TWI837482B - 擴大可視空間的影像顯示系統 - Google Patents

擴大可視空間的影像顯示系統 Download PDF

Info

Publication number
TWI837482B
TWI837482B TW110122655A TW110122655A TWI837482B TW I837482 B TWI837482 B TW I837482B TW 110122655 A TW110122655 A TW 110122655A TW 110122655 A TW110122655 A TW 110122655A TW I837482 B TWI837482 B TW I837482B
Authority
TW
Taiwan
Prior art keywords
light
image
optical
combining element
viewer
Prior art date
Application number
TW110122655A
Other languages
English (en)
Other versions
TW202212915A (zh
Inventor
葉逢春
陳國軒
張平
Original Assignee
美商海思智財控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商海思智財控股有限公司 filed Critical 美商海思智財控股有限公司
Publication of TW202212915A publication Critical patent/TW202212915A/zh
Application granted granted Critical
Publication of TWI837482B publication Critical patent/TWI837482B/zh

Links

Images

Abstract

本專利揭露觀看者擴大眼動範圍的系統及方法,包括但不限於在近眼顯示器上應用來自頭戴式裝置(例如智能眼鏡)的視網膜投影技術。本揭露包括兩實施例,第一個實施例應用了「分光」原理,包含一光學複製器,以產生數個入射光信號的方式實現觀看者眼動範圍的擴大。第二個實施例應用了「時間分割」原理,包含一光學反射器,該反射器在不同的入射角移動以重定向數個光信號的方式實現觀看者眼動範圍的擴大。

