TWI838034B - Laser device and semiconductor device having the same - Google Patents

Laser device and semiconductor device having the same Download PDF

Info

Publication number
TWI838034B
TWI838034B TW111149462A TW111149462A TWI838034B TW I838034 B TWI838034 B TW I838034B TW 111149462 A TW111149462 A TW 111149462A TW 111149462 A TW111149462 A TW 111149462A TW I838034 B TWI838034 B TW I838034B
Authority
TW
Taiwan
Prior art keywords
electrode
semiconductor
layer
opening
columnar
Prior art date
Application number
TW111149462A
Other languages
Chinese (zh)
Other versions
TW202322502A (en
Inventor
鍾昕展
陳守龍
Original Assignee
晶智達光電股份有限公司
晶元光電股份有限公司
Filing date
Publication date
Application filed by 晶智達光電股份有限公司, 晶元光電股份有限公司 filed Critical 晶智達光電股份有限公司
Priority to TW111149462A priority Critical patent/TWI838034B/en
Publication of TW202322502A publication Critical patent/TW202322502A/en
Application granted granted Critical
Publication of TWI838034B publication Critical patent/TWI838034B/en

Links

Images

Abstract

A semiconductor device, includes a permanent substrate having a first boundary and a second boundary; a plurality of columnar bodies on the permanent substrate, and having a first columnar body adjacent to the first boundary and a second columnar body adjacent to the second boundary; a first type semiconductor structure on the plurality of columnar bodies, and having a first surface, a second surface opposite to the first surface and away from the permanent substrate, a first extending portion extending outwardly beyond the first columnar body and a second extending portion extending outwardly beyond the second columnar body; a first electrode on the second surface; and a second electrode on the second surface.

Description

雷射元件及其半導體元件 Laser components and semiconductor components

本發明是關於一種雷射元件,特別是關於一種覆晶式雷射元件。 The present invention relates to a laser device, in particular to a flip-chip laser device.

垂直共振腔面射雷射(Vertical Cavity Surface Emitting Laser,VCSEL)是雷射元件的一種,其應用之一為數據傳輸,其具有高速之優勢。 Vertical Cavity Surface Emitting Laser (VCSEL) is a type of laser element. One of its applications is data transmission, and it has the advantage of high speed.

當雷射元件應用於3D感測時,需要以短脈衝、高電流操作,以提高亮度進而加大感測距離。在此高電流驅動條件下,電流分佈及晶片可靠度即顯得相當重要。 When laser components are used for 3D sensing, they need to be operated with short pulses and high currents to increase brightness and thus the sensing distance. Under this high current driving condition, current distribution and chip reliability become very important.

本發明提出一種具覆晶(Flip Chip)架構之垂直共振腔面射雷射(VCSEL)結構設計,其電極係形成於基板同側,且具有圍繞式金屬連接設計,藉此優化VCSEL晶片之電流分佈,同時強化晶片的可靠度。 The present invention proposes a vertical cavity surface emitting laser (VCSEL) structure design with a flip chip structure, wherein the electrodes are formed on the same side of the substrate and have a surrounding metal connection design, thereby optimizing the current distribution of the VCSEL chip and enhancing the chip reliability.

根據本發明一實施例之半導體元件,其包括:永久基板,具有第一邊界及第二邊界相對於該第一邊界;複數個半導體柱狀結構,位於該永久基板上且包含第一柱狀結構鄰近該第一邊界及第二柱狀結構鄰近該第二邊界; 第一導電型態半導體結構,位於該複數個半導體柱狀結構上,且具有第一表面、第二表面相對於該第一表面且遠離該永久基板、向外延伸超出該第一柱狀結構的第一延伸部、以及向外延伸超出該第二柱狀結構的第二延伸部;第一電極位於該第二表面上;以及第二電極位於該第二表面上。 According to an embodiment of the present invention, a semiconductor device includes: a permanent substrate having a first boundary and a second boundary relative to the first boundary; a plurality of semiconductor columnar structures located on the permanent substrate and including a first columnar structure adjacent to the first boundary and a second columnar structure adjacent to the second boundary; a first conductive type semiconductor structure located on the plurality of semiconductor columnar structures and having a first surface, a second surface opposite to the first surface and away from the permanent substrate, a first extension extending outward beyond the first columnar structure, and a second extension extending outward beyond the second columnar structure; a first electrode located on the second surface; and a second electrode located on the second surface.

10:永久基板 10: Permanent substrate

100:雷射元件 100: Laser element

300:雷射裝置 300:Laser device

101:抗反射結構 101: Anti-reflection structure

2:晶片 2: Chip

20:磊晶結構 20: Epitaxial structure

200:半導體疊層 200:Semiconductor stacking

2000:成長基板 2000: Growth substrate

202:第一半導體結構 202: First semiconductor structure

2020:第一半導體疊層 2020: First semiconductor stack

204:活性結構 204: Active structure

2040:活性疊層 2040: Active stack

205:電流侷限層 205: Current limiting layer

2051:電流限制區 2051: Current limit area

2052:電流導通區 2052: Current conduction area

206:第二半導體結構 206: Second semiconductor structure

2060:第二半導體疊層 2060: Second semiconductor stack

2061:端面 2061: End face

2062:下表面 2062: Lower surface

32:絕緣層 32: Insulation layer

322:第一開口 322: First opening

34:金屬連接層 34: Metal connection layer

341a:第一凸出部 341a: first protrusion

341b:第二凸出部 341b: Second protrusion

342:第二開口 342: Second opening

344:標記結構 344:Marker structure

40:黏合層 40: Adhesive layer

50:金屬連接層 50:Metal connection layer

60:絕緣層 60: Insulation layer

601:側部 601: Side

602a:第一開口部 602a: first opening

602b:第二開口部 602b: Second opening

603:第三開口部 603: The third opening

702:第一電極 702: First electrode

7021:本體部 7021: Headquarters

7022:環繞部 7022: Surroundings

704:第二電極 704: Second electrode

80:絕緣層 80: Insulation layer

802:第三開口 802: The third opening

804:第四開口 804: The fourth opening

902:第一金屬結構 902: First metal structure

9021:中間層 9021: Middle layer

9022:結合層 9022: Binding layer

904:第二金屬結構 904: Second metal structure

9041:中間層 9041:Middle layer

9042:結合層 9042: Binding layer

B1:光學陣列 B1: Optical array

B11:光學結構 B11: Optical structure

B2:電路載板 B2: Circuit board

B21:第一電極墊 B21: First electrode pad

B22:第二電極墊 B22: Second electrode pad

B3:支架 B3: Bracket

P:柱狀結構 P: Columnar structure

P1:上表面 P1: Upper surface

P2:第一側表面 P2: First side surface

E1:第一邊緣 E1: First edge

E2:第二邊緣 E2: Second Edge

S1:第二側表面 S1: Second side surface

S11:第一側邊 S11: First side

S12:第二側邊 S12: Second side

G:間距 G: Spacing

G1:第一間距 G1: First spacing

G2:第二間距 G2: Second gap

G3:第三間距 G3: The third distance

C1:第一邊界 C1: First boundary

C2:第二邊界 C2: Second boundary

D1:第一距離 D1: First distance

D2:第二距離 D2: Second distance

L1:連線 L1: Connection

L2:連線 L2: Connection

O:中心位置 O: Central location

為能更進一步瞭解本發明之特徵與技術內容,請參閱下述有關本發明實施例之詳細說明及如附圖式。惟所揭詳細說明及如附圖式係僅提供參考與說明之用,並非用以對本發明加以限制;其中:第1A圖係根據本發明之一例示實施例的雷射元件的剖面示意圖;第1B圖係第1A圖所示雷射元件的下視示意圖;第1C圖係第1A圖所示雷射元件的上視示意圖;第2A圖至第2L圖係在本發明之一實施例的雷射元件製作流程的各步驟中所完成之結構的剖面示意圖;第3A圖至第3I圖係在本發明之一實施例的雷射元件製作流程的各步驟中所完成之結構的上視或下視示意圖;第4圖係在本發明之一實施例的雷射元件製作流程的其一步驟中所完成之結構的下視示意圖。 To further understand the features and technical contents of the present invention, please refer to the following detailed description of the embodiments of the present invention and the attached drawings. However, the detailed description and the attached figures are only for reference and explanation, and are not used to limit the present invention; wherein: FIG. 1A is a cross-sectional schematic diagram of a laser element according to an exemplary embodiment of the present invention; FIG. 1B is a bottom view schematic diagram of the laser element shown in FIG. 1A; FIG. 1C is a top view schematic diagram of the laser element shown in FIG. 1A; FIG. 2A to FIG. 2L are cross-sectional schematic diagrams of structures completed in each step of the laser element manufacturing process of an embodiment of the present invention; FIG. 3A to FIG. 3I are top or bottom view schematic diagrams of structures completed in each step of the laser element manufacturing process of an embodiment of the present invention; FIG. 4 is a bottom view schematic diagram of a structure completed in one step of the laser element manufacturing process of an embodiment of the present invention.

第5圖係在本發明之一實施例的雷射裝置的剖面示意圖。 Figure 5 is a schematic cross-sectional view of a laser device in one embodiment of the present invention.

下文係參照圖式、並且以示例實施例說明本發明之概念,在圖式或說明中,相似或相同的部分係使用相同的元件符號;再者,圖式係為利於理解而繪製,圖式中各層之厚度與形狀並非元件之實際尺寸或成比例關係。需特別注意的是,圖式中未繪示、或說明書中未描述之元件,可為熟習發明所屬領域技藝之人士所知之形式。 The following is a description of the concept of the present invention with reference to the drawings and exemplary embodiments. In the drawings or descriptions, similar or identical parts use the same element symbols; furthermore, the drawings are drawn for ease of understanding, and the thickness and shape of each layer in the drawings are not the actual size or proportional relationship of the components. It should be noted that the components not shown in the drawings or described in the instructions may be known to those skilled in the art of the field to which the invention belongs.

