TWI833808B - Motor control circuit and motor control apparatus - Google Patents

Motor control circuit and motor control apparatus Download PDF

Info

Publication number
TWI833808B
TWI833808B TW108133949A TW108133949A TWI833808B TW I833808 B TWI833808 B TW I833808B TW 108133949 A TW108133949 A TW 108133949A TW 108133949 A TW108133949 A TW 108133949A TW I833808 B TWI833808 B TW I833808B
Authority
TW
Taiwan
Prior art keywords
motor
circuit
control circuit
temperature
motor control
Prior art date
Application number
TW108133949A
Other languages
Chinese (zh)
Other versions
TW202037065A (en
Inventor
阿部真喜男
板垣孝俊
林秀
青木政人
Original Assignee
日商三美電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三美電機股份有限公司 filed Critical 日商三美電機股份有限公司
Publication of TW202037065A publication Critical patent/TW202037065A/en
Application granted granted Critical
Publication of TWI833808B publication Critical patent/TWI833808B/en

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Subject of this invention is to obtain a motor control circuit capable of improving the accuracy of motor control. A motor control circuit 3-1 includes a control circuit 11 that controls switching operation of an inverter circuit which supplies AC power to motor, and a determination information generating circuit 12 that generates a conversion result that is a determination information for determining whether the motor is in a breakdown or deterioration. The motor control circuit 3-1 includes a determining circuit 10 that determines whether the motor is in a breakdown or deterioration state based on the conversion result, and outputs a signal indicating that the motor is in a breakdown or deterioration state to the control circuit 11 as an interrupt signal.

Description

馬達控制電路以及馬達控制裝置 Motor control circuit and motor control device

本發明係關於一種控制向馬達供給交流電力的逆變器電路(inverter circuit)的開關(switching)動作的馬達控制電路以及馬達控制裝置。 The present invention relates to a motor control circuit and a motor control device that control switching operations of an inverter circuit that supplies AC power to a motor.

在專利文獻1中公開了控制逆變器電路的開關動作的技術。馬達控制是將用於控制逆變器電路的開關元件的動作的脈衝寬度調變(Pulse Width Modulation:PWM)信號的通電率予以變更,俾使馬達的旋轉速度追隨速度指令信號的值的動作。 Patent Document 1 discloses a technology for controlling the switching operation of an inverter circuit. Motor control is an operation that changes the energization rate of the pulse width modulation (PWM) signal used to control the operation of the switching element of the inverter circuit so that the rotation speed of the motor follows the value of the speed command signal.

[先前技術文獻] [Prior technical literature] [專利文獻] [Patent Document]

專利文獻1:日本特開2018-107914號公報。 Patent Document 1: Japanese Patent Application Publication No. 2018-107914.

然而,在專利文獻1所代表的現有技術中,在包含進行馬達控制的運算處理功能的控制部中,也進行有用以判定馬達是否正故障或劣化的異常判定、用以判定速度指令信號是否已變化的速度變化判定等。因此,與控制部僅進行馬達控制的情況相比,存在如下的問題:控制部的處理負擔變大,針對速度指令信號的變化的馬達控制的響應性降低,而無法高精度地進行馬達控制。 However, in the prior art represented by Patent Document 1, the control unit including the arithmetic processing function for controlling the motor also performs abnormality determination for determining whether the motor is malfunctioning or deteriorating, and determining whether the speed command signal has expired. Determining the speed of change, etc. Therefore, compared with the case where the control unit only performs motor control, there is a problem that the processing load of the control unit increases, the responsiveness of the motor control to changes in the speed command signal decreases, and the motor control cannot be performed with high accuracy.

本發明是鑒於上述問題提出的,其目的在於提供減輕包含進 行馬達控制的運算處理功能的控制部的處理負擔,並且能夠提高馬達控制的精度的馬達控制電路。 The present invention is proposed in view of the above problems, and its purpose is to provide a method to alleviate the A motor control circuit that eliminates the processing burden on the control unit of the arithmetic processing function of motor control and improves the accuracy of motor control.