Description

擴大可視空間的影像顯示系統
本發明一般涉及用於擴大眼動範圍的影像顯示系統以及製造方法,特別是該系統及方法應用「分光」或是「時間分割」原理為一觀察者擴大眼動範圍。
頭戴式AR/VR裝置設計上的主要挑戰之一為縮小該設備的物理尺寸,並同時維持足夠的影像品質、視角及視像位置。該裝置提供的影像對該觀看者可見的視像位置範圍被稱作「眼動範圍」。眼動範圍的大小及位置會大大影響用戶體驗。舉例來說,如果眼動範圍太小,當該觀看者的視線稍微偏離傳入影像的方向,該觀察者可能就無法看到從該頭戴式AR/VR裝置產生的影像。眼動範圍的擴大(換句話說,增加由一頭戴式AR/VR裝置提供之影像的視像位置的數量及範圍)可以透過光學方法達成。然而,擴大眼動範圍往往會在該頭戴式AR/VR額外加上笨重的光學元件。因此,有需要設計一種系統及方法,在不犧牲用戶體驗及影響頭戴式AR/VR裝置的物理尺寸的情況下擴大眼動範圍。
本發明之目的在於提供影像顯示系統及方法,為觀看者擴大眼動範圍,該系統及方法包括(但不限於)在近眼顯示器上應用來自頭戴式裝置(例如智能眼鏡)的視網膜投影技術。本發明包含兩個實施例。
該第一實施例中的一影像顯示系統包括一第一影像投影器、一第 一光學複製器及一第一合光元件。該第一影像投影器產生一第一影像的數個光信號。該第一光學複製器接受由該第一影像投影器產生的一光信號、複製該光信號使其成為N條非平行光束並且將該光信號的N條光束中的每一個分別重定向至一第一合光元件,其中N為一大於一的整數。該第一合光元件位於該第一光學複製器及該觀察者的一眼之間,該合光元件用於接收該光信號的N條光束,並將其分別匯聚到該觀看者的該眼睛的眼動範圍中的N個視點。該影像檢視器系統可以進一步包括一第二影像投影器、一第二光學複製器以及一第二合光元件,用相同方式擴大該觀察者另一眼的眼動範圍。因此,該影像顯示系統可以同時擴大該觀察者左眼與右眼的眼動範圍。
該第二實施例應用「時間分割」原理,該實施例包括一光學反射器,該反射器在不同的入射角移動以重定向數個光信號的方式實現觀看者眼動範圍的擴大。該第二實施例的一影像顯示系統包括一第一影像投影器、一第一光學反射器以及一第一合光元件。該第一影像投影器產生一第一影像的數個光信號。該第一光學反射器接收由該第一影像投影器產生的數個光信號,並移動以重定向該數個光信號至一第一合光元件,該第一光學反射器的移動會導致該數個光信號到達該第一合光元件時的入射角不同。該第一合光元件位於該第一光學反射器及該觀看者的一眼之間,用於接收並匯聚該數個光信號至該觀看者眼睛的一第一可視區,以擴大該觀看者眼睛的眼動範圍。此外,該第一光學反射器的移動頻率是根據該第一影像投影器的投影頻率調整,以使該第一影像的該數個光信號在視覺暫留時間內投影到該觀看者眼中的可視區。該影像顯示系統可以更進一步包括一第二影像投影器、一第二光學反射器以及一第二合光元件,用相同方式擴大該觀察者另一眼的眼動範圍。因此,該影像顯示系統可以同時擴大該觀察者左眼與右眼的眼動範圍。
在第一實施例與第二實施例中,該觀看者的雙眼的影像顯示系統 是用於顯示一有深度的物體。從該第二合光元件重定向的光信號是一第一重定向右光信號,從該第一合光元件重定向的相對光信號是一第一重定向左光信號。由該觀看者感知該第一重定向右光信號及該第一重定向左光信號以顯示一物體的一第一虛擬雙眼像素,其深度跟該第一重定向右光信號及相對的該第一重定向左光信號間的第一角度有關。一般而言,該第一深度是由該第一重定向右光信號和該相對的第一重定向左光信號之間的水平距離決定。
在AR及MR的應用中,一影像顯示系統可以進一步包括一支撐結構,該支撐結構可以戴在該觀測者的頭上。該第一影像投影器、該第二影像投影器、該第一實施例的該第一光學複製器及該第二光學複製器(該第二實施例的該第一光學反射器及該第二光學反射器)、該第一合光元件及該第二合光元件均由該支撐結構乘載。在一實施例中,該系統是一頭戴式裝置,特別是一副眼鏡,如智能眼鏡。在這個情況下,該支撐結構可以是一副可能帶有鏡片的鏡框,該鏡片可以是用於矯正近視或是遠視等的處方鏡片。
本發明的其他特徵及優點將在後面描述,一部份可以從說明或是本發明的實例中得知。本發明的目標及其他優點將由書面說明、請求項、以及附圖所特別指出的結構及方法實現。可以這樣理解,上述一般的說明和下面詳細的說明都是示例性的和說明性的,其旨在對所要求保護的發明提供進一步的解釋。
100:影像顯示系統
110:第一影像投影器
115:第二影像投影器
120:第一光學複製器
1100:第一可視區
1210:步驟
1215:步驟
1220:步驟
1230:步驟
125:第二光學複製器
130:第一合光元件
135:第二合光元件
140:眼睛
150:眼動範圍
151:視點
152:視點
153:視點
16:第一右光信號
16’:第一重定向右光信號
160:第一準直儀
165:第二準直儀
18:第二右光信號
18’:第二重定向右光信號
180:智能眼鏡
185:鏡框
190:眼鏡鏡片
200:影像顯示系統
210:第一影像投影器
215:第二影像投影器
220:第一光學反射器
225:第二光學反射器
230:第一合光元件
235:第二合光元件
240:眼睛
250:眼動範圍
251:視點
252:視點
254:視點
260:第一準直儀
280:智能眼鏡
285:鏡框
290:鏡片
36:第一左光信號
36’:第一重定向左光信號
38:第二左光信號
38’:第二重定向左光信號
50:右眼
52:右瞳孔
54:右視網膜
60:左眼
610:步驟
615:步驟
62:左瞳孔
620:步驟
630:步驟
64:左視網膜
70:物體
72:第一虛擬雙眼像素
74:第二虛擬雙眼像素
901:第一影像幀
902:第二影像幀
91:盲點
910:線
92:點
920:線
930:線
950:可視區
θ1:第一角度
θ2:第二角度
C1:點
C11:點
C12:點
C13:點
C2:點
C21(L):點
C21(R):點
C22(L):點
C22(R):點
C23(L):點
C23(R):點
C3:點
D1:點
d1:第一深度
D2:點
d2:第二深度
F1:第一完整影像幀
F2:第二完整影像幀
F3:第三完整影像幀
F4:第四完整影像幀
F5:第五完整影像幀
F6:第六完整影像幀
F7:第七完整影像幀
F8:第八完整影像幀
L1:第一光信號
L2:第二光信號
L3:第三光信號
LL2:左光信號
P1:第一視點
P1(L):左視點
P1(R):右視點
P2:第二視點
P2(L):左視點
P2(R):右視點
P3:第三視點
P3(L):左視點
P3(R):右視點
P4:第四視點
P5:第五視點
RL2:右光信號
RL21:光束
RL22:光束
RL23:光束
RLL21:重定向左光信號
RLL22:重定向左光信號
RLL23:重定向左光信號
RRL21:重定向右光信號
RRL22:重定向右光信號
RRL23:重定向右光信號
RS11:第一反射光束
RS12:第二反射光束
RS13:第三反射光束
S11:第一光束
S12:第二光束
S13:第三光束
S21:第一光束
S22:第二光束
S23:第三光束
S31:第一光束
S32:第二光束
S33:第三光束
X1:位置
X2:位置
X3:位置
X4:位置
X5:位置
圖1A為一示意圖,說明本發明之一影像顯示系統的一實施例,該影像顯示系統具有一第一光學複製器。
圖1B為一示意圖,說明本發明之由一副眼鏡乘載的影像顯示系統。
圖2為一示意圖,說明本發明之帶有一分光鏡的影像顯示系統的一實施例
圖3為一示意圖,說明本發明之一影像顯示系統的一實施例,該系統有一偏振片, 其中一光信號的N條光束匯聚在一第一合光元件上。
圖4為一示意圖,說明本發明之一影像顯示系統的一實施例,其中該光信號的N條非平行光束路徑的延伸會匯聚到位於該第一合光元件後方的虛匯聚平面。
圖5A為一示意圖,說明本發明之一種用於觀看者的雙眼感知物體深度的影像顯示系統。
圖5B為一示意圖,說明本發明之一種用於觀看者的雙眼的影像顯示系統,以感知一具有深度物體的兩個虛擬雙眼像素。
圖6為一流程圖,說明本發明之一實施例的流程,該實施例透過一帶有一第一光學複製器的影像顯示器為一觀看者眼睛擴大眼動範圍。
圖7A為一示意圖,說明本發明之一影像顯示系統的一實施例,該系統有一第一光學反射器。
圖7B為一示意圖,說明本發明之由一副眼鏡乘載的影像顯示系統。
圖8為一示意圖,說明本發明之一影像顯示系統的一實施例,其中一第一影像投影器是一數位光處理投影器。
圖9A-D皆為示意圖,說明本發明之帶有一連續移動的光學反射器的一影像顯示系統的一實施例,該系統顯示影像像素。
圖10為一示意圖,說明本發明之一影像顯示系統的一實施例,該系統產生在一可視區的數個視點。
圖11A為一示意圖,說明本發明之一影像顯示系統的一實施例,該系統帶有一五角柱反射器。
圖11B為一示意圖,說明本發明之帶有一五角柱反射器的一影像顯示系統的一實施例,該系統產生一第一可視區。
圖12為一流程圖,說明本發明之一實施例的流程,該實施例用帶有一五角柱反射 器的一影像顯示系統為一觀察者的眼睛擴大眼動範圍。
本文中所使用的詞彙係用來描述本發明特定具體實施例中的細節,所有的詞彙應以最大的範疇做合理解讀。某些詞彙將在以下特別強調;任何限制性用語將由具體實施例定義。
本發明涉及一或多個方法、系統及裝置,以擴大影像顯示器的眼動範圍,該方法、系統及裝置包括(但不限於)應用來自頭戴式裝置(例如智能眼鏡)的視網膜投影技術的近眼顯示器。本發明包含兩個實施例。關於第一實施例的描述可能是用於第二實施例,反之亦然。該第一實施例應用「分光」原理達到為觀看者擴大眼動範圍,該實施例包含一光學複製器以產生一入射光信號的數條光束。該第一實施例的一影像顯示器裝置包含一第一影像投影器、一第一光學複製器及一第一合光元件。該第一影像投影器產生一第一影像的數個光信號。該第一光學複製器接受由該第一影像投影器產生的一光信號、複製該光信號使其成為N條非平行光束並且將該光信號的N條光束中的每一個分別重定向至一第一合光元件,其中N為一大於一的整數。該第一合光元件位於該第一光學複製器及該觀察者的一眼之間,該合光元件用於接收該光信號的N條光束,並將其分別匯聚到該觀看者的該眼睛的眼動範圍中的N個視點。該影像檢視器系統可以進一步包括一第二影像投影器、一第二光學複製器以及一第二合光元件,用相同方式擴大該觀察者另一眼的眼動範圍。因此,該影像顯示系統可以同時擴大該觀察者左眼與右眼的眼動範圍。
該第二實施例應用「時間分割」原理,該實施例包括一光學反射器,該反射器在不同的入射角移動以重定向數個光信號的方式實現觀看者眼動範圍的擴大。該第二實施例的一影像顯示系統包括一第一影像投影器、一第一光學反射器以及一第一合光元件。該第一影像投影器產生一第一影像的數個光信 號。該第一光學反射器接收由該第一影像投影器產生的數個光信號,並移動以重定向該數個光信號至一第一合光元件,該第一光學反射器的移動會導致該數個光信號到達該第一合光元件時的入射角不同。該第一合光元件位於該第一光學反射器及該觀看者的一眼之間,用於接收並匯聚該數個光信號至該觀看者眼睛的一第一可視區,以擴大該觀看者眼睛的眼動範圍。此外,該第一光學反射器的移動頻率是根據該第一影像投影器的投影頻率調整,以使該第一影像的該數個光信號在視覺暫留時間內投影到該觀看者眼中的可視區。該影像顯示系統可以更進一步包括一第二影像投影器、一第二光學反射器以及一第二合光元件,用相同方式擴大該觀察者另一眼的眼動範圍。因此,該影像顯示系統可以同時擴大該觀察者左眼與右眼的眼動範圍。
在第一實施例與第二實施例中,該觀看者的雙眼的影像顯示系統用於顯示一有深度的物體。從該第二合光元件重定向的光信號是一第一重定向右光信號,從該第一合光元件重定向的相對光信號是一第一重定向左光信號。由該觀看者感知該第一重定向右光信號及該第一重定向左光信號以顯示一物體的一第一虛擬雙眼像素,其深度跟該第一重定向右光信號及相對的該第一重定向左光信號間的第一角度有關。一般而言,該第一深度是由該第一重定向右光信號和該相對的第一重定向左光信號之間的水平距離決定。
第一實施例
如圖1A所示,在第一實施例中,一影像顯示系統100包括一第一影像投影器110、一第一光學複製器120及一第一合光元件130。藉由「分光」原理,該第一實施例使用該第一光學複製器120接收一第一影像的光信號,並產生該光信號的數個光束,這些光束分別匯聚到數個視點(即151,152,153)以擴大一觀看者眼睛的眼動範圍。傳統上,一眼動範圍只包含一視點。藉由本發明,可以擴大眼動範圍以包含數個視點。一視點可以與相鄰的視點分開、緊貼或是重疊。該眼動範圍為一觀察者眼睛140可以看到完整影像 的區域。換句話說,只要該觀看者的眼睛在該眼動範圍移動,該觀看者就能看到完整的影像。該影像顯示系統100可以為一觀看者眼睛擴大眼動範圍。
