substrate 110 and the two-dimensional material layer 130 , that is, the two-dimensional material layer 130 is located between the first flat layer 120 and the second flat layer 125 . The gallium nitride power element 140 is formed on the second flat layer 125 .

在一些實施例中,第二平坦層125與第一平坦層120兩者材料、晶格與形成方法皆可相同。例如,第二平坦層125也包含氮化鋁或氮化鋁鎵(AlxGa(1-x)N,其中x>0),較佳為氮化鋁,且第二平坦層125與第一平坦層120皆可利用濺鍍的方式形成。在一些實施例中,第一平坦層120的厚度為約100nm,而第二平坦層125的厚度 為約50nm。在此實施例中,氮化鎵基礎層145的厚度為不大於約5μm,較佳為不大於3μm,例如約3μm。 In some embodiments, the second planar layer 125 and the first planar layer 120 may have the same material, lattice, and formation method. For example, the second planar layer 125 also includes aluminum nitride or aluminum gallium nitride (Al x Ga (1-x) N, where x>0), preferably aluminum nitride, and the second planar layer 125 and the first planar layer 120 may be formed by sputtering. In some embodiments, the thickness of the first planar layer 120 is about 100 nm, and the thickness of the second planar layer 125 is about 50 nm. In this embodiment, the thickness of the gallium nitride base layer 145 is not more than about 5 μm, preferably not more than 3 μm, for example, about 3 μm.

由於二維材料層130層數不大於6層,故氮化鎵基礎層145可依照第二平坦層125的晶格來成長。此外,由於第二平坦層125與第一平坦層120兩者晶格相同,所以在第二平坦層125上的氮化鎵基礎層145實質上也是依照第一平坦層120的晶格來成長。 Since the number of the two-dimensional material layer 130 is not more than 6 layers, the gallium nitride base layer 145 can be grown according to the lattice of the second flat layer 125. In addition, since the second flat layer 125 and the first flat layer 120 have the same lattice, the gallium nitride base layer 145 on the second flat layer 125 is actually grown according to the lattice of the first flat layer 120.

須理解的是,半導體磊晶圓200及半導體磊晶圓300皆具有在二維材料層130上的第一平坦層120(或第二平坦層125),故在剝離製程後所製得的半導體元件中,會保留第一平坦層120(或第二平坦層125),以下會再詳細說明。 It should be understood that both the semiconductor epitaxial wafer 200 and the semiconductor epitaxial wafer 300 have a first flat layer 120 (or a second flat layer 125) on the two-dimensional material layer 130, so the first flat layer 120 (or the second flat layer 125) will be retained in the semiconductor device manufactured after the stripping process, which will be described in detail below.

圖4A及圖4B係繪示根據本發明一些實施例之半導體磊晶圓100轉移到非原生基板510上的製程中間階段的剖面視圖。請參閱圖4A,在半導體磊晶圓100的氮化鎵功率元件140上沉積金屬應力層410。之後,再放置一層膠帶層420在金屬應力層410上。在一些實施例中,金屬應力層410包含鎳或鈦鎳合金,其可利用沉積或電鍍的方式形成厚度約25μm。在另一些實施例中,金屬應力層410包含高分子。在一些實施例中,可選擇性地在膠帶層420上連接晶圓基板(例如矽晶圓,圖未繪示),以方便進行後續剝離製程及連接製程。所以,膠帶層420也可以是黏著於晶圓基板與金屬應力層410的雙面膠帶。 4A and 4B are cross-sectional views showing the intermediate stages of the process of transferring the semiconductor epitaxial wafer 100 to the non-native substrate 510 according to some embodiments of the present invention. Referring to FIG. 4A , a metal stress layer 410 is deposited on the gallium nitride power element 140 of the semiconductor epitaxial wafer 100. Thereafter, a layer of tape 420 is placed on the metal stress layer 410. In some embodiments, the metal stress layer 410 comprises nickel or titanium-nickel alloy, which can be formed by deposition or electroplating to a thickness of about 25 μm. In other embodiments, the metal stress layer 410 comprises a polymer. In some embodiments, a wafer substrate (such as a silicon wafer, not shown) can be selectively connected to the tape layer 420 to facilitate subsequent stripping and connection processes. Therefore, the tape layer 420 can also be a double-sided tape adhered to the wafer substrate and the metal stress layer 410.