請參閱第1A圖,其係根據本發明之一實施例之雷射元件的剖面示意圖。本實施例之雷射元件100包括永久基板10,以及位於永久基板10一側上之磊晶結構20,磊晶結構20包括至少一個柱狀結構P;在本實施例中,磊晶結構20包含複數個柱狀結構P。各柱狀結構P包含依序位於永久基板10上的一第一半導體結構202、一電流侷限層205以及一活性結構204。複數個柱狀結構P可以為規則排列(regular arrangement)或非規則排列(random arrangement)於一第二半導體結構206上,所謂規則排列是指複數個柱狀結構P之間具有特定的空間關係,並以固定的、具重複性的方式排列。在一些規則排列的柱狀結構P中,相鄰的柱狀結構P之間的間距大致相同;在另一些規則排列的柱狀結構P中,多個柱狀結構P是沿著一特定方向排列。電流侷限層205可選擇設置於活性結構204與第一半導體結構202之間,或者設置於活性結構204與第二半導體結構206之間。各柱狀結構P包含朝向永久基板10的一上表面P1、以及連接上表面P1及第二半導體結構206的一第一側表面P2,此外,磊晶結構20另包含遠離永久基板10的一下表面2062,下表面2062為第二半導體結構206的一表面。在本實施例中,第一半導體結構202之導電型態為P型,而第二半導體結構206之導電型態為N型。為求圖示簡潔,第1A圖僅以五個柱狀結構P作為例示,惟在VCSEL實際產品中,係可視應用時的電流及功率需求來調整柱狀結構P的數量,例如為 100~1000個,但不以此為限。電流侷限層205包含一電流限制區2051、以及由電流限制區2051所圍繞的一電流導通區2052,電流導通區2052的導電率高於電流限制區2051,以使電流集中導通於電流導通區2052中。 Please refer to FIG. 1A, which is a cross-sectional schematic diagram of a laser device according to an embodiment of the present invention. The laser device 100 of this embodiment includes a permanent substrate 10 and an epitaxial structure 20 located on one side of the permanent substrate 10. The epitaxial structure 20 includes at least one columnar structure P. In this embodiment, the epitaxial structure 20 includes a plurality of columnar structures P. Each columnar structure P includes a first semiconductor structure 202, a current confinement layer 205, and an active structure 204 sequentially located on the permanent substrate 10. The plurality of columnar structures P can be arranged regularly (regular arrangement) or irregularly (random arrangement) on a second semiconductor structure 206. The so-called regular arrangement means that the plurality of columnar structures P have a specific spatial relationship and are arranged in a fixed and repetitive manner. In some regularly arranged columnar structures P, the spacing between adjacent columnar structures P is substantially the same; in other regularly arranged columnar structures P, multiple columnar structures P are arranged along a specific direction. The current confinement layer 205 can be selectively disposed between the active structure 204 and the first semiconductor structure 202, or between the active structure 204 and the second semiconductor structure 206. Each columnar structure P includes an upper surface P1 facing the permanent substrate 10, and a first side surface P2 connecting the upper surface P1 and the second semiconductor structure 206. In addition, the epitaxial structure 20 further includes a lower surface 2062 away from the permanent substrate 10, and the lower surface 2062 is a surface of the second semiconductor structure 206. In this embodiment, the conductivity type of the first semiconductor structure 202 is P type, and the conductivity type of the second semiconductor structure 206 is N type. For the sake of simplicity, Figure 1A only uses five columnar structures P as an example. However, in actual VCSEL products, the number of columnar structures P can be adjusted according to the current and power requirements of the application, for example, 100 to 1000, but not limited to this. The current confinement layer 205 includes a current confinement region 2051 and a current conduction region 2052 surrounded by the current confinement region 2051. The conductivity of the current conduction region 2052 is higher than that of the current confinement region 2051, so that the current is concentrated in the current conduction region 2052.

詳言之,根據所述實施例,第一半導體結構202與活性結構204係部分覆蓋於第二半導體結構206上,並暴露第二半導體結構206之一端面2061。雷射元件100還包括絕緣層32和金屬連接層34。絕緣層32係覆蓋於柱狀結構P之第一側表面P2、第二半導體結構206之端面2061及部分的上表面P1,絕緣層32具有第一開口322,將部分的上表面P1從絕緣層32暴露出來。金屬連接層34係位於絕緣層32上,且通過第一開口322與第一半導體結構202形成電性連接。金屬連接層34具有一第二開口342,使得活性結構204所發射的光可以由第二開口342向永久基板10的方向射出於雷射元件100外。此外,第二半導體結構206具有一第一側邊S11及相對應於第一側邊S11之一第二側邊S12,且金屬連接層34具有一第一凸出部341a延伸至超出第一側邊S11,及一第二凸出部341b延伸至超出第二側邊S12。第一凸出部341a和第二凸出部341b可用以作為後續的電性連接之用,詳細結構及電性連接方式將於下文中詳述。 In detail, according to the embodiment, the first semiconductor structure 202 and the active structure 204 partially cover the second semiconductor structure 206, and expose an end surface 2061 of the second semiconductor structure 206. The laser device 100 further includes an insulating layer 32 and a metal connection layer 34. The insulating layer 32 covers the first side surface P2 of the columnar structure P, the end surface 2061 of the second semiconductor structure 206, and a portion of the upper surface P1. The insulating layer 32 has a first opening 322, exposing a portion of the upper surface P1 from the insulating layer 32. The metal connection layer 34 is located on the insulating layer 32, and is electrically connected to the first semiconductor structure 202 through the first opening 322. The metal connection layer 34 has a second opening 342, so that the light emitted by the active structure 204 can be emitted from the second opening 342 to the direction of the permanent substrate 10 outside the laser element 100. In addition, the second semiconductor structure 206 has a first side S11 and a second side S12 corresponding to the first side S11, and the metal connection layer 34 has a first protrusion 341a extending beyond the first side S11, and a second protrusion 341b extending beyond the second side S12. The first protrusion 341a and the second protrusion 341b can be used for subsequent electrical connection. The detailed structure and electrical connection method will be described in detail below.

本實施例的雷射元件100更包含一黏合層40,上述磊晶結構20係藉由黏合層40而連接於永久基板10。在遠離永久基板10側的第二半導體結構206上具有一金屬連接層50,金屬連接層50與第二半導體結構206電性連接。本發明之雷射元件100包括一絕緣層60,絕緣層60覆蓋金屬連接層50。絕緣層60具有一側部601,且一第一開口部602a及一第二開口部602b穿過絕緣層60。側部601覆蓋第二半導體結構206之第一側邊S11、第二側邊S12,第一開口部602a進一步穿過絕緣層32以暴露出金屬連接層34的第一凸出部341a,且第二開口部 602b進一步穿過絕緣層32以暴露出金屬連接層34的第二凸出部341b。絕緣層60還具有一第三開口部603暴露出金屬連接層50。本發明之雷射元件100包括一第一電極702及一第二電極704,第一電極702及第二電極704位於永久基板10的同一側且互相物理性分離。 The laser device 100 of this embodiment further includes an adhesive layer 40, and the epitaxial structure 20 is connected to the permanent substrate 10 through the adhesive layer 40. A metal connection layer 50 is provided on the second semiconductor structure 206 on the side away from the permanent substrate 10, and the metal connection layer 50 is electrically connected to the second semiconductor structure 206. The laser device 100 of the present invention includes an insulating layer 60, and the insulating layer 60 covers the metal connection layer 50. The insulating layer 60 has a side portion 601, and a first opening portion 602a and a second opening portion 602b pass through the insulating layer 60. The side portion 601 covers the first side S11 and the second side S12 of the second semiconductor structure 206. The first opening portion 602a further passes through the insulating layer 32 to expose the first protrusion 341a of the metal connection layer 34, and the second opening portion 602b further passes through the insulating layer 32 to expose the second protrusion 341b of the metal connection layer 34. The insulating layer 60 also has a third opening portion 603 to expose the metal connection layer 50. The laser element 100 of the present invention includes a first electrode 702 and a second electrode 704. The first electrode 702 and the second electrode 704 are located on the same side of the permanent substrate 10 and are physically separated from each other.

在本實施例中,雷射元件100為覆晶式(flip chip type)雷射元件,後續可使用焊料將雷射元件100接合至外部電路(例如印刷電路板PCB)。第一電極702分別通過第一開口部602a和第二開口部602b連接於金屬連接層34,並透過金屬連接層34的第一凸出部341a和第二凸出部341a電性連接於第一半導體結構202,且第一電極702係覆蓋絕緣層60之側部601並延伸至覆蓋於金屬連接層50上,絕緣層60位於第一電極702及金屬連接層50之間,以避免形成一短路路徑。第二電極704通過第三開口部603連接金屬連接層50,藉此使第二電極704電性連接於第二半導體結構206。 In this embodiment, the laser device 100 is a flip chip type laser device, and solder can be used to bond the laser device 100 to an external circuit (e.g., a printed circuit board PCB) later. The first electrode 702 is connected to the metal connection layer 34 through the first opening 602a and the second opening 602b, respectively, and is electrically connected to the first semiconductor structure 202 through the first protrusion 341a and the second protrusion 341a of the metal connection layer 34. The first electrode 702 covers the side 601 of the insulating layer 60 and extends to cover the metal connection layer 50. The insulating layer 60 is located between the first electrode 702 and the metal connection layer 50 to avoid forming a short circuit path. The second electrode 704 is connected to the metal connection layer 50 through the third opening 603, thereby electrically connecting the second electrode 704 to the second semiconductor structure 206.

除上述結構以外,本發明之雷射元件100可進一步包括一第一金屬結構902及一第二金屬結構904,兩者分別位於第一電極702及第二電極704上。本發明之雷射元件100進一步包括一絕緣層80覆蓋第一電極702以及第二電極704。詳言之,絕緣層80具有一第三開口802以暴露第一電極702、以及一第四開口804以暴露第二電極704;第一金屬結構902透過第三開口802與第一電極702電性連接,第二金屬結構904則透過第四開口804與第二電極904電性連接。此外,第一金屬結構902及第二金屬結構904之間具有一間距G介於10μm至200μm之間。在本實施例中,由雷射元件100的下視圖觀之,第一金屬結構902的形狀與第二金屬結構904的形狀不同,以作為電性辨識之用(如第3I圖所示)。 In addition to the above structures, the laser device 100 of the present invention may further include a first metal structure 902 and a second metal structure 904, which are respectively located on the first electrode 702 and the second electrode 704. The laser device 100 of the present invention further includes an insulating layer 80 covering the first electrode 702 and the second electrode 704. In detail, the insulating layer 80 has a third opening 802 to expose the first electrode 702, and a fourth opening 804 to expose the second electrode 704; the first metal structure 902 is electrically connected to the first electrode 702 through the third opening 802, and the second metal structure 904 is electrically connected to the second electrode 904 through the fourth opening 804. In addition, there is a distance G between the first metal structure 902 and the second metal structure 904 ranging from 10μm to 200μm. In this embodiment, from the bottom view of the laser element 100, the shape of the first metal structure 902 is different from the shape of the second metal structure 904 for electrical identification (as shown in FIG. 3I).

