TWI835291B - Boost switching power supply and its boost controller - Google Patents

Boost switching power supply and its boost controller Download PDF

Info

Publication number
TWI835291B
TWI835291B TW111134561A TW111134561A TWI835291B TW I835291 B TWI835291 B TW I835291B TW 111134561 A TW111134561 A TW 111134561A TW 111134561 A TW111134561 A TW 111134561A TW I835291 B TWI835291 B TW I835291B
Authority
TW
Taiwan
Prior art keywords
voltage
controller
boost
boost controller
power supply
Prior art date
Application number
TW111134561A
Other languages
Chinese (zh)
Other versions
TW202406281A (en
Inventor
黃曉敏
楊彭林
林元
孫運
Original Assignee
大陸商昂寶電子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商昂寶電子(上海)有限公司 filed Critical 大陸商昂寶電子(上海)有限公司
Publication of TW202406281A publication Critical patent/TW202406281A/en
Application granted granted Critical
Publication of TWI835291B publication Critical patent/TWI835291B/en

Links

Images

Abstract

提供了一種升壓式開關電源及其升壓控制器。升壓式開關電源包括變壓器、脈寬調變控制器、以及升壓控制器,升壓控制器的開關控制引腳處的電壓由變壓器的輔助繞組提供,升壓控制器的晶片供電引腳處的電壓既是升壓控制器的供電電壓也是脈寬調變控制器的供電電壓。升壓控制器被配置為:升壓控制器的晶片供電引腳處的電壓在升壓式開關電源上電後開始增大;以及升壓控制器的開關控制引腳處的電壓在脈寬調變控制器啟動後開始增大。當升壓控制器的開關控制引腳處的電壓大於升壓控制器的啟動電壓且升壓控制器的晶片供電引腳處的電壓大於升壓控制器的欠壓鎖定關斷閾值時,升壓控制器啟動。 A boost switching power supply and a boost controller thereof are provided. The boost switching power supply includes a transformer, a pulse width modulation controller, and a boost controller. The voltage at the switch control pin of the boost controller is provided by the auxiliary winding of the transformer. The chip power supply pin of the boost controller The voltage is both the supply voltage of the boost controller and the supply voltage of the pulse width modulation controller. The boost controller is configured as follows: the voltage at the chip power supply pin of the boost controller starts to increase after the boost switching power supply is powered on; and the voltage at the switch control pin of the boost controller starts to increase during the pulse width modulation It starts to increase after the variable controller is started. When the voltage at the switch control pin of the boost controller is greater than the startup voltage of the boost controller and the voltage at the chip power supply pin of the boost controller is greater than the undervoltage lockout shutdown threshold of the boost controller, the boost The controller starts.

Description

升壓式開關電源及其升壓控制器 Boost switching power supply and its boost controller

本發明涉及積體電路領域,尤其涉及一種升壓式開關電源及其升壓控制器。 The invention relates to the field of integrated circuits, and in particular to a boost switching power supply and a boost controller thereof.

開關電源又稱交換式電源、開關變換器,是電源供應器的一種。開關電源的功能是通過不同形式的架構(例如,返馳(fly-back)架構、降壓(BUCK)架構、或升壓(BOOST)架構等)將一個位準的電壓轉換為使用者端所需要的電壓或電流。 Switching power supply, also known as switching power supply and switching converter, is a type of power supply. The function of the switching power supply is to convert a level of voltage to the user's desired voltage through different architectures (for example, fly-back architecture, buck architecture, or boost architecture, etc.) required voltage or current.

根據本發明實施例的用於升壓式開關電源的升壓控制器,其中,升壓式開關電源包括變壓器、脈寬調變控制器、以及升壓控制器,升壓控制器的開關控制引腳處的電壓由變壓器的輔助繞組提供,升壓控制器的晶片供電引腳處的電壓既是升壓控制器的供電電壓也是脈寬調變控制器的供電電壓,升壓控制器被配置為:升壓控制器的晶片供電引腳處的電壓在升壓式開關電源上電後開始增大;以及升壓控制器的開關控制引腳處的電壓在脈寬調變控制器啟動後開始增大,其中,當升壓控制器的晶片供電引腳處的電壓大於脈寬調變控制器的欠壓鎖定關斷閾值時,脈寬調變控制器啟動;當升壓控制器的開關控制引腳處的電壓大於升壓控制器的啟動電壓且升壓控制器的晶片供電引腳處的電壓大於升壓控制器的欠壓鎖定關斷閾值時,升壓控制器啟動。 According to a boost controller for a boost switching power supply according to an embodiment of the present invention, the boost switching power supply includes a transformer, a pulse width modulation controller, and a boost controller, and the switch control pin of the boost controller The voltage at the pin is provided by the auxiliary winding of the transformer. The voltage at the chip power supply pin of the boost controller is both the supply voltage of the boost controller and the supply voltage of the pulse width modulation controller. The boost controller is configured as: The voltage at the chip power supply pin of the boost controller starts to increase after the boost switching power supply is powered on; and the voltage at the switch control pin of the boost controller starts to increase after the pulse width modulation controller starts up , where, when the voltage at the chip power supply pin of the boost controller is greater than the undervoltage lockout shutdown threshold of the pulse width modulation controller, the pulse width modulation controller starts; when the switch control pin of the boost controller When the voltage at is greater than the startup voltage of the boost controller and the voltage at the chip power supply pin of the boost controller is greater than the undervoltage lockout shutdown threshold of the boost controller, the boost controller starts.