本發明的實施形態的馬達控制電路係具備:控制電路,係控制向馬達供給交流電力的逆變器電路的開關動作;以及判定資訊生成電路,係生成用於判定馬達是否正故障或劣化的判定資訊。馬達控制電路係具備:判定電路,係根據判定資訊判定馬達是否正故障或劣化,並將表示馬達正故障或劣化的資訊作為中斷信號對控制電路11輸出。 The motor control circuit according to the embodiment of the present invention includes: a control circuit that controls the switching operation of an inverter circuit that supplies AC power to the motor; and a determination information generation circuit that generates a determination for determining whether the motor is malfunctioning or deteriorating. information. The motor control circuit includes a determination circuit that determines whether the motor is malfunctioning or deteriorating based on the determination information, and outputs information indicating that the motor is malfunctioning or deteriorating as an interrupt signal to the control circuit 11 .

本發明的馬達控制電路起到能夠提高馬達控制的精度的效果。 The motor control circuit of the present invention has the effect of improving the accuracy of motor control.

1:逆變器電路 1:Inverter circuit

2:驅動信號生成電路 2: Drive signal generation circuit

3-1、3-1A、3-2、3-2’、3-2A、3-3、3-4、300、400:馬達控制電路 3-1, 3-1A, 3-2, 3-2’, 3-2A, 3-3, 3-4, 300, 400: Motor control circuit

4:馬達 4: Motor

4-1:殼體 4-1: Shell

4-2:軸承襯 4-2:Bearing lining

4-3:軸承 4-3:Bearing

4-4:絕緣子 4-4:Insulator

4-5:鐵芯 4-5:Iron core

4-6:線圈 4-6: Coil

4-7:印刷基板 4-7:Printed substrate

5:電流檢測部 5:Current detection part

6:溫度檢測部 6: Temperature detection department

6A:IC溫度檢測部 6A: IC temperature detection department

6B:軸承襯溫度檢測部 6B: Bearing lining temperature detection part

6C:馬達外部溫度檢測部 6C: Motor external temperature detection part

7:電源電壓檢測部 7: Power supply voltage detection department

8:AD轉換器 8:AD converter

9:AD序列器 9:AD sequencer

10、10A、10B:判定電路 10, 10A, 10B: Determination circuit

11、11A:控制電路 11, 11A: Control circuit

12:判定資訊生成電路 12: Determination information generation circuit

13:通知端子 13:Notification terminal

20、20’:速度變化檢測電路 20, 20’: Speed change detection circuit

20A:捕捉器計時器 20A: Capture timer

21:第1捕捉器 21: No. 1 catcher

22:第2捕捉器 22: 2nd catcher

23:計數器時鐘 23: Counter clock

24、24A:比較電路 24, 24A: Comparison circuit

25:捕捉器 25:Catcher

31、31’、31A:控制電路 31, 31’, 31A: control circuit

40、60:判定值 40, 60: Judgment value

50:輸入端子 50:Input terminal

71、72、73:第1計數值 71, 72, 73: 1st count value

81、82、83:第2計數值 81, 82, 83: 2nd count value

91、92、93:計數值 91, 92, 93: count value

100-1、100-2、100-3、100-4:馬達控制裝置 100-1, 100-2, 100-3, 100-4: Motor control device

410:IC 410: IC

T1、T2:固定期間 T1, T2: Fixed period

圖1是表示實施形態1的馬達控制裝置的結構的圖。 FIG. 1 is a diagram showing the structure of a motor control device according to Embodiment 1.

圖2是表示實施形態1的馬達控制電路的結構的圖。 FIG. 2 is a diagram showing the structure of the motor control circuit according to the first embodiment.