本發明之雷射元件100可選擇性包含一抗反射結構101位於永久基板10上方,且遠離第一電極702及第二電極704。抗反射結構101可用以減少雷射元件100發出的光在永久基板10與空氣之間的界面反射,以避免雷射元件100的發光效率降低或產生非理想的光形。抗反射結構101可以為單層或多層,當為單層時,抗反射結構101之折射率係介於永久基板10之折射率及外界環境(例如:空氣)之折射率之間,例如,抗反射結構101之折射率為1.1~1.65,單層的抗反射結構101的材料例如為SiOx、MgF2。抗反射結構101具有一厚度,較佳為活性結構204之發光波長的四分之一之整數倍,亦即,如發光波長為λ,則抗反射結構101的厚度為(λ/4)*n,n為大於或等於1的整數。抗反射結構101亦可以為由高折射率材料和低折射率材料堆疊而成的多層結構,例如為SiOx/TiOx、SiOx/TiOx/SiOxThe laser device 100 of the present invention may optionally include an anti-reflection structure 101 located above the permanent substrate 10 and away from the first electrode 702 and the second electrode 704. The anti-reflection structure 101 can be used to reduce the reflection of the light emitted by the laser device 100 at the interface between the permanent substrate 10 and the air, so as to avoid the reduction of the light emission efficiency of the laser device 100 or the generation of an undesirable light shape. The anti-reflection structure 101 can be a single layer or multiple layers. When it is a single layer, the refractive index of the anti-reflection structure 101 is between the refractive index of the permanent substrate 10 and the refractive index of the external environment (e.g., air). For example, the refractive index of the anti-reflection structure 101 is 1.1-1.65. The material of the single-layer anti-reflection structure 101 is, for example, SiO x or MgF 2 . The anti-reflection structure 101 has a thickness, which is preferably an integer multiple of one quarter of the emission wavelength of the active structure 204, that is, if the emission wavelength is λ, the thickness of the anti-reflection structure 101 is (λ/4)*n, where n is an integer greater than or equal to 1. The anti-reflection structure 101 may also be a multi-layer structure formed by stacking high refractive index materials and low refractive index materials, such as SiOx / TiOx , SiOx / TiOx / SiOx .

在本實施例中,第一半導體結構202與第二半導體結構206包含複數個不同折射率的膜層交互週期性的堆疊(例如:高鋁含量的AlGaAs層及低鋁含量的AlGaAs層交互週期性堆疊),以形成分散式布拉格反射鏡(Distributed Bragg Reflector,DBR),使得由活性結構204發射的光可以在兩個反射鏡中反射以形成同調光。第一半導體結構202的反射率低於第二半導體結構206的反射率,藉此使同調光朝向永久基板10的方向射出。第一半導體結構202、第二半導體結構206及活性結構204之材料包含三五族化合物半導體,例如可以為AlGaInAs系列、AlGaInP系列、AlInGaN系列、AlAsSb系列、InGaAsP系列、InGaAsN系列、AlGaAsP系列等,例如AlGaInP、GaAs、InGaAs、AlGaAs、GaAsP、GaP、InGaP、AlInP、GaN、InGaN、AlGaN等化合物。在本揭露內容之實施例中,若無特別說明,上述化學表示式包含「符合化學劑量之化合物」及「非符合化學劑量之化合物」,其中,「符合化學劑量之 化合物」例如為三族元素的總元素劑量與五族元素的總元素劑量相同,反之,「非符合化學劑量之化合物」例如為三族元素的總元素劑量與五族元素的總元素劑量不同。舉例而言,化學表示式為AlGaInAs系列即代表包含三族元素鋁(Al)及/或鎵(Ga)及/或銦(In),以及包含五族元素砷(As),其中三族元素(鋁及/或鎵及/或銦)的總元素劑量可以與五族元素(砷)的總元素劑量相同或相異。另外,若上述由化學表示式表示的各化合物為符合化學劑量之化合物時,AlGaInAs系列即代表(Aly1Ga(1-yl))1-x1Inx1As,其中,0≦x1≦1,0≦y1≦1;AlGaInP系列即代表(Aly2Ga(1-y2))1-x2Inx2P,其中,0≦x2≦1,0≦y2≦1;AlInGaN系列即代表(Aly3Ga(1-y3))1-x3Inx3N,其中,0≦x3≦1,0≦y3≦1;AlAsSb系列即代表AlAsx4Sb(1-x4),其中,0≦x4≦1;InGaAsP系列即代表Inx5Ga1-x5As1-y4Py4,其中,0≦x5≦1,0≦y4≦1;InGaAsN系列即代表Inx6Ga1-x6As1-y5Ny5,其中,0≦x6≦1,0≦y5≦1;AlGaAsP系列即代表Alx7Ga1-x7As1-y6Py6,其中,0≦x7≦1,0≦y6≦1。 In this embodiment, the first semiconductor structure 202 and the second semiconductor structure 206 include a plurality of film layers with different refractive indices that are periodically stacked alternately (e.g., AlGaAs layers with high aluminum content and AlGaAs layers with low aluminum content that are periodically stacked alternately) to form a distributed Bragg reflector (DBR), so that the light emitted by the active structure 204 can be reflected in the two reflectors to form coherent light. The reflectivity of the first semiconductor structure 202 is lower than the reflectivity of the second semiconductor structure 206, so that the coherent light is emitted toward the permanent substrate 10. The materials of the first semiconductor structure 202, the second semiconductor structure 206 and the active structure 204 include III-V compound semiconductors, for example, they can be AlGaInAs series, AlGaInP series, AlInGaN series, AlAsSb series, InGaAsP series, InGaAsN series, AlGaAsP series, etc., such as AlGaInP, GaAs, InGaAs, AlGaAs, GaAsP, GaP, InGaP, AlInP, GaN, InGaN, AlGaN and other compounds. In the embodiments of the present disclosure, unless otherwise specified, the chemical formula includes "compounds that meet the chemical dosage" and "compounds that do not meet the chemical dosage", wherein "compounds that meet the chemical dosage" means, for example, that the total element dosage of the group III elements is the same as the total element dosage of the group V elements, whereas "compounds that do not meet the chemical dosage" means, for example, that the total element dosage of the group III elements is different from the total element dosage of the group V elements. For example, a chemical formula of the AlGaInAs series means that the group III elements aluminum (Al) and/or gallium (Ga) and/or indium (In) are included, and the group V element arsenic (As) is included, wherein the total element dosage of the group III elements (aluminum and/or gallium and/or indium) can be the same as or different from the total element dosage of the group V elements (arsenic). In addition, if the compounds represented by the chemical formulas above are compounds that conform to the chemical dosage, the AlGaInAs series represents (Al y1 Ga (1-yl) ) 1-x1 In x1 As, wherein 0≦x1≦1, 0≦y1≦1; the AlGaInP series represents (Al y2 Ga (1-y2) ) 1-x2 In x2 P, wherein 0≦x2≦1, 0≦y2≦1; the AlInGaN series represents (Al y3 Ga (1-y3) ) 1-x3 In x3 N, wherein 0≦x3≦1, 0≦y3≦1; the AlAsSb series represents AlAs x4 Sb (1-x4) , wherein 0≦x4≦1; the InGaAsP series represents In x5 Ga 1-x5 As 1-y4 P y4 , where 0≦x5≦1, 0≦y4≦1; the InGaAsN series represents In x6 Ga 1-x6 As 1-y5 N y5 , where 0≦x6≦1, 0≦y5≦1; the AlGaAsP series represents Al x7 Ga 1-x7 As 1-y6 P y6 , where 0≦x7≦1, 0≦y6≦1.

視其材料不同,活性結構204可發出峰值波長(peak wavelength)介於700nm及1700nm的紅外光、峰值波長介於610nm及700nm之間的紅光、峰值波長介於530nm及570nm之間的黃光、峰值波長介於490nm及550nm之間的綠光、峰值波長介於400nm及490nm之間的藍光或深藍光、或是峰值波長介於250nm及400nm之間的紫外光。在本實施例中,活性結構204的峰值波長為介於750nm及1200nm之間的紅外光。 Depending on the material, the active structure 204 can emit infrared light with a peak wavelength between 700nm and 1700nm, red light with a peak wavelength between 610nm and 700nm, yellow light with a peak wavelength between 530nm and 570nm, green light with a peak wavelength between 490nm and 550nm, blue light or dark blue light with a peak wavelength between 400nm and 490nm, or ultraviolet light with a peak wavelength between 250nm and 400nm. In this embodiment, the peak wavelength of the active structure 204 is infrared light between 750nm and 1200nm.

電流侷限層205的材料可以為上述之三五族半導體材料,於本實施例中,電流侷限層205的材料為AlGaAs,且活性結構204、第一半導體結構202及第二半導體結構206的材料皆包含鋁。電流侷限層205的鋁含量大於活性結構204、第一半導體結構202及第二半導體結構206的鋁含量,舉例而言,電 流侷限層205的鋁含量大於97%。在本實施例中,電流侷限層205的電流限制區2051的氧含量大於電流導通區2052的氧含量,使電流限制區2051具有較電流導通區2052較低的導電率。黏合層40為對活性結構204發光具有高透光率的材料,如透光率大於80%,黏合層40的材料為絕緣材料,例如:苯並環丁烯樹脂(B-staged bisbenzocyclobutene,BCB)、環氧樹脂(epoxy resin)、聚醯亞胺(polyimide)、SOG(spin-on glass)、矽氧樹脂(silicone)或八氟環丁烷(Perfluorocyclobutane,PFCB)。 The material of the current confining layer 205 can be the above-mentioned III-V semiconductor material. In this embodiment, the material of the current confining layer 205 is AlGaAs, and the materials of the active structure 204, the first semiconductor structure 202 and the second semiconductor structure 206 all contain aluminum. The aluminum content of the current confining layer 205 is greater than the aluminum content of the active structure 204, the first semiconductor structure 202 and the second semiconductor structure 206. For example, the aluminum content of the current confining layer 205 is greater than 97%. In this embodiment, the oxygen content of the current confining region 2051 of the current confining layer 205 is greater than the oxygen content of the current conducting region 2052, so that the current confining region 2051 has a lower conductivity than the current conducting region 2052. The adhesive layer 40 is a material with high transmittance to the light emitted by the active structure 204, such as a transmittance greater than 80%. The material of the adhesive layer 40 is an insulating material, such as B-staged bisbenzocyclobutene (BCB), epoxy resin, polyimide, SOG (spin-on glass), silicone or perfluorocyclobutane (PFCB).