根據本發明實施例的用於升壓式開關電源的升壓控制器,其中,升壓式開關電源包括變壓器、脈寬調變控制器、以及升壓控制器,升壓控制器的開關控制引腳處的電壓由變壓器的輔助繞組提供,升壓控制器 的晶片供電引腳處的電壓既是升壓控制器的供電電壓也是脈寬調變控制器的供電電壓,升壓控制器被配置為:升壓控制器的晶片供電引腳處的電壓在升壓式開關電源上電後開始增大;當升壓控制器的晶片供電引腳處的電壓大於連接在升壓控制器的晶片供電引腳和開關控制引腳之間的功率開關的導通電壓時,功率開關導通,使得升壓控制器的開關控制引腳處的電壓等於升壓控制器的晶片供電引腳處的電壓;當升壓控制器的晶片供電引腳處的電壓大於升壓控制器的欠壓鎖定關斷閾值時,升壓控制器啟動,功率開關斷開,並且升壓控制器的供電電壓從升壓控制器的晶片供電引腳處的電壓切換為升壓控制器的開關控制引腳處的電壓,其中,當升壓控制器的晶片供電引腳處的電壓大於脈寬調變控制器的欠壓鎖定關斷閾值時,脈寬調變控制器啟動。 According to a boost controller for a boost switching power supply according to an embodiment of the present invention, the boost switching power supply includes a transformer, a pulse width modulation controller, and a boost controller, and the switch control pin of the boost controller The voltage at pin is provided by the auxiliary winding of the transformer, and the boost controller The voltage at the chip power supply pin of the boost controller is both the power supply voltage of the boost controller and the power supply voltage of the pulse width modulation controller. The boost controller is configured as follows: The voltage at the chip power supply pin of the boost controller is at the boost level. The switching power supply begins to increase after power on; when the voltage at the chip power supply pin of the boost controller is greater than the turn-on voltage of the power switch connected between the chip power supply pin and the switch control pin of the boost controller, The power switch is turned on so that the voltage at the switch control pin of the boost controller is equal to the voltage at the chip power supply pin of the boost controller; when the voltage at the chip power supply pin of the boost controller is greater than the voltage at the chip power supply pin of the boost controller At the undervoltage lockout shutdown threshold, the boost controller starts, the power switch is turned off, and the supply voltage of the boost controller switches from the voltage at the chip power supply pin of the boost controller to the switch control pin of the boost controller. The pulse width modulation controller starts when the voltage at the chip power supply pin of the boost controller is greater than the undervoltage lockout shutdown threshold of the pulse width modulation controller.

根據本發明實施例的升壓式開關電源,包括上述用於升壓式開關電源的升壓控制器。 A boost switching power supply according to an embodiment of the present invention includes the above-mentioned boost controller for a boost switching power supply.

100:返馳式開關電源 100: Flyback switching power supply

U2:升壓控制器 U2: Boost controller

200:升壓式開關電源 200: Boost switching power supply

300:升壓控制電路 300: Boost control circuit

400,700:啟動控制電路 400,700: Start control circuit

Burst:脈衝發生器 Burst: pulse generator

C1,C2,C11:電容 C1, C2, C11: capacitor

CS:電流感測腳 CS: current sensing pin

D1:二極體 D1: Diode

DFF1:D觸發器 DFF1:D flip-flop

Dischar_en:信號 Dischar_en: signal

Duty max:最大占空比信號 Duty max: maximum duty cycle signal

EN_SW:開關使能信號 EN_SW: switch enable signal

ENA:使能信號 ENA: enable signal

FB:輸出回饋信號 FB: Output feedback signal

Fboost:時鐘信號 Fboost: clock signal

Gm:跨導運算放大器 Gm: transconductance operational amplifier

M,M11,M22:功率開關 M, M11, M22: power switch

Naux:輔助繞組 Naux: auxiliary winding

Np:一次繞組 Np: primary winding

Q:輸出端 Q:Output terminal

Rocp,Rstart:電阻 Rocp, Rstart: resistance

S1:功率開關 S1: Power switch

SW:開關控制引腳 SW: switch control pin

SW_ocp:保護信號 SW_ocp: protection signal

T:變壓器 T: Transformer

U1:脈寬調製(PWM)控制器 U1: Pulse width modulation (PWM) controller

UVLO_off_bwm:欠壓鎖定關斷閾值 UVLO_off_bwm: Undervoltage lockout shutdown threshold

UVLO_on_bst,UVLO_on_pwm:欠壓鎖定開啟閾值 UVLO_on_bst,UVLO_on_pwm: undervoltage lockout threshold

V0,Vreg,Vref_ocp,Vth1:閾值電壓 V0,Vreg,Vref_ocp,Vth1: threshold voltage

Vac:系統輸入分壓 Vac: system input voltage divider

VC,Vsw,VR:電壓 VC, Vsw, VR: voltage

VDD:供電電壓 VDD: supply voltage

Vdio:導通電壓 Vdio: turn-on voltage

Vin:輸入電壓 Vin: input voltage

Vout:系統輸出電壓 Vout: system output voltage

Vs1_on:導通閾值 Vs1_on: conduction threshold

Vsw_on:啟動電壓 Vsw_on: starting voltage

Vsw_off:關閉電壓 Vsw_off: turn off voltage

從下面結合圖式對本發明的具體實施方式的描述中可以更好地理解本發明,其中:圖1示出了傳統的返馳式開關電源的系統電路圖。 The present invention can be better understood from the following description of specific embodiments of the present invention in conjunction with the drawings, in which: Figure 1 shows a system circuit diagram of a traditional flyback switching power supply.

圖2示出了根據本發明實施例的升壓式開關電源的系統電路圖。 Figure 2 shows a system circuit diagram of a boost switching power supply according to an embodiment of the present invention.

圖3示出了圖2所示的升壓控制器的升壓控制電路的電路原理圖。 FIG. 3 shows a circuit schematic diagram of the boost control circuit of the boost controller shown in FIG. 2 .

圖4示出了用於圖2所示的升壓控制器的啟動控制電路的示例電路圖。 FIG. 4 shows an example circuit diagram of a startup control circuit for the boost controller shown in FIG. 2 .

圖5示出了圖4所示的啟動控制電路實現的啟動控制過程的流程圖。 FIG. 5 shows a flow chart of the startup control process implemented by the startup control circuit shown in FIG. 4 .

圖6示出了圖4所示的啟動控制電路實現的關機/掉電控制過程的流程圖。 FIG. 6 shows a flow chart of the shutdown/power-down control process implemented by the startup control circuit shown in FIG. 4 .

圖7示出了用於圖2所示的升壓控制器的另一啟動控制電路的示例電路圖。 FIG. 7 shows an example circuit diagram of another startup control circuit for the boost controller shown in FIG. 2 .

圖8示出了用於圖2所示的升壓控制器的又一啟動控制電路的示例電路圖。 FIG. 8 shows an example circuit diagram of yet another startup control circuit for the boost controller shown in FIG. 2 .

圖9示出了圖8所示的啟動控制電路實現的啟動控制過程的流程圖。 FIG. 9 shows a flow chart of the startup control process implemented by the startup control circuit shown in FIG. 8 .

下面將詳細描述本發明的各個方面的特徵和示例性實施例。在下面的詳細描述中,提出了許多具體細節,以便提供對本發明的全面理解。但是,對於本領域技術人員來說很明顯的是,本發明可以在不需要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是為了通過示出本發明的示例來提供對本發明的更好的理解。本發明決不限於下面所提出的任何具體配置和演算法,而是在不脫離本發明的精神的前提下覆蓋了元素、部件和演算法的任何修改、替換和改進。在附圖和下面的描述中,沒有示出公知的結構和技術,以便避免對本發明造成不必要的模糊。 Features and exemplary embodiments of various aspects of the invention are described in detail below. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the present invention may be practiced without some of these specific details. The following description of the embodiments is merely intended to provide a better understanding of the invention by illustrating examples of the invention. The present invention is in no way limited to any specific configurations and algorithms set forth below, but covers any modifications, substitutions and improvements of elements, components and algorithms without departing from the spirit of the invention. In the drawings and the following description, well-known structures and techniques are not shown in order to avoid unnecessarily obscuring the present invention.