該影像顯示系統100可以由一頭戴式裝置(head wearable device,HWD)乘載,在一實施例中可以是如圖1B所示的一副智能眼鏡180。該副眼鏡有一鏡框185及一對眼鏡鏡片190。該鏡框185帶有一第一影像投影器110及該第一光學複製器120。該第一影像投影器110及該第一光學複製器120的位置會根據光徑的設計而有所調整。該眼鏡鏡片190帶有該第一合光元件130。在一實施例中,該第一合光元件130與該眼鏡鏡片190合併為一單一的部件。在這種情況下,該影像顯示系統100可以為頭戴式裝置的穿戴者擴大眼動範圍。一觀看者可以從眼動範圍內的不同視點(即151,152,153)看到完整影像。此外,因為該智能眼鏡180可以為該觀看者客製化,瞳距可以根據每個觀看者調整。所屬領域具有通常技術者可以得知在其他實施例中,該影像顯示系統100可以用來同時為數個觀看者擴大眼動範圍。
該第一影像投影器110的光源可以是雷射、發光二極體(LED),其中包含迷你或微型LED(mini or micro LED)、有機發光二極體(OLED)、超輻射發光二極體(SLD)、矽基液晶(LCoS)、或是液晶顯示器(LCD),或是上述的組合。在一實施例中,該第一影像投影器110是一雷射掃描投影器(LBS projector),該投影器由一光源(包含一紅光雷射、綠光雷射及藍光雷射)、一光色修改器(如雙色合光元件及偏光合光元件)以及一二維可調式反射器(如微機電系統鏡)。該LBS投影器已預設的解析度(例如每禎1280x720像素)一個接一個依序產生並掃描光信號。接著,一像素的光信號被產生並一次向該第一光學複製器120投影。為了讓觀看者的一隻眼睛看到該二維影像,該LBS投影器必須在視覺暫留時間(例如1/18秒)內依序產生該第一影像每個像素的光信號(例如1280x720個光信號)。因此,每個光信號的持續時間大約為60.28奈秒。
在另一實施例中,該第一影像投影器110可以是一數位光處理(DLP)投影器,該投影器可以一次產生一二維彩色影像。德州儀器的DLP技術是其中一種可以 應用在製造DLP投影器的技術。每幀完整二維彩色影像,例如可以包括1280x720像素,同時向該第一光學複製器120投影。因此,在接收到一入射光信號的N條不平行光束後,該第一光學複製器120可以同時將一幀的數個光信號(例如1280x720個光信號)的N條不平行光束重定向至該第一合光元件130,其中N為大於1之整數。
當使用一LBS投影器作為該第一影像投影器110時,該第一光學複製器120用來同時接收由該第一影像投影器110產生的數個光信號,相對於光路徑而言,該複製器位於且面向在該第一影像投影器110及該第一合光元件130的光徑之間。對於每個接收到的光信號,該第一光學複製器120將該光信號複製使其成為N條非平行光束,並且分別將該光信號的N條光束重定向至該第一合光元件130。該第一合光元件130位於且面向該第一光學複製器120及觀察者一眼睛140的光徑之間,用以將該光信號的N條不平行光束的每一個分別重定向至該觀察者眼睛的眼動範圍內的N個視點(如151,152,153...)。再次說明,一視點可以與相鄰的視點分開、緊貼或是重疊。所屬領域具有通常知識者應知道如何根據瞳孔大小、影像解析度、該第一影像投影器110的掃描速率以及該光信號的不同光束間的干射效應,確定視點數量、視點範圍及相鄰兩個視點間的距離。一般成人的瞳孔大小在亮處時直徑為2-4釐米,在暗處直徑為4-8釐米。在一實施例中,中央相鄰兩視點的距離大約為2.6-3釐米。
來自該第一光學複製器120該光信號的N條非平行光束可以匯聚在該第一合光元件130的一點上。在另一實施例中,來自該第一光學複製器120該光信號的N條非平行光束在該第一合光元件130上的不同點反射,並且反射的該光信號的N條非平行光束路徑的延伸會匯聚到虛匯聚平面上,該匯聚平面在該第一合光元件130後方距離d處,離觀看者眼睛較遠。在上述兩個實施例中,該第一合光元件130反射後,同一影像像素的光信號的N個不平行光束(如第一光束、第二光束、第三光束)被重定向至眼動範圍150內的相對視點(如第一視點、第二視點、第三視點)。從觀看者的角度來看,因為同一影像像素光信號的N條非平行光束會物理上匯聚在該第一合光元件130的 一點上,或是這些光徑的延伸會匯聚在一虛匯聚平面的一點上,所以當該觀看者的眼睛從第一視點、第二視點或是第三視點看到一影像像素時,該影像像素會被視為在同一位置。換句話說,該觀看者的眼睛看到該光信號的第一光束、第二光束及第三光束皆代表該同一影像像素,因為他們皆來自該第一合光元件130或該匯聚平面上的同一點。因此,來自該影像顯示系統100的該二維影像都會在相同位置,不管該觀看者的眼睛從哪個視點看到該二維影像。此外,在該第一合光元件130上反射後,從該第一合光元件130上反射的不同影像像素的光信號的相對光束(例如第一光束、第二光束及第三光束)會匯聚到眼動範圍150內的相對視點(例如第一視點、第二視點及第三視點)。
如圖2所示,該影像顯示系統100可以進一步包括一第一準直儀160,該準直儀位在該第一影像投影器110及該第一光學複製器120以使該光信號的運動方向在特定方向上更加一致(平行)。換句話說,來自該第一影像投影器110不同像素的光信號在通過該第一準直儀160後會變得大致平行。因此,該第一準直儀160讓每個光信號對該第一光學複製器120的入射角大致相同。該第一準直儀160可以為一曲面鏡片或一凸透鏡。
該第一光學複製器120用以複製一入射光信號使其成為N條非平行光束。換句話說,在接收一光信號後,該第一光學複製器120產生該光信號的N條光束並且將其重定向至該第一合光元件130,其中N為大於1之整數(例如N等於3,4,5)。由於「分光」的結果,該入射光信號的該N條非平行光束的光強度會減弱。該第一光學複製器120可以是分光鏡、偏振片、半塗銀鏡、部分反射器、雙色鏡稜鏡、分色光學塗層及介電光學塗層。該第一光學複製器120可以包括至少兩個光學元件來複製該入射光為至少兩條光束。該光學元件的每一個可以是一鏡片、反射器、部分反射器、稜鏡、鏡子,或是上述的組合。
該第一光學複製器120可以調整其位置,包括方向及距離,以讓一光信號的N條非平行光束可以匯聚。在圖2及圖3,該第一光信號L1的該第一光束S11、該 第二光束S12及該第三光束S13會匯聚在該第一合光元件130的一點C1上。同樣地,該第三光信號L3的該第一光束S31、該第二光束S32及該第三光束S33會匯聚在該第一合光元件130的一點C3上。當該第一光信號及該第三光信號分別為該影像中最左邊及最右邊的該影像像素,點C1及點C3之間的距離被稱作視野(field of view,FOV)。在本實施例中,該觀看者從一視點看到的視野可以幾乎覆蓋該第一合光元件130的整個面積。或者是,該觀看者從一視點看到的視野可以覆蓋該第一合光元件80%以上的面積。在傳統情況下產生一光信號的平行光束,一合光元件的面積會被多個視點分割,因此該觀看者從一視點看到的視野會遠小於本發明的視野。
如圖4所示的該影像顯示系統100的另一實施例,該第一光信號的該第一光束S11、該第二光束S12及該第三光束S13分別在該第一合光元件130上的點C11、C12、C13上反射。然而,該第一光信號L1的該第一反射光束RS11、第二反射光束RS12、第三反射光束RS13的光路徑延伸會匯聚在虛匯聚平面上的一點D1,該匯聚平面在該第一合光元件130後方d處且離該觀看者眼睛更遠。在該實施例中,因為每一影像像素的光信號的所有光束路徑延伸都會匯聚在虛匯聚平面的一點上,不管該觀看者的眼睛從哪個視點看到該影像,該觀看者的眼睛感知每一影像像素(及整個影像),都會認為它位於虛匯聚平面的相同位置。該實施例可以應用在擴增實境輔助手術(ARAS),其中由該影像顯示系統100生成的影像,例如最初從電腦斷層掃描中獲取的影像,可以疊加在診所內病人的相對部分上。在某些情況下,該第一合光元件130後面的距離D為30-40厘米左右。
該第一合光元件130反射來自該第一光學複製器120的該光信號的數個光束,並且匯聚每一光信號的相對光束至觀看者眼動範圍內相對應的視點。在一實施例中,該第一合光元件130是足夠透明以讓環境光穿透至該觀看者的眼睛。如圖2、圖3、圖4所示,來自該第一光學複製器120,三入射光信號(L1,L2,L3)的每條第一光束(實線S11,S21,S31)會被該第一合光元件130反射且匯聚在該第一視點P1上;來自該第一 光學複製器120,三入射光信號(L1,L2,L3)的每條第二光束(虛點線S12,S22,S32)會被該第一合光元件130反射且匯聚在該第二視點P2上;來自該第一光學複製器120,三入射光信號(L1,L2,L3)的每條第三光束(點線S13,S23,S33)會被該第一合光元件130反射且匯聚在該第三視點P3上。不管是來自該第一光學複製器120的每一光信號的該第一光束、該第二光束及該第三光束都會匯聚在該第一合光元件130,經反射後,來自該第一合光元件130的三光信號(L1,L2,L3)的每條第一反射光都會匯聚在該第一視點P1上。每一光信號的第二光束及第三光束皆是如此。
該第一合光元件130可以由玻璃或塑膠材料製成一鏡片,並鍍以像是金屬的特定材料,讓它部分透明且部分反射。該第一合光元件130可以是一全像分光鏡但是並不是最佳選擇,因為繞射效應會導致數個黑影及RGB位移。在某些實施例中,會避免使用全像分光鏡。
如上所述,該影像顯示系統100帶有該第一影像投影器110、該第一光學複製器120及該第一合光元件130可以為觀看者一眼擴大一眼動範圍。在一實施例,該影像顯示系統100可以進一步包括一第二影像投影器115、一第二光學複製器125及一第二合光元件135,它們與該第一影像投影器110、該第一光學複製器120及該第一合光元件130以相同的方式發揮作用,為該觀看者的另一點擴大眼動範圍。同樣地,該第二影像投影器產生一第二影像的數個光信號。該第二光學複製器接受由該第二影像投影器產生的一光信號、複製該光信號為M條非平行光束並且將該光信號的M條光束中的每一個分別重定向至一第二合光元件,其中M為一大於一的整數。該第二合光元件位於該第一光學複製器及該觀察者的一眼之間,該合光元件用於接收該光信號的M條光束,並將其分別匯聚到該觀看者的另一眼的眼動範圍中的M個視點。此外,該第二影像投影器跟該第一影像投影器有相似的結構;該第二光學複製器跟該第二光學複製器有相似的結構;該第二合光元件跟該第一合光元件有相似的結構。因此,該影像顯示系統100可以同時擴大該觀看者左右眼的眼動範圍。
該影像顯示系統100可以包括一可以戴在觀看者頭上的支撐結構,以乘載該第一影像投影器110、該第二影像投影器115、該第一光學複製器120、該第二光學複製器125、該第一合光元件130及該第二合光元件135。該第一合光元件130與該第二合光元件135位於該觀看者的視野中。因此在本實施例中,該影像顯示系統100為一頭戴式裝置(HWD)。特別是由圖1B所示,由一副眼鏡乘載該影像顯示系統,這被稱為智能眼鏡。在該情況下,該支撐結構可以是一副可能帶有鏡片的鏡框,該鏡片可以是用於矯正近視或是遠視等的處方鏡片。該第一影像投影器110及該第一光學複製器120由右眼鏡腳乘載,該第二影像投影器及該第二光學複製器由左眼鏡腳承載。該第一合光元件可由右邊鏡片承載而該第二合光元件可由左邊鏡片乘載。承載可以藉由各種方式實現,該合光元件可動式或固定式連接或整合在鏡片上。該合光元件可以與鏡片(包括處方鏡片)組合在一起。當該支撐結構不含鏡片時,該右合光元件及該左合光元件可以直接由框架或邊緣乘載。
該影像顯示系統100的實施例中的所有元件及變化都可以應用在頭戴式裝置上。因此該包含智能眼鏡的頭戴式裝置可以進一步承載該影像顯示系統的其他元件,像是一控制單元、一第一準直儀160及一第二準直儀165。該第一準直儀160位在該第一影像投影器及該第一光學複製器之間,且該第二準直儀165位在該第二影像投影器及該光學複製器之間。當該影像顯示系統100應用在智能眼鏡上時,智能眼鏡的鏡片可以同時具有矯正觀看者視力的屈光特性及合光元件的功能。該智能眼鏡可以為有度數的鏡片以滿足近視或遠視的人矯正視力的需求。在這種情況下,該智能眼鏡的每個鏡片都可以包括一屈光單元及一合光元件。該屈光單元及該合光元件可以用相同或不同類型的材料一起製造,該屈光單元及該合光元件可以分開製造再組裝在一起。這兩個元件可以暫時互相連接(例如使用內建的磁性材料)或者永久地連接在一起。在這兩種情況下,該合光元件設置在鏡片靠觀看者眼睛這側。如果該鏡片是一體的,該合光元件會形成鏡片的內表面。如果該鏡片有兩個部分,則該合光元件為該鏡頭的內側部 分。該合成元件既允許環境光通過,又將該影像投影器產生的光信號反射到該觀看者的眼睛,以形成真實環境中的虛擬影像。該合光元件具有適當的曲率,以反射及匯聚來自該光學複製器的所有光信號到瞳孔中,最後到視網膜上。