接著,請參閱圖4A與圖4B,將圖4A中的半導 體磊晶圓100的氮化鎵功率元件140自二維材料層130上剝離,並轉移至非原生基板510上。由於二維材料層130為在垂直方向僅具有較弱的凡得瓦力(van der Waals force),故容易將氮化鎵功率元件140與成長基板110上的第一平坦層120分離。須注意的是,在氮化鎵功率元件140剝離之後,剩下的成長基板110可重複使用,以節省成本。在一些實施例中,非原生基板510包含鎢銅(WCu)合金、鉬銅(MoCu)合金、矽(Si)、鉬(Mo)、鎢(W)或碳化矽等具有良好導熱性質的材料。 Next, referring to FIG. 4A and FIG. 4B , the gallium nitride power device 140 of the semiconductor epitaxial wafer 100 in FIG. 4A is peeled off from the two-dimensional material layer 130 and transferred to the non-native substrate 510. Since the two-dimensional material layer 130 has only a weak van der Waals force in the vertical direction, it is easy to separate the gallium nitride power device 140 from the first flat layer 120 on the growth substrate 110. It should be noted that after the gallium nitride power device 140 is peeled off, the remaining growth substrate 110 can be reused to save costs. In some embodiments, the non-native substrate 510 includes materials with good thermal conductivity such as tungsten copper (WCu) alloy, molybdenum copper (MoCu) alloy, silicon (Si), molybdenum (Mo), tungsten (W) or silicon carbide.

非原生基板510與氮化鎵功率元件140之間須藉由中間結合層520連接,此中間結合層520包含利用金屬鍵結(例如銅-銅金屬鍵結)、氧化物鍵結(例如二氧化矽鍵結)、金屬共晶鍵結(例如金-錫共晶)或金屬燒結(例如奈米銅燒結)來接合非原生基板510與氮化鎵基礎層145。須注意的是,若為具有較高遷移率的金屬,則較不適用於本發明之特定實施例的中間結合層520,例如銀燒結,因為銀可能會擴散至氮化鎵功率元件140中。因此,在氮化鎵功率元件140轉移到非原生基板510上之前,根據中間結合層520的鍵結類型,須在非原生基板510上進行接合處理。根據中間結合層520的接合鍵結類型,分別在非原生基板510上及氮化鎵功率元件140的氮化鎵基礎層145下沉積或電鍍金屬或氧化物,然後利用合適的溫度及壓力進行兩者的接合。 The non-native substrate 510 and the gallium nitride power device 140 must be connected via an intermediate bonding layer 520, and the intermediate bonding layer 520 includes metal bonding (such as copper-copper metal bonding), oxide bonding (such as silicon dioxide bonding), metal eutectic bonding (such as gold-tin eutectic) or metal sintering (such as nano-copper sintering) to bond the non-native substrate 510 and the gallium nitride base layer 145. It should be noted that if the metal has a higher mobility, such as silver sintering, it is not suitable for the intermediate bonding layer 520 of the specific embodiment of the present invention, because the silver may diffuse into the gallium nitride power device 140. Therefore, before the gallium nitride power device 140 is transferred to the non-native substrate 510, a bonding process must be performed on the non-native substrate 510 according to the bonding type of the intermediate bonding layer 520. According to the bonding bonding type of the intermediate bonding layer 520, metal or oxide is deposited or electroplated on the non-native substrate 510 and under the gallium nitride base layer 145 of the gallium nitride power device 140, and then the two are bonded using appropriate temperature and pressure.

舉例而言,若非原生基板510為矽基板,可先沉 積或熱氧法形成厚度例如約為100nm的二氧化矽在非原生基板510上,並在剝離後的氮化鎵功率元件140的氮化鎵基礎層145下方沉積例如厚度為約60nm的二氧化矽,以使兩者利用氧化物鍵結結合。 For example, if the non-native substrate 510 is a silicon substrate, silicon dioxide with a thickness of, for example, about 100 nm can be first deposited or thermally oxidized on the non-native substrate 510, and silicon dioxide with a thickness of, for example, about 60 nm can be deposited under the gallium nitride base layer 145 of the stripped gallium nitride power element 140, so that the two are bonded by oxide bonding.