上述絕緣層32、絕緣層60及絕緣層80的材料包含非導電材料。非導電材料包含有機材料或無機材料。有機材料包含Su8、苯并環丁烯(BCB)、過氟環丁烷(PFCB)、環氧樹脂(Epoxy)、丙烯酸樹脂(Acrylic Resin)、環烯烴聚合物(COC)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚醚醯亞胺(Polyetherimide)或氟碳聚合物(Fluorocarbon Polymer)。無機材料包含矽膠(Silicone)或玻璃(Glass)、氧化鋁(Al2O3)、氮化矽(SiNx)、氧化矽(SiOx)、氧化鈦(TiOx)、或氟化鎂(MgFx)。在一實施例中,絕緣層32、絕緣層60及/或絕緣層80包含一層或複數層(例如為布拉格反射鏡(DBR)結構,藉由交替堆疊兩層副層來形成,例如SiOx副層和TiOx副層)。 The materials of the insulating layer 32, the insulating layer 60 and the insulating layer 80 include non-conductive materials. The non-conductive materials include organic materials or inorganic materials. The organic materials include Su8, benzocyclobutene (BCB), perfluorocyclobutane (PFCB), epoxy resin, acrylic resin, cycloolefin polymer (COC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), polyetherimide or fluorocarbon polymer. The inorganic material includes silicone or glass, aluminum oxide (Al 2 O 3 ), silicon nitride (SiN x ), silicon oxide (SiO x ), titanium oxide (TiO x ), or magnesium fluoride (MgF x ). In one embodiment, the insulating layer 32 , the insulating layer 60 , and/or the insulating layer 80 include one or more layers (e.g., a Bragg reflector (DBR) structure formed by alternately stacking two sub-layers, such as a SiO x sub-layer and a TiO x sub-layer).

金屬連接層34及金屬連接層50的材料可以包含金屬,例如:鋁(Al)、銀(Ag)、鉻(Cr)、鉑(Pt)、鎳(Ni)、鍺(Ge)、鈹(Be)、金(Au)、鈦(Ti)、鎢(W)或鋅(Zn)。第一電極702及第二電極704的材料可以為金屬材料,例如金(Au)、錫(Sn)、鈦(Ti)或其合金。在本實施例中,第一電極702可為一複層電極結構,例如往遠離永久基板 10的方向可分別包含鈦(Ti)層及金(Au)層。第二電極704與第一電極702具有相同的材料及結構組成。第一電極702的材料與第一金屬結構902不同,且第二電極704的材料與第二金屬結構904不同,舉例而言,第一金屬結構902及第二金屬結構904至少包含一元素,而第一電極702及第二電極704則未包含該元素,以避免固晶或在大電流操作下,外界的(含錫)焊料破壞第一電極702及第二電極704而產生電性失效,可進一步提高本發明之雷射元件100的可靠度。上述之該元素可用以阻擋焊料擴散至第一電極702及第二電極704中,該元素例如為鎳(Ni)及/或鉑(Pt)。詳言之,第一金屬結構902及第二金屬結構904可分別包含複數層,例如朝遠離基板10方向依序各別包含一中間層9021、9041及一結合層9022、9042,中間層9021、9041的材料不同於第一電極702及第二電極704,藉此防止焊料(例如:錫或金錫合金(AuSn))擴散至第一電極702及第二電極704,因此中間層9021、9041的材料較佳的包含金(Au)、錫(Sn)和銅(Cu)以外的金屬元素,例如鎳(Ni)及/或鉑(Pt)。結合層9022、9042的材料包含具有高延展性的金屬材料,較佳的包含金(Au)。本實施例的中間層9021、9041材料為往遠離永久基板10方向依序堆疊的鉑(Pt)及鎳(Ni),結合層9022、9042的材料為金(Au)。換言之,往遠離永久基板的方向,金屬結構902,904包含鎳層、鉑層及金層。 The material of the metal connection layer 34 and the metal connection layer 50 may include metals, such as aluminum (Al), silver (Ag), chromium (Cr), platinum (Pt), nickel (Ni), germanium (Ge), benzium (Be), gold (Au), titanium (Ti), tungsten (W) or zinc (Zn). The material of the first electrode 702 and the second electrode 704 may be a metal material, such as gold (Au), tin (Sn), titanium (Ti) or their alloys. In this embodiment, the first electrode 702 may be a multi-layer electrode structure, for example, the direction away from the permanent substrate 10 may include a titanium (Ti) layer and a gold (Au) layer. The second electrode 704 has the same material and structural composition as the first electrode 702. The material of the first electrode 702 is different from that of the first metal structure 902, and the material of the second electrode 704 is different from that of the second metal structure 904. For example, the first metal structure 902 and the second metal structure 904 contain at least one element, while the first electrode 702 and the second electrode 704 do not contain the element, so as to prevent the external (tin-containing) solder from damaging the first electrode 702 and the second electrode 704 and causing electrical failure during die bonding or high current operation, thereby further improving the reliability of the laser device 100 of the present invention. The above-mentioned element can be used to prevent the solder from diffusing into the first electrode 702 and the second electrode 704, and the element is, for example, nickel (Ni) and/or platinum (Pt). In detail, the first metal structure 902 and the second metal structure 904 may include a plurality of layers, for example, an intermediate layer 9021, 9041 and a bonding layer 9022, 9042, respectively, in order away from the substrate 10. The material of the intermediate layers 9021, 9041 is different from that of the first electrode 702 and the second electrode 704, so as to prevent solder (for example, tin or gold-tin alloy (AuSn)) from diffusing to the first electrode 702 and the second electrode 704. Therefore, the material of the intermediate layers 9021, 9041 preferably includes metal elements other than gold (Au), tin (Sn) and copper (Cu), such as nickel (Ni) and/or platinum (Pt). The material of the bonding layers 9022 and 9042 includes a metal material with high ductility, preferably gold (Au). The materials of the intermediate layers 9021 and 9041 of this embodiment are platinum (Pt) and nickel (Ni) stacked in sequence in the direction away from the permanent substrate 10, and the material of the bonding layers 9022 and 9042 is gold (Au). In other words, in the direction away from the permanent substrate, the metal structures 902 and 904 include a nickel layer, a platinum layer, and a gold layer.

第1B圖為第1A圖所示之雷射元件100的下視圖,即自第一金屬結構902及第二金屬結構904的方向(如第1A圖中箭頭C所示之方向)觀察雷射元件100之視圖,且第1A圖為沿著第1B圖中的線A-A’剖面所顯示之剖面示意圖。第1C圖為第1A圖所示之雷射元件100的上視圖,即自永久基板10的方向 (如第1A圖中箭頭D所示之方向)觀察雷射元件100之視圖,且第1A圖為沿著第1C圖中的線B-B’剖面所顯示之剖面示意圖。 FIG. 1B is a bottom view of the laser element 100 shown in FIG. 1A, i.e., a view of the laser element 100 observed from the direction of the first metal structure 902 and the second metal structure 904 (as indicated by the arrow C in FIG. 1A), and FIG. 1A is a cross-sectional schematic diagram along the line A-A’ in FIG. 1B. FIG. 1C is a top view of the laser element 100 shown in FIG. 1A, i.e., a view of the laser element 100 observed from the direction of the permanent substrate 10 (as indicated by the arrow D in FIG. 1A), and FIG. 1A is a cross-sectional schematic diagram along the line B-B’ in FIG. 1C.

如第1B圖所示,絕緣層60具有分佈於雷射元件100的周圍區域的複數個開口部,例如兩個第一開口部602a和兩個第二開口部602b,且相鄰的第一開口部602a及第二開口部602b之間、相鄰的第一開口部602a之間及相鄰的第二開口部602b之間各具有一第一間距G1。此外,如第1C圖所示,在本實施例中,金屬連接層34係形成有數個標記結構344,標記結構344係互相對稱,並透過數個標記結構344之間的連線L1、L2可定義出雷射元件100的中心位置O,便於機器辨識以利後續封裝製程的進行。上述各第一間距G1的位置係與各標記結構344相對應。需特別說明,第1B圖、第1C圖的虛線線條表示該結構由下視圖/上視圖無法直接觀察到,僅可視虛線線條之輪廓。 As shown in FIG. 1B , the insulating layer 60 has a plurality of openings distributed around the laser element 100, such as two first openings 602a and two second openings 602b, and there is a first spacing G1 between adjacent first openings 602a and second openings 602b, and between adjacent first openings 602a and adjacent second openings 602b. In addition, as shown in FIG. 1C , in this embodiment, the metal connection layer 34 is formed with a plurality of marking structures 344, and the marking structures 344 are symmetrical to each other, and the center position O of the laser element 100 can be defined by connecting lines L1 and L2 between the plurality of marking structures 344, so as to facilitate machine identification and facilitate subsequent packaging processes. The positions of the first spacings G1 described above correspond to the marking structures 344. It should be noted that the dashed lines in Figure 1B and Figure 1C indicate that the structure cannot be directly observed from the bottom view/top view, and only the outline of the dashed lines can be seen.

在本實施例中,第二型半導體結構206大致為置中位於永久基板10上,即第二型半導體結構206的任一側邊至相鄰的永久基板10之一邊界的距離大致相等,藉此使第一金屬結構902及第二金屬結構904(或者使第一電極702及第二電極704)可配置於雷射元件100之對稱位置上,有利於後續進行封裝程序之結構設計,並提高有效區域面積。詳言之,如第1B圖所示,由雷射元件100的第二半導體結構206朝向活性結構204的方向觀之,永久基板10具有與第一側邊S11相鄰之一第一邊界C1、以及與該第一邊界C1相對且與第二側邊S12相鄰之一第二邊界C2,第一邊界C1及第二邊界C2互相對應且各設置於永久基板10的側邊。第一側邊S11與第一邊界C1之間的一第一距離D1與第二側邊S12與第二邊界C2之間的一第二距離D2的差距小於第一距離D1的30%;亦即,第一距離D1和第二距離D2之間的差距0≦(D1-D2)/D1<30%,在另一實施例中, 0≦(D1-D2)/D1<20%;較佳地,0≦(D1-D2)/D1<15%。在另一實施例中,1%<(D1-D2)/D1<10%。在本實施例中,第一距離D1等於第二距離D2。 In the present embodiment, the second-type semiconductor structure 206 is roughly centered on the permanent substrate 10, that is, the distance from any side of the second-type semiconductor structure 206 to a border of the adjacent permanent substrate 10 is roughly equal, so that the first metal structure 902 and the second metal structure 904 (or the first electrode 702 and the second electrode 704) can be arranged at symmetrical positions of the laser element 100, which is beneficial to the structural design of the subsequent packaging process and increases the effective area. In detail, as shown in FIG. 1B , when viewed from the second semiconductor structure 206 of the laser element 100 toward the active structure 204, the permanent substrate 10 has a first boundary C1 adjacent to the first side S11, and a second boundary C2 opposite to the first boundary C1 and adjacent to the second side S12. The first boundary C1 and the second boundary C2 correspond to each other and are each disposed on a side of the permanent substrate 10. The difference between a first distance D1 between the first side S11 and the first boundary C1 and a second distance D2 between the second side S12 and the second boundary C2 is less than 30% of the first distance D1; that is, the difference between the first distance D1 and the second distance D2 is 0≦(D1-D2)/D1<30%. In another embodiment, 0≦(D1-D2)/D1<20%; preferably, 0≦(D1-D2)/D1<15%. In another embodiment, 1%<(D1-D2)/D1<10%. In this embodiment, the first distance D1 is equal to the second distance D2.