圖1示出了傳統的返馳式開關電源100的系統電路圖。如圖1所示,返馳式開關電源100包括變壓器T、連接到變壓器T的一次繞組Np的功率開關M、以及脈寬調變(PWM)控制器U1,其中,PWM控制器U1基於表徵流過變壓器T的一次繞組Np的原邊電流的電流感測腳CS和表徵返馳式開關電源100的系統輸出電壓Vout的輸出回饋信號FB來控制功率開關M的導通與關斷,從而控制返馳式開關電源100的系統輸出電壓Vout。 Figure 1 shows a system circuit diagram of a traditional flyback switching power supply 100. As shown in Figure 1, the flyback switching power supply 100 includes a transformer T, a power switch M connected to the primary winding Np of the transformer T, and a pulse width modulation (PWM) controller U1, wherein the PWM controller U1 is based on the representation flow The current sensing pin CS of the primary current of the primary winding Np of the transformer T and the output feedback signal FB representing the system output voltage Vout of the flyback switching power supply 100 are used to control the on and off of the power switch M, thereby controlling the flyback. The system output voltage Vout of the switching power supply 100.

在圖1所示的返馳式開關電源100中,PWM控制器U1的供電電壓VDD由變壓器T的輔助繞組Naux提供,並且隨系統輸出電壓Vout成正比變化,因此在系統輸出電壓Vout的變化範圍非常寬的情況下,PWM控制器U1的供電電壓VDD的變化範圍也必須非常寬(即,供電電壓VDD的最大值VDDmax與最小值VDDmin之間的差值必須非常大)。然而,由於用在PWM控制器U1中的半導體器件具有一定的工作電壓範圍,在半導體器件的最大耐壓確定的情況下,PWM控制器U1的供電電壓VDD的最大值VDDmax基本是固定的(受半導體製造工藝限制),PWM控制器U1的供電電壓VDD的最小值VDDmin必須很低,才能滿足PWM控制器U1的供電電壓VDD的變化範圍非常寬的要求。 In the flyback switching power supply 100 shown in Figure 1, the supply voltage VDD of the PWM controller U1 is provided by the auxiliary winding Naux of the transformer T, and changes in proportion to the system output voltage Vout, so within the variation range of the system output voltage Vout In a very wide situation, the variation range of the supply voltage VDD of the PWM controller U1 must also be very wide (that is, the difference between the maximum value VDDmax and the minimum value VDDmin of the supply voltage VDD must be very large). However, since the semiconductor device used in PWM controller U1 has a certain operating voltage range, when the maximum withstand voltage of the semiconductor device is determined, the maximum value VDDmax of the supply voltage VDD of PWM controller U1 is basically fixed (subject to Semiconductor manufacturing process limitations), the minimum value VDDmin of the supply voltage VDD of the PWM controller U1 must be very low to meet the very wide variation range requirement of the supply voltage VDD of the PWM controller U1.

但是,當PWM控制器U1的供電電壓VDD的最小值VDDmin很低時,難以滿足PWM控制器U1的供電要求,此時必須在返馳式開關電源100中增加升壓功能,通過升壓功能將PWM控制器U1的供電電壓VDD的最小值VDDmin提升到較高電壓值,來確保PWM控制器U1的供電要求得到滿足。 However, when the minimum value VDDmin of the power supply voltage VDD of the PWM controller U1 is very low, it is difficult to meet the power supply requirements of the PWM controller U1. At this time, a boost function must be added to the flyback switching power supply 100, and the boost function will The minimum value VDDmin of the power supply voltage VDD of the PWM controller U1 is increased to a higher voltage value to ensure that the power supply requirements of the PWM controller U1 are met.

圖2示出了根據本發明實施例的升壓式開關電源200的系統電路圖。圖2所示的升壓式開關電源200與圖1所示的返馳式開關電源100的區別在於,除了包括變壓器T、連接到變壓器T的一次繞組Np的功率開關M、以及PWM控制器U1以外還包括升壓控制器U2,其中,升壓控制器U2的開關控制引腳(即,SW引腳)連接到變壓器T的輔助繞組Naux,並且升壓控制器U2的SW引腳處的電壓Vsw是變壓器T的輔助繞組Naux提供的輸入電壓Vin;升壓控制器U2的晶片供電引腳(即,VDD引腳)連接到PWM控制器U1的VDD引腳,並且升壓控制器U2的VDD引腳處的電壓VDD既是升壓控制器U2的供電電壓也是PWM控制器U1的供電電壓。這裡,PWM控制器U1的工作原理與結合圖1描述的工作原理類似,在此不再贅述。 FIG. 2 shows a system circuit diagram of a boost switching power supply 200 according to an embodiment of the present invention. The difference between the boost switching power supply 200 shown in FIG. 2 and the flyback switching power supply 100 shown in FIG. 1 is that, in addition to including a transformer T, a power switch M connected to the primary winding Np of the transformer T, and a PWM controller U1 Also included is a boost controller U2, wherein the switch control pin (i.e., SW pin) of the boost controller U2 is connected to the auxiliary winding Naux of the transformer T, and the voltage at the SW pin of the boost controller U2 Vsw is the input voltage Vin provided by the auxiliary winding Naux of the transformer T; the chip power supply pin (ie, VDD pin) of the boost controller U2 is connected to the VDD pin of the PWM controller U1, and the VDD of the boost controller U2 The voltage VDD at the pin is both the supply voltage of the boost controller U2 and the supply voltage of the PWM controller U1. Here, the working principle of the PWM controller U1 is similar to the working principle described in conjunction with Figure 1 and will not be described again.

下面,為了描述方便,升壓控制器U2的SW引腳處的電壓Vsw和變壓器T的輔助繞組Naux提供的輸入電壓Vin可以交換使用,並且升壓控制器U2的VDD引腳處的電壓VDD、升壓控制器U2的供電電壓VDD、以及PWM控制器U1的供電電壓VDD可以交換使用。 Below, for the convenience of description, the voltage Vsw at the SW pin of the boost controller U2 and the input voltage Vin provided by the auxiliary winding Naux of the transformer T can be used interchangeably, and the voltage VDD at the VDD pin of the boost controller U2, The supply voltage VDD of the boost controller U2 and the supply voltage VDD of the PWM controller U1 can be used interchangeably.