請參閱圖5,其係繪示根據本發明一些實施例之半導體元件500的剖面視圖。依序移除圖4B中的膠帶層420及金屬應力層410,以獲得半導體元件500。半導體元件500包含非原生基板510、在非原生基板510上的中間結合層520及在中間結合層520上的氮化鎵功率元件140。如上所述,氮化鎵功率元件140包含氮化鎵基礎層145、氮化鎵載子通道層152、氮化鋁鎵載子阻障層154、本徵氮化鎵層156及p型摻雜半導體層160。 Please refer to FIG. 5, which is a cross-sectional view of a semiconductor device 500 according to some embodiments of the present invention. The tape layer 420 and the metal stress layer 410 in FIG. 4B are removed in sequence to obtain the semiconductor device 500. The semiconductor device 500 includes a non-native substrate 510, an intermediate bonding layer 520 on the non-native substrate 510, and a gallium nitride power device 140 on the intermediate bonding layer 520. As described above, the gallium nitride power device 140 includes a gallium nitride base layer 145, a gallium nitride carrier channel layer 152, an aluminum gallium nitride carrier barrier layer 154, an intrinsic gallium nitride layer 156, and a p-type doped semiconductor layer 160.

請參閱圖6,其係繪示根據本發明另一些實施例之半導體元件600的剖面視圖。半導體元件600係將半導體磊晶圓200或半導體磊晶圓300轉移至非原生基板510上而形成,其轉移方法與上述參照圖4A及圖4B的方法相同。半導體元件600大致上與半導體元件500相同,其差異僅在於,半導體元件600還包含在中間結合層520與氮化鎵基礎層145之間的第一平坦層120(或第二平坦層125)。由於在半導體磊晶圓200及半導體磊晶圓300分別具有第一平坦層120及第二平坦層125在二維材料層130上,故在剝離氮化鎵功率元件140時,在二維材料層130上方的第一平坦層120(或第二平坦層125)會附著在氮化鎵基礎層145上。因此,半導體元件600的中間結合 層520係藉由在非原生基板510上與第一平坦層120(或第二平坦層125)下分別沉積或電鍍的金屬或氧化物來進行接合。 Please refer to FIG. 6, which is a cross-sectional view of a semiconductor device 600 according to other embodiments of the present invention. The semiconductor device 600 is formed by transferring the semiconductor epitaxial wafer 200 or the semiconductor epitaxial wafer 300 to the non-native substrate 510, and the transfer method is the same as the method described above with reference to FIG. 4A and FIG. 4B. The semiconductor device 600 is substantially the same as the semiconductor device 500, and the difference is that the semiconductor device 600 further includes a first planar layer 120 (or a second planar layer 125) between the intermediate bonding layer 520 and the gallium nitride base layer 145. Since the semiconductor epitaxial wafer 200 and the semiconductor epitaxial wafer 300 respectively have the first flat layer 120 and the second flat layer 125 on the two-dimensional material layer 130, when the gallium nitride power element 140 is peeled off, the first flat layer 120 (or the second flat layer 125) above the two-dimensional material layer 130 will be attached to the gallium nitride base layer 145. Therefore, the intermediate bonding layer 520 of the semiconductor element 600 is bonded by metal or oxide deposited or electroplated on the non-native substrate 510 and under the first flat layer 120 (or the second flat layer 125).

請參閱圖7,其係繪示根據本發明一些實施例之半導體元件700的剖面視圖。半導體元件700為蕭特基二極體(Schottky Barrier Diode,SBD),其具有極高的崩潰電極,可承受約3000伏特以上的電壓。半導體元件700與半導體元件600具有相似的配置,即半導體元件700亦包含非原生基板510、中間結合層520、第一平坦層120、氮化鎵基礎層145及半導體異質結構750,但半導體異質結構750中的本徵氮化鎵層756並未完全覆蓋氮化鋁鎵載子阻障層154。 Please refer to FIG. 7, which is a cross-sectional view of a semiconductor device 700 according to some embodiments of the present invention. The semiconductor device 700 is a Schottky Barrier Diode (SBD), which has an extremely high breakdown electrode and can withstand a voltage of about 3000 volts or more. The semiconductor device 700 has a similar configuration to the semiconductor device 600, that is, the semiconductor device 700 also includes a non-native substrate 510, an intermediate bonding layer 520, a first flat layer 120, a gallium nitride base layer 145 and a semiconductor heterostructure 750, but the intrinsic gallium nitride layer 756 in the semiconductor heterostructure 750 does not completely cover the aluminum gallium nitride carrier barrier layer 154.

