TWI837701B - Boost converter for increasing output stability - Google Patents

Boost converter for increasing output stability Download PDF

Info

Publication number
TWI837701B
TWI837701B TW111121779A TW111121779A TWI837701B TW I837701 B TWI837701 B TW I837701B TW 111121779 A TW111121779 A TW 111121779A TW 111121779 A TW111121779 A TW 111121779A TW I837701 B TWI837701 B TW I837701B
Authority
TW
Taiwan
Prior art keywords
potential
coupled
output
diode
node
Prior art date
Application number
TW111121779A
Other languages
Chinese (zh)
Other versions
TW202349838A (en
Inventor
詹子增
Original Assignee
宏碁股份有限公司
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW111121779A priority Critical patent/TWI837701B/en
Publication of TW202349838A publication Critical patent/TW202349838A/en
Application granted granted Critical
Publication of TWI837701B publication Critical patent/TWI837701B/en

Links

Images

Abstract

A boost converter includes a bridge rectifier, a boost inductor, a power switch element, an output stage circuit, and a detection and control circuit. The bridge rectifier generates a rectified voltage according to a first input voltage and a second input voltage. The boost inductor receives the rectified voltage. An inductive current flows through the boost inductor. The power switch element selectively couples the boost inductor to a ground voltage according to a clock voltage. The output stage circuit is coupled to the boost inductor, and is configured to generate an output voltage. An output current flows through the output stage circuit. The detection and control circuit determines a current mode of the boost inductor according to the inductive current, and determines a load mode of the output stage circuit according to the output current. The detection and control circuit checks whether the load mode matches with the current mode, so as to generate the clock voltage.

Description

提高輸出穩定度之升壓轉換器Boost converter to improve output stability

本發明係關於一種升壓轉換器,特別係關於一種可提高輸出穩定度之升壓轉換器。The present invention relates to a boost converter, and more particularly to a boost converter capable of improving output stability.

在傳統升壓轉換器當中,若要達成小型化設計之目的,則必須將其操作頻率提高。然而,此種提高操作頻率之改良方法卻容易導致傳統升壓轉換器切換電流模式時產生誤動作,從而降低其輸出穩定度。有鑑於此,勢必要提出一種全新之解決方案,以克服先前技術所面臨之困境。In traditional boost converters, if the purpose of miniaturization is to be achieved, the operating frequency must be increased. However, this improved method of increasing the operating frequency can easily cause the traditional boost converter to malfunction when switching current modes, thereby reducing its output stability. In view of this, it is necessary to propose a new solution to overcome the difficulties faced by previous technologies.

在較佳實施例中,本發明提出一種提高輸出穩定度之升壓轉換器,包括:一橋式整流器,根據一第一輸入電位和一第二輸入電位來產生一整流電位;一升壓電感器,接收該整流電位,其中一電感電流係流經該升壓電感器;一功率切換器,根據一時脈電位來選擇性地將該升壓電感器耦接至一接地電位;一輸出級電路,耦接至該升壓電感器,並產生一輸出電位,其中一輸出電流係流經該輸出級電路;以及一偵測及控制電路,根據該電感電流來判斷該升壓電感器之一電流模式,並根據該輸出電流來判斷該輸出級電路之一負載模式;其中該偵測及控制電路更確認該負載模式是否與該電流模式互相匹配,並據以產生該時脈電位。In a preferred embodiment, the present invention provides a boost converter for improving output stability, comprising: a bridge rectifier, generating a rectified potential according to a first input potential and a second input potential; a boost inductor, receiving the rectified potential, wherein an inductor current flows through the boost inductor; a power switch, selectively coupling the boost inductor to a ground potential according to a clock potential; an output stage circuit; A circuit is provided, coupled to the boost inductor, and generates an output potential, wherein an output current flows through the output stage circuit; and a detection and control circuit determines a current mode of the boost inductor according to the inductor current, and determines a load mode of the output stage circuit according to the output current; wherein the detection and control circuit further confirms whether the load mode matches the current mode, and generates the clock potential accordingly.

為讓本發明之目的、特徵和優點能更明顯易懂,下文特舉出本發明之具體實施例,並配合所附圖式,作詳細說明如下。In order to make the purpose, features and advantages of the present invention more clearly understood, specific embodiments of the present invention are specifically listed below and described in detail with reference to the accompanying drawings.

在說明書及申請專利範圍當中使用了某些詞彙來指稱特定的元件。本領域技術人員應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本說明書及申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及申請專利範圍當中所提及的「包含」及「包括」一詞為開放式的用語,故應解釋成「包含但不僅限定於」。「大致」一詞則是指在可接受的誤差範圍內,本領域技術人員能夠在一定誤差範圍內解決所述技術問題,達到所述基本之技術效果。此外,「耦接」一詞在本說明書中包含任何直接及間接的電性連接手段。因此,若文中描述一第一裝置耦接至一第二裝置,則代表該第一裝置可直接電性連接至該第二裝置,或經由其它裝置或連接手段而間接地電性連接至該第二裝置。Certain terms are used in the specification and patent application to refer to specific components. Those skilled in the art should understand that hardware manufacturers may use different terms to refer to the same component. This specification and patent application do not use differences in names as a way to distinguish components, but use differences in the functions of components as the criterion for distinction. The words "include" and "including" mentioned throughout the specification and patent application are open terms and should be interpreted as "including but not limited to". The word "substantially" means that within an acceptable error range, those skilled in the art can solve the technical problem within a certain error range and achieve the basic technical effect. In addition, the word "coupled" in this specification includes any direct and indirect electrical connection means. Therefore, if a first device is described herein as being coupled to a second device, it means that the first device may be directly electrically connected to the second device, or may be indirectly electrically connected to the second device via other devices or connection means.

第1圖係顯示根據本發明一實施例所述之升壓轉換器100之示意圖。例如,升壓轉換器100可應用於桌上型電腦、筆記型電腦,或一體成形電腦。如第1圖所示,升壓轉換器100包括:一橋式整流器110、一升壓電感器LU、一功率切換器120、一輸出級電路130,以及一偵測及控制電路140。必須注意的是,雖然未顯示於第1圖中,但升壓轉換器100更可包括其他元件,例如:一穩壓器或(且)一負回授電路。FIG. 1 is a schematic diagram of a boost converter 100 according to an embodiment of the present invention. For example, the boost converter 100 may be applied to a desktop computer, a laptop computer, or an all-in-one computer. As shown in FIG. 1 , the boost converter 100 includes: a bridge rectifier 110, a boost inductor LU, a power switch 120, an output stage circuit 130, and a detection and control circuit 140. It should be noted that, although not shown in FIG. 1 , the boost converter 100 may further include other components, such as: a voltage regulator or (and) a negative feedback circuit.