如圖5A所示之一實施例,觀看者雙眼的影像顯示系統100用以顯示一個有深度的物體。因為該物體的深度與該觀看者雙眼所注視的位置相同,所以可以避免視覺輻輳調節衝突(VAC)及焦點競爭。從該第二合光元件135重定向的該光信號為一第一重定向右光信號(如:RRL21),從該第一合光元件130重定向的相對光信號為一第一重定向左光信號(如:RLL21)。該第一重定向右光信號(如:RRL21)及該第一重定向左光信號(如:RLL21)被該觀看者感知以顯示具有一第一深度d1的物體70的一第一虛擬雙眼像素72,該深度跟該第一重定向右光信號(如:RRL21)的光徑延伸及該第一重定向左光信號(如:RLL21)的光徑延伸之間的一第一角度θ1有關。一般而言,該第一深度是由該第一重定向右光信號與該第一重定向左光信號之間的相對水平距離決定。
圖5A所示的該影像顯示系統100有一第一影像投影器110、一第一光學複製器120、一第一合光元件130、一第二影像投影器115、一第二光學複製器125、一第二合光元件135。該第一影像投影器110向該第一光學複製器120產生一左光信號(LL2),然後將該左光信號複製為三條光束(LL21,LL22,LL23),並將它們重定向至該第一合光元件130。該第一合光元件130分別在點C21(L)、C22(L)及C23(L)上反射該左光信號的三條光束。該左光信號的三條重定向光束(RLL21,RLL22,RLL23)會分別投影在三個左視點P1(L)、P2(L)及P3(L)上,接著到觀看者的視網膜。該左光信號的三條重定向光束的光徑延伸會匯聚在左虛匯聚平面上的一點D2(L),該匯聚平面在該第一合光元件130後方d1處且離該觀看者眼睛更遠。
相同的,該第二影像投影器115向該第二光學複製器125產生一右光信號(RL2),然後將該左信號複製為三條光束(RL21,RL22,RL23),並將它們重定向至該第二合光元件135。該第二合光元件135分別在點C21(R)、C22(R)及C23(R)上反射該右 信號的三條光束。該右光信號的三條重定向光束(RRL21,RRL22,RRL23)會分別投影在三個右視點P1(R)、P2(R)及P3(R)上,接著到觀看者的視網膜。該右光信號的三條重定向光束的光徑延伸會匯聚在右虛匯聚平面上的一點D2(R),該匯聚平面在該第二合光元件135後方d1處且離該觀看者眼睛更遠。該影像顯示系統100可以使該位置D2(L)與該位置D2(R)位置相同,該位置為該觀看者感知到物體第一虛擬雙眼像素72的立體位置。
在該實施例中,隨著眼動範圍擴大,該觀看者的眼睛可以從三對視點接收到光信號:該第一右視點P1(R)及相對的該第一左視點P1(L)、該第二右視點P2(R)及相對的該第二左視點P2(L)、該第三右視點P3(R)及相對的該第三左視點P3(L)。該觀看者的右眼50包含一右瞳孔52及一右視網膜54;該觀看者的左眼60包含一左瞳孔62及一左視網膜64。因此,從第一對視點(即該第一右視點P1(R)及相對的該第一左視點P1(L)),該觀看者的眼睛可以通過該瞳孔接收到該重定向右光信號RRL21的第一光束及相對的該重定向左光信號RLL21的第一光束並到該視網膜上。結果上,該觀看者感知到一物體的一第一虛擬雙眼像素72,該物體顯示出一第一深度d1,該深度與該重定向右光信號RRL21的第一光束及相對的該重定向左光信號RLL21的第一光束的光徑延伸之間的一第一角度θ1有關係。相同的,從第二對視點(即該第二右視點P2(R)及相對的該第一左視點P2(L)),該觀看者的眼睛可以通過該瞳孔接收到該重定向右光信號RRL22的第二光束及相對的該重定向左光信號RLL22的第二光束並到該視網膜上。結果上,該觀看者感知到該物體的同一第一虛擬雙眼像素72,該像素顯示出一第一深度d1,該深度與該重定向右光信號RRL22的第二光束及相對的該重定向左光信號RLL22的第二光束的光徑延伸之間的一第一角度θ1有關係。上述的敘述也可以應用在第三對視點上。每對視點之間的距離大致相同,因為一觀看者在移動時其瞳距(IPD)並不會改變。
如圖5B所示的一實施例中,一物體70,例如恐龍,會被感知到數個深度。除了該物體的該第一虛擬雙眼像素72,當一第二重定向右光信號18’及相對的一第 二重定向左光信號38’被該觀看者感知並顯示該物體的一第二虛擬雙眼像素74,該像素顯示出一第二深度d2,該深度與該第二重定向右光信號18’及相對的該第二重定向左光信號38’的光徑延伸之間的一第二角度θ2有關係。在圖5B中,為了簡化圖示,只有來自該第一光學複製器120及該第二光學複製器125的每一條左光信號及右光信號的第一光束有被表現出來。圖5A已經說明該第一光學複製器及該第二光學複製器分別產生了該左光信號及該右光信號的三條光束。
在圖5B中,該物體70的該影像包括在一第一深度d1顯示的一第一虛擬雙眼像素72及在一第二深度d2顯示的一第二虛擬雙眼像素74。在該第一重定向右光信號16’及相對的該第一重定向左光信號36’之間的該第一角度為θ1。該第一深度d1跟該第一角度θ1有關。特別是,該物體的該第一虛擬雙眼像素的該第一深度可以藉由該第一重定向右光信號及相對的該第一重定向左光信號的光徑延伸之間的該第一角度θ1確定。該第一虛擬雙眼像素72的該第一深度d1可以由下列公式大致計算:
Figure 110122655-A0305-02-0017-1
該右瞳孔52與該左瞳孔62之間的距離為瞳距(IPD)。同樣的,在該第二重定向右光信號18’及相對的該第二重定向左光信號38’的光徑延伸之間的該第二角度為θ2。該第二深度d2跟該第二角度θ2有關。特別是,該物體的該第二虛擬雙眼像素74的該第二深度d2可以透過同一公式藉由該第二重定向右光信號及相對的該第二重定向左光信號的光徑延伸之間的該第二角度θ2大致確定。因為該第二虛擬雙眼像素74比起該第一虛擬雙眼像素72在距離該觀看者更遠處(即有更大的深度)被感知,所以該第二角度θ2比該第一角度θ1小。
此外,該第一重定向右光信號16’及相對的該第一重定向左光信號36’一起顯示該第一深度d1的一第一虛擬雙眼像素72。在一實施例中,該第一重定向右光信號16’不是相對應的該第一重定向左光信號36’的視差。因為該右眼與該左眼看到同一物體的角度不同,右眼接收到的影像與左眼接收到的影像間的視差用於一觀看者感 知一具有深度的立體影像。因此,該第一重定向右光信號16’及相對的該第一重定向左光信號36’有相同視角。然而,在另一實施例中,該虛擬雙眼像素的該右光信號及相對的左光信號可以顯示不同視角的圖像(有視差)。此外,該右光信號及該左光信號中的一個或兩個可以被修改以呈現某些立體效果,例如陰影。
如上所述,該數個右光信號由該第二影像投影器產生、由該第二光學複製器複製、並由該第二合光元件重定向、以及由該右視網膜掃描後形成一右視網膜影像。相同地,該數個左光信號由該第一影像投影器產生、由該第一光學複製器複製、並由該第一合光元件重定向、以及由該左視網膜掃描後形成一左視網膜影像。如圖5B所示之一實施例,一右視網膜影像80包含36個右像素(6x6矩陣)且一左視網膜影像90也包含36個左像素(6x6矩陣)。在另一實施例,一右視網膜影像80包含921600個右像素(1280x720距陣)且一左視網膜影像也包含921600個左像素(1280x720矩陣)。該影像顯示系統100可以用來產生數個右光信號及相對的數個左光信號,這些光信號分別在該右視網膜及該左視網膜形成該右視網膜影像及該左視網膜影像。因此,由於影像融合,該觀看者會感知到具有特定深度的一虛擬雙眼物體。
參照圖5B,來自該第二影像投影器115的該第一右光信號16被該第二光學複製器125複製並接著被該第二合光元件135反射。該第一重定向右光信號(的第一光束)16’通過該右瞳孔52到達該觀看著的該右視網膜54以顯示該右像素R34。相對的來自該第一影像投影器110該第一左光信號(的第一光束)36被該第一光學複製器120反射並接著被該第一合光元件130反射。該第一重定向左光信號36’通過該左瞳孔62到達該觀看者的該左視網膜64以顯示該左視網膜像素L33。在本實施例中,該第一重定向右光信號及相對的該第一重定向左光信號被導向該觀看者雙眼的視網膜的大致相同高度。因為影像融合,一觀看者感知到該虛擬雙眼物體有數個深度,該深度可以藉由同一物體的該數個重定向右光信號及相對的該數個重定向左光信號之間的角度確定。一重定向右光信號及相對的一重定向左光信號之間的角度是由該右像素及該左像素間的水平 距離所決定的。因此,一虛擬雙眼像素的深度跟形成該虛擬雙眼像素的該右像素及相對的該左像素之間的距離呈負相關。換句話說,該觀看者感知到一虛擬雙眼像素越深,形成該虛擬雙眼像素的該右像素及該左像素之間X軸上的相對水平距離越小。舉例來說,如圖5B所示,該觀看者感知到的該第二虛擬雙眼像素74比該第一虛擬雙眼像素72更深(即距離該觀看者較遠)。因此,在視網膜影像上,該第二右像素及第二左像素之間的水平距離比該第一右像素及第一左向素枝間的水平距離更小。特別的是,形成該第二虛擬雙眼像素的該第二右像素R41及該第二左像素R51之間的距離為四個像素。然而,形成該第一虛擬雙眼像素的該第一右像素R43及該第一左像素L33之間的距離為六個像素。
如上所述,本實施例可以應用在擴增實境輔助手術(ARAS),其中由該影像顯示系統100產生的圖像,例如最初從電腦斷層掃描中獲取的圖像,正好疊加在臨床病人的相應部分。在某些情況下,該第一合光元件130後的距離d1大約為30-40釐米左右。在這種應用中,立體影像的深度可以固定或限制在一個相對較短的距離內。
當該第一影像投影器110為數位光處理(DLP)投影器時,該投影器一次產生該整個影像,例如每幀1270x720畫素,並同時投影向該第一光學複製器120。以上敘述一般適用於使用數位光處理投影器的情況。
圖6說明一擴大一觀看者的眼動範圍的方法。在步驟610,該第一影像投影器110向一第一光學複製器產生一光信號。在一實施例中,該影像投影器可以為一雷射掃描投影器(LBS projector),將該影像畫素的光信號逐個依序產出。在另一實施例中,該第一影像投影器110可以為一數位光處理投影器並同時產生該影像的所有光信號(例如一幀1280x720像素)。在任一實施例中,當該第一影像投影器110高速產生該光信號時,由於視覺暫留,該觀看者可以順利地看影像。
在步驟620,該第一光學複製器120收到該光信號並複製它使其成為該光信號的N條非平行光束,其中N為大於一的整數。該第一光學複製器120也重定向 該N條非平行光束至一第一合光元件130。在步驟630,該第一合光元件130重定向並匯聚該光信號的每一條光束至一觀看者眼動範圍內的一相對視點。該第一合光元件130位在該第一光學複製器及觀看者的一眼之間。該第一光學複製器120及該第一合光元件130用來匯聚每個光信號的N條非平行光束。舉例來說,每個光信號的第一非平行光束匯聚到該第一視點且每個光信號的第二非平行光束匯聚到該第二試點。該第一光學複製器120及該第一合光元件130用來實現下列兩個實施例其中之一。在一實施例中,一光信號的N條非平行光束物理上匯聚在該第一合光元件130的一點上。在另一實施例中,來自該第一光學複製器120的該光信號的N條非平行光束會分別在該第一合光元件130的不同點上反射。在該第一合光元件130反射後,每個光信號的N條非平行光束的光徑延伸會虛擬地匯聚在一點D1,該位置在距離該第一合光元件130後方d處,離該觀看者眼睛較遠。
除了上述三個步驟之外,在一實施例,在步驟610之後及步驟620之前,該方法進一步包括一步驟615。在步驟615,一第一準直儀160使由該第一影像投影器110產生的數個影像像素的光信號對該第一光學複製器120有大致相同的入射角。一第一準直儀可以放置在該第一影像投影器110及該第一光學複製器120之間的光徑以達成該功能。
總之,第一實施例所述的各種影像顯示系統的一個特點是,無論該觀看者的眼睛從哪個視點看到該影像,該觀看者的眼睛都能感知到從影像顯示系統產生的影像/物體(無論是二維還是三維),就像該影像位於該第一合光元件130或匯聚平面的同一位置上。換句話說,當該觀看者的眼睛在該眼動範圍內從一視點移動到另一視點時,該觀看者可以在完全相同的位置看到完整的影像/物體。在現有技術的情況下,由於在該合光元件反射後,每個光信號的N條光束會被平行地重定向至該視點,當該觀察者的眼睛在該眼動範圍內從一視點移動到另一視點時,該觀察者會感知到該物體移動。
另一個特點是,當來自該第一光學複製器120代表一像素的每一光信號的N條非平行光束匯聚到該第一合光元件130上的一點時,該第一合光元件130的幾乎全部範圍可以當作視野(field of view,FOV)。在現有技術中,代表一像素的每一光信號的N條光束會射向一合光元件的不同區域,因此在被該合光元件反射後,該每一光信號的N條光束會從該合光元件上的不同點被平行地重定向至該視點。因此,只有該合光元件的一較小區域(大約為該合光元件除以N)可以當作視野。
第二實施例