半導體元件700的p型摻雜半導體層760包含第一P型氮化物層761與在第一P型氮化物層761上的第二P型氮化物層762。在一些實施例中,第一P型氮化物層761與第二P型氮化物層762兩者的化學式可以是AlxInyGa(1-x-y)N,而1≧x≧0,1≧y≧0,故第一P型氮化物層761與第二P型氮化物層762之至少一者可包含氮化銦鎵、氮化鎵或氮化鋁銦鎵。第二P型氮化物層762的功能包括能階的調整與逆偏壓下的電荷平衡。在一些實施例中,第二P型氮化物層762並未完全覆蓋第一P型氮化物層761。 The p-type doped semiconductor layer 760 of the semiconductor device 700 includes a first p-type nitride layer 761 and a second p-type nitride layer 762 on the first p-type nitride layer 761. In some embodiments, the chemical formulas of the first p-type nitride layer 761 and the second p-type nitride layer 762 may be AlxInyGa (1-xy) N , and 1≧x≧0, 1≧y≧0, so at least one of the first p-type nitride layer 761 and the second p-type nitride layer 762 may include indium gallium nitride, gallium nitride or aluminum indium gallium nitride. The functions of the second p-type nitride layer 762 include energy level adjustment and charge balance under reverse bias. In some embodiments, the second P-type nitride layer 762 does not completely cover the first P-type nitride layer 761.

此外,半導體元件700還包含第一電極790a及第二電極790c。第一電極790a設置於氮化鎵載子通道層 152上,並穿過p型摻雜半導體層760、本徵氮化鎵層756與部分氮化鋁鎵載子阻障層154;而第二電極790c設置於氮化鋁鎵載子阻障層154上。第一電極790a為陽極,而第二電極790c為陰極。第一電極790a可與氮化鎵載子通道層152之間形成蕭特基勢壘,而第二電極790c可與氮化鋁鎵載子阻障層154之間形成歐姆接觸。 In addition, the semiconductor device 700 further includes a first electrode 790a and a second electrode 790c. The first electrode 790a is disposed on the gallium nitride carrier channel layer 152 and passes through the p-type doped semiconductor layer 760, the intrinsic gallium nitride layer 756 and a portion of the aluminum gallium nitride carrier barrier layer 154; and the second electrode 790c is disposed on the aluminum gallium nitride carrier barrier layer 154. The first electrode 790a is an anode, and the second electrode 790c is a cathode. The first electrode 790a can form a Schottky barrier with the gallium nitride carrier channel layer 152, and the second electrode 790c can form an ohmic contact with the aluminum gallium nitride carrier barrier layer 154.

請參閱圖8,其係繪示根據本發明一些實施例之半導體元件800的剖面視圖。半導體元件800為高電子遷移率電晶體(High Electron Mobility Transistor,HEMT),其可承受至少約1800伏特的崩潰電壓。半導體元件800與半導體元件500具有相似的配置,即半導體元件800亦包含非原生基板510、中間結合層520、氮化鎵基礎層145及半導體異質結構850,但半導體異質結構850中的本徵氮化鎵層856並未完全覆蓋氮化鋁鎵載子阻障層154。半導體元件800包含設置在本徵氮化鎵層856上的p型摻雜半導體層860。 Please refer to FIG. 8 , which is a cross-sectional view of a semiconductor device 800 according to some embodiments of the present invention. The semiconductor device 800 is a high electron mobility transistor (HEMT) that can withstand a breakdown voltage of at least about 1800 volts. The semiconductor device 800 has a similar configuration to the semiconductor device 500, that is, the semiconductor device 800 also includes a non-native substrate 510, an intermediate bonding layer 520, a gallium nitride base layer 145, and a semiconductor heterostructure 850, but the intrinsic gallium nitride layer 856 in the semiconductor heterostructure 850 does not completely cover the aluminum gallium nitride carrier barrier layer 154. The semiconductor device 800 includes a p-type doped semiconductor layer 860 disposed on an intrinsic gallium nitride layer 856.

此外,半導體元件800還包含閘極絕緣層865、閘極890g、源極890s及汲極890d。閘極絕緣層865設置在p型摻雜半導體層860上,而閘極890g設置在閘極絕緣層865上。源極890s及汲極890d皆設置在氮化鋁鎵載子阻障層154上,且分別在閘極890g的兩側,即p型摻雜半導體層860及閘極890g位於源極890s與汲極890d之間。 In addition, the semiconductor device 800 further includes a gate insulating layer 865, a gate 890g, a source 890s, and a drain 890d. The gate insulating layer 865 is disposed on the p-type doped semiconductor layer 860, and the gate 890g is disposed on the gate insulating layer 865. The source 890s and the drain 890d are both disposed on the aluminum gallium nitride carrier barrier layer 154, and are respectively disposed on both sides of the gate 890g, that is, the p-type doped semiconductor layer 860 and the gate 890g are located between the source 890s and the drain 890d.