橋式整流器110可根據一第一輸入電位VIN1和一第二輸入電位VIN2來產生一整流電位VR,其中第一輸入電位VIN1和第二輸入電位VIN2之間可形成具有任意頻率和任意振幅之一交流電壓。例如,交流電壓之頻率可約為50Hz或60Hz,而交流電壓之方均根值可約由90V至264V,但亦不僅限於此。升壓電感器LU可接收整流電位VR,其中一電感電流ILM可流經升壓電感器LU。功率切換器120可根據一時脈電位VA來選擇性地將升壓電感器LU耦接至一接地電位VSS(例如:0V)。例如,若時脈電位VA為一高邏輯位準(亦即,邏輯「1」),則功率切換器120可將升壓電感器LU耦接至接地電位VSS(亦即,功率切換器120可近似於一短路路徑);反之,若時脈電位VA為一低邏輯位準(亦即,邏輯「0」),則功率切換器120不會將升壓電感器LU耦接至接地電位VSS(亦即,功率切換器120可近似於一開路路徑)。輸出級電路130係耦接至升壓電感器LU,並可產生一輸出電位VOUT,其中一輸出電流IOUT可流經輸出級電路130。例如,輸出電位VOUT可為一直流電位,其電位位準可約為400V,但亦不僅限於此。偵測及控制電路140係分別耦接至升壓電感器LU和輸出級電路130。偵測及控制電路140可根據電感電流ILM來判斷升壓電感器LU之一電流模式,並可根據輸出電流IOUT來判斷輸出級電路130之一負載模式。另外,偵測及控制電路140還可確認輸出級電路130之負載模式是否與升壓電感器LU之電流模式互相匹配,並可據以產生及調整時脈電位VA。在此設計下,由於功率切換器120之時脈電位VA可回應於前述之電流模式和負載模式來進行動態調整,故升壓轉換器100發生模式切換錯誤之機率將可大幅降低,從而能有效改善其整體之輸出穩定度。The bridge rectifier 110 can generate a rectified potential VR according to a first input potential VIN1 and a second input potential VIN2, wherein an AC voltage with any frequency and any amplitude can be formed between the first input potential VIN1 and the second input potential VIN2. For example, the frequency of the AC voltage can be approximately 50 Hz or 60 Hz, and the RMS value of the AC voltage can be approximately from 90 V to 264 V, but is not limited thereto. The boost inductor LU can receive the rectified potential VR, wherein an inductor current ILM can flow through the boost inductor LU. The power switch 120 can selectively couple the boost inductor LU to a ground potential VSS (e.g., 0 V) according to a clock potential VA. For example, if the clock potential VA is a high logic level (i.e., logic "1"), the power switch 120 can couple the boost inductor LU to the ground potential VSS (i.e., the power switch 120 can be similar to a short circuit path); conversely, if the clock potential VA is a low logic level (i.e., logic "0"), the power switch 120 will not couple the boost inductor LU to the ground potential VSS (i.e., the power switch 120 can be similar to an open circuit path). The output stage circuit 130 is coupled to the boost inductor LU and can generate an output potential VOUT, wherein an output current IOUT can flow through the output stage circuit 130. For example, the output potential VOUT may be a DC potential, and its potential level may be approximately 400V, but is not limited thereto. The detection and control circuit 140 is coupled to the boost inductor LU and the output stage circuit 130, respectively. The detection and control circuit 140 may determine a current mode of the boost inductor LU according to the inductor current ILM, and may determine a load mode of the output stage circuit 130 according to the output current IOUT. In addition, the detection and control circuit 140 may also confirm whether the load mode of the output stage circuit 130 matches the current mode of the boost inductor LU, and may generate and adjust the clock potential VA accordingly. In this design, since the pulse potential VA of the power switch 120 can be dynamically adjusted in response to the current mode and load mode, the probability of mode switching errors in the boost converter 100 can be greatly reduced, thereby effectively improving its overall output stability.

以下實施例將介紹升壓轉換器100之詳細結構及操作方式。必須理解的是,這些圖式和敘述僅為舉例,而非用於限制本發明之範圍。The following embodiments will introduce the detailed structure and operation of the boost converter 100. It must be understood that these drawings and descriptions are only examples and are not intended to limit the scope of the present invention.

第2圖係顯示根據本發明一實施例所述之升壓轉換器200之電路圖。在第2圖之實施例中,升壓轉換器200具有一第一輸入節點NIN1、一第二輸入節點NIN2,以及一輸出節點NOUT,並包括一橋式整流器210、一升壓電感器LU、一功率切換器220、一輸出級電路230,以及一偵測及控制電路240。升壓轉換器200之第一輸入節點NIN1和第二輸入節點NIN2可由一外部輸入電源處(未顯示)分別接收一第一輸入電位VIN1和一第二輸入電位VIN2。升壓轉換器200之輸出節點NOUT可用於輸出一輸出電位VOUT至一電子裝置(未顯示)。FIG. 2 is a circuit diagram of a boost converter 200 according to an embodiment of the present invention. In the embodiment of FIG. 2, the boost converter 200 has a first input node NIN1, a second input node NIN2, and an output node NOUT, and includes a bridge rectifier 210, a boost inductor LU, a power switch 220, an output stage circuit 230, and a detection and control circuit 240. The first input node NIN1 and the second input node NIN2 of the boost converter 200 can receive a first input potential VIN1 and a second input potential VIN2 respectively from an external input power source (not shown). The output node NOUT of the boost converter 200 can be used to output an output potential VOUT to an electronic device (not shown).