在升壓式開關電源200正常工作期間,如果變壓器T的輔助繞組Naux提供的輸入電壓Vin低於閾值電壓V0,則升壓控制器U2將輸入電壓Vin調節為閾值電壓V0並將閾值電壓V0作為PWM控制器U1的供電電壓VDD提供給PWM控制器U1;如果變壓器T的輔助繞組Naux提供的輸入電壓Vin高於閾值電壓V0,則升壓控制器U2不對輸入電壓Vin進行調節,而直接將其作為PWM控制器U1的供電電壓VDD提供給PWM控制器U1。因此,PWM控制器U1的供電電壓VDD保持在閾值電壓V0 至VDDmax的範圍內。 During normal operation of the boost switching power supply 200, if the input voltage Vin provided by the auxiliary winding Naux of the transformer T is lower than the threshold voltage V0, the boost controller U2 adjusts the input voltage Vin to the threshold voltage V0 and sets the threshold voltage V0 as The supply voltage VDD of the PWM controller U1 is provided to the PWM controller U1; if the input voltage Vin provided by the auxiliary winding Naux of the transformer T is higher than the threshold voltage V0, the boost controller U2 does not adjust the input voltage Vin, but directly The power supply voltage VDD of the PWM controller U1 is provided to the PWM controller U1. Therefore, the supply voltage VDD of the PWM controller U1 remains at the threshold voltage V0 to VDDmax.

在升壓式開關電源200的啟動過程中,交流輸入電壓經由電磁干擾篩檢程式和分壓網路處理得到的系統輸入分壓Vac通過啟動電阻Rstart對電容C1充電,PWM控制器U1的供電電壓VDD斜坡增大;當PWM控制器U1的供電電壓VDD達到PWM控制器U1的欠壓鎖定關斷閾值UVLO_off_bwm時,PWM控制器U1開始工作。 During the startup process of the boost switching power supply 200, the AC input voltage is processed by the electromagnetic interference screening program and the voltage dividing network to obtain the system input divided voltage Vac, which charges the capacitor C1 through the starting resistor Rstart. The supply voltage of the PWM controller U1 The VDD slope increases; when the supply voltage VDD of the PWM controller U1 reaches the undervoltage lockout shutdown threshold UVLO_off_bwm of the PWM controller U1, the PWM controller U1 starts to work.

圖3示出了圖2所示的升壓控制器U2的升壓控制電路300的電路原理圖。如圖3所示,在升壓控制器U2的升壓控制電路中:二極體D1連接在升壓控制器U2的SW引腳和VDD引腳之間;當升壓控制器U2的SW引腳處的電壓Vsw大於VDD引腳處的電壓VDD與二極體D1的導通電壓Vdio之和(即,Vsw>VDD+Vdio)時,二極體D1導通,升壓控制器U2的SW引腳處的電壓Vsw經由二極體D1提供給升壓控制器U2的VDD引腳,用作PWM控制器U1的供電電壓VDD;當升壓控制器U2的SW引腳處的電壓Vsw小於VDD引腳處的電壓VDD與二極體D1的導通電壓Vdio之和(即,Vsw<VDD+Vdio)時,二極體D1關斷,通過控制功率開關M11和M22的導通與關斷來將升壓控制器U2的SW引腳處的電壓Vsw調節為閾值電壓V0,並將閾值電壓V0提供給升壓控制器U2的VDD引腳,用作PWM控制器U1的供電電壓VDD。 FIG. 3 shows a circuit schematic diagram of the boost control circuit 300 of the boost controller U2 shown in FIG. 2 . As shown in Figure 3, in the boost control circuit of boost controller U2: diode D1 is connected between the SW pin and VDD pin of boost controller U2; when the SW pin of boost controller U2 When the voltage Vsw at the VDD pin is greater than the sum of the voltage VDD at the VDD pin and the conduction voltage Vdio of the diode D1 (i.e., Vsw>VDD+Vdio), the diode D1 conducts and the SW pin of the boost controller U2 The voltage Vsw at is provided to the VDD pin of the boost controller U2 via the diode D1 and is used as the supply voltage VDD of the PWM controller U1; when the voltage Vsw at the SW pin of the boost controller U2 is less than the VDD pin When the sum of the voltage VDD at and the turn-on voltage Vdio of diode D1 (i.e., Vsw<VDD+Vdio), diode D1 turns off, and the boost is controlled by controlling the turn-on and turn-off of power switches M11 and M22. The voltage Vsw at the SW pin of the controller U2 is adjusted to the threshold voltage V0, and the threshold voltage V0 is provided to the VDD pin of the boost controller U2, which is used as the supply voltage VDD of the PWM controller U1.

如圖3所示,在升壓控制器U2的升壓控制電路300中:跨導運算放大器Gm對升壓控制器U2的VDD引腳處的電壓VDD和閾值電壓Vreg進行比較,並且在VDD<Vreg時產生充電電流對電容C11充電;電容C11上的電壓VC增大,脈衝發生器Burst基於電容C11上的電壓VC產生使能信號ENA=1;時鐘信號Fboost觸發D觸發器DFF1的Q輸出端輸出Q=1,使得功率開關M11和M22導通;電阻Rocp採樣流過功率開關M22的電流;比較器Comp對電阻Rocp上的電壓VR與閾值電壓Vref_ocp進行比較,並且在VR>Vref_ocp時產生保護信號SW_ocp=0,此時D觸發器DFF1的Q輸出端輸出Q=0,使得功率開關M11和M22關斷;當功率開 關M11和M22的導通時間達到最大導通時間時,指示功率開關M11和M22的導通時間是否達到最大導通時間的最大占空比信號Duty max=0,D觸發器DFF1的Q輸出端也輸出Q=0,使得功率開關M11和M22關斷;當VDD>Vreg時,跨導運算放大器Gm產生放電電流對電容器C11放電,電容C11上的電壓VC減小,脈衝發生器Burst基於電容C11上的電壓VC產生使能信號ENA=0,D觸發器DFF1的Q輸出端輸出Q=0,使得功率開關M11和M22斷開。 As shown in Figure 3, in the boost control circuit 300 of the boost controller U2: the transconductance operational amplifier Gm compares the voltage VDD at the VDD pin of the boost controller U2 with the threshold voltage Vreg, and when VDD < When Vreg, a charging current is generated to charge the capacitor C11; the voltage VC on the capacitor C11 increases, and the pulse generator Burst generates an enable signal ENA=1 based on the voltage VC on the capacitor C11; the clock signal Fboost triggers the Q output of the D flip-flop DFF1 Output Q=1, causing the power switches M11 and M22 to turn on; the resistor Rocp samples the current flowing through the power switch M22; the comparator Comp compares the voltage VR on the resistor Rocp with the threshold voltage Vref_ocp, and generates a protection signal when VR>Vref_ocp SW_ocp=0, at this time the Q output terminal of D flip-flop DFF1 outputs Q=0, causing the power switches M11 and M22 to turn off; when the power is turned on When the conduction time of switch M11 and M22 reaches the maximum conduction time, the maximum duty cycle signal Duty max=0 indicating whether the conduction time of power switch M11 and M22 reaches the maximum conduction time, the Q output terminal of D flip-flop DFF1 also outputs Q= 0, causing the power switches M11 and M22 to turn off; when VDD>Vreg, the transconductance operational amplifier Gm generates a discharge current to discharge the capacitor C11, the voltage VC on the capacitor C11 decreases, and the pulse generator Burst is based on the voltage VC on the capacitor C11 The enable signal ENA=0 is generated, and the Q output terminal of the D flip-flop DFF1 outputs Q=0, causing the power switches M11 and M22 to turn off.