圖3是用於說明實施形態1的馬達控制電路的動作的序列圖(sequence chart)。 FIG. 3 is a sequence chart for explaining the operation of the motor control circuit according to the first embodiment.

圖4是用於說明實施形態1的馬達控制電路的動作的流程圖(flow chart)。 FIG. 4 is a flow chart for explaining the operation of the motor control circuit according to the first embodiment.

圖5是用於說明實施形態1的馬達控制電路的動作的時間圖(time chart)。 FIG. 5 is a time chart for explaining the operation of the motor control circuit according to the first embodiment.

圖6是表示實施形態1的比較例的馬達控制電路的結構的圖。 FIG. 6 is a diagram showing the structure of a motor control circuit according to a comparative example of Embodiment 1. FIG.

圖7是用於說明實施形態1的比較例的馬達控制電路的動作的序列圖。 FIG. 7 is a sequence diagram for explaining the operation of the motor control circuit in the comparative example of Embodiment 1. FIG.

圖8是用於說明實施形態1的比較例的馬達控制電路的動作的流程圖。 FIG. 8 is a flowchart for explaining the operation of the motor control circuit in the comparative example of Embodiment 1. FIG.

圖9是用於說明實施形態1的比較例的馬達控制電路的動作的時間圖。 FIG. 9 is a time chart for explaining the operation of the motor control circuit in the comparative example of Embodiment 1. FIG.

圖10是表示實施形態1的馬達控制電路的變形例的圖。 FIG. 10 is a diagram showing a modification of the motor control circuit of Embodiment 1. FIG.

圖11是表示實施形態2的馬達控制裝置的結構的圖。 FIG. 11 is a diagram showing the structure of a motor control device according to Embodiment 2. FIG.

圖12是表示實施形態2的馬達控制電路的結構的圖。 Fig. 12 is a diagram showing the structure of a motor control circuit according to Embodiment 2.

圖13是表示以往的馬達控制電路的結構的圖。 FIG. 13 is a diagram showing the structure of a conventional motor control circuit.

圖14是用於說明實施形態2的馬達控制電路的動作的序列圖。 FIG. 14 is a sequence diagram for explaining the operation of the motor control circuit according to the second embodiment.

圖15是用於說明實施形態2的馬達控制電路的動作的流程圖。 FIG. 15 is a flowchart for explaining the operation of the motor control circuit according to the second embodiment.

圖16是用於說明實施形態2的馬達控制電路的動作的時間圖。 FIG. 16 is a time chart for explaining the operation of the motor control circuit according to the second embodiment.

圖17是表示實施形態2的比較例的馬達控制電路的結構的圖。 FIG. 17 is a diagram showing the structure of a motor control circuit according to a comparative example of Embodiment 2.

圖18是用於說明實施形態2的比較例的馬達控制電路的動作的序列圖。 FIG. 18 is a sequence diagram for explaining the operation of the motor control circuit in the comparative example of Embodiment 2. FIG.

圖19是用於說明實施形態2的比較例的馬達控制電路的動作的流程圖。 FIG. 19 is a flowchart for explaining the operation of the motor control circuit in the comparative example of Embodiment 2. FIG.

圖20是用於說明實施形態2的比較例的馬達控制電路的動作的時間圖。 FIG. 20 is a time chart for explaining the operation of the motor control circuit in the comparative example of Embodiment 2. FIG.

圖21是表示實施形態2的馬達控制電路的變形例的圖。 FIG. 21 is a diagram showing a modification of the motor control circuit of Embodiment 2. FIG.

圖22是用於說明圖21所示的馬達控制電路的動作的流程圖。 FIG. 22 is a flowchart for explaining the operation of the motor control circuit shown in FIG. 21 .

圖23是表示實施形態3的馬達控制裝置的結構的圖。 FIG. 23 is a diagram showing the structure of a motor control device according to Embodiment 3. FIG.

圖24是表示馬達4的結構例的圖。 FIG. 24 is a diagram showing a structural example of the motor 4 .