只要第一實施例所揭露的內容與第二實施例所揭露的內容一致,就將其納入第二實施例中。在第二實施例中,如圖7A所示,一影像顯示系統200包含一第一影像投影器210、一第一光學反射器220及一第一合光元件230。該影像顯示系統200可以為每個觀看者的眼睛擴大眼動範圍。藉由「時間分割」原理,該第二實施例利用該第一光學反射器220的快速移動以接收一影像的光信號,並且藉由該第一光學反射器220的移動,該光信號會以不同入射角快速地重定向至該第一合光元件230。相對於光路徑而言,該第一合光元件230位於該第一光學反射器220及該觀察者的一眼的光徑之間,並且用來接收該數個光信號且匯聚至該觀看者眼中的一第一可視區,以擴大該觀看者眼睛的眼動範圍250。該第一光學反射器220的移動頻率是根據該第一影像投影器210的投影頻率而調整的,所以該第一影像的數個光信號會在視覺暫留時間內投影至該觀看者眼中的該可視區。
該眼動範圍250為一觀看者眼睛240可以看到一完整影像的可視區。換句話說,只要該觀看者的眼睛在眼動範圍內移動,該觀看者即可看到一完整影像。該眼動範圍(可視區)可能包含一連續的區域或是數個視點,一視點可以與相鄰的視點分開、緊貼或是重疊。一般成人的瞳孔大小在亮處時直徑為2-4釐米,在暗處直徑為4-8釐米。在一實施例中,中央相鄰兩視點的距離大約為2.6-3釐米。所屬領域具有通常知識者可以得知如何藉由瞳孔大小、影像解析度、第一影像投影器210的掃描速度及光信號 的不同光束間的干涉效應來決定視點數量、視點範圍及中央兩相鄰視點間的距離。當該第一光學反射器220連續移動時,該眼動範圍為一連續的可視區,而不是分開的數個視點。所以當一觀看者的眼睛在可視區(眼動範圍)移動時,包括從一視點到下一視點,該觀看者的眼睛可以持續看到該完整影像而不中斷。
該第一光學反射器220可以為一一維微機電系統鏡、一二維微機電系統鏡、一多邊柱反射器/鏡、一圓柱反射器/鏡等等。該第一光學反射器220可以用兩種模式移動。在第一模式,該第一光學反射器220在N個位置之間移動,每個位置對應於該第一可視區(眼動範圍)內的一視點,其中N是大於一的整數。根據該視點的大小及瞳孔的直徑,一眼動範圍可以有數個視點,該觀看者可以從每個視點看到該整個影像。在第二模式,該第一光學反射器220以一種模式連續移動,反覆重定向該光信號並匯聚到該觀看者眼睛的第一可視區。
該影像顯示系統200可以由一頭戴式裝置乘載,如圖7B所示,在一實施例中可以為一智能眼鏡280。該副眼鏡有一鏡框285及一副鏡片290。該鏡框285乘載該第一影像投影器210及該第一光學反射器220。該第一影像投影器210及該第一光學反射器220的位置可以藉由光徑的設計而調整。該鏡片290帶有該第一合光元件230。在一實施例中,該第一合光元件230可以跟鏡片290整合為一個元件。在這個情況下,該影像顯示系統200可以為該頭戴式裝置的佩戴者擴大眼動範圍。一觀看者可以從任何位置看到一完整影像,包括在某些情況下該第一可視區(眼動範圍)中的不同視點(如251,252,254)。此外,因為該智能眼睛可以為該觀看者客製化,該瞳距(IPD)可以為每個觀看者調整。所屬領域具有通常知識者可以得知在其他實施例中,該影像顯示系統200可以用來同時為數個觀看者擴大眼動範圍。
該第一影像投影器210的光源可以是雷射、發光二極體(LED),其中包含迷你或微型LED、有機發光二極體(OLED)、超輻射發光二極體(SLD)、矽基液晶(LCoS)、或是液晶顯示器(LCD),或是上述的組合。在一實施例中,該第一影像 投影器210是一雷射掃描投影器(LBS projector),該投影器由一光源(包含一紅光雷射、綠光雷射及藍光雷射)、一光色修改器(如雙色合光元件及偏光合光元件)以及一二維可調式反射器(如微機電系統鏡)。該LBS投影器已預設的解析度(例如每幀1280x720像素)一個接一個依序產生並掃描光信號。接著,一像素的光信號產生並一次向該第一光學反射器220投影。為了讓觀看者的一隻眼睛看到該二維影像,該LBS投影器必須在視覺暫留時間(例如1/18秒)內依序產生該第一影像每個像素的光信號(例如1280x720個光信號)。因此,每個光信號的持續時間大約為60.28奈秒。
在另一實施例中,該第一影像投影器210可以是一數位光處理(DLP)投影器,該投影器可以一次產生一二維彩色影像。德州儀器的DLP技術是其中一種可以應用在製造DLP投影器的技術。該完整二維彩色影像幀,例如可以包括1280x720像素,同時向該第一光學反射器220投影。因此,該第一光學反射器220可以同時重定向一幀的數個光信號(例如1280x720個光信號)至該第一合光元件230。
該第一光學反射器220位於且面向該第一影像投影器210及該第一合光元件230之間的光徑,用於同時接收一或多個來自該第一影像投影器210光信號。該第一合光元件230位於且面向該第一光學反射器220及一觀看者眼睛240之間,用於重定向一或多個來自該第一光學反射器220的光信號並匯聚數個光信號至該觀看者眼睛的該第一可視區,以擴大該觀看者眼睛的眼動範圍。
在第一模式,該第一光學反射器220在N個位置之間移動並反射光信號至該第一合光元件230的不同部分,其中N為一大於一的整數。舉例來說,如圖10所示,當N等於5時,該第一光學反射器220非常快速的在五個位置(X1,X2,X3,X4,X5)間移動。在一實施例中,該第一光學反射器220為一一維(1D)微機電系統鏡,反覆地從X1移動到X5再從X5回到X1,其模式為X1→X2→X3→X4→X5→X4→X3→X2→X1。當該第一光學反射器220位於X1時,該第一合光元件230反射該光信號並接著匯聚至該視點P1。具體來說,當該雷射掃描投影器掃描該第一完整影像幀F1時,該一維微機電系統 鏡仍在位置X1,接著移動至位置X2。同樣的,當該第一光學反射器220位於X2時,該第一合光元件230反射該光信號並接著匯聚至該第二視點P2。具體來說,當該雷射掃描投影器掃描該第二完整影像幀F2時,該一維微機電系統鏡仍在位置X2。然後,該一維微機電系統鏡移動到位置X3,在該位置掃描、反射並匯聚該第三完整影像幀F3至該第三視點P3。該第一光學反射器220移動到位置X4,在該位置掃描、反射並匯聚該第四完整影像幀F4至該第四視點P4。該第一光學反射器220移動到位置X5,在該位置掃描、反射並匯聚該第五完整影像幀F5至該第五視點P5。該第一光學反射器220移動到位置X4,在該位置掃描、反射並匯聚該第六完整影像幀F6至該第四視點P4。該第一光學反射器220移動到位置X3,在該位置掃描、反射並匯聚該第七完整影像幀F7至該第三視點P3。該第一光學反射器220移動到位置X2,在該位置掃描、反射並匯聚該第八完整影像幀F8至該第二視點P2。當該第一光學反射器220,如該一維微機電系統鏡,回到位置X1時,就會開始第二次循環。為了平順地觀看動態影像,一觀看者必須要在視覺暫留時間(如1/18秒)內看到至少一完整影像幀。
當該第一影像投影器210為一雷射掃描投影器,每個像素的光信號會被接收並逐個反射至該第一光學反射器220的相對位置。在一實施例中,該第一光學反射器220可以在位置X1依序反射一第一影像幀(例如1280x720像素)的每個像素的光信號。同樣的,該第一光學反射器220可以在位置X2依序反射一第二影像幀的每個像素的光信號。在這個情況下,該第一光學反射器220需要待在同一個地方至少一段時間以讓該雷射掃描投影器可以掃描該完整影像幀。
如圖8所示,當該第一影像投影器210為一數位光處理投影器時,所有像素的光信號會被接收並同時反射在該第一光學反射器220的相對位置上。該第一光學反射器220可以在位置X1同時反射一第一影像幀(例如1280x720像素)所有像素的光信號,並由該第一合光元件230重定向並匯聚至該第一視點P1。在其他位置及視點皆適用。
在第二模式下,該第一光學反射器220連續移動以反射光信號至該第一合光元件230的不同位置。在一實施例中,該第一光學反射器220為一一維微機電系統鏡,該光學反射器在兩端來回移動(例如X1→X5→X1)。當該第一影像投影器210為一雷射掃描投影器,該第一影像投影器連續移動時,每一像素的光信號會被接收並一個接個一個反射。
圖9A-9D進一步說明第二模式下的成像過程。如上所述,在一影像幀的成像過程中,當該第一影像投影器210(例如一雷射掃描投影器)逐行或逐列的掃描以形成該影像幀時,該第一光學反射器220(例如一一維微機電系統鏡)連續移動(一維上反覆轉動)且改變位置。參考圖9A,該一維微機電系統鏡沒有移動的情況下,該雷射掃描投影器產生的影像幀可能為矩形的。舉例來說,線910代表第一行的影像像素;線920代表第二行的影像像素;線930代表第三行的影像像素。然而在第二模式下,由於該一維微機電系統鏡的移動,該影像幀可能被扭曲為平行四邊形。原因是因為該雷射光投影器藉由一次投影一影像像素產生一影像幀;該雷射光投影器接著改變投影位置及/或角度,在新的位置掃描另一影像,該新位置通常是在水平或垂直方向上緊鄰前一個像素。因此,在經過一段時間過後,該雷射掃描投影器產生一行或一列影像像素(例如1280x1或是1x720)。該雷射掃描投影器接著改變投影位置及/或角度至下一行(逐行掃描)或下一列(逐列掃描)並繼續產生第二行或第二列影像像素。該步驟會持續到完整的影像幀產生(例如完整的1280x720影像像素)。然而,在本發明的第二模式下,不僅該雷射掃描投影器改變其投影位置及/或角度,該微機電系統鏡的移動也會影像該影像幀的最終形狀。特別的是,由於該一維微機電系統鏡的移動/旋轉,一影像幀的每一行影像像素或每一列的影像像素的投影起始點會平移。結果該影像幀的形狀,如圖9B所示,可能會類似平行四邊形,這是因為該鏡子的移動導致向該一維微機電系統鏡行進的光信號的入射角改變了。
參考圖9C,在某些實施例中,該一維微機電系統鏡從一端點移動到另 一端點(例如X1→X5,半個週期)所需要的時間(TEP,time between end points,1/2f)會設定跟雷射掃描投影器完整掃描一影像幀所需的時間(TF,time of a frame)相同。換句話說,該第一光學反射器(例如一維微機電系統鏡)的移動頻率必須根據該第一影像投影器(例如該雷射掃描投影器)的投影頻率而調整,以使該第一影像的數條光信號可以在視覺暫留時間內投影至該觀看者眼睛中的該可視區。在該一維微機電系統鏡從X5移回至X1的期間,該雷射掃描投影器完成了一第二影像幀902。在本發明的一實施例中,該第一影像幀901及該第二影像幀902可以包含大致相同的影像資訊(像素)。換句話說,該第一影像幀901跟該第二影像幀902的內容大致相同。該第一影像幀901與該第二影像幀902之間內容的差異量是由該雷射掃描投影器的幀率所決定的。該幀率越高,則該第一影像幀901與該第二影像幀902之間內容的差異量越小,反之亦然。在另一實施例中,由於一較低幀率,該第一影像幀901與該第二影像幀902的影像資訊可以包含些微差異。
此外,參考圖9C,在某些實施例中,該影像幀的一部分可能超過該觀察者眼睛的視野邊界,並在視野內形成一盲點91,如圖9C所示的該第一影像幀901的A區域。然而,因為該第一影像幀901及該第二影像幀902包含大致相同的影像資訊,包含在區域A中的部分影像資訊(像素)可以在顯示為第二影像幀902的區域A’的點92忠看到。因此,該觀看者仍然可以看到該完整的影像幀。為了讓一觀看者可以看到一完整影像幀,該第一影像幀901及該第二影像幀902必須在視覺暫留時間內完整的投影出來。此外,該第二影像幀902為該第一影像幀901的刷新,其中該影像刷新率為1/TF。然而,在其他實施例中,根據該幀率,該第一影像幀901及第二影像幀902可以包含不同的影像資訊。
參考圖9D,該第二模式的另一實施例中,該一維微機電系統鏡從一端點移動到另一端點(例如X1→X5)所需要的時間(TEP)會設定跟該雷射掃描投影器完整掃描一影像幀所需的時間(TF)的數倍,故N*TF=TEP,其中N為一正整數且TF為該雷射掃描投影器掃描一影像幀所需的時間。在該實施例中,在該一維微機電系統鏡從一端 點移動到另一端點(例如X1→X5)的時間內,可以產生數個(N)影像幀。由於該第一光學反射器220連續移動以改變入射角,進而改變來自第一合光元件230的光信號的匯聚位置,使之不再是一視點,進而將該眼動範圍擴大為一連續可視區950。圖9D說明了一示範性的實施例,其中當該一維微機電系統鏡從X1移動至X5時,該第一、第二及第三影像幀連續形成;當該一維微機電系統鏡從X5移動回X1時,該第四、第五及第六影像幀連續形成。在某些實施例中,由於高幀率,六個影像幀全部都包含大致相同的影像資訊(像素)。為了使這六個影像幀看起來平順,該第一至第六影像幀必須在視覺暫留時間內被完全掃描。然而,在另一實施例中,該六個影像幀不用包含相同影像資訊。舉例來說,該第一、第二及第三影像幀可以包含大致相同的影像資訊,而該第四、第五及第六影像幀可以包含大致相同的影像資訊。如上所述,某些影像幀可能包含一盲點91。然而,由於其餘的影像幀可能包含相同影像資訊,該盲點91的影像訊息(像素)可以由其他影像幀的一部份來填補,所以該觀看者仍可以看到該完整的影像幀。