目前,升壓式開關電源200的啟動方案包括以下兩種:方案1)PWM控制器U1先啟動,等變壓器T的輔助繞組Naux提供的輸入電壓Vin增大到一定值再啟動升壓控制器U2,但是在PWM控制器U1下次重啟時變壓器T的輔助繞組Naux提供的輸入電壓Vin可能較高,使得升壓控制器U2提前於PWM控制器U1啟動,PWM控制器U1由於啟動電流不夠而無法啟動;方案2)升壓控制器U2先啟動,PWM控制器U1後啟動,但是由於升壓控制器U2本身的耗電,可能導致PWM控制器U1由於啟動電流不夠而無法啟動。 Currently, the starting schemes of the boost switching power supply 200 include the following two: Scheme 1) PWM controller U1 starts first, and then starts the boost controller U2 after the input voltage Vin provided by the auxiliary winding Naux of the transformer T increases to a certain value. , but when the PWM controller U1 restarts next time, the input voltage Vin provided by the auxiliary winding Naux of the transformer T may be higher, causing the boost controller U2 to start earlier than the PWM controller U1, and the PWM controller U1 cannot start due to insufficient starting current. Start; Option 2) The boost controller U2 starts first, and the PWM controller U1 starts later. However, due to the power consumption of the boost controller U2 itself, the PWM controller U1 may not start due to insufficient starting current.

鑒於上述情況,提出了根據本發明實施例的用於圖2所示的升壓式開關電源200的啟動方案,以保證升壓式開關電源200能夠正常啟動、工作、和關閉。 In view of the above situation, a starting scheme for the boost switching power supply 200 shown in FIG. 2 is proposed according to an embodiment of the present invention to ensure that the boost switching power supply 200 can start, work, and shut down normally.

圖4示出了用於圖2所示的升壓控制器U2的啟動控制電路400的示例電路圖。圖4所示的啟動控制電路400可以控制升壓控制器U2在PWM控制器U1啟動之後再啟動,並且可以避免系統重啟時PWM控制器U1由於啟動電流不夠而無法重啟的問題。 FIG. 4 shows an example circuit diagram of startup control circuit 400 for boost controller U2 shown in FIG. 2 . The startup control circuit 400 shown in FIG. 4 can control the boost controller U2 to restart after the PWM controller U1 is started, and can avoid the problem that the PWM controller U1 cannot restart due to insufficient startup current when the system is restarted.

圖5示出了圖4所示的啟動控制電路400實現的啟動控制過程的流程圖。結合圖2、圖4、和圖5可以看出,在升壓式開關電源200上電後:升壓控制器U2的VDD引腳處的電壓VDD斜坡增大;當升壓控制器U2的VDD引腳處的電壓VDD大於PWM控制器U2的欠壓鎖定關斷閾值UVLO_off_pwm時,PWM控制器U1啟動,升壓控制器U2的SW引腳 處的電壓Vsw斜坡增大;當升壓控制器U2的SW引腳處的電壓Vsw小於升壓控制器U2的啟動電壓Vsw_on時,升壓控制器U2不啟動;當升壓控制器U2的SW引腳處的電壓Vsw大於升壓控制器U2的啟動電壓Vsw_on並且升壓變壓器U2的VDD引腳處的電壓VDD大於升壓變壓器U2的欠壓鎖定關斷閾值UVLO_off_bst時,升壓變壓器U2啟動。 FIG. 5 shows a flowchart of the startup control process implemented by the startup control circuit 400 shown in FIG. 4 . It can be seen from Figure 2, Figure 4, and Figure 5 that after the boost switching power supply 200 is powered on: the voltage VDD slope at the VDD pin of the boost controller U2 increases; when the VDD of the boost controller U2 When the voltage VDD at the pin is greater than the undervoltage lockout threshold UVLO_off_pwm of the PWM controller U2, the PWM controller U1 starts, and the SW pin of the boost controller U2 The voltage Vsw at the boost controller ramps up; when the voltage Vsw at the SW pin of the boost controller U2 is less than the startup voltage Vsw_on of the boost controller U2, the boost controller U2 does not start; when the SW pin of the boost controller U2 When the voltage Vsw at the pin is greater than the startup voltage Vsw_on of the boost controller U2 and the voltage VDD at the VDD pin of the boost transformer U2 is greater than the undervoltage lockout turn-off threshold UVLO_off_bst of the boost transformer U2, the boost transformer U2 starts.