圖25是表示實施形態3的馬達控制電路的結構的圖。 FIG. 25 is a diagram showing the structure of a motor control circuit according to Embodiment 3. FIG.

圖26是用於說明實施形態3的馬達控制電路的動作的流程圖。 Fig. 26 is a flowchart for explaining the operation of the motor control circuit according to the third embodiment.

圖27是表示實施形態3中的IC(integrated circuit;積體電路)內部溫度、軸承襯(bearing liner)溫度的一例的圖。 FIG. 27 is a diagram showing an example of IC (integrated circuit) internal temperature and bearing liner temperature in Embodiment 3. FIG.

圖28是表示實施形態4的馬達控制裝置的結構的圖。 Fig. 28 is a diagram showing the structure of the motor control device according to the fourth embodiment.

圖29是表示實施形態4的馬達控制電路的結構的圖。 Fig. 29 is a diagram showing the structure of the motor control circuit according to the fourth embodiment.

圖30是用於說明實施形態4的馬達控制電路的動作的流程圖。 Fig. 30 is a flowchart for explaining the operation of the motor control circuit according to the fourth embodiment.

圖31是表示實施形態4中的IC內部溫度、軸承襯溫度、馬達外部溫度等的一例的第一圖。 31 is a first diagram showing an example of IC internal temperature, bearing lining temperature, motor external temperature, etc. in Embodiment 4.

圖32是表示實施形態4中的IC內部溫度、軸承襯溫度、馬達外部溫度等的一例的第二圖。 32 is a second diagram showing an example of IC internal temperature, bearing lining temperature, motor external temperature, etc. in Embodiment 4.

以下,根據圖式對本發明的實施形態的馬達控制電路以及馬達控制裝置的結構進行詳細說明。另外,並非藉由該實施形態來限定本發明。 Hereinafter, the structures of the motor control circuit and the motor control device according to the embodiment of the present invention will be described in detail based on the drawings. In addition, this invention is not limited by this embodiment.

(實施形態1) (Embodiment 1)

圖1是表示實施形態1的馬達控制裝置的結構的圖。馬達控制裝置100-1係具備:逆變器電路1,係向馬達4供給交流電力;以及驅動信號生成電路2,係生成使設置於逆變器電路1的開關元件動作的驅動信號。此外,馬達控制裝置100-1係具備生成PWM信號的馬達控制電路3-1,該PWM信號係用於控制逆變器電路1的開關元件的動作。圖1中省略了向逆變器電路1供給直流電力的整流電路、轉換器(converter)電路、交流電源等的圖示。馬達4是藉由交流電力旋轉的旋轉電機。驅動信號是被輸入到驅動信號生成電路2的PWM信號被轉換為能夠驅動開關元件的電壓的信號。PWM信號是取用於控制開關動作的高電平(high level)或低電平(low level)這2值的矩形波信號。 FIG. 1 is a diagram showing the structure of a motor control device according to Embodiment 1. The motor control device 100 - 1 includes an inverter circuit 1 that supplies AC power to the motor 4 and a drive signal generation circuit 2 that generates a drive signal for operating a switching element provided in the inverter circuit 1 . Furthermore, the motor control device 100-1 includes a motor control circuit 3-1 that generates a PWM signal for controlling the operation of the switching element of the inverter circuit 1. In FIG. 1 , illustrations of a rectifier circuit, a converter circuit, an AC power supply, and the like that supply DC power to the inverter circuit 1 are omitted. The motor 4 is a rotary electric machine rotated by AC power. The drive signal is a signal in which the PWM signal input to the drive signal generation circuit 2 is converted into a voltage capable of driving the switching element. The PWM signal is a rectangular wave signal with two values of high level or low level used to control switching operations.