為了讓一觀看者可以看到完整影像,該觀看者在視覺暫留時間內(例如1/18秒)內看到一完整影像的所有不同部分。一完整影像幀可以由一位於一第一可視區的觀看者眼睛所看到的不同部分所自動拼接而成。然而,這些不同的部分可能來自不同的影像幀。由於高幀率導致不同影像幀彼此間的內容非常相近,所以對一觀看者而言要分辨來自不同影像幀的不同部分很困難。此外,為了讓一觀看者平順地觀看一動態影像,該觀看者必須要在視覺暫留時間內(例如1/18秒)在該第一可視區內的同個位置看到至少一完整影像幀。此外,為了使一觀看者看到更好的影像品質,需要減少干涉效應並提供相位偏移補償。減少干涉效應的一個方法是讓雷射掃描投影器的頻率與該一維微機電系統鏡的往返頻率(X1→X5→X1)同步。舉例來說,如果該第一影像投影器210在產生一影像幀的一第一光信號的同時,該第一光學反射器220開始從起始位X1移動以讓該第一光信號可以在該第一視點P1被看見,這樣更好的同步可以提高影像品質。
當該第一影像投影器210為一數位光處理投影器,所有像素的光信號會被同時接收並反射至該第一光學反射器220的相對位置。因此,在該第一光學反射器220持續移動的任何時刻,一影像幀(例如1280x720像素)的所有像素的光信號可以同時由該第一光學反射器220反射並接著由該第一合光元件230重定向及匯聚至該觀看者眼睛的該可視區。當該第一光學反射器220為一一維MSM鏡且不停的在兩端點(例如X1及X5)間移動時,該影像幀的該光信號會被匯聚至該第一可視區。
在第二模式的另一實施例中,該第一光學反射器220為一多角柱反射器,該反射器持續順時針或是逆時針旋轉,以反射光信號至該第一合光元件230,該第一合光元件230重定向並匯聚該光信號至一觀看者眼睛的該第一可視區1100以擴大該觀看者眼睛的眼動範圍。然而,為了方便解釋,該連續的第一可視區被分為五個視點。當該第一影像投影器210為一雷射掃描投影器且該第一光學反射器220為一五角柱反射器,當該第一光學反射器220連續移動時,每個像素的光信號逐個被接收並反射。該五角柱反射器有五個面,因此,在第一時間段內,該第一光學反射器220持續從該五角柱反射器的第一面的起始點X10移動至同一面的終點X15,該第一影像幀的第一部分(例如第一個1/5)的光信號會被反射並重定向至該第一視點P1的空間範圍。在第二時間段內,該第一光學反射器220持續往該第一面的終點X15移動,該第一影像幀的第二部分(例如第二個1/5)的光信號會被反射並重定向至該第二視點P2的空間範圍。同樣地,在第五時間段內,該第一光學反射器220持續往該第一面的終點X15移動,該第一影像幀的第五部分(例如第五個1/5)的光信號會被反射並重定向至該第五視點P5的空間範圍。接著該五角柱反射器繼續轉到該五角柱反射器的第二面的起始點X20。同時,該第二影像幀的光信號已經掃描第二部分(例如第二個1/5)的前端,這表示在第六時間段中,該第一光學反射器220持續從該第二面的起始點X20移動至該第二面的終點X25,該第二影像幀的第二部分(例如第二個1/5)的該光信號會被反射並重定向至該第一視點P1的空間範圍。同樣地,在第七時間段中,該第一光學反射器220持續往該第二面的終點X25 移動,該第二影像幀的第三部分(例如第三個1/5)的該光信號會被反射並重定向至該第一視點P1的空間範圍。最後,為了讓一觀看者可以看到一完整影像,該觀看者需要在視覺暫留時間內(例如1/18秒)看到一完整影像的不同部分(例如第一個1/5、第二個1/5、第三個1/5、第四個1/5及第五個1/5)。然而,這些不同的部分可能來自不同影像幀。因為這些不同影像幀在時間線上非常接近,一觀看者很難發現不同的部分來自不同的影像幀。此外,為了讓一觀看者可以平順地觀看動態影像,該觀看者必須要在視覺暫留時間(如1/18秒)內在第一可視區1100看到多個完整影像幀。
如上所述,在第二模式,在該第二模式的該第一影像投影器210使用雷射掃描投影器的情況下,為了讓一觀看者可以看到較好的影像品質,需要減少干涉效應並提供相位偏移補償。減少干涉效應的一個方法是讓雷射掃描投影器的頻率、該五角柱反射器的面數及旋轉頻率同步。舉例來說,若該第一光學反射器220開始從該五角柱反射器的每一面的起始位X1移動,在此同時該第一影像投影器210開始產生一影像幀適當部分的光信號,如前段所述,這樣在第一可視區1100的每個點都可以看到該完整的影像幀,這樣更好的同步可以提高影像品質。
如圖11A所示,當該第一影像投影器210為一數位光處理投影器且該第一光學反射器220為一五角柱反射器。所有像素的光信號會被接受並同時反射至該第一光學反射器220的相應位置。如上所述,由於該五角柱反射器連續移動,在圖11B的該第一可視區1100為一連續區域。然而,為了方便解釋,該連續的第一可視區1100會在概念上分為五個視點。該五角柱反射器有五個面。當該五角柱反射器的第一面的起始點X10接收到來自該第一影像投影器210的所有像素的光信號,該第一合光元件230會重定向並匯聚這些光信號至該第一視點P1的空間範圍的前端。當該五角柱反射器繼續往該五角柱反射器的第一面的終點X15移動時,該第一合光元件230會重定向並匯聚該像素的光信號至該最後視點P5的空間範圍的尾端。然後該五角柱反射器持續旋轉且該五角柱反射器的第二面的起始點X20接收到來自該第一影像投影器210的所有像素 的光信號,該第一合光元件230會重定向並匯聚這些光信號回到該第一視點P1的空間範圍的前端。當該五角柱反射器持續向該五角鏡反射器的第二面的尾端X25移動,該第一合光元件230也會重定向並匯聚該像素的光信號至該最後視點P5的空間範圍的尾端。當該五角柱反射器持續旋轉到第三面、第四面及第五面,會重複相同步驟。根據該第一影像投影器210的幀率及該旋轉速度,該觀看者可以在該五角柱反射器的同一面接收該光信號的時間段內看到一或多個影像幀。此外,為了讓一觀看者可以平順地觀看動態影像,該觀看者必須要在視覺暫留時間(如1/18秒)內在相同視點看到多個一完整影像幀。
所屬領域具有通常知識者應知道,特別是當該第一光學反射器220為一多角柱反射器時,可以同時實施數個影像顯示系統以數個觀看者擴大眼動範圍。
該第一合光元件230可以由玻璃或塑膠材料製成一鏡片,並鍍以特定材料像是金屬,讓它部分透明且部分反射。該第一合光元件230可以是一全像分光鏡但是並不是最佳選擇,因為繞射效應會導致數個黑影及RGB位移。在某些實施例中,會避免使用全像分光鏡。
如圖8或圖11A所示,該影像顯示系統200可以進一步包括一第一準直儀260,該準直儀位在該第一影像投影器210及該第一光學反射器220以使該光信號的運動方向在特定方向上更加一致(平行)。換句話說,來自該第一影像投影器210不同像素的光信號在通過該第一準直儀260後會變得大致平行。因此,該第一準直儀260讓每個光信號對該第一光學反射器220的入射角大致相同。該第一準直儀260可以為一曲面鏡片或一凸透鏡。
如上所述,該影像顯示系統200帶有該第一影像投影器210、該第一光學反射器220及該第一合光元件230可以為觀看者一眼擴大一眼動範圍。在一實施例,該影像顯示系統200可以進一步包括一第二影像投影器215、一第二光學反射器225及一第二合光元件235,它們與該第一影像投影器210、該第一光學反射器220及該第一合光 元件230以相同的方式發揮作用,為該觀看者的另一點擴大眼動範圍。同樣地,該第二影像投影器為一第二影像產生數個光信號。該第二光學反射器用以接受由該第二影像投影器產生的數個光信號,並藉由該第二光學反射器的移動,使該數個光信號以不同入射角重定向至一第二合光元件。該第二合光元件位於該第二光學反射器及該觀察者的一眼之間,該合光元件用於接收該並匯聚該數個光信號到該觀看者的另一眼的一第二可視區,以擴大該觀看者另一眼的眼動範圍。此外,該第二光學反射器的移動頻率是根據該第二影像投影器的投影頻率而調整的,所以該第二影像的數個光信號可以在視覺暫留的時間內投影到該觀看者另一點中的一第二可視區。
此外,該第二影像投影器跟該第一影像投影器有相似的結構;該第二光學反射器跟該第二光學反射器有相似的結構;該第二合光元件跟該第一合光元件有相似的結構。因此,該影像顯示系統200可以同時擴大該觀看者左右眼的眼動範圍。
該影像顯示系統200可以包括一可以戴在該觀看者頭上的支撐結構,以乘載該第一影像投影器210、該第二影像投影器215、該第一光學反射器220、該第二光學反射器225、該第一合光元件230及該第二合光元件235。該第一合光元件230與該第二合光元件235位於該觀看者的視野中。因此在本實施例中,該影像顯示系統200為一頭戴式裝置(HWD)。特別是由圖7B所示,由一副眼鏡乘載該影像顯示系統,這被稱為智能眼鏡。在該情況下,該支撐結構可以是一副可能帶有鏡片的鏡框,該鏡片可以是用於矯正近視或是遠視等的處方鏡片。該第一影像投影器210及該第一光學反射器220由右眼鏡腳乘載,該第二影像投影器215及該第二光學反射器225由左眼鏡腳承載。該第一合光元件230可由右邊鏡片承載而該第二合光元件235可由左邊鏡片乘載。承載可以藉由各種方式實現,該合光元件可動式或固定式連接或整合在鏡片上。該合光元件可以與鏡片(包括處方鏡片)組合在一起。當該支撐結構不含鏡片時,該右合光元件及該左合光元件可以直接由框架或邊緣乘載。
與第一實施例相似,觀看者雙眼的影像顯示系統100用以顯示一個有 深度的物體。因為該物體的深度與該觀看者雙眼所注視的位置相同,所以可以避免視覺輻輳調節衝突(VAC)及焦點競爭。在該實施例中,從該第二合光元件235匯聚的一光信號為一第一重定向右光信號,從該第一合光元件匯聚的一相對光信號為一第一重定向左光信號。該第一重定向右光信號及該第一重定向左光信號被該觀看者感知以顯示具有一第一深度的物體的一第一虛擬雙眼像素,該深度跟該第一重定向右光信號及相對的該第一重定向左光信號之間的一第一角度有關。一般而言,該第一深度是由該第一重定向右光信號與相對的該第一重定向左光信號之間的相對水平距離決定。
圖12說明擴大一觀看者的眼動範圍的一方法。在步驟1210,該第一影像投影器210向一第一光學反射器220產生多個光信號。在一實施例中,該第一影像投影器210可以為一雷射掃描投影器(LBS projector),將該影像畫素的光信號逐個依序產出。在另一實施例中,該第一影像投影器210可以為一數位光處理投影器並同時產生該影像的所有光信號(例如一幀1280x720像素)。在任一實施例中,當該第一影像投影器210高速產生該光信號時(例如每秒60幀),由於視覺暫留,該觀看者可以順利地看影像。
在步驟1220,當該第一光學反射器220移動時,該第一光學反射器220接收該光信號並重定向該光信號至該第一合光元件230的不同部分。該第一光學反射器220可以為一一維微機電系統鏡、一二維微機電系統鏡、一多角柱反射器/鏡、一圓柱反射器/鏡等。該第一光學反射器220可以以兩種模式移動。在第一模式下,該第一光學反射器220在N個位置間移動,每個位置都對應到一視點,其中N為大於一的整數。在第二模式下,該第一光學反射器220以一個模式連續移動,使該第一合光元件230能重複重定向並匯聚該光信號至該觀看者眼中的一第一可視區,以擴大該觀看者眼睛的眼動範圍。
在步驟1230,當該第一光學反射器220移動時,該第一合光元件230反射並匯聚該數個光信號至該觀看者的一第一可視區,以擴大該觀看者眼睛的眼動範圍。該第一合光元件230位於該第一光學反射器220及該觀看者一眼之間。
此外,該第一光學反射器的移動頻率是根據該第一影像投影器的投影頻率而調整的,所以該第一影像的數個光信號可以在視覺暫留時間之內投影到該觀看者眼睛的該第一可視區。
除了上述的三個步驟外,在一實施例,步驟1210之後及步驟1220之前,該方法進一步包括步驟1215,使數個影像像素的光信號對該第一光學反射器220有大致相同的入射角。一第一準直儀可以位在該第一影像投影器210及該第一光學反射器220之間的光徑以達成該功能。
總之,該方法的一個特點是該第一合光元件230的幾乎全部範圍可以當作視野(field of view,FOV)。該第一光學反射器220重定向一完整影像的光信號至該第一合光元件230的幾乎所有區域,該合光元件匯聚該光信號至一觀看者的一第一可視區。當該第一光學反射器220移動時,一完整影像的光信號會被重定向至該第一合光元件230的些微不同部分。因此,考慮到該第一光學反射器220的運動,需要保留該第一合光元件230的一定面積。除了保留的面積之外,該第一合光元件230的剩餘面積可當作視野(FOV)。 上述所提供之實施例的描述是為了使所屬領域具有通常技術者得以製造並使用本發明。對該實施例的各種修改對於所屬領域具有通常技術者是顯而易見的,並且此處確定的基本原理不需要創造性勞動便可以應用於其他實施例。因此,本所要求的主題不僅限於此處展示的實施例,而是要符合與此處公開的原理及新穎特徵一致的最廣範圍。可以預想其他的實施例也在本發明所揭露的精神及範圍內。因此,本發明意旨為涵蓋屬於所附的專利請求項及其等同物的範圍內的修改及變化。
100:影像顯示系統
110:第一影像投影器
115:第二影像投影器
120:第一光學複製器
125:第二光學複製器
130:第一合光元件
135:第二合光元件
140:眼睛
150:眼動範圍
151:視點
152:視點
153:視點