圖6示出了圖4所示的啟動控制電路實現的關機/掉電控制過程的流程圖。結合圖2、圖4、和圖6可以看出,在升壓式開關電源200掉電或保護性關閉時:PWM控制器U1不輸出用於驅動功率開關M的導通與關斷的柵極驅動信號,升壓控制器U2的SW引腳處的電壓Vsw斜坡減小,升壓控制器U2的VDD引腳處的電壓VDD靠升壓控制器U2維持一段之間後也斜坡降低;當升壓控制器U2的VDD引腳處的電壓VDD小於放電閾值Vdischar時,放電使能信號Dischar_en=1,主放電通路導通,升壓控制器U2的SW引腳處的電壓Vsw快速降低;當升壓控制器U2的VDD引腳處的電壓VDD小於PWM控制器U1的欠壓鎖定開啟閾值UVLO_on_pwm時,PWM控制器U1關閉;當升壓控制器U2的SW引腳處的電壓Vsw小於升壓控制器U2的關閉電壓Vsw_off且升壓控制器U2的VDD引腳處的電壓VDD小於升壓控制器U2的欠壓鎖定開啟閾值UVLO_on_bst時,升壓控制器U2關閉,同時主放電通路關斷,等待升壓式開關電源200重啟。 FIG. 6 shows a flow chart of the shutdown/power-down control process implemented by the startup control circuit shown in FIG. 4 . Combining Figure 2, Figure 4, and Figure 6, it can be seen that when the boost switching power supply 200 is powered off or protectively shut down: the PWM controller U1 does not output the gate drive used to drive the power switch M on and off. signal, the voltage Vsw at the SW pin of the boost controller U2 ramps down, and the voltage VDD at the VDD pin of the boost controller U2 is maintained by the boost controller U2 for a while and then also ramps down; when the boost When the voltage VDD at the VDD pin of the controller U2 is less than the discharge threshold Vdischar, the discharge enable signal Dischar_en=1, the main discharge path is turned on, and the voltage Vsw at the SW pin of the boost controller U2 decreases rapidly; when the boost control When the voltage VDD at the VDD pin of the controller U2 is less than the undervoltage lockout turn-on threshold UVLO_on_pwm of the PWM controller U1, the PWM controller U1 is turned off; when the voltage Vsw at the SW pin of the boost controller U2 is less than the boost controller U2 When the shutdown voltage Vsw_off and the voltage VDD at the VDD pin of the boost controller U2 is less than the undervoltage lockout turn-on threshold UVLO_on_bst of the boost controller U2, the boost controller U2 is turned off, and the main discharge path is turned off, waiting for the boost. Switching power supply 200 restarts.

在一些實施例中,圖4所示的啟動控制電路400也可以不包括主放電通路,只要能確保VDD<UVLO_on_bst之前Vin<Vsw_off即可。在一些情況下,也可以在圖4所示的啟動控制電路400中額外增加輔助放電通路來確保VDD<UVLO_on_bst之前Vin<Vsw_off,例如,可以基於升壓控制器U2內部的電源良好信號(即,PG信號)來控制放電通路導通。 In some embodiments, the startup control circuit 400 shown in FIG. 4 may not include a main discharge path, as long as it can ensure that Vin<Vsw_off before VDD<UVLO_on_bst. In some cases, an additional auxiliary discharge path can also be added in the startup control circuit 400 shown in Figure 4 to ensure that Vin<Vsw_off before VDD<UVLO_on_bst. For example, it can be based on the power good signal inside the boost controller U2 (i.e., PG signal) to control the conduction of the discharge path.

圖7示出了用於圖2所示的升壓控制器U2的啟動控制電路700的示例電路圖。圖7所示的啟動控制電路700與圖4所示的啟動控制電路400的不同在於:在升壓式開關電源200啟動時,無論變壓器T的輔助繞組Naux提供的輸入電壓Vin的大小如何,只要升壓控制器U2的VDD 引腳處的電壓VDD大於升壓控制器U2的欠壓鎖定關斷閾值UVLO_off_bst,就產生PG信號;只有當變壓器T的輔助繞組Naux提供的輸入電壓Vin大於升壓控制器U2的啟動電壓Vsw_on時,升壓控制器U2才啟動。這樣,升壓控制器U2的PG信號產生電路先啟動,只需等Vin>Vsw_on即可正常工作,不用擔心Vin>Vsw_on時VDD是否大於UVLO_off_bst。 FIG. 7 shows an example circuit diagram of startup control circuit 700 for boost controller U2 shown in FIG. 2 . The difference between the startup control circuit 700 shown in FIG. 7 and the startup control circuit 400 shown in FIG. 4 is that when the boost switching power supply 200 is started, no matter the size of the input voltage Vin provided by the auxiliary winding Naux of the transformer T, as long as VDD of boost controller U2 When the voltage VDD at the pin is greater than the undervoltage lockout turn-off threshold UVLO_off_bst of the boost controller U2, a PG signal is generated; only when the input voltage Vin provided by the auxiliary winding Naux of the transformer T is greater than the startup voltage Vsw_on of the boost controller U2 , the boost controller U2 starts. In this way, the PG signal generation circuit of the boost controller U2 is started first, and it only needs to wait for Vin>Vsw_on to work normally. There is no need to worry about whether VDD is greater than UVLO_off_bst when Vin>Vsw_on.

圖8示出了用於圖2所示的升壓控制器U2的啟動控制電路800的示例電路圖。圖8所示的啟動控制電路800可以控制升壓控制器U2在PWM控制器U1啟動之前先啟動,並且可以避免PWM控制器U1由於啟動電流不夠而無法啟動的問題。 FIG. 8 shows an example circuit diagram of startup control circuit 800 for boost controller U2 shown in FIG. 2 . The startup control circuit 800 shown in FIG. 8 can control the boost controller U2 to start before the PWM controller U1 starts, and can avoid the problem that the PWM controller U1 cannot start due to insufficient starting current.

圖9示出了圖8所示的啟動控制電路700實現的啟動控制過程的流程圖。結合圖2、圖8、和圖9可以看出,在升壓式開關電源200上電後:系統輸入分壓Vac通過電阻Rstart給電容C2充電,當升壓控制器U2的VDD引腳處的電壓VDD大於功率開關S1的導通閾值Vs1_on時,功率開關S1導通,升壓控制器U2的SW引腳處的電壓Vsw等於VDD引腳處的電壓VDD並給電容C1充電;當升壓控制器U2的VDD引腳處的電壓VDD大於升壓控制器U2的欠壓鎖定關斷閾值UVLO_off_bst時,升壓控制器U2啟動,功率開關S1關斷;開關使能信號EN_SW=1,只有電容C1給升壓控制器U2供電,電容C2不再給升壓控制器U2供電;系統輸入分壓Vac通過電阻Rstart繼續給電容C2充電,當升壓控制器U2的VDD引腳處的電壓VDD大於PWM控制器U1的欠壓鎖定關斷閾值UVLO_off_pwm時,PWM控制器U1啟動,升壓控制器U2的VDD引腳處的電壓VDD斜坡下降;當升壓控制器U2的VDD引腳處的電壓VDD小於閾值電壓Vth1時,切換回電容C2給升壓控制器U2供電;當升壓控制器U2的VDD引腳處的電壓VDD小於升壓控制器U2的欠壓鎖定開啟閾值UVLO_on_bst時,升壓控制器U2關閉。 FIG. 9 shows a flowchart of the startup control process implemented by the startup control circuit 700 shown in FIG. 8 . Combining Figure 2, Figure 8, and Figure 9, it can be seen that after the boost switching power supply 200 is powered on: the system input divided voltage Vac charges the capacitor C2 through the resistor Rstart. When the VDD pin of the boost controller U2 When the voltage VDD is greater than the conduction threshold Vs1_on of the power switch S1, the power switch S1 is turned on, and the voltage Vsw at the SW pin of the boost controller U2 is equal to the voltage VDD at the VDD pin and charges the capacitor C1; when the boost controller U2 When the voltage VDD at the VDD pin is greater than the undervoltage lockout threshold UVLO_off_bst of the boost controller U2, the boost controller U2 starts and the power switch S1 turns off; the switch enable signal EN_SW=1, only the capacitor C1 Voltage controller U2 supplies power, and capacitor C2 no longer supplies power to boost controller U2; the system input divided voltage Vac continues to charge capacitor C2 through resistor Rstart, when the voltage VDD at the VDD pin of boost controller U2 is greater than the PWM controller When the undervoltage lockout shutdown threshold of U1 is UVLO_off_pwm, the PWM controller U1 starts, and the voltage VDD at the VDD pin of the boost controller U2 ramps down; when the voltage VDD at the VDD pin of the boost controller U2 is less than the threshold voltage When Vth1, switch back to the capacitor C2 to power the boost controller U2; when the voltage VDD at the VDD pin of the boost controller U2 is less than the undervoltage lockout turn-on threshold UVLO_on_bst of the boost controller U2, the boost controller U2 is turned off. .