接著,對馬達控制電路3-1的結構進行說明。圖2是表示實施形態1的馬達控制電路的結構的圖。馬達控制電路3-1係具備:控制電路11,係生成PWM信號;以及判定資訊生成電路12,係生成用於判定馬達4是否正故障或劣化的判定資訊。此外,馬達控制電路3-1係具備:判定電路10,係根據由判定資訊生成電路12所生成的判定資訊判定馬達4是否正故障或劣化,並將表示馬達4正故障或劣化的信號作為中斷信號對著包含運算處理功能的控制電路11輸出。判定電路10是用於藉由代替在以往的控制電路11中所實施的運 算處理來減輕控制電路11的處理負擔的電路。另外,長時間測量了判定資訊時,藉由檢測判定資訊的微小變化來判定馬達4的劣化。 Next, the structure of the motor control circuit 3-1 will be described. FIG. 2 is a diagram showing the structure of the motor control circuit according to the first embodiment. The motor control circuit 3-1 includes a control circuit 11 that generates a PWM signal, and a determination information generation circuit 12 that generates determination information for determining whether the motor 4 is malfunctioning or deteriorating. In addition, the motor control circuit 3-1 is provided with a determination circuit 10 that determines whether the motor 4 is malfunctioning or degrading based on the determination information generated by the determination information generation circuit 12, and uses a signal indicating that the motor 4 is malfunctioning or degrading as an interrupt. The signal is output to the control circuit 11 including the arithmetic processing function. The determination circuit 10 is used to replace the operation implemented in the conventional control circuit 11 A circuit that reduces the processing load of the control circuit 11 by performing calculation processing. In addition, when the judgment information is measured for a long period of time, the deterioration of the motor 4 is judged by detecting slight changes in the judgment information.

判定資訊生成電路12生成的判定資訊是將電流檢測資訊、溫度檢測資訊及電壓檢測資訊的至少一個藉由AD(analog-digital;數位-類比)轉換器8轉換為數位值的資訊,其中該電流檢測資訊係表示電流檢測部5所檢測出的電流的值,該溫度檢測資訊係表示溫度檢測部6所檢測出的溫度的值,該電壓檢測資訊係表示電源電壓檢測部7所檢測出的電源電壓的值。另外,對於被輸入到判定資訊生成電路12的檢測資訊,只要是用於判定馬達4是否正故障或劣化所需的資訊即可,並不限定於電流檢測資訊、溫度檢測資訊以及電壓檢測資訊。這樣由判定資訊生成電路12生成的判定資訊是將由電流檢測部5等所檢測出的檢測資訊以AD轉換器8轉換為數位值的結果的資訊,故以下有時稱為「轉換結果」。 The determination information generated by the determination information generation circuit 12 is information in which at least one of current detection information, temperature detection information, and voltage detection information is converted into a digital value by an AD (analog-digital; digital-analog) converter 8, where the current The detection information indicates the value of the current detected by the current detection unit 5 , the temperature detection information indicates the value of the temperature detected by the temperature detection unit 6 , and the voltage detection information indicates the power supply detected by the power supply voltage detection unit 7 voltage value. In addition, the detection information input to the determination information generation circuit 12 is not limited to current detection information, temperature detection information, and voltage detection information as long as it is information necessary for determining whether the motor 4 is malfunctioning or deteriorating. The determination information generated by the determination information generation circuit 12 in this way is information obtained by converting the detection information detected by the current detection unit 5 and the like into a digital value using the AD converter 8, and is therefore sometimes referred to as a "conversion result" below.

判定資訊生成電路12係具備AD轉換器8和AD序列器(sequencer)9。AD轉換器8係將電流檢測資訊、溫度檢測資訊及電壓檢測資訊的至少一個轉換為數位值,並將轉換結果輸出至AD序列器9。在AD序列器9中保持有轉換結果,判定電路10讀出由AD序列器9所保持的轉換結果。 The determination information generation circuit 12 includes an AD converter 8 and an AD sequencer 9 . The AD converter 8 converts at least one of current detection information, temperature detection information, and voltage detection information into a digital value, and outputs the conversion result to the AD sequencer 9 . The AD sequencer 9 holds the conversion result, and the decision circuit 10 reads the conversion result held by the AD sequencer 9 .