Claims (26)

  1. 一種用於擴大眼動範圍的影像顯示系統,該系統包括:一第一影像投影器,用於產生一第一影像的數個光信號;一第一光學複製器,包含至少一光學元件,該光學元件用於接收由該第一影像投影器產生的光信號,該光學複製器複製該光信號,使其成為N條非平行的光束,並該光信號的N條光束中的每一個分別重定向至一第一合光元件,其中N為一大於一的整數;一第二影像投影器,用於為一第二影像產生數個光信號;一第二光學複製器,包含至少一光學元件,該光學元件用於接收由該第二影像投影器產生的光信號,該光學複製器複製該光信號為M條非平行的光束,並該光信號的M條光束中的每一個分別重定向至一第二合光元件,其中M為一大於一的整數;以及相對於數個光信號,該第一合光元件位於該第一光學複製器及觀看者的一隻眼睛的光徑之間,該第一合光元件用於接收該光信號的N條光束,並將其分別匯聚到該觀看者的該眼睛的眼動範圍中的N個視點,且相對於數個光信號,該第二合光元件位於該第二光學複製器及觀看者的另一隻眼睛的光徑之間,該合光元件用於接收該光信號M個視點,其中來自該第二合光元件重定向的光信號為一第一重定向右光信號,來自該第一合光元件重定向的相對光信號是一第一重定向左光信號,且由該觀看者感知該第一重定向右光信號及該第一重定向左光信號以顯示一物體的一第一虛擬雙眼像素,該物體的一第一深度跟該第一重定向右光信號及相對的該第一重定向左光信號間的第一角度有關。
  2. 如請求項1中所述的該影像顯示系統,其中來自該第一光學複製器的該光信號的N條非平行光束物理上匯聚在該第一合光元件上,或是由該 第一合光元件重定向的該光信號的N條非平行光束路徑的延伸會虛擬地匯聚到位於該第一合光元件後方的一匯聚平面,該匯聚平面離觀察者的眼睛較遠。
  3. 如請求項2中所述的該影像顯示系統,其中無論該觀看者的眼睛從任一視點觀看該影像,該觀察者都能感知到位於該合光元件或是該匯聚平面相同位置的該影像。
  4. 如請求項1中所述的該影像顯示系統,其中觀看者的視野覆蓋超過該第一合光元件的80%。
  5. 如請求項1中所述的該影像顯示系統,其中該第一光學複製器,由一或多個分光鏡、偏振片、半塗銀鏡、半反射器、雙色鏡稜鏡、分色光學塗層、介電光學塗層組成,或是上述的組合。
  6. 如請求項1中所述的該影像顯示系統,其中N等於3且該光學複製器是一分光鏡,該分光鏡包括兩個部分反射器及一全反射器,將該光信號分為三條光束。
  7. 如請求項1中所述的該影像顯示系統,其中該光學複製器是一偏振片。
  8. 如請求項1中所述的該影像顯示系統,其中該第一影像投影器的一光源是一雷射、發光二極體(LED)、有機發光二極體(OLED)、超輻射發光二極體(SLD)、矽基液晶(LCoS)、或是液晶顯示器(LCD),或是上述的組合。
  9. 如請求項1中所述的該影像顯示系統,其中該第一影像投影器為一雷射掃描(LBS)投影器或是一數位光處理(DLP)投影器。
  10. 如請求項1中所述的該影像顯示系統,其中該第一合光元件並不是一全像分光鏡。
  11. 如請求項1中所述的該影像顯示系統,進一步包括一第一準直儀,該準直儀設置在該第一影像投影器及該第一光學複製器之間,使該光信號的運動方向更加對準一特定方向。
  12. 如請求項1中所述的該影像顯示系統,進一步包括:一支撐結構,可以戴在該觀測者的頭上;其中該第一影像投影器、該第二影像投影器、該第一光學複製器及該第二光學複製器由該支撐結構乘載;以及其中該第一合光元件及第二合光元件由該支撐結構乘載,並設置在該觀看者的視野內。
  13. 如請求項12中所述的該影像顯示系統,其中該支撐結構為一副眼鏡。
  14. 如請求項13中所述的該影像顯示系統,其中該副眼鏡有一帶有該第一合光元件或該第二合光元件的處方鏡片。
  15. 一種用於擴大眼動範圍的影像顯示系統,包括:一第一影像投影器,該影像投影器為了一第一影像產生數個光信號;一第一光學反射器,該光學反射器包括至少一光學元件,用來接收由該第一影像投影器產生的數個光信號,且將該數個光信號重定向至一第一合光元件,該第一光學反射器移動會導致該數個光信號的入射角不同;相對於數個光信號,該第一合光元件位於該第一光學反射器及該觀看者的一眼的光徑之間,用於接收並匯聚該數個光信號至該觀看者眼睛的一第一可視區,以擴大該觀看者眼睛的眼動範圍;一第二影像投影器,該影像投影器為了一第二影像產生數個光信號; 一第二光學反射器,該光學反射器包括至少一光學元件,用來接收由該第二影像投影器產生的數個光信號,且將該數個光信號重定向至一第二合光元件,該第二光學反射器移動會導致該數個光信號的入射角不同;相對於數個光信號,該第二合光元件位於該第二光學反射器及該觀看者的另一眼的光徑之間,用於接收並匯聚該數個光信號至該觀看者眼睛的一第二可視區,以擴大該觀看者另一眼的眼動範圍;其中該第一光學反射器的移動頻率是根據該第一影像投影器的投影頻率調整,以使該第一影像的該數個光信號在視覺暫留時間內投影到該觀看者眼中的可視區其中該第二光學反射器的移動頻率是根據該第二影像投影器的投影頻率調整,以使該第二影像的該數個光信號在視覺暫留時間內投影到該觀看者另一眼中的一第二可視區,其中從該第二合光元件匯聚的一光信號為一第一重定向右光信號,從該第一合光元件匯聚的一相對光信號為一第一重定向左光信號,且由該觀看者感知該第一重定向右光信號及該第一重定向左光信號以顯示一物體的一第一虛擬雙眼像素,其深度跟該第一重定向右光信號及相對的該第一重定向左光信號間的第一角度有關。
  16. 如請求項15中所述的該影像顯示系統,其中該第一光學反射器在N個位置間來回移動,使該數個光信號透過該第一合光元件分別投影到該觀看者眼睛的該第一可視區中的N個視點,且N是一大於1的整數。
  17. 如請求項16中所述的該影像顯示系統,其中當該第一光學反射器位於相對位置時,該第一影像會被投影至一特定視點。
  18. 如請求項16所述中的該影像顯示系統,其中該第一光學反射器是一一維的微機電系統(MEMS)鏡。
  19. 如請求項15中所述的該影像顯示系統,其中該第一光學反射器以預設的方式連續移動,使該數個光信號重定向至該第一合光元件,該第一光學反射器的連續移動導致該數個光信號的入射角不同。
  20. 如請求項15中所述的該影像顯示系統,其中該第一光學反射器為一一維的微機電系統(MEMS)鏡、一二維微機電系統鏡、一多邊形柱反射器、或一圓柱反射器。
  21. 如請求項15中所述的該影像顯示系統,其中該第一影像投影器的一光源為一雷射、發光二極體(LED)、有機發光二極體(OLED)、超輻射發光二極體(SLD)、矽基液晶(LCoS)、或是液晶顯示器(LCD),或是上述的組合。
  22. 如請求項15中所述的該影像顯示系統,其中該第一影像投影器為一雷射掃描(LBS)投影器或是一數位光處理(DLP)投影器。
  23. 如請求項15中所述的該影像顯示系統,進一步包括一第一準直儀,該準直儀設置在該第一影像投影器及該第一光學複製器之間,使該光信號的運動方向對準一特定方向。
  24. 如請求項15中所述的該影像顯示系統,進一步包括:一支撐結構,可以戴在該觀測者的頭上;其中該第一影像投影器、該第二影像投影器、該第一光學複製器及該第二光學複製器由該支撐結構乘載;以及其中該第一合光元件及第二合光元件由該支撐結構乘載,並設置在該觀看者的視野內。
  25. 如請求項24中所述的該影像顯示系統,其中該支撐結構為一副眼鏡。
  26. 如請求項25中所述的該影像顯示系統,其中該副眼鏡有一個帶有該第一合光元件或該第二合光元件的處方鏡片。
TW110122655A 2020-06-19 2021-06-21 擴大可視空間的影像顯示系統 TWI837482B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063041740P 2020-06-19 2020-06-19
US63/041,740 2020-06-19