橋式整流器210包括一第一二極體D1、一第二二極體D2、一第三二極體D3,以及一第四二極體D4。第一二極體D1具有一陽極和一陰極,其中第一二極體D1之陽極係耦接至第一輸入節點NIN1,而第一二極體D1之陰極係耦接至一第一節點N1以輸出一整流電位VR。第二二極體D2具有一陽極和一陰極,其中第二二極體D2之陽極係耦接至第二輸入節點NIN2,而第二二極體D2之陰極係耦接至第一節點N1。第三二極體D3具有一陽極和一陰極,其中第三二極體D3之陽極係耦接至一接地電位VSS,而第三二極體D3之陰極係耦接至第一輸入節點NIN1。第四二極體D4具有一陽極和一陰極,其中第四二極體D4之陽極係耦接至接地電位VSS,而第四二極體D4之陰極係耦接至第二輸入節點NIN2。The bridge rectifier 210 includes a first diode D1, a second diode D2, a third diode D3, and a fourth diode D4. The first diode D1 has an anode and a cathode, wherein the anode of the first diode D1 is coupled to the first input node NIN1, and the cathode of the first diode D1 is coupled to a first node N1 to output a rectified potential VR. The second diode D2 has an anode and a cathode, wherein the anode of the second diode D2 is coupled to the second input node NIN2, and the cathode of the second diode D2 is coupled to the first node N1. The third diode D3 has an anode and a cathode, wherein the anode of the third diode D3 is coupled to a ground potential VSS, and the cathode of the third diode D3 is coupled to the first input node NIN1. The fourth diode D4 has an anode and a cathode, wherein the anode of the fourth diode D4 is coupled to the ground potential VSS, and the cathode of the fourth diode D4 is coupled to the second input node NIN2.

升壓電感器LU具有一第一端和一第二端,其中升壓電感器LU之第一端係耦接至第一節點N1以接收整流電位VR,而升壓電感器LU之第二端係耦接至一第二節點N2。The boost inductor LU has a first terminal and a second terminal, wherein the first terminal of the boost inductor LU is coupled to the first node N1 to receive the rectified potential VR, and the second terminal of the boost inductor LU is coupled to a second node N2.

功率切換器220包括一切換電晶體MS。例如,切換電晶體MS可為一N型金氧半場效電晶體(N-type Metal-Oxide-Semiconductor Field-Effect Transistor,NMOSFET)。切換電晶體MS具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中切換電晶體MS之控制端係用於接收一時脈電位VA,切換電晶體MS之第一端係耦接至接地電位VSS,而切換電晶體MS之第二端係耦接至一第三節點N3。例如,時脈電位VA之一操作頻率可介於150kHz至250kHz之間,其較傳統之65kHz設計來得更高,但亦不僅限於此。The power switch 220 includes a switching transistor MS. For example, the switching transistor MS may be an N-type Metal-Oxide-Semiconductor Field-Effect Transistor (NMOSFET). The switching transistor MS has a control terminal (e.g., a gate), a first terminal (e.g., a source), and a second terminal (e.g., a drain), wherein the control terminal of the switching transistor MS is used to receive a clock potential VA, the first terminal of the switching transistor MS is coupled to the ground potential VSS, and the second terminal of the switching transistor MS is coupled to a third node N3. For example, an operating frequency of the clock potential VA may be between 150kHz and 250kHz, which is higher than the traditional 65kHz design, but is not limited thereto.

輸出級電路230包括一第五二極體D5和一輸出電容器CO。第五二極體D5具有一陽極和一陰極,其中第五二極體D5之陽極係耦接至第三節點N3,而第五二極體D5之陰極係耦接至輸出節點NOUT。輸出電容器CO具有一第一端和一第二端,其中輸出電容器CO之第一端係耦接至輸出節點NOUT,而輸出電容器CO之第二端係耦接至一第四節點N4。The output stage circuit 230 includes a fifth diode D5 and an output capacitor CO. The fifth diode D5 has an anode and a cathode, wherein the anode of the fifth diode D5 is coupled to the third node N3, and the cathode of the fifth diode D5 is coupled to the output node NOUT. The output capacitor CO has a first terminal and a second terminal, wherein the first terminal of the output capacitor CO is coupled to the output node NOUT, and the second terminal of the output capacitor CO is coupled to a fourth node N4.

偵測及控制電路240包括一微控制器(Microcontroller Unit,MCU)250、一第一電阻器R1,以及一第二電阻器R2。第一電阻器R1具有一第一端和一第二端,其中第一電阻器R1之第一端係耦接至第二節點N2,而第一電阻器R1之第二端係耦接至第三節點N3。第二電阻器R2具有一第一端和一第二端,其中第二電阻器R2之第一端係耦接至第四節點N4,而第二電阻器R2之第二端係耦接至接地電位VSS。必須注意的是,第一電阻器R1係與升壓電感器LU串聯耦接,其中一電感電流ILM係同時流經升壓電感器LU和第一電阻器R1。另外,第二電阻器R2係與輸出電容器CO串聯耦接,其中一輸出電流IOUT係同時流經輸出電容器CO和第二電阻器R2。在一些實施例中,第一電阻器R1和第二電阻器R2皆具有極小之電阻值(例如:小於5歐姆)。The detection and control circuit 240 includes a microcontroller unit (MCU) 250, a first resistor R1, and a second resistor R2. The first resistor R1 has a first end and a second end, wherein the first end of the first resistor R1 is coupled to the second node N2, and the second end of the first resistor R1 is coupled to the third node N3. The second resistor R2 has a first end and a second end, wherein the first end of the second resistor R2 is coupled to the fourth node N4, and the second end of the second resistor R2 is coupled to the ground potential VSS. It should be noted that the first resistor R1 is coupled in series with the boost inductor LU, wherein an inductor current ILM flows through the boost inductor LU and the first resistor R1 at the same time. In addition, the second resistor R2 is coupled in series with the output capacitor CO, wherein an output current IOUT flows through the output capacitor CO and the second resistor R2 simultaneously. In some embodiments, the first resistor R1 and the second resistor R2 both have very small resistance values (eg, less than 5 ohms).

微控制器250包括:一取樣模組251、一誤差偵測模組252、一計數模組253、一處理模組254、一感測及比較模組255,以及一時脈產生模組256。例如,微控制器250之每一模組可各自以一硬體電路抑或一軟體程式之方式來實施,但亦不僅限於此。The microcontroller 250 includes a sampling module 251, an error detection module 252, a counting module 253, a processing module 254, a sensing and comparison module 255, and a clock generation module 256. For example, each module of the microcontroller 250 can be implemented in the form of a hardware circuit or a software program, but is not limited thereto.

取樣模組251可偵測跨越第一電阻器R1之一第一電位差ΔV1。根據歐姆定律,因為第一電位差ΔV1係與電感電流ILM成正比關係,所以取樣模組251可根據第一電位差ΔV1來取得電感電流ILM之相關資訊。在一些實施例中,取樣模組251之一取樣頻率係等同於功率切換器220之一切換頻率。亦即,取樣模組251之取樣頻率可與時脈電位VA之操作頻率兩者大致相同。The sampling module 251 can detect a first potential difference ΔV1 across the first resistor R1. According to Ohm's law, since the first potential difference ΔV1 is proportional to the inductor current ILM, the sampling module 251 can obtain relevant information of the inductor current ILM according to the first potential difference ΔV1. In some embodiments, a sampling frequency of the sampling module 251 is equal to the switching frequency of the power switch 220. That is, the sampling frequency of the sampling module 251 can be substantially the same as the operating frequency of the clock potential VA.