以下參照第2A圖至第2L圖,說明本發明之雷射元件100的製作流程。 The following describes the manufacturing process of the laser element 100 of the present invention with reference to Figures 2A to 2L.

如第2A圖所示,提供一晶片2。所述晶片2包括形成於成長基板2000上之半導體疊層200,半導體疊層200依序包含第二半導體疊層2060、活性疊層2040與第一半導體疊層2020位於成長基板2000上。半導體疊層200可以以磊晶方式成長於成長基板2000上,磊晶方式包含、但不限於金屬有機化學氣相沉積法、氫化物氣相磊晶法、分子束磊晶法、液相磊晶法等。成長基板2000包含三五族材料,且其晶格常數與半導體疊層200互相匹配,本實施例之成長基板2000的材料為砷化鎵(GaAs)。在其他實施例中,成長基板2000的材料可以為磷化銦(InP)、藍寶石(sapphire)、氮化鎵(GaN)或碳化矽(SiC)等。 As shown in FIG. 2A , a chip 2 is provided. The chip 2 includes a semiconductor stack 200 formed on a growth substrate 2000. The semiconductor stack 200 includes a second semiconductor stack 2060, an active stack 2040, and a first semiconductor stack 2020 in sequence on the growth substrate 2000. The semiconductor stack 200 can be grown on the growth substrate 2000 by epitaxial growth, and the epitaxial growth method includes, but is not limited to, metal organic chemical vapor deposition, hydride vapor phase epitaxy, molecular beam epitaxy, liquid phase epitaxy, etc. The growth substrate 2000 includes a III-V material, and its lattice constant matches that of the semiconductor stack 200. The material of the growth substrate 2000 of this embodiment is gallium arsenide (GaAs). In other embodiments, the material of the growth substrate 2000 may be indium phosphide (InP), sapphire, gallium nitride (GaN), or silicon carbide (SiC), etc.

接著,對前述晶片2實施蝕刻程序,以蝕刻去除部分的第一半導體疊層2020以及部分的活性疊層2040,從而形成複數個柱狀結構P,並暴露出第二半導體疊層2060之端面2061。至此,各柱狀結構P包含一第一半導體結構202及一活性結構204,且具有上表面P1及第一側表面P2,第一側表面P2連接上表面P1及端面2061,如第2B圖所示。 Next, an etching process is performed on the aforementioned chip 2 to etch away a portion of the first semiconductor stack 2020 and a portion of the active stack 2040, thereby forming a plurality of columnar structures P and exposing the end surface 2061 of the second semiconductor stack 2060. Thus, each columnar structure P includes a first semiconductor structure 202 and an active structure 204, and has an upper surface P1 and a first side surface P2, and the first side surface P2 connects the upper surface P1 and the end surface 2061, as shown in FIG. 2B.

接著,於各柱狀結構P中形成電流侷限層205,從而形成如第2C圖所示之結構。在本實施例中,係於各第一半導體結構202和各活性結構204之間形成電流侷限層205,各電流侷限層205包含電流限制區2051及電流限制區2051所環繞之電流導通區2052。電流侷限層205的形成方法可以是透過氧化製程以將預定形成電流限制區2051的區域產生材料氧化。舉例來說,第一半導體 結構202包含複數個不同折射率的高鋁含量的AlGaAs層及低鋁含量的AlGaAs層交互週期性堆疊,且活性結構204、第一半導體結構202及第二半導體結構206的材料皆包含鋁。第一半導體結構202中之其中一層之鋁含量大於97%(定義為電流侷限層205)且大於活性結構204、第一半導體結構202及第二半導體結構206的鋁含量。由於電流侷限層205的鋁含量大於活性結構204、第一半導體結構202及第二半導體結構206的鋁含量,在進行氧化製程後,僅有電流侷限層205明顯被氧化,進而形成具有低導電率的電流限制區2051。或者,可透過離子佈植(ion implant)製程在複數個柱狀結構P中形成低導電率的電流限制區2051,並藉由光罩同時定義上述的電流導通區2052。離子佈植可以是藉由在預定形成電流限制區2051的區域佈植氫離子(H+)、氦離子(He+)或氬離子(Ar+)等來實現,電流限制區2051的離子濃度大於電流導通區2052,使電流限制區2051具有較低的導電率。於另一實施例中,氧化製程與離子佈植製程可同時被用於複數個柱狀結構P中,例如,有些柱狀結構P中的電流限制區2051是用離子佈植製程來形成,另一些柱狀結構P中的電流限制區2051是用氧化製程來形成。或者,有些柱狀結構P具有透過離子佈植製程形成的電流限制區,同時也具有透過氧化製程形成的電流限制區(圖未示)。 Next, a current confining layer 205 is formed in each columnar structure P, thereby forming a structure as shown in FIG. 2C. In this embodiment, the current confining layer 205 is formed between each first semiconductor structure 202 and each active structure 204, and each current confining layer 205 includes a current confining region 2051 and a current conducting region 2052 surrounded by the current confining region 2051. The current confining layer 205 can be formed by oxidizing a material generated in a region where the current confining region 2051 is to be formed through an oxidation process. For example, the first semiconductor structure 202 includes a plurality of AlGaAs layers with high aluminum content and AlGaAs layers with low aluminum content having different refractive indices that are alternately stacked periodically, and the materials of the active structure 204, the first semiconductor structure 202, and the second semiconductor structure 206 all include aluminum. The aluminum content of one layer in the first semiconductor structure 202 is greater than 97% (defined as the current confining layer 205) and greater than the aluminum content of the active structure 204, the first semiconductor structure 202, and the second semiconductor structure 206. Since the aluminum content of the current confining layer 205 is greater than the aluminum content of the active structure 204, the first semiconductor structure 202, and the second semiconductor structure 206, after the oxidation process, only the current confining layer 205 is obviously oxidized, thereby forming a current confining region 2051 with low conductivity. Alternatively, the current confining region 2051 with low conductivity can be formed in a plurality of columnar structures P through an ion implantation process, and the above-mentioned current conduction region 2052 can be defined at the same time through a mask. Ion implantation can be achieved by implanting hydrogen ions (H + ), helium ions (He + ), or argon ions (Ar + ) in the area where the current limiting region 2051 is predetermined to be formed. The ion concentration of the current limiting region 2051 is greater than that of the current conduction region 2052, so that the current limiting region 2051 has a lower conductivity. In another embodiment, the oxidation process and the ion implantation process can be used simultaneously in a plurality of columnar structures P. For example, the current limiting region 2051 in some columnar structures P is formed by the ion implantation process, and the current limiting region 2051 in other columnar structures P is formed by the oxidation process. Alternatively, some columnar structures P have a current limiting region formed by an ion implantation process and also have a current limiting region formed by an oxidation process (not shown).

如第2D圖所示,形成絕緣層32覆蓋於柱狀結構P之第一側表面P2、第二半導體結構206及部分的上表面P1。絕緣層32係形成有第一開口322,以暴露出部分的上表面P1。第一開口322之上視形狀可以為例如圓形、橢圓形、正方形、不規則形狀等。於本實施例中,由上視觀之,第一開口322的形狀為圓環狀(併參下述關於第3B圖之說明),但不以此為限。在本實施例中,絕緣層32具有複數個第一開口322,各第一開口322位於各柱狀結構P之各上表 面P1上。在另一實施例中,各柱狀結構P的各上表面P1上具有複數個第一開口322。 As shown in FIG. 2D, an insulating layer 32 is formed to cover the first side surface P2 of the columnar structure P, the second semiconductor structure 206 and a portion of the upper surface P1. The insulating layer 32 is formed with a first opening 322 to expose a portion of the upper surface P1. The top view shape of the first opening 322 can be, for example, circular, elliptical, square, irregular, etc. In this embodiment, the shape of the first opening 322 is a circular ring when viewed from above (see the following description of FIG. 3B), but it is not limited to this. In this embodiment, the insulating layer 32 has a plurality of first openings 322, and each first opening 322 is located on each upper surface P1 of each columnar structure P. In another embodiment, each upper surface P1 of each columnar structure P has a plurality of first openings 322.

如第2E圖所示,於絕緣層32上形成金屬連接層34,所述金屬連接層34係覆蓋絕緣層32並填充至第一開口322中,藉此與第一半導體結構202電性連接。金屬連接層34具有一第二開口342在柱狀結構P的上表面P1側,從而暴露出下方之絕緣層32,使得活性結構204產生的光線可由第二開口342射出雷射元件100。金屬連接層34的第二開口342之上視形狀可以為例如圓形、橢圓形、正方形、不規則形狀等。於本實施例中,由上視觀之,第二開口342的形狀為圓形(併參下述關於第3C圖之說明),但不以此為限。在本實施例中,金屬連接層34具有複數個第二開口342,且各第二開口342大致位於各柱狀結構P之上表面P1的中心位置。在另一實施例中,各柱狀結構P的各上表面P1上具有複數個第二開口342。 As shown in FIG. 2E , a metal connection layer 34 is formed on the insulating layer 32. The metal connection layer 34 covers the insulating layer 32 and fills the first opening 322, thereby being electrically connected to the first semiconductor structure 202. The metal connection layer 34 has a second opening 342 on the upper surface P1 side of the columnar structure P, thereby exposing the insulating layer 32 below, so that the light generated by the active structure 204 can be emitted from the laser device 100 through the second opening 342. The second opening 342 of the metal connection layer 34 can be, for example, circular, elliptical, square, irregular, etc. when viewed from above. In this embodiment, the shape of the second opening 342 is circular when viewed from above (see the description of FIG. 3C below), but the invention is not limited thereto. In this embodiment, the metal connection layer 34 has a plurality of second openings 342, and each second opening 342 is approximately located at the center of the upper surface P1 of each columnar structure P. In another embodiment, each upper surface P1 of each columnar structure P has a plurality of second openings 342.