於判定電路10係設有對電流檢測資訊、溫度檢測資訊以及電壓檢測資訊的各個進行比較的判定值40。例如,以馬達4正故障或劣化時所檢測出的電流、溫度、電源電壓為基準來設定判定值40。 The determination circuit 10 is provided with a determination value 40 for comparing each of the current detection information, the temperature detection information, and the voltage detection information. For example, the determination value 40 is set based on the current, temperature, and power supply voltage detected when the motor 4 is malfunctioning or degrading.

接著,對馬達控制電路3-1的動作進行說明。圖3是用於說明實施形態1的馬達控制電路的動作的序列圖。圖4是用於說明實施形態1的馬達控制電路的動作的流程圖。控制電路11中根據速度指令信號進行馬達控制(步驟S1)。速度指令信號是指定馬達4的旋轉速度的目標值的信號。 Next, the operation of the motor control circuit 3-1 will be described. FIG. 3 is a sequence diagram for explaining the operation of the motor control circuit according to the first embodiment. FIG. 4 is a flowchart for explaining the operation of the motor control circuit according to the first embodiment. The control circuit 11 performs motor control based on the speed command signal (step S1). The speed command signal is a signal that specifies a target value of the rotation speed of the motor 4 .

在接收到電流檢測資訊、溫度檢測資訊及電壓檢測資訊中的至 少一個的AD轉換器8中,將這些檢測資訊的值轉換為能夠被AD序列器9處理的數位值。AD序列器9中,每固定週期保持AD轉換器8的轉換結果,每當經過該週期時,AD序列器9輸出轉換結束信號。轉換結束信號是表示在該週期中的轉換結果的保持已結束的信號。 When receiving current detection information, temperature detection information and voltage detection information, The AD converter 8 at least converts the values of the detection information into digital values that can be processed by the AD sequencer 9 . The AD sequencer 9 holds the conversion result of the AD converter 8 every fixed period, and outputs a conversion completion signal every time this period elapses. The conversion end signal is a signal indicating that holding of the conversion result in this cycle has ended.

判定電路10判定是否接收到轉換結束信號(步驟S2)。在未接收到轉換結束信號的情況下(步驟S2的「否」),反復進行步驟S1和步驟S2的處理。在接收到轉換結束信號的情況下(步驟S2的「是」),判定電路10係讀入AD序列器9所保持的轉換結果(步驟S3)。 The determination circuit 10 determines whether the conversion end signal is received (step S2). If the conversion completion signal is not received (NO in step S2), the processing of steps S1 and S2 is repeated. When the conversion completion signal is received (YES in step S2), the determination circuit 10 reads the conversion result held by the AD sequencer 9 (step S3).

判定電路10係比較已讀入的轉換結果的值與預先設定的判定值40,並判定轉換結果的值是否為判定值40以上(步驟S4)。在轉換結果的值小於判定值40的情況下(步驟S4的「否」),反復進行步驟S1至步驟S4的處理。在轉換結果的值為判定值40以上的情況下(步驟S4的「是」),判定電路10係輸出中斷信號(步驟S5),該中斷信號是通知轉換結果的值為判定值40以上的信號。接收到中斷信號的控制電路11例如進行外部通知(步驟S6),該外部通知是輸出以下信號的動作:將馬達4正故障或劣化的情況通知外部設備的信號。另外,也可以在輸出中斷信號的時機(timing)由判定電路10輸出外部通知。 The determination circuit 10 compares the read conversion result value with a preset determination value 40, and determines whether the conversion result value is equal to or greater than the determination value 40 (step S4). When the value of the conversion result is smaller than the determination value 40 (NO in step S4), the processing from step S1 to step S4 is repeated. When the value of the conversion result is equal to or greater than the judgment value 40 (YES in step S4), the judgment circuit 10 outputs an interrupt signal (step S5). The interrupt signal is a signal notifying that the value of the conversion result is equal to or greater than the judgment value 40. . The control circuit 11 that has received the interrupt signal performs, for example, external notification (step S6), which is an operation of outputting a signal that notifies an external device that the motor 4 is malfunctioning or deteriorating. In addition, the judgment circuit 10 may output an external notification at the timing of outputting the interrupt signal.