本發明可以以其他的具體形式實現,而不脫離其精神和本質特征。例如,特定實施例中所描述的算法可以被修改,而系統體系結構並 不脫離本發明的基本精神。因此,當前的實施例在所有方面都被看作是示例性的而非限定性的,本發明的範圍由所附請求項而非上述描述定義,並且,落入請求項的含義和等同物的範圍內的全部改變從而都被包括在本發明的範圍之中。 The present invention may be implemented in other specific forms without departing from its spirit and essential characteristics. For example, the algorithms described in particular embodiments may be modified, and the system architecture may not without departing from the basic spirit of the invention. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being defined by the appended claims rather than the foregoing description, and the meanings and equivalents falling within the claims. All changes within the scope are therefore included in the scope of the invention.

U1:脈寬調變(PWM)控制器 U1: Pulse width modulation (PWM) controller

U2:升壓控制器 U2: Boost controller

UVLO_on_bst,UVLO_on_pwm:欠壓鎖定開啟閾值 UVLO_on_bst,UVLO_on_pwm: undervoltage lockout threshold

VDD:供電電壓 VDD: supply voltage

Vsw:電壓 Vsw: voltage

Vsw_on:啟動電壓 Vsw_on: starting voltage

Claims (6)

一種用於升壓式開關電源的升壓控制器,其中,所述升壓式開關電源包括變壓器、脈寬調變控制器、以及所述升壓控制器,所述升壓控制器的開關控制引腳處的電壓由所述變壓器的輔助繞組提供,所述升壓控制器的晶片供電引腳處的電壓既是所述升壓控制器的供電電壓也是所述脈寬調變控制器的供電電壓,所述升壓控制器被配置為:所述升壓控制器的晶片供電引腳處的電壓在所述升壓式開關電源上電後開始增大;以及所述升壓控制器的開關控制引腳處的電壓在所述脈寬調變控制器啟動後開始增大,其中當所述升壓控制器的晶片供電引腳處的電壓大於所述脈寬調變控制器的欠壓鎖定關斷閾值時,所述脈寬調變控制器啟動;當所述升壓控制器的開關控制引腳處的電壓大於所述升壓控制器的啟動電壓且所述升壓控制器的晶片供電引腳處的電壓大於所述升壓控制器的欠壓鎖定關斷閾值時,所述升壓控制器啟動;所述升壓控制器的開關控制引腳處的電壓在所述升壓式開關電源掉電或保護性關閉後開始下降;以及所述升壓控制器的晶片供電引腳處的電壓在所述升壓控制器的開關控制引腳處的電壓下降到無法維持所述升壓控制器的晶片供電引腳處的電壓保持不變後開始下降,其中當所述升壓控制器的晶片供電引腳處的電壓小於所述脈寬調變控制器的欠壓鎖定開啟閾值時,所述脈寬調變控制器關閉,當所述升壓控制器的開關控制引腳處的電壓小於所述升壓控制晶片的關閉電壓且所述升壓控制器的晶片供電引腳處的電壓小於所述升壓控制器的欠壓鎖定開啟閾值時,所述升壓控制器關閉。 A boost controller for a boost switching power supply, wherein the boost switching power supply includes a transformer, a pulse width modulation controller, and the boost controller, and the switch control of the boost controller The voltage at the pin is provided by the auxiliary winding of the transformer. The voltage at the chip power supply pin of the boost controller is both the supply voltage of the boost controller and the supply voltage of the pulse width modulation controller. , the boost controller is configured such that: the voltage at the chip power supply pin of the boost controller begins to increase after the boost switching power supply is powered on; and the switch control of the boost controller The voltage at the pin begins to increase after the pulse width modulation controller is started, wherein when the voltage at the chip power supply pin of the boost controller is greater than the undervoltage lockout switch of the pulse width modulation controller When the off threshold value is exceeded, the pulse width modulation controller starts; when the voltage at the switch control pin of the boost controller is greater than the startup voltage of the boost controller and the chip power supply pin of the boost controller When the voltage at the pin is greater than the undervoltage lockout threshold of the boost controller, the boost controller starts; the voltage at the switch control pin of the boost controller is in the boost switching power supply. It begins to decrease after a power outage or protective shutdown; and the voltage at the chip power supply pin of the boost controller drops to the point where the voltage at the switch control pin of the boost controller cannot maintain the boost controller. The voltage at the chip power supply pin remains unchanged and then begins to decrease, wherein when the voltage at the chip power supply pin of the boost controller is less than the undervoltage lockout opening threshold of the pulse width modulation controller, the The pulse width modulation controller is turned off when the voltage at the switch control pin of the boost controller is less than the shutdown voltage of the boost control chip and the voltage at the chip power supply pin of the boost controller is less than the When the undervoltage lockout threshold of the boost controller is reached, the boost controller is turned off. 如請求項1所述的升壓控制器,進一步被配置為: 當所述升壓控制器的晶片供電引腳處的電壓小於放電閾值時,對所述升壓控制器的開關控制引腳處的電壓進行放電。 The boost controller as described in claim 1 is further configured to: When the voltage at the chip power supply pin of the boost controller is less than the discharge threshold, the voltage at the switch control pin of the boost controller is discharged. 如請求項1所述的升壓控制器,進一步被配置為:在所述升壓控制器啟動後,生成電源良好信號;以及基於所述電源良好信號對所述升壓控制器的開關控制引腳處的電壓進行放電。 The boost controller of claim 1, further configured to: generate a power good signal after the boost controller is started; and trigger the switch control of the boost controller based on the power good signal. The voltage at the pin is discharged. 如請求項1所述的升壓控制器,進一步被配置為:在所述升壓控制器的晶片供電引腳處的電壓大於所述升壓控制器的欠壓鎖定關斷閾值時,生成電源良好信號;以及基於所述電源良好信號對所述升壓控制器的開關控制引腳處的電壓進行放電。 The boost controller of claim 1, further configured to: generate a power supply when the voltage at the chip power supply pin of the boost controller is greater than the undervoltage lockout shutdown threshold of the boost controller. a good signal; and discharging the voltage at a switch control pin of the boost controller based on the power good signal. 