如第2F圖所示,藉由黏合層40將柱狀結構P1及第二半導體疊層2060接合至永久基板10。本實施例的永久基板10為對活性結構204發光具有高透光率的材料,如透光率大於80%之藍寶石。接合至永久基板10後,第一凸出部341a及第二凸出部341b較第一半導體結構202遠離永久基板10。接著,移除位於第二半導體疊層2060側之成長基板2000,形成如第2G圖所示之結構。 As shown in FIG. 2F, the columnar structure P1 and the second semiconductor stack 2060 are bonded to the permanent substrate 10 by the adhesive layer 40. The permanent substrate 10 of this embodiment is a material with high transmittance for the light emitted by the active structure 204, such as sapphire with a transmittance greater than 80%. After being bonded to the permanent substrate 10, the first protrusion 341a and the second protrusion 341b are farther away from the permanent substrate 10 than the first semiconductor structure 202. Then, the growth substrate 2000 located on the side of the second semiconductor stack 2060 is removed to form a structure as shown in FIG. 2G.

如第2H圖所示,接著,於去除成長基板2000後所暴露出的第二半導體疊層2060上形成一金屬連接層50,且由剖視觀之,金屬連接層50的寬度W1小於第二半導體疊層2060的寬度以暴露一部份的第二半導體疊層2060。金屬連接層50的寬度W1亦小於永久基板10的寬度W2。 As shown in FIG. 2H, a metal connection layer 50 is then formed on the second semiconductor stack 2060 exposed after the growth substrate 2000 is removed, and from a cross-sectional view, the width W1 of the metal connection layer 50 is smaller than the width of the second semiconductor stack 2060 to expose a portion of the second semiconductor stack 2060. The width W1 of the metal connection layer 50 is also smaller than the width W2 of the permanent substrate 10.

如第2I圖所示,接著實施蝕刻程序,移除第二半導體疊層2060的周圍區域,例如靠近永久基板10之第一邊界C1及第二邊界C2的第二半導體疊層2060,以形成第二半導體結構206。第二半導體結構206為凸出於金屬連接層34之一高台。複數個柱狀結構P具有靠近第一邊界C1之一第一邊緣E1,第二半導體結構206具有靠近第一邊界C1之第一側邊S11,且在圖中X軸之方向,第一側邊S11較該第一邊緣E1靠近該第一邊界C1。此外,金屬連接層50具有一側面係較第一邊緣E1靠近該第一邊界C1,更者,金屬連接層50的所有側面較複數個柱狀結構P之邊緣靠近邊界。換句話說,金屬連接層50覆蓋的所有柱狀結構P1。在另一實施例中,金屬連接層50的所有側面較複數個柱狀結構P之邊緣遠離邊界,換言之,金屬連接層50僅覆蓋部分的柱狀結構P1。 As shown in FIG. 2I , an etching process is then performed to remove the surrounding area of the second semiconductor stack 2060, such as the second semiconductor stack 2060 near the first boundary C1 and the second boundary C2 of the permanent substrate 10, to form a second semiconductor structure 206. The second semiconductor structure 206 is a platform protruding from the metal connection layer 34. The plurality of columnar structures P have a first edge E1 near the first boundary C1, and the second semiconductor structure 206 has a first side S11 near the first boundary C1, and in the direction of the X-axis in the figure, the first side S11 is closer to the first boundary C1 than the first edge E1. In addition, the metal connection layer 50 has a side surface that is closer to the first boundary C1 than the first edge E1, and moreover, all sides of the metal connection layer 50 are closer to the boundary than the edges of the plurality of columnar structures P. In other words, the metal connection layer 50 covers all the columnar structures P1. In another embodiment, all sides of the metal connection layer 50 are farther from the boundary than the edges of the plurality of columnar structures P, in other words, the metal connection layer 50 only covers part of the columnar structure P1.

除了朝向永久基板10的端面2061外,第二半導體結構206還包含下表面2062遠離永久基板10且相對應端面2061,第一側邊S11及第二側邊S12連接端面2061及下表面2062。 In addition to the end surface 2061 facing the permanent substrate 10, the second semiconductor structure 206 also includes a lower surface 2062 away from the permanent substrate 10 and corresponding to the end surface 2061, and a first side S11 and a second side S12 connecting the end surface 2061 and the lower surface 2062.

如第2J圖所示,於第二半導體結構206上形成絕緣層60,覆蓋第一側邊S11、第二側邊S12、部分的下表面2062以及部分金屬連接層50。接著,移除位於金屬連接層34的周圍區域上的部份絕緣層32以及絕緣層60以形成第一和第二開口部602a、602b,並將第一和第二凸出部341a、341b暴露出來。絕緣層60於金屬連接層50上形成有第三開口部603,以暴露出部分的金屬連接層50。 As shown in FIG. 2J, an insulating layer 60 is formed on the second semiconductor structure 206, covering the first side S11, the second side S12, a portion of the lower surface 2062 and a portion of the metal connection layer 50. Then, a portion of the insulating layer 32 and the insulating layer 60 located on the surrounding area of the metal connection layer 34 are removed to form the first and second openings 602a, 602b, and the first and second protrusions 341a, 341b are exposed. The insulating layer 60 is formed with a third opening 603 on the metal connection layer 50 to expose a portion of the metal connection layer 50.

接著,如第2K圖所示,於絕緣層60上形成一第一電極702及一第二電極704,第一電極702通過第一開口部602a和第二開口部602b直接接觸並電連接於金屬連接層34,第二電極704通過第三開口部603連接金屬連接層50。 Next, as shown in FIG. 2K, a first electrode 702 and a second electrode 704 are formed on the insulating layer 60. The first electrode 702 directly contacts and is electrically connected to the metal connection layer 34 through the first opening 602a and the second opening 602b, and the second electrode 704 is connected to the metal connection layer 50 through the third opening 603.

接著,如第2L圖所示,形成絕緣層80覆蓋於部分之第一電極702及部分之第二電極704。絕緣層80具有第三開口802以暴露第一電極702及第四開口804以暴露第二電極704。 Next, as shown in FIG. 2L, an insulating layer 80 is formed to cover a portion of the first electrode 702 and a portion of the second electrode 704. The insulating layer 80 has a third opening 802 to expose the first electrode 702 and a fourth opening 804 to expose the second electrode 704.

之後,於絕緣層80上形成第一金屬結構902及第二金屬結構904,第一金屬結構902透過第三開口802與第一電極702電性連接,第二金屬結構904則透過第四開口804與第二電極704電性連接,以形成如第1A圖所示之雷射元件100。部分的第一金屬結構902之表面與第二金屬結構904之表面實質上具有相同的水平高度,以利於後續使用焊料將雷射元件100連接至外界電路。 Afterwards, a first metal structure 902 and a second metal structure 904 are formed on the insulating layer 80. The first metal structure 902 is electrically connected to the first electrode 702 through the third opening 802, and the second metal structure 904 is electrically connected to the second electrode 704 through the fourth opening 804, so as to form the laser element 100 as shown in FIG. 1A. The surface of the first metal structure 902 and the surface of the second metal structure 904 are substantially at the same level, so as to facilitate the subsequent use of solder to connect the laser element 100 to an external circuit.

第3A圖至第3I圖為本申請案之一實施例的雷射元件製作流程的各步驟中所完成之結構的上視或下視示意圖。第3A圖至第3C圖為由第一半導體結構202朝向活性結構204的方向觀之的上視圖,第3D圖至第3I圖為由活性結構204朝向第一半導體結構202的方向觀之的下視圖。 Figures 3A to 3I are schematic top or bottom views of the structures completed in each step of the laser device manufacturing process of one embodiment of the present application. Figures 3A to 3C are top views viewed from the first semiconductor structure 202 toward the active structure 204, and Figures 3D to 3I are bottom views viewed from the active structure 204 toward the first semiconductor structure 202.

第3A圖為對照第2B圖所示的結構的上視圖,於本實施例中,柱狀結構P的個數為621個,且複數個柱狀結構P以最密堆積的方式規則排列為一陣列。 FIG. 3A is a top view of the structure shown in FIG. 2B. In this embodiment, the number of columnar structures P is 621, and the plurality of columnar structures P are regularly arranged in an array in a densest stacking manner.

第3B圖為對照第2D圖所示的結構的上視圖及其部分放大圖,絕緣層32係覆蓋於複數個柱狀結構P上,且具有複數個第一開口322,藉此各別將複數個柱狀結構P的上表面P1暴露出來。 FIG. 3B is a top view and a partially enlarged view of the structure shown in FIG. 2D. The insulating layer 32 covers a plurality of columnar structures P and has a plurality of first openings 322, thereby exposing the upper surfaces P1 of the plurality of columnar structures P respectively.

第3C圖為對照第2E圖所示的結構的上視圖,金屬連接層34覆蓋於絕緣層32上,且具有複數個第二開口342,第二開口342對應地位於複數柱狀結構P的上表面P1上,從而形成雷射元件100的複數個出光孔。金屬連接層34的 邊緣具有四個標記結構344,且藉由對應的標記結構344之間的連線L1、L2可定義出雷射元件100的中心位置O。 FIG. 3C is a top view of the structure shown in FIG. 2E. The metal connection layer 34 covers the insulating layer 32 and has a plurality of second openings 342. The second openings 342 are correspondingly located on the upper surface P1 of the plurality of columnar structures P, thereby forming a plurality of light-emitting holes of the laser element 100. The edge of the metal connection layer 34 has four marking structures 344, and the center position O of the laser element 100 can be defined by the connecting lines L1 and L2 between the corresponding marking structures 344.

第3D圖為對照第2H圖所示的結構的下視圖,在第二半導體疊層2060上形成金屬連接層50。 FIG. 3D is a bottom view of the structure shown in FIG. 2H, where a metal connection layer 50 is formed on the second semiconductor stack 2060.