誤差偵測模組252可根據第一電位差ΔV1來產生邏輯互補(Complementary)之一第一位元B1和一第二位元B2。詳細而言,誤差偵測模組252可將第一電位差ΔV1與接地電位VSS(或0V)互相比較。例如,若第一電位差ΔV1等於接地電位VSS(亦即, ),則可代表電感電流ILM為0,且誤差偵測模組252可產生具有高邏輯位準之第一位元B1以及具有低邏輯位準之第二位元B2;反之,若第一電位差ΔV1不等於接地電位VSS(亦即, ),則可代表電感電流ILM不為0,且誤差偵測模組252可產生具有低邏輯位準之第一位元B1以及具有高邏輯位準之第二位元B2。 The error detection module 252 can generate a first bit B1 and a second bit B2 of logical complement according to the first potential difference ΔV1. Specifically, the error detection module 252 can compare the first potential difference ΔV1 with the ground potential VSS (or 0V). For example, if the first potential difference ΔV1 is equal to the ground potential VSS (i.e., ), it means that the inductor current ILM is 0, and the error detection module 252 can generate a first bit B1 with a high logic level and a second bit B2 with a low logic level; on the contrary, if the first potential difference ΔV1 is not equal to the ground potential VSS (that is, ), it may represent that the inductor current ILM is not zero, and the error detection module 252 may generate a first bit B1 with a low logic level and a second bit B2 with a high logic level.

回應於具有高邏輯位準之第一位元B1,計數模組253將可開始計算一零電流時間TZ。例如,若零電流時間TZ等於0,則計數模組253可產生具有低邏輯位準之一第三位元B3;反之,若零電流時間TZ大於0,則計數模組253可產生具有高邏輯位準之第三位元B3。另一方面,若第一位元B1為低邏輯位準,則計數模組253不會被啟動,且第三位元B3亦不會被產生。In response to the first bit B1 having a high logic level, the counting module 253 may start to count a zero current time TZ. For example, if the zero current time TZ is equal to 0, the counting module 253 may generate a third bit B3 having a low logic level; conversely, if the zero current time TZ is greater than 0, the counting module 253 may generate a third bit B3 having a high logic level. On the other hand, if the first bit B1 is a low logic level, the counting module 253 will not be activated, and the third bit B3 will not be generated.

處理模組254可根據第一位元B1、第二位元B2,以及第三位元B3來判斷升壓電感器LU之一電流模式。例如,前述之電流模式可為一不連續電流模式(Discontinuous Current Mode,DCM)、一邊界電流模式(Boundary Current Mode,BCM),或是一連續電流模式(Continuous Current Mode,CCM)三者擇一。在一些實施例中,升壓電感器LU之電流模式與第一位元B1、第二位元B2,以及第三位元B3之間之對應關係可如下表一所述:The processing module 254 can determine a current mode of the boost inductor LU according to the first bit B1, the second bit B2, and the third bit B3. For example, the current mode can be a discontinuous current mode (DCM), a boundary current mode (BCM), or a continuous current mode (CCM). In some embodiments, the corresponding relationship between the current mode of the boost inductor LU and the first bit B1, the second bit B2, and the third bit B3 can be described in Table 1 below:

  第一位元B1 第二位元B2 第三位元B3 不連續電流模式 高邏輯位準 低邏輯位準 高邏輯位準 邊界電流模式 高邏輯位準 低邏輯位準 低邏輯位準 連續電流模式 低邏輯位準 高邏輯位準 未產生 表一:升壓電感器LU之電流模式與各個位元之間之對應關係 The first digit B1 The second bit B2 The third bit B3 Discontinuous Current Mode High logic level Low logic level High logic level Boundary Current Mode High logic level Low logic level Low logic level Continuous Current Mode Low logic level High logic level Not generated Table 1: Correspondence between the current mode of the boost inductor LU and each bit

感測及比較模組255可偵測跨越第二電阻器R2之一第二電位差ΔV2。根據歐姆定律,因為第二電位差ΔV2係與輸出電流IOUT成正比關係,所以感測及比較模組255可根據第二電位差ΔV2來取得輸出電流IOUT之相關資訊。詳細而言,感測及比較模組255可將第二電位差ΔV2與一第一臨界電位VTH1和一第二臨界電位VTH2作比較,以判斷輸出級電路230之一負載模式。例如,若第二電位差ΔV2小於第一臨界電位VTH1(亦即, ),則感測及比較模組255可判斷輸出級電路230操作於一輕載模式;若第二電位差ΔV2介於第一臨界電位VTH1和第二臨界電位VTH2之間(亦即, ),則感測及比較模組255可判斷輸出級電路230操作於一中載模式;而若第二電位差ΔV2大於第二臨界電位VTH2(亦即, ),則感測及比較模組255可判斷輸出級電路230操作於一重載模式。在一些實施例中,前述之第一臨界電位VTH1和第二臨界電位VTH2可根據下列方程式(1)、(2)來進行設定: The sensing and comparison module 255 can detect a second potential difference ΔV2 across the second resistor R2. According to Ohm's law, since the second potential difference ΔV2 is proportional to the output current IOUT, the sensing and comparison module 255 can obtain relevant information of the output current IOUT according to the second potential difference ΔV2. In detail, the sensing and comparison module 255 can compare the second potential difference ΔV2 with a first critical potential VTH1 and a second critical potential VTH2 to determine a load mode of the output stage circuit 230. For example, if the second potential difference ΔV2 is less than the first critical potential VTH1 (that is, ), the sensing and comparison module 255 can determine that the output stage circuit 230 operates in a light load mode; if the second potential difference ΔV2 is between the first critical potential VTH1 and the second critical potential VTH2 (ie, ), the sensing and comparing module 255 can determine that the output stage circuit 230 operates in a medium load mode; and if the second potential difference ΔV2 is greater than the second critical potential VTH2 (ie, ), the sensing and comparison module 255 can determine that the output stage circuit 230 operates in a heavy load mode. In some embodiments, the first critical potential VTH1 and the second critical potential VTH2 can be set according to the following equations (1) and (2):

……………………(1) ……………………(1)

……………………(2) 其中「VTH1」代表第一臨界電位VTH1,「VTH2」代表第二臨界電位VTH2,「IOUTMAX」代表輸出電流IOUT之最大值,而「R2」代表第二電阻器R2之電阻值。 ……………………(2) Wherein "VTH1" represents the first critical potential VTH1, "VTH2" represents the second critical potential VTH2, "IOUTMAX" represents the maximum value of the output current IOUT, and "R2" represents the resistance value of the second resistor R2.