一種用於升壓式開關電源的升壓控制器,其中,所述升壓式開關電源包括變壓器、脈寬調變控制器、以及所述升壓控制器,所述升壓控制器的開關控制引腳處的電壓由所述變壓器的輔助繞組提供,所述升壓控制器的晶片供電引腳處的電壓既是所述升壓控制器的供電電壓也是所述脈寬調變控制器的供電電壓,所述升壓控制器被配置為:所述升壓控制器的晶片供電引腳處的電壓在所述升壓式開關電源上電後開始增大;當所述升壓控制器的晶片供電引腳處的電壓大於連接在所述升壓控制器的晶片供電引腳和開關控制引腳之間的功率開關的導通電壓時,所述功率開關導通,使得所述升壓控制器的開關控制引腳處的電壓等於所述升壓控制器的晶片供電引腳處的電壓;當所述升壓控制器的晶片供電引腳處的電壓大於所述升壓控制器的欠壓鎖定關斷閾值時,所述升壓控制器啟動,所述功率開關斷開,並且所述升壓控制器的供電電壓從所述升壓控制器的晶片供電引腳處的電壓切換為所述升壓控制器的開關控制引腳處的電壓,其中當所述升壓控制器的晶片供電引腳處的電壓大於所述脈寬調變控制器 的欠壓鎖定關斷閾值時,所述脈寬調變控制器啟動;所述升壓控制器的晶片供電引腳處的電壓在所述脈寬調變控制器啟動後開始下降;當所述升壓控制器的晶片供電引腳處的電壓小於切換閾值時,將所述升壓控制器的供電電壓從所述升壓控制器的開關控制引腳處的電壓切換回所述升壓控制器的供電引腳處的電壓。 A boost controller for a boost switching power supply, wherein the boost switching power supply includes a transformer, a pulse width modulation controller, and the boost controller, and the switch control of the boost controller The voltage at the pin is provided by the auxiliary winding of the transformer. The voltage at the chip power supply pin of the boost controller is both the supply voltage of the boost controller and the supply voltage of the pulse width modulation controller. , the boost controller is configured such that: the voltage at the chip power supply pin of the boost controller begins to increase after the boost switching power supply is powered on; when the chip power supply of the boost controller When the voltage at the pin is greater than the turn-on voltage of the power switch connected between the chip power supply pin and the switch control pin of the boost controller, the power switch is turned on, causing the switch control of the boost controller The voltage at the pin is equal to the voltage at the chip power supply pin of the boost controller; when the voltage at the chip power supply pin of the boost controller is greater than the undervoltage lockout shutdown threshold of the boost controller When , the boost controller is started, the power switch is turned off, and the supply voltage of the boost controller is switched from the voltage at the chip power supply pin of the boost controller to the voltage of the boost controller. The voltage at the switch control pin, where the voltage at the chip supply pin of the boost controller is greater than the pulse width modulation controller When the undervoltage lockout shutdown threshold is reached, the pulse width modulation controller starts; the voltage at the chip power supply pin of the boost controller begins to decrease after the pulse width modulation controller starts; when the When the voltage at the chip power supply pin of the boost controller is less than the switching threshold, the power supply voltage of the boost controller is switched back to the boost controller from the voltage at the switch control pin of the boost controller. the voltage at the supply pin. 一種升壓式開關電源,包括請求項1至5中任一項所述的升壓控制器。 A boost switching power supply includes the boost controller described in any one of claims 1 to 5.
TW111134561A 2022-07-20 2022-09-13 Boost switching power supply and its boost controller TWI835291B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210851115.6 2022-07-20

Publications (2)

Publication Number Publication Date
TW202406281A TW202406281A (en) 2024-02-01
TWI835291B true TWI835291B (en) 2024-03-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200127575A1 (en) 2018-10-17 2020-04-23 Texas Instruments Incorporated Bias power regulator circuit for isolated converters with a wide output voltage range

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200127575A1 (en) 2018-10-17 2020-04-23 Texas Instruments Incorporated Bias power regulator circuit for isolated converters with a wide output voltage range

Similar Documents

Publication Publication Date Title
US10361633B2 (en) Control method and device for switching power supplies having more than one control mode
US8773099B2 (en) Methods to reduce output voltage ripple in constant on-time DC-DC converters
US8624572B2 (en) Switching control circuit and switching power-supply apparatus
TWI290414B (en) DC to DC converter, voltage converting device, method for controlling a converter and boost DC to DC converter
JP4062307B2 (en) converter
US7084612B2 (en) High efficiency linear regulator
JP4481879B2 (en) Switching power supply
TW561673B (en) Power factor correction circuit arrangement
CN110011539B (en) Method and apparatus for implementing unregulated dormant mode in a power converter
US8810227B2 (en) System and method for controlling a switched-mode power supply
US8169799B2 (en) Power factor correction circuit
JP4127399B2 (en) Switching power supply control semiconductor device
JP2004304886A (en) Switching power supply
JP2012039871A (en) Method and apparatus of increasing power feeding capability of power supply
JP2012161117A (en) Dc/dc converter, and power supply device and electronic apparatus using the same
JP2003174769A (en) Switching power supply and semiconductor device therefor
JP2004201449A (en) Switching power supply
JP2016135036A (en) Semiconductor device for power supply control
JP2010220293A (en) Switching power supply device
JP2005518177A (en) Power converter noise reduction
WO2004038902A2 (en) Capacitively coupled power supply
JP2010213559A (en) Dc power supply and dc-dc converter
JP2007110803A (en) Switching power supply controlling semiconductor device and switching power supply device
JP3425403B2 (en) Semiconductor device and switching power supply device using this semiconductor device
TW201212496A (en) Switching mode power supply with burst mode operation