第3E圖為對照第2I圖所示的結構的下視圖。移除第二半導體疊層2060的周圍區域,形成第二半導體結構206。 FIG. 3E is a bottom view of the structure shown in FIG. 2I. The surrounding area of the second semiconductor stack 2060 is removed to form the second semiconductor structure 206.

第3F圖為對照第2J圖所示的結構的下視圖。如第3F圖所示,形成絕緣層60,接著移除部分的絕緣層60以及絕緣層32以形成第一開口部602a和第二開口部602b,並暴露出金屬連接層34的第一凸出部341a及第二凸出部341b。絕緣層60另具有第三開口部603以暴露出金屬連接層50。在此實施例中,第一開口部602a和第二開口部602b的數量為複數個(例如各有兩個),並且圍繞在第二半導體結構206的周圍。第一開口部602a和第二開口部602b的形狀為L型。相鄰的開口部之間係隔有一第一間距G1,其對應於金屬連接層34的標記結構344。在其他實施例中,如第4圖所示,絕緣層60之開口部602a、602b可互相連接(即相鄰的第一開口部602a及第二開口部602b之間、相鄰的第一開口部602a之間及相鄰的第二開口部602b之間不具有間距G1),且形成環繞於雷射元件100的周圍區域之一環狀配置。換言之,絕緣層60僅具有一個開口部,其形狀為口型。 FIG. 3F is a bottom view of the structure shown in FIG. 2J. As shown in FIG. 3F, an insulating layer 60 is formed, and then a portion of the insulating layer 60 and the insulating layer 32 is removed to form a first opening 602a and a second opening 602b, and expose the first protrusion 341a and the second protrusion 341b of the metal connection layer 34. The insulating layer 60 also has a third opening 603 to expose the metal connection layer 50. In this embodiment, the number of the first opening 602a and the second opening 602b is plural (for example, two each), and surrounds the second semiconductor structure 206. The shape of the first opening 602a and the second opening 602b is L-shaped. There is a first spacing G1 between adjacent openings, which corresponds to the marking structure 344 of the metal connection layer 34. In other embodiments, as shown in FIG. 4, the openings 602a and 602b of the insulating layer 60 can be connected to each other (i.e., there is no spacing G1 between adjacent first openings 602a and second openings 602b, and between adjacent first openings 602a and adjacent second openings 602b), and form an annular configuration surrounding the laser element 100. In other words, the insulating layer 60 has only one opening, and its shape is a mouth.

第3G圖為對照第2K圖所示的結構的下視圖,第一電極702及第二電極704各位於金屬連接層34及金屬連接層50上。在本實施例中,第一電極702包含一本體部7021及連接於本體部7021的一環繞部7022,且第一電極702的上視面積大於第二電極704的上視面積。第3G圖之虛線代表本體部7021及環繞 部7022之間的邊界。本體部7021之形狀為方形,且環繞部7022之形狀為口型。如第4圖所示,當絕緣層60僅具有一個開口部時,環繞部7022與開口部具有相同的形狀(例如:口型),環繞部7022完全覆蓋開口部且具有一上視面積大於開口部之一上視面積。環繞部7022覆蓋第一側邊S11及第二側邊S12。 FIG. 3G is a bottom view of the structure shown in FIG. 2K, where the first electrode 702 and the second electrode 704 are respectively disposed on the metal connection layer 34 and the metal connection layer 50. In this embodiment, the first electrode 702 includes a main body 7021 and a surrounding portion 7022 connected to the main body 7021, and the top view area of the first electrode 702 is larger than the top view area of the second electrode 704. The dotted line in FIG. 3G represents the boundary between the main body 7021 and the surrounding portion 7022. The shape of the main body 7021 is a square, and the shape of the surrounding portion 7022 is a mouth shape. As shown in FIG. 4, when the insulating layer 60 has only one opening, the surrounding portion 7022 has the same shape as the opening (e.g., mouth shape), and the surrounding portion 7022 completely covers the opening and has a top-view area larger than a top-view area of the opening. The surrounding portion 7022 covers the first side S11 and the second side S12.

請參照第2K圖及第3G圖所示,環繞部7022環繞第二電極704且透過第一和第二開口部602a、602b與金屬連接層34接觸,藉此電性連接第一半導體結構202及第一電極702;第二電極704透過第三開口部603與金屬連接層50接觸,藉此電性連接第二半導體結構206及第二電極704。此外,本體部7021與第二電極704具有一第二間距G2,環繞部7022與第二電極704具有一第三間距G3,第三間距G3小於第二間距G2。 Please refer to FIG. 2K and FIG. 3G. The surrounding portion 7022 surrounds the second electrode 704 and contacts the metal connection layer 34 through the first and second openings 602a and 602b, thereby electrically connecting the first semiconductor structure 202 and the first electrode 702; the second electrode 704 contacts the metal connection layer 50 through the third opening 603, thereby electrically connecting the second semiconductor structure 206 and the second electrode 704. In addition, the body 7021 and the second electrode 704 have a second distance G2, and the surrounding portion 7022 and the second electrode 704 have a third distance G3, and the third distance G3 is smaller than the second distance G2.

第3H圖為對照第2L圖所示的結構的下視圖,絕緣層80位於第一電極702及第二電極704上,絕緣層80具有第三開口802及第四開口804,藉此分別暴露第一電極702之本體部7021及第二電極704。 FIG. 3H is a bottom view of the structure shown in FIG. 2L. The insulating layer 80 is located on the first electrode 702 and the second electrode 704. The insulating layer 80 has a third opening 802 and a fourth opening 804, thereby exposing the main body 7021 of the first electrode 702 and the second electrode 704, respectively.

第3I圖為對照第1A圖所示結構的下視圖,請參照第1A圖及第3I圖,此步驟係形成第一金屬結構902及第二金屬結構904,且第一金屬結構902透過第三開口802連接第一電極702,且第二金屬結構904透過第四開口804連接第二電極704。 FIG. 3I is a bottom view of the structure shown in FIG. 1A. Please refer to FIG. 1A and FIG. 3I. This step forms a first metal structure 902 and a second metal structure 904. The first metal structure 902 is connected to the first electrode 702 through the third opening 802, and the second metal structure 904 is connected to the second electrode 704 through the fourth opening 804.

本發明之一實施例的雷射元件100屬覆晶式雷射元件,其可在短脈衝、高電流的條件下操作。相較於傳統垂直型雷射元件採電極形成於永久基板的相對兩側,並作金屬打線連接的電極架構,本實施例之雷射元件100無須額外的金屬打線即可在高電流條件下操作,進以提高雷射元件100之發光亮度,並且增加感測距離(例如達10公尺)。同時,由於本發明之雷射元件100 無須透過設置額外的金屬打線與外界電路連接,可改善寄生電容的問題,以利於高頻操作時具有快速的反應時間。此外,本發明之雷射元件100亦具有較快的反應速度,例如訊號上升時間(rise time,Tr)及訊號下降時間(fall time,Tf)皆較短,並可強化其可靠度。 The laser device 100 of one embodiment of the present invention is a flip-chip laser device, which can operate under short pulse and high current conditions. Compared with the electrode structure of the traditional vertical laser device, which has electrodes formed on opposite sides of the permanent substrate and connected by metal wire bonding, the laser device 100 of this embodiment can operate under high current conditions without additional metal wire bonding, thereby improving the light emission brightness of the laser device 100 and increasing the sensing distance (for example, up to 10 meters). At the same time, since the laser device 100 of the present invention does not need to be connected to the external circuit by setting additional metal wire bonding, the problem of parasitic capacitance can be improved, so as to have a fast response time during high-frequency operation. In addition, the laser device 100 of the present invention also has a faster response speed, for example, the signal rise time (T r ) and signal fall time (T f ) are both shorter, and its reliability can be enhanced.

又如第1A圖所示,本發明一實施例中之第一電極702高度H實質上主要為對應第二半導體結構206的磊晶層厚度,第一電極702的高度H小於8.5μm,例如為5μm~8μm,或者為5.5μm~7μm。第一電極702的高度於上述範圍可有效避免第一電極702的材料在製程過程中,因側壁披覆性不佳而造成電性失效的風險,並且亦能縮短雷射元件100的電流路徑以利電流傳送效率。 As shown in FIG. 1A, the height H of the first electrode 702 in an embodiment of the present invention is essentially mainly corresponding to the thickness of the epitaxial layer of the second semiconductor structure 206. The height H of the first electrode 702 is less than 8.5 μm, for example, 5 μm to 8 μm, or 5.5 μm to 7 μm. The height of the first electrode 702 within the above range can effectively avoid the risk of electrical failure of the material of the first electrode 702 due to poor sidewall coverage during the manufacturing process, and can also shorten the current path of the laser element 100 to facilitate current transmission efficiency.

此外,本發明一實施例之雷射元件100的第一電極702及第二電極704皆進一步設有絕緣層80與第一、二金屬結構902、904,進而避免雷射元件100在大電流應用下,其焊料(如:金屬錫膏)容易因高熱而與電極材料(例如金)形成共晶結構,進而影響電極的效能。因此,本發明之雷射元件100之可靠度能夠有效提升。 In addition, the first electrode 702 and the second electrode 704 of the laser element 100 of an embodiment of the present invention are further provided with an insulating layer 80 and first and second metal structures 902 and 904, thereby preventing the laser element 100 from easily forming a eutectic structure with the electrode material (such as gold) due to high heat when the laser element 100 is used at a large current, thereby affecting the performance of the electrode. Therefore, the reliability of the laser element 100 of the present invention can be effectively improved.

更甚者,根據本發明一實施例之雷射元件100具有優良的結構對稱性,其有利於後續封裝程序的進行。具體而言,本發明之雷射元件100中,第二半導體結構206位於雷射元件100的實質中心位置,使第一金屬結構902及第二金屬結構904亦可配置於雷射元件100之對稱位置上,故有利於後續進行封裝程序之結構設計,並提高有效區域面積。 Furthermore, the laser device 100 according to an embodiment of the present invention has excellent structural symmetry, which is beneficial to the subsequent packaging process. Specifically, in the laser device 100 of the present invention, the second semiconductor structure 206 is located at the substantial center of the laser device 100, so that the first metal structure 902 and the second metal structure 904 can also be arranged at symmetrical positions of the laser device 100, which is beneficial to the structural design of the subsequent packaging process and increases the effective area.