另外,感測及比較模組255更可將輸出級電路230之負載模式告知處理模組254,使得處理模組254可確認輸出級電路230之負載模式是否與升壓電感器LU之電流模式互相匹配。在一些實施例中,兩兩互相匹配之操作模式可如下表二所述:In addition, the sensing and comparison module 255 can further inform the processing module 254 of the load mode of the output stage circuit 230, so that the processing module 254 can confirm whether the load mode of the output stage circuit 230 matches the current mode of the boost inductor LU. In some embodiments, the operation modes that match each other can be described in Table 2 below:

負載模式 與負載模式相匹配之電流模式 輕載模式 不連續電流模式 中載模式 邊界電流模式 重載模式 連續電流模式 表二:互相匹配之負載模式和電流模式 Load Mode Current mode matching the load mode Light load mode Discontinuous Current Mode Medium load mode Boundary Current Mode Reload Mode Continuous Current Mode Table 2: Mutually matched load mode and current mode

時脈產生模組256可由處理模組254和感測及比較模組255來進行控制,並可產生及調整時脈電位VA。在一些實施例中,若輸出級電路230之負載模式已與升壓電感器LU之電流模式互相匹配,則處理模組254將可控制時脈產生模組256以維持時脈電位VA之一責任週期(Duty Cycle);反之,若輸出級電路230之負載模式與升壓電感器LU之電流模式兩者不互相匹配,則處理模組254將可控制時脈產生模組256以改變時脈電位VA之責任週期。舉例而言,若負載模式為輕載模式但電流模式為邊界電流模式(不匹配),則處理模組254將可控制時脈產生模組256以縮短時脈電位VA之責任週期;又例如,若負載模式為重載模式但電流模式為邊界電流模式(不匹配),則處理模組254將可控制時脈產生模組256以增長時脈電位VA之責任週期,但亦不僅限於此。The clock generation module 256 can be controlled by the processing module 254 and the sensing and comparing module 255, and can generate and adjust the clock potential VA. In some embodiments, if the load mode of the output stage circuit 230 matches the current mode of the boost inductor LU, the processing module 254 can control the clock generation module 256 to maintain a duty cycle of the clock potential VA; on the contrary, if the load mode of the output stage circuit 230 and the current mode of the boost inductor LU do not match each other, the processing module 254 can control the clock generation module 256 to change the duty cycle of the clock potential VA. For example, if the load mode is a light load mode but the current mode is a boundary current mode (mismatch), the processing module 254 will be able to control the clock generation module 256 to shorten the duty cycle of the clock potential VA; for another example, if the load mode is a heavy load mode but the current mode is a boundary current mode (mismatch), the processing module 254 will be able to control the clock generation module 256 to increase the duty cycle of the clock potential VA, but it is not limited to this.

在一些實施例中,若輸出級電路230改變其負載模式,則時脈產生模組256更將提供一延遲間隔TD給時脈電位VA,其中此延遲間隔TD可大於或等於25μs。例如,若輸出級電路230由輕載模式切換至中載模式,則時脈電位VA之延遲間隔TD將介於輕載模式與中載模式之間,其中時脈電位VA於此延遲間隔TD期間皆維持於低邏輯位準,以避免不同之負載模式之間發生混淆。必須理解的是,延遲間隔TD僅為一選用設計,在另一些實施例中亦可移除之。In some embodiments, if the output stage circuit 230 changes its load mode, the clock generation module 256 will further provide a delay interval TD to the clock potential VA, wherein the delay interval TD may be greater than or equal to 25 μs. For example, if the output stage circuit 230 switches from the light load mode to the medium load mode, the delay interval TD of the clock potential VA will be between the light load mode and the medium load mode, wherein the clock potential VA is maintained at a low logic level during the delay interval TD to avoid confusion between different load modes. It must be understood that the delay interval TD is only an optional design and may be removed in other embodiments.

第3圖係顯示傳統升壓轉換器於輸出電流IOUT逐漸增加時電感電流ILM之波形圖。理想上,電感電流ILM應由不連續電流模式切換至邊界電流模式,再切換至連續電流模式。然而,實際上電感電流ILM卻容易發生一些誤動作。Figure 3 shows the waveform of the inductor current ILM of a conventional boost converter when the output current IOUT gradually increases. Ideally, the inductor current ILM should switch from the discontinuous current mode to the boundary current mode and then to the continuous current mode. However, in practice, the inductor current ILM is prone to some malfunctions.

第4圖係顯示傳統升壓轉換器於輸出電流IOUT逐漸減少時電感電流ILM之波形圖。理想上,電感電流ILM應由連續電流模式切換至邊界電流模式,再切換至不連續電流模式。然而,實際上電感電流ILM卻容易發生另一些誤動作。Figure 4 shows the waveform of the inductor current ILM of a conventional boost converter when the output current IOUT gradually decreases. Ideally, the inductor current ILM should switch from the continuous current mode to the boundary current mode and then to the discontinuous current mode. However, in practice, the inductor current ILM is prone to other malfunctions.

第5圖係顯示根據本發明一實施例所述之升壓轉換器200於輸出電流IOUT逐漸增加時電感電流ILM之波形圖。如第5圖所示,升壓電感器LU於一第一時間區間T1內操作於不連續電流模式,於一第二時間區間T2內操作於邊界電流模式,而於一第三時間區間T3內操作於連續電流模式。根據第5圖之量測結果,由於幾乎去除掉所有切換誤動作,故所提之升壓轉換器200將可大幅提升其輸出穩定度。FIG. 5 is a waveform diagram showing the inductor current ILM of the boost converter 200 according to an embodiment of the present invention when the output current IOUT gradually increases. As shown in FIG. 5 , the boost inductor LU operates in a discontinuous current mode in a first time interval T1, in a boundary current mode in a second time interval T2, and in a continuous current mode in a third time interval T3. According to the measurement results of FIG. 5 , since almost all switching errors are eliminated, the boost converter 200 can greatly improve its output stability.