半導體元件700中的氮化鎵功率元件740及半導 體元件800中的氮化鎵功率元件840皆是在例如藍寶石基板的成長基板上形成後,再進行剝離,以轉移至非原生基板510上,並利用中間結合層520接合在非原生基板510上,以提高其導熱性質。 The gallium nitride power element 740 in the semiconductor element 700 and the gallium nitride power element 840 in the semiconductor element 800 are both formed on a growth substrate such as a sapphire substrate, and then peeled off to be transferred to the non-native substrate 510, and bonded to the non-native substrate 510 using an intermediate bonding layer 520 to improve its thermal conductivity.

根據上述,本發明提供一種半導體磊晶圓及利用半導體磊晶圓所製得的半導體元件,其係藉由二維材料層將形成於成長基板上的氮化鎵功率元件剝離,並轉移至具有導熱性的非原生基板上,以實現具有高電壓特性的功率半導體元件。再者,藉由二維材料層的剝離方式可避免元件產生缺陷,且剝離後留下的成長基板可重複使用,故可降低生產成本。 Based on the above, the present invention provides a semiconductor epitaxial wafer and a semiconductor device made using the semiconductor epitaxial wafer, which uses a two-dimensional material layer to peel off the gallium nitride power device formed on the growth substrate and transfer it to a non-native substrate with thermal conductivity to achieve a power semiconductor device with high voltage characteristics. Furthermore, the peeling method of the two-dimensional material layer can avoid device defects, and the growth substrate left after peeling can be reused, so the production cost can be reduced.

雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with several embodiments, they are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field to which the present invention belongs can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be subject to the scope of the patent application attached hereto.

140:氮化鎵功率元件 140: Gallium nitride power element

145:氮化鎵基礎層 145: Gallium nitride base layer

152:氮化鎵載子通道層 152: Gallium nitride carrier channel layer

154:氮化鋁鎵載子阻障層 154: Aluminum-gallium nitride carrier barrier layer

156:本徵氮化鎵層 156: Intrinsic gallium nitride layer

160:p型摻雜半導體層 160: p-type doped semiconductor layer

500:半導體元件 500:Semiconductor components

510:非原生基板 510: Non-native substrate

520:中間結合層 520: Middle bonding layer

Claims (8)

一種半導體元件,包含:一非原生基板;一中間結合層,配置在該非原生基板上;氮化鎵基礎層,配置在該中間結合層上,其中該氮化鎵基礎層具有8×1016cm-3至1×1018cm-3的一平均碳摻雜濃度;以及一半導體異質結構,形成於該氮化鎵基礎層上,並包含:氮化鎵載子通道層;及氮化鋁鎵載子阻障層,形成於該氮化鎵載子通道層上,其中該氮化鎵載子通道層與該氮化鋁鎵載子阻障層之間形成二維電子氣(2DEG)。 A semiconductor device comprises: a non-native substrate; an intermediate bonding layer disposed on the non-native substrate; a gallium nitride base layer disposed on the intermediate bonding layer, wherein the gallium nitride base layer has an average carbon doping concentration of 8×10 16 cm -3 to 1×10 18 cm -3 ; and a semiconductor heterostructure formed on the gallium nitride base layer and comprising: a gallium nitride carrier channel layer; and an aluminum gallium nitride carrier barrier layer formed on the gallium nitride carrier channel layer, wherein a two-dimensional electron gas (2DEG) is formed between the gallium nitride carrier channel layer and the aluminum gallium nitride carrier barrier layer. 如請求項1所述之半導體元件,更包含:一p型摻雜半導體層,形成於該半導體異質結構上,其中該半導體異質結構位於該氮化鎵基礎層與該p型摻雜半導體層之間。 The semiconductor device as described in claim 1 further comprises: a p-type doped semiconductor layer formed on the semiconductor heterostructure, wherein the semiconductor heterostructure is located between the gallium nitride base layer and the p-type doped semiconductor layer. 如請求項2所述之半導體元件,更包含:一本徵氮化鎵層,形成於該氮化鋁鎵載子阻障層上,其中該本徵氮化鎵層位於該p型摻雜半導體層與該半導體異質結構之間。 The semiconductor device as described in claim 2 further comprises: an intrinsic gallium nitride layer formed on the aluminum gallium nitride carrier barrier layer, wherein the intrinsic gallium nitride layer is located between the p-type doped semiconductor layer and the semiconductor heterostructure. 如請求項1所述之半導體元件,其中該非原 生基板係選自於由鉬、鎢、鉬銅合金、鎢銅合金、矽及碳化矽所組成之一群組。 A semiconductor device as described in claim 1, wherein the non-native substrate is selected from a group consisting of molybdenum, tungsten, molybdenum-copper alloy, tungsten-copper alloy, silicon and silicon carbide. 如請求項1所述之半導體元件,更包含:一第一平坦層,形成於該中間結合層與該氮化鎵基礎層之間,其中該第一平坦層包含氮化鋁或氮化鋁鎵。 The semiconductor device as described in claim 1 further comprises: a first planar layer formed between the intermediate bonding layer and the gallium nitride base layer, wherein the first planar layer comprises aluminum nitride or aluminum gallium nitride. 如請求項1所述之半導體元件,其中該中間結合層包含利用金屬鍵結、氧化物鍵結、金屬共晶鍵結或金屬燒結來接合相鄰兩層。 A semiconductor device as described in claim 1, wherein the intermediate bonding layer comprises bonding two adjacent layers using metal bonding, oxide bonding, metal eutectic bonding or metal sintering. 如請求項1所述之半導體元件,其中該氮化鎵基礎層之厚度不大於5μm。 A semiconductor device as described in claim 1, wherein the thickness of the gallium nitride base layer is not greater than 5μm. 如請求項2或3所述之半導體元件,其中該半導體元件為蕭特基二極體(Schottky Barrier Diode,SBD)或高電子遷移率電晶體(High Electron Mobility Transistor,HEMT)。 A semiconductor device as described in claim 2 or 3, wherein the semiconductor device is a Schottky Barrier Diode (SBD) or a High Electron Mobility Transistor (HEMT).
TW111149870A 2022-12-26 Semiconductor device TWI838037B (en)