請參照第5圖所示,本發明一實施例之雷射裝置300包含雷射元件100、光學陣列B1及電路載板B2。雷射元件100位於電路載板B2上,且電性連接於電路載板B2的第一電極墊B21及第二電極墊B22,詳言之,雷射元件100 的第一金屬結構902及第二金屬結構904可以透過焊料(solder,圖未示)電性連接至第一電極墊B21及第二電極墊B22,且光學陣列B1包含多個光學結構B11。在一些實施例中,光學陣列B1可以為微米鏡陣列(microlens array),光學結構B11可為規則排列或非規則排列,用以將由雷射元件100射出的光展開,以具有較大的視野(Field of View,FOV)。上述雷射元件100、光學陣列B1及電路載板B2可以透過支架B3整合在一起。本發明之實施例中所述的雷射元件100具有高散熱效率,特別適用於飛時測距(ToF:Time of Flight)的3D感測裝置或泛光照明器(Flood illuminator)等,惟雷射元件100的應用領域並不限於此。 Referring to FIG. 5 , a laser device 300 of an embodiment of the present invention includes a laser element 100, an optical array B1, and a circuit board B2. The laser element 100 is located on the circuit board B2 and is electrically connected to a first electrode pad B21 and a second electrode pad B22 of the circuit board B2. Specifically, the first metal structure 902 and the second metal structure 904 of the laser element 100 can be electrically connected to the first electrode pad B21 and the second electrode pad B22 via solder (not shown), and the optical array B1 includes a plurality of optical structures B11. In some embodiments, the optical array B1 can be a microlens array, and the optical structure B11 can be arranged regularly or irregularly to expand the light emitted by the laser element 100 to have a larger field of view (FOV). The laser element 100, the optical array B1 and the circuit board B2 can be integrated together through the bracket B3. The laser element 100 described in the embodiment of the present invention has high heat dissipation efficiency and is particularly suitable for 3D sensing devices or flood illuminators of time of flight (ToF), but the application field of the laser element 100 is not limited to this.

需注意的是,本發明所提之前述實施例係僅用於例示說明本發明,而非用於限制本發明之範圍。熟習本發明所屬領域技藝之人對本發明所進行之諸般修飾和變化皆不脫離本發明之精神與範疇。不同實施例中相同或相似的構件、或不同實施例中以相同元件符號表示的構件係具有相同的物理或化學特性。此外,在適當的情況下,本發明之上述實施例係可互相組合或替換,而非僅限於上文所描述的特定實施例。在一實施例中所描述的特定構件與其他構件的連接關係亦可應用於其他實施例中,其皆落於本發明如附申請專利範圍之範疇。 It should be noted that the aforementioned embodiments of the present invention are only used to illustrate the present invention, and are not used to limit the scope of the present invention. All modifications and changes made to the present invention by those skilled in the art of the field to which the present invention belongs do not deviate from the spirit and scope of the present invention. The same or similar components in different embodiments, or components represented by the same element symbols in different embodiments have the same physical or chemical properties. In addition, under appropriate circumstances, the above embodiments of the present invention can be combined or replaced with each other, rather than being limited to the specific embodiments described above. The connection relationship between a specific component described in one embodiment and other components can also be applied to other embodiments, which all fall within the scope of the present invention as attached patent application scope.

10:永久基板 10: Permanent substrate

100:雷射元件 100: Laser element

20:磊晶結構 20: Epitaxial structure

202:第一半導體結構 202: First semiconductor structure

204:活性結構 204: Active structure

205:電流侷限層 205: Current limiting layer

2051:電流限制區 2051: Current limit area

2052:電流導通區 2052: Current conduction area

206:第二半導體結構 206: Second semiconductor structure

2061:端面 2061: End face

2062:下表面 2062: Lower surface

32:絕緣層 32: Insulation layer

322:第一開口 322: First opening

34:金屬連接層 34: Metal connection layer

341a:第一凸出部 341a: first protrusion

341b:第二凸出部 341b: Second protrusion

342:第二開口 342: Second opening

40:黏合層 40: Adhesive layer

50:金屬連接層 50:Metal connection layer

60:絕緣層 60: Insulation layer

601:側部 601: Side

602a:第一開口部 602a: first opening

602b:第二開口部 602b: Second opening

603:第三開口部 603: The third opening

702:第一電極 702: First electrode

704:第二電極 704: Second electrode

80:絕緣層 80: Insulation layer

802:第三開口 802: The third opening

804:第四開口 804: The fourth opening

902:第一金屬結構 902: First metal structure

9021:中間層 9021: Middle layer

9022:結合層 9022: Binding layer

904:第二金屬結構 904: Second metal structure

9041:中間層 9041:Middle layer

9042:結合層 9042: Binding layer

P:柱狀結構 P: Columnar structure

P1:上表面 P1: Upper surface

P2:第一側表面 P2: First side surface

H:電極高度 H: Electrode height

101:抗反射結構 101: Anti-reflection structure

Claims (10)

一種半導體元件,自其剖面觀之,包括:一第一導電型態半導體結構,具有一第一表面、一第二表面相對於該第一表面、以及位於該第一表面及該第二表面之間的一第一側面及一第二側面;複數個半導體柱狀結構,位於該第一表面上,且該複數個半導體柱狀結構包含一第一柱狀結構鄰近該第一側面、以及一第二柱狀結構鄰近該第二側面;一連接層,位於該些半導體柱狀結構上且延伸分布至該第一表面,且該連接層具有一第一凸出部延伸至超出該第一側面、以及一第二凸出部延伸至超出該第二側面;一第一電極,位於該第二表面且連接該第一凸出部;以及一第二電極,位於該第二表面。 A semiconductor element, viewed from its cross section, comprises: a first conductive type semiconductor structure having a first surface, a second surface opposite to the first surface, and a first side and a second side between the first surface and the second surface; a plurality of semiconductor columnar structures located on the first surface, and the plurality of semiconductor columnar structures include a first columnar structure adjacent to the first side and a second columnar structure adjacent to the second side; a connection layer located on the semiconductor columnar structures and extending to the first surface, and the connection layer has a first protrusion extending beyond the first side and a second protrusion extending beyond the second side; a first electrode located on the second surface and connected to the first protrusion; and a second electrode located on the second surface. 如申請專利範圍第1項所述之半導體元件,更包括一絕緣層位於該第一電極與該第一導電型態半導體結構之間,且該絕緣層具有多個開口部。 The semiconductor element as described in item 1 of the patent application scope further includes an insulating layer located between the first electrode and the first conductive type semiconductor structure, and the insulating layer has a plurality of openings. 如申請專利範圍第2項所述之半導體元件,其中,該第一側面位於其中一個該開口部與該第一柱狀結構之間,該第一電極經過該其中一個該開口部連接該第一凸出部。 As described in item 2 of the patent application scope, the first side surface is located between one of the openings and the first columnar structure, and the first electrode is connected to the first protrusion through one of the openings. 如申請專利範圍第2項所述之半導體元件,其中,該第二側面位於其中一個該開口部與該第二柱狀結構之間。 A semiconductor device as described in item 2 of the patent application, wherein the second side surface is located between one of the openings and the second columnar structure. 如申請專利範圍第4項所述之半導體元件,其中,該第一電極透過該其中一個該開口部連接該第二凸出部。 A semiconductor device as described in item 4 of the patent application, wherein the first electrode is connected to the second protrusion through one of the openings. 如申請專利範圍第1項所述之半導體元件,更包含一永久基板位於該第一表面上、以及一黏合層位於該永久基板與該複數個半導體柱狀結構之間。 The semiconductor device as described in item 1 of the patent application further comprises a permanent substrate located on the first surface, and an adhesive layer located between the permanent substrate and the plurality of semiconductor columnar structures. 如申請專利範圍第1項所述之半導體元件,更包含一第一金屬結構位於該第一電極與該第一導電型態半導體結構之間,該第一金屬結構至少包含一元素,而該第一電極未包含該元素。 The semiconductor element as described in item 1 of the patent application scope further includes a first metal structure located between the first electrode and the first conductive type semiconductor structure, the first metal structure includes at least one element, and the first electrode does not include the element. 如申請專利範圍第1項所述之半導體元件,更包含一第二金屬結構位於該第二電極與該第一導電型態半導體結構之間,該第二金屬結構至少包含一元素,而該第二電極未包含該元素。 The semiconductor element as described in item 1 of the patent application further includes a second metal structure located between the second electrode and the first conductive type semiconductor structure, the second metal structure includes at least one element, and the second electrode does not include the element. 如申請專利範圍第1項所述之半導體元件,其中,該複數個半導體柱狀結構位於該第一導電型態半導體結構及該連接層之間。 A semiconductor device as described in item 1 of the patent application, wherein the plurality of semiconductor columnar structures are located between the first conductive type semiconductor structure and the connection layer. 一種半導體裝置,包含:一載板;以及如申請專利範圍第1項至第8項中任一項所述之半導體元件,位於該載板上。 A semiconductor device comprises: a carrier; and a semiconductor element as described in any one of items 1 to 8 of the patent application scope, located on the carrier.
TW111149462A 2019-04-30 Laser device and semiconductor device having the same TWI838034B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111149462A TWI838034B (en) 2019-04-30 Laser device and semiconductor device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111149462A TWI838034B (en) 2019-04-30 Laser device and semiconductor device having the same

Publications (2)

Publication Number Publication Date
TW202322502A TW202322502A (en) 2023-06-01
TWI838034B true TWI838034B (en) 2024-04-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035322A1 (en) 2016-08-17 2018-02-22 The Regents Of The University Of California Contact architectures for tunnel junction devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035322A1 (en) 2016-08-17 2018-02-22 The Regents Of The University Of California Contact architectures for tunnel junction devices

Similar Documents

Publication Publication Date Title
US11658269B2 (en) Light-emitting device
KR102606543B1 (en) Light-emitting device
US10559717B2 (en) Light-emitting device and manufacturing method thereof
US10361342B2 (en) Light-emitting device
US20230067254A1 (en) Semiconductor device
CN106711316B (en) Light emitting element
CN112349826A (en) Optoelectronic semiconductor device
TWI838034B (en) Laser device and semiconductor device having the same
TWI790622B (en) Laser device and semiconductor device having the same
TW202322502A (en) Laser device and semiconductor device having the same
TW202111967A (en) Light-emitting device
US20230155349A1 (en) Semiconductor light emitting device
TWI832922B (en) Semiconductor device
TWI838392B (en) Optoelectronic semiconductor device
TWI778917B (en) Semiconductor device
TWI797044B (en) Semiconductor device
TWI764528B (en) Light-emitting element and manufacturing method thereof
TW202018979A (en) Semiconductor device
TW202143513A (en) Semiconductor device
TW202339311A (en) Light-emitting device