第6圖係顯示根據本發明一實施例所述之升壓轉換器200於輸出電流IOUT逐漸減少時電感電流ILM之波形圖。如第5圖所示,升壓電感器LU於一第四時間區間T4內操作於連續電流模式,於一第五時間區間T5內操作於邊界電流模式,而於一第六時間區間T6內操作於不連續電流模式。根據第6圖之量測結果,由於幾乎去除掉所有切換誤動作,故所提之升壓轉換器200將可大幅提升其輸出穩定度。FIG. 6 is a waveform diagram showing the inductor current ILM of the boost converter 200 according to an embodiment of the present invention when the output current IOUT gradually decreases. As shown in FIG. 5 , the boost inductor LU operates in a continuous current mode in a fourth time interval T4, in a boundary current mode in a fifth time interval T5, and in a discontinuous current mode in a sixth time interval T6. According to the measurement results of FIG. 6 , since almost all switching errors are eliminated, the boost converter 200 can greatly improve its output stability.

本發明提出一種新穎之升壓轉換器,其可對應於不同之電流模式及負載模式。根據實際量測結果,使用前述設計之升壓轉換器可有效改善其輸出穩定度,故其很適合應用於各種各式之裝置當中。The present invention proposes a novel boost converter, which can correspond to different current modes and load modes. According to actual measurement results, the boost converter designed by the above-mentioned design can effectively improve its output stability, so it is very suitable for application in various devices.

值得注意的是,以上所述之電位、電流、電阻值、電感值、電容值,以及其餘元件參數均非為本發明之限制條件。設計者可以根據不同需要調整這些設定值。本發明之升壓轉換器並不僅限於第1-6圖所圖示之狀態。本發明可以僅包括第1-6圖之任何一或複數個實施例之任何一或複數項特徵。換言之,並非所有圖示之特徵均須同時實施於本發明之升壓轉換器當中。雖然本發明之實施例係使用金氧半場效電晶體為例,但本發明並不僅限於此,本技術領域人士可改用其他種類之電晶體,例如:接面場效電晶體,或是鰭式場效電晶體等等,而不致於影響本發明之效果。It is worth noting that the potential, current, resistance, inductance, capacitance, and other component parameters described above are not limiting conditions of the present invention. Designers can adjust these settings according to different needs. The boost converter of the present invention is not limited to the states shown in Figures 1-6. The present invention may include only one or more features of any one or more embodiments of Figures 1-6. In other words, not all of the features shown in the diagrams need to be implemented in the boost converter of the present invention at the same time. Although the embodiments of the present invention use metal oxide semi-conductor field effect transistors as an example, the present invention is not limited to this. People skilled in the art can use other types of transistors, such as junction field effect transistors, or fin field effect transistors, etc., without affecting the effects of the present invention.

在本說明書以及申請專利範圍中的序數,例如「第一」、「第二」、「第三」等等,彼此之間並沒有順序上的先後關係,其僅用於標示區分兩個具有相同名字之不同元件。Ordinal numbers in this specification and the scope of the patent application, such as "first", "second", "third", etc., have no sequential relationship with each other, and are only used to mark and distinguish two different components with the same name.

本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention is disclosed as above with the preferred embodiments, it is not intended to limit the scope of the present invention. Anyone skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined by the attached patent application.

100,200:升壓轉換器 110,210:橋式整流器 120,220:功率切換器 130,230:輸出級電路 140,240:偵測及控制電路 250:微控制器 251:取樣模組 252:誤差偵測模組 253:計數模組 254:處理模組 255:感測及比較模組 256:時脈產生模組 B1:第一位元 B2:第二位元 B3:第三位元 CO:輸出電容器 D1:第一二極體 D2:第二二極體 D3:第三二極體 D4:第四二極體 D5:第五二極體 ILM:電感電流 IOUT:輸出電流 LU:升壓電感器 MS:切換電晶體 N1:第一節點 N2:第二節點 N3:第三節點 N4:第四節點 NIN1:第一輸入節點 NIN2:第二輸入節點 NOUT:輸出節點 R1:第一電阻器 R2:第二電阻器 T1:第一時間區間 T2:第二時間區間 T3:第三時間區間 T4:第四時間區間 T5:第五時間區間 T6:第六時間區間 TD:延遲間隔 TZ:零電流時間 VA:時脈電位 VIN1:第一輸入電位 VIN2:第二輸入電位 VOUT:輸出電位 VR:整流電位 VSS:接地電位 VTH1:第一臨界電位 VTH2:第二臨界電位 ΔV1:第一電位差 ΔV2:第二電位差 100,200: Boost converter 110,210: Bridge rectifier 120,220: Power switch 130,230: Output stage circuit 140,240: Detection and control circuit 250: Microcontroller 251: Sampling module 252: Error detection module 253: Counting module 254: Processing module 255: Sensing and comparison module 256: Pulse generation module B1: First bit B2: Second bit B3: Third bit CO: Output capacitor D1: First diode D2: Second diode D3: Third diode D4: Fourth diode D5: Fifth diode ILM: Inductor current IOUT: output current LU: boost inductor MS: switching transistor N1: first node N2: second node N3: third node N4: fourth node NIN1: first input node NIN2: second input node NOUT: output node R1: first resistor R2: second resistor T1: first time interval T2: second time interval T3: third time interval T4: fourth time interval T5: fifth time interval T6: sixth time interval TD: delay interval TZ: zero current time VA: clock potential VIN1: first input potential VIN2: second input potential VOUT: output potential VR: rectified potential VSS: ground potential VTH1: first critical potential VTH2: second critical potential ΔV1: first potential difference ΔV2: second potential difference

第1圖係顯示根據本發明一實施例所述之升壓轉換器之示意圖。 第2圖係顯示根據本發明一實施例所述之升壓轉換器之電路圖。 第3圖係顯示傳統升壓轉換器於輸出電流逐漸增加時電感電流之波形圖。 第4圖係顯示傳統升壓轉換器於輸出電流逐漸減少時電感電流之波形圖。 第5圖係顯示根據本發明一實施例所述之升壓轉換器於輸出電流逐漸增加時電感電流之波形圖。 第6圖係顯示根據本發明一實施例所述之升壓轉換器於輸出電流逐漸減少時電感電流之波形圖。 FIG. 1 is a schematic diagram of a boost converter according to an embodiment of the present invention. FIG. 2 is a circuit diagram of a boost converter according to an embodiment of the present invention. FIG. 3 is a waveform diagram of an inductor current when the output current of a conventional boost converter gradually increases. FIG. 4 is a waveform diagram of an inductor current when the output current of a conventional boost converter gradually decreases. FIG. 5 is a waveform diagram of an inductor current when the output current of a boost converter according to an embodiment of the present invention gradually increases. FIG. 6 is a waveform diagram of an inductor current when the output current of a boost converter according to an embodiment of the present invention gradually decreases.