Publications (1)

Publication Number Publication Date
TWI838037B true TWI838037B (en) 2024-04-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120326215A1 (en) 2011-06-22 2012-12-27 Katholieke Universitiet Leuven, K.U. LEUVEN R&D Method for fabrication of iii-nitride device and the iii-nitride device thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120326215A1 (en) 2011-06-22 2012-12-27 Katholieke Universitiet Leuven, K.U. LEUVEN R&D Method for fabrication of iii-nitride device and the iii-nitride device thereof

Similar Documents

Publication Publication Date Title
TWI732925B (en) Electronic power devices integrated with an engineered substrate
Fu et al. Demonstration of AlN Schottky barrier diodes with blocking voltage over 1 kV
US9685323B2 (en) Buffer layer structures suited for III-nitride devices with foreign substrates
CN100375303C (en) Ohm electrode containing gold germanium nickel, indium gallium aluminum nitrogen semiconductor luminous element and its manufacturing method
CN103733308B (en) Nitride semiconductor structure with and preparation method thereof
US9666759B2 (en) Growth substrate, nitride semiconductor device and method of manufacturing the same
US20090078943A1 (en) Nitride semiconductor device and manufacturing method thereof
Zhang et al. Fully-and quasi-vertical GaN-on-Si pin diodes: High performance and comprehensive comparison
CN110416244B (en) Display panel and manufacturing method thereof
JP2021052203A (en) Oxide semiconductor substrate and Schottky barrier diode
CN106575608A (en) Semiconductor element, method for manufacturing same, semiconductor substrate, and crystal laminate structure
US10573516B2 (en) Methods for integrated devices on an engineered substrate
US9773884B2 (en) III-nitride transistor with engineered substrate
JP2015082662A (en) Semiconductor buffer structure, semiconductor device including the same, and method of manufacturing semiconductor device using semiconductor buffer structure
CN109155330A (en) Multilayered structure comprising increasing the crystal match layer of performance of semiconductor device
TWI688106B (en) Semiconductor device and its manufacturing method
CN102054875B (en) Power type GaN base Schottky diode and manufacture method thereof
TWI838037B (en) Semiconductor device
CN112713190A (en) Preparation method of gallium nitride HEMT device with vertical structure
CN112614880A (en) Method for preparing gallium nitride device with diamond composite substrate and device thereof
CN104937699B (en) Epitaxial wafer and the switch element and light-emitting component for using it
CN111668159A (en) Preparation method of gallium nitride-based vertical device with peelable sapphire substrate
CN113871473A (en) Device and method for controlling van der Waals epitaxy and remote epitaxy growth modes
CN113658859B (en) Preparation method of gallium nitride power device
US20230064469A1 (en) Wafer, semiconductor device, method for manufacturing wafer, and method for manufacturing semiconductor device