Publications (2)

Publication Number Publication Date
TW202212915A TW202212915A (zh) 2022-04-01
TWI837482B true TWI837482B (zh) 2024-04-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190271845A1 (en) 2018-03-01 2019-09-05 North Inc. Systems, devices, and methods for eyebox expansion in wearable heads-up display

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190271845A1 (en) 2018-03-01 2019-09-05 North Inc. Systems, devices, and methods for eyebox expansion in wearable heads-up display

Similar Documents

Publication Publication Date Title
US20230168513A1 (en) Image display systems for eyebox expansion and methods of making the same
JP6821574B2 (ja) 全反射を有するディスプレイ装置
Kramida Resolving the vergence-accommodation conflict in head-mounted displays
US7414792B2 (en) Method of changing the inter-pupilar distance of a head mounted display while maintaining a constant optical path length
US20170188021A1 (en) Optical engine for creating wide-field of view fovea-based display
US6829089B2 (en) Monocentric autostereoscopic optical apparatus using a scanned linear electromechanical modulator
AU2003299615B2 (en) Multiple imaging arrangements for head mounted displays
US20220311992A1 (en) System and method for displaying an object with depths
EP1692559A1 (en) Optical arrangements for head mounted displays
CN110088666A (zh) 用反射器和目镜元件实现紧凑型头戴式显示器的装置
JP3453086B2 (ja) 三次元表示方法およびヘッドマウントディスプレイ装置
WO2022245507A1 (en) Autocalibrated near-eye display
US6178043B1 (en) Multiview three-dimensional image display system
TWI837482B (zh) 擴大可視空間的影像顯示系統
JP3756481B2 (ja) 三次元表示装置
JP2012022278A (ja) 映像実体感メガネ
TW202212915A (zh) 擴大可視空間的影像顯示系統及其方法
KR100873409B1 (ko) 헤드 장착 디스플레이용 다중 이미지화 장치들
JP6832318B2 (ja) 目用投影システム
TWI802826B (zh) 顯示一個具有景深的物體的系統與方法
WO2018229329A1 (en) Display apparatus and method of displaying using polarizers
TWI838651B (zh) 用於虛擬實境及擴增實境裝置的虛擬影像顯示系統
TWI262339B (en) Multiple imaging arrangements for head mounted displays
WO2022247001A1 (zh) 一种裸眼三维显示装置
RU2331910C2 (ru) Система формирования множественных изображений для головных дисплеев