100:升壓轉換器 110:橋式整流器 120:功率切換器 130:輸出級電路 140:偵測及控制電路 ILM:電感電流 IOUT:輸出電流 LU:升壓電感器 VA:時脈電位 VIN1:第一輸入電位 VIN2:第二輸入電位 VOUT:輸出電位 VR:整流電位 VSS:接地電位 100: Boost converter 110: Bridge rectifier 120: Power switch 130: Output stage circuit 140: Detection and control circuit ILM: Inductor current IOUT: Output current LU: Boost inductor VA: Clock potential VIN1: First input potential VIN2: Second input potential VOUT: Output potential VR: Rectification potential VSS: Ground potential

Claims (10)

一種提高輸出穩定度之升壓轉換器,包括:一橋式整流器,根據一第一輸入電位和一第二輸入電位來產生一整流電位;一升壓電感器,接收該整流電位,其中一電感電流係流經該升壓電感器;一功率切換器,根據一時脈電位來選擇性地將該升壓電感器耦接至一接地電位;一輸出級電路,耦接至該升壓電感器,並產生一輸出電位,其中一輸出電流係流經該輸出級電路;以及一偵測及控制電路,根據該電感電流來判斷該升壓電感器之一電流模式,並根據該輸出電流來判斷該輸出級電路之一負載模式;其中該偵測及控制電路更確認該負載模式是否與該電流模式互相匹配,並據以產生該時脈電位;其中該偵測及控制電路包括:一第一電阻器,其中該第一電阻器係與該升壓電感器串聯耦接;以及一微控制器,其中該微控制器包括:一取樣模組,偵測跨越該第一電阻器之一第一電位差,其中該取樣模組之一取樣頻率係等同於該功率切換器之一切換頻率。 A boost converter for improving output stability includes: a bridge rectifier, generating a rectified potential according to a first input potential and a second input potential; a boost inductor, receiving the rectified potential, wherein an inductor current flows through the boost inductor; a power switch, selectively coupling the boost inductor to a ground potential according to a clock potential; an output stage circuit, coupled to the boost inductor and generating an output potential, wherein an output current flows through the output stage circuit; and a detection and control circuit, determining the boost inductor according to the inductor current. A current mode of the output stage circuit is detected, and a load mode of the output stage circuit is determined according to the output current; wherein the detection and control circuit further confirms whether the load mode matches the current mode, and generates the clock potential accordingly; wherein the detection and control circuit includes: a first resistor, wherein the first resistor is coupled in series with the boost inductor; and a microcontroller, wherein the microcontroller includes: a sampling module, detecting a first potential difference across the first resistor, wherein a sampling frequency of the sampling module is equal to a switching frequency of the power switch. 如請求項1之升壓轉換器,其中該橋式整流器包括: 一第一二極體,具有一陽極和一陰極,其中該第一二極體之該陽極係耦接至一第一輸入節點以接收該第一輸入電位,而該第一二極體之該陰極係耦接至一第一節點以輸出該整流電位;一第二二極體,具有一陽極和一陰極,其中該第二二極體之該陽極係耦接至一第二輸入節點以接收該第二輸入電位,而該第二二極體之該陰極係耦接至該第一節點;一第三二極體,具有一陽極和一陰極,其中該第三二極體之該陽極係耦接至該接地電位,而該第三二極體之該陰極係耦接至該第一輸入節點;以及一第四二極體,具有一陽極和一陰極,其中該第四二極體之該陽極係耦接至該接地電位,而該第四二極體之該陰極係耦接至該第二輸入節點;其中該升壓電感器具有一第一端和一第二端,該升壓電感器之該第一端係耦接至該第一節點以接收該整流電位,而該升壓電感器之該第二端係耦接至一第二節點。 A boost converter as claimed in claim 1, wherein the bridge rectifier comprises: a first diode having an anode and a cathode, wherein the anode of the first diode is coupled to a first input node to receive the first input potential, and the cathode of the first diode is coupled to a first node to output the rectified potential; a second diode having an anode and a cathode, wherein the anode of the second diode is coupled to a second input node to receive the second input potential, and the cathode of the second diode is coupled to the first node; a third diode having an anode an anode and a cathode, wherein the anode of the third diode is coupled to the ground potential, and the cathode of the third diode is coupled to the first input node; and a fourth diode having an anode and a cathode, wherein the anode of the fourth diode is coupled to the ground potential, and the cathode of the fourth diode is coupled to the second input node; wherein the boost inductor has a first end and a second end, the first end of the boost inductor is coupled to the first node to receive the rectified potential, and the second end of the boost inductor is coupled to a second node. 如請求項2之升壓轉換器,其中該功率切換器包括:一切換電晶體,具有一控制端、一第一端,以及一第二端,其中該切換電晶體之該控制端係用於接收該時脈電位,該切換電晶體之該第一端係耦接至該接地電位,而該切換電晶體之該第二端係耦接至一第三節點。 A boost converter as claimed in claim 2, wherein the power switch comprises: a switching transistor having a control terminal, a first terminal, and a second terminal, wherein the control terminal of the switching transistor is used to receive the clock potential, the first terminal of the switching transistor is coupled to the ground potential, and the second terminal of the switching transistor is coupled to a third node. 如請求項3之升壓轉換器,其中該輸出級電路包括: 一第五二極體,具有一陽極和一陰極,其中該第五二極體之該陽極係耦接至該第三節點,而該第五二極體之該陰極係耦接至一輸出節點以輸出該輸出電位;以及一輸出電容器,具有一第一端和一第二端,其中該輸出電容器之該第一端係耦接至該輸出節點,而該輸出電容器之該第二端係耦接至一第四節點。 A boost converter as claimed in claim 3, wherein the output stage circuit comprises: a fifth diode having an anode and a cathode, wherein the anode of the fifth diode is coupled to the third node, and the cathode of the fifth diode is coupled to an output node to output the output potential; and an output capacitor having a first end and a second end, wherein the first end of the output capacitor is coupled to the output node, and the second end of the output capacitor is coupled to a fourth node. 如請求項4之升壓轉換器,其中該偵測及控制電路包括:其中該第一電阻器具有一第一端和一第二端,該第一電阻器之該第一端係耦接至該第二節點,而該第一電阻器之該第二端係耦接至該第三節點;一第二電阻器,具有一第一端和一第二端,其中該第二電阻器之該第一端係耦接至該第四節點,而該第二電阻器之該第二端係耦接至該接地電位;其中該電感電流更流經該第一電阻器,而該輸出電流更流經該第二電阻器。 A boost converter as claimed in claim 4, wherein the detection and control circuit comprises: wherein the first resistor has a first end and a second end, the first end of the first resistor is coupled to the second node, and the second end of the first resistor is coupled to the third node; a second resistor, having a first end and a second end, wherein the first end of the second resistor is coupled to the fourth node, and the second end of the second resistor is coupled to the ground potential; wherein the inductor current further flows through the first resistor, and the output current further flows through the second resistor. 如請求項5之升壓轉換器,其中該微控制器更包括:一誤差偵測模組,根據該第一電位差來產生邏輯互補之一第一位元和一第二位元;其中若該第一電位差等於該接地電位,則該誤差偵測模組將產生具有高邏輯位準之該第一位元; 其中若該第一電位差不等於該接地電位,則該誤差偵測模組將產生具有低邏輯位準之該第一位元。 The boost converter of claim 5, wherein the microcontroller further comprises: an error detection module, which generates a first bit and a second bit of logical complement according to the first potential difference; wherein if the first potential difference is equal to the ground potential, the error detection module will generate the first bit with a high logical level; wherein if the first potential difference is not equal to the ground potential, the error detection module will generate the first bit with a low logical level. 如請求項6之升壓轉換器,其中該微控制器更包括:一計數模組,其中回應於具有高邏輯位準之該第一位元,該計數模組會開始計算一零電流時間;其中若該零電流時間等於0,則該計數模組將產生具有低邏輯位準之一第三位元;其中若該零電流時間大於0,則該計數模組將產生具有高邏輯位準之該第三位元。 The boost converter of claim 6, wherein the microcontroller further comprises: a counting module, wherein in response to the first bit having a high logic level, the counting module starts to count a zero current time; wherein if the zero current time is equal to 0, the counting module will generate a third bit having a low logic level; wherein if the zero current time is greater than 0, the counting module will generate the third bit having a high logic level. 如請求項7之升壓轉換器,其中該微控制器更包括:一處理模組,根據該第一位元、該第二位元,以及該第三位元來判斷該升壓電感器之該電流模式,其中該電流模式為一不連續電流模式、一邊界電流模式,或是一連續電流模式三者擇一。 The boost converter of claim 7, wherein the microcontroller further comprises: a processing module, which determines the current mode of the boost inductor according to the first bit, the second bit, and the third bit, wherein the current mode is one of a discontinuous current mode, a boundary current mode, or a continuous current mode. 如請求項5之升壓轉換器,其中該微控制器更包括:一感測及比較模組,偵測跨越該第二電阻器之一第二電位差,並將該第二電位差與一第一臨界電位和一第二臨界電位作比較;其中若該第二電位差小於該第一臨界電位,則該感測及比較模組即判斷該輸出級電路操作於一輕載模式;其中若該第二電位差介於該第一臨界電位和該第二臨界電位之間,則該感測及比較模組即判斷該輸出級電路操作於一中載模式;其中若該第二電位差大於該第二臨界電位,則該感測及比較模組即判斷該輸出級電路操作於一重載模式。 The boost converter of claim 5, wherein the microcontroller further comprises: a sensing and comparison module, detecting a second potential difference across the second resistor, and comparing the second potential difference with a first critical potential and a second critical potential; wherein if the second potential difference is less than the first critical potential, the sensing and comparison module determines that the output stage circuit operates in a light load mode; wherein if the second potential difference is between the first critical potential and the second critical potential, the sensing and comparison module determines that the output stage circuit operates in a medium load mode; wherein if the second potential difference is greater than the second critical potential, the sensing and comparison module determines that the output stage circuit operates in a heavy load mode. 如請求項9之升壓轉換器,其中該微控制器更包括:一時脈產生模組,由該感測及比較模組來進行控制,並產生該時脈電位;其中若該輸出級電路改變該負載模式,則該時脈產生模組將提供一延遲間隔給該時脈電位,而該延遲間隔係大於或等於25μs。 The boost converter of claim 9, wherein the microcontroller further comprises: a clock generation module, which is controlled by the sensing and comparison module and generates the clock potential; wherein if the output stage circuit changes the load mode, the clock generation module will provide a delay interval to the clock potential, and the delay interval is greater than or equal to 25μs.
TW111121779A 2022-06-13 Boost converter for increasing output stability TWI837701B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111121779A TWI837701B (en) 2022-06-13 Boost converter for increasing output stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111121779A TWI837701B (en) 2022-06-13 Boost converter for increasing output stability

Publications (2)

Publication Number Publication Date
TW202349838A TW202349838A (en) 2023-12-16
TWI837701B true TWI837701B (en) 2024-04-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211867B2 (en) 2019-01-18 2021-12-28 Fsp-Powerland Technology Inc. Voltage regulating apparatus with pre-stage circuit and post-stage circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211867B2 (en) 2019-01-18 2021-12-28 Fsp-Powerland Technology Inc. Voltage regulating apparatus with pre-stage circuit and post-stage circuit

Similar Documents

Publication Publication Date Title
TWI736367B (en) Boost converter with high power factor
TWI692185B (en) Boost converter
TWI740686B (en) Boost converter for reducing total harmonic distortion
TWI837701B (en) Boost converter for increasing output stability
TW202207595A (en) Boost converter with low noise
TWI704757B (en) Boost converter
TWI717838B (en) Power supply device
TW202349838A (en) Boost converter for increasing output stability
TWI837730B (en) Boost converter with fast discharge function
TWI825945B (en) Power supply device with high conversion efficiency
TWI832742B (en) Boost converter for suppressing magnetic saturation
TWI817586B (en) Power supply device with tunable heat dissipation function
TWI806548B (en) Boost converter
TWI837946B (en) Power supply device supporting power delivery
TW202406288A (en) Boost converter with fast discharge function
US20240022171A1 (en) Boost converter with fast discharge function
TWI837944B (en) Power supply device with high output stability
TWI838133B (en) Power supply device with high output stability
TWI806609B (en) Boost converter with high output stability
TWI837670B (en) Power supply device
US20230336079A1 (en) Boost converter
TWI715464B (en) Buck converter
TWI740657B (en) Parallel power supply device for current balance
TWI751658B (en) Boost converter with low loss
TW202410622A (en) Power supply device with high conversion efficiency