圖5是用於說明實施形態1的馬達控制電路的動作的時間圖。圖5中示出了控制電路11的動作狀態、轉換結束信號變化的時機、轉換結果、進行判定電路10的判定處理的時機及中斷信號變化的時機。在控制電路11進行馬達控制時,在第一個轉換結束信號從低(low)變化為高(high)的情況下,自該轉換結束信號已從低變化為高的時間點起直到經過固定期間T1為止,判定電路10進行判定處理。判定處理係與判定轉換結果的值是否為判定值40以上的步驟S4的處理相當。判定處理係以判定電路10來進行,因此控制電路11的馬達控制不中斷。在該判定處理中,例如由於電流檢測資訊的值小於判定值 40,因此中斷信號為低。另外,轉換結束信號係在從低變化為高之後立即再次變化為低。 FIG. 5 is a time chart for explaining the operation of the motor control circuit according to the first embodiment. FIG. 5 shows the operating state of the control circuit 11, the timing of the conversion completion signal change, the conversion result, the timing of the judgment process of the judgment circuit 10, and the timing of the interrupt signal change. When the control circuit 11 performs motor control, when the first conversion end signal changes from low to high, a fixed period elapses from the time point when the conversion end signal changes from low to high. Until T1, the determination circuit 10 performs determination processing. The determination process corresponds to the process of step S4 for determining whether the value of the conversion result is equal to or greater than the determination value 40. Since the determination process is performed by the determination circuit 10, the motor control by the control circuit 11 is not interrupted. In this determination process, for example, because the value of the current detection information is smaller than the determination value 40, so the interrupt signal is low. In addition, the conversion end signal changes to low again immediately after changing from low to high.

在進行馬達控制時,在第二個轉換結束信號從低變化為高的情況下,自該轉換結束信號從低變化為高的時間點起直到經過固定期間T2為止,判定電路10進行判定馬達4是否正故障或劣化的判定處理。在該判定處理中,例如由於電流檢測資訊的值為判定值40以上,因此中斷信號從低變化為高。藉此,控制電路11的馬達控制被中斷,進行外部通知。 During motor control, when the second conversion completion signal changes from low to high, the determination circuit 10 determines the motor 4 from the time point when the conversion completion signal changes from low to high until the fixed period T2 elapses. Determining whether there is a malfunction or deterioration. In this determination process, for example, since the value of the current detection information is equal to or greater than the determination value 40, the interrupt signal changes from low to high. Thereby, the motor control of the control circuit 11 is interrupted, and external notification is performed.

圖6是表示實施形態1的比較例的馬達控制電路的結構的圖。圖6所示的馬達控制電路300係具備控制電路11A來代替圖2所示的判定電路10和控制電路11。在控制電路11A中,進行前述的馬達控制以及判定處理。 FIG. 6 is a diagram showing the structure of a motor control circuit according to a comparative example of Embodiment 1. FIG. The motor control circuit 300 shown in FIG. 6 includes a control circuit 11A in place of the determination circuit 10 and the control circuit 11 shown in FIG. 2 . In the control circuit 11A, the aforementioned motor control and determination processing are performed.

接著,對馬達控制電路300的動作進行說明。圖7是用於說明實施形態1的比較例的馬達控制電路的動作的序列圖。圖8是用於說明實施形態1的比較例的馬達控制電路的動作的流程圖。控制電路11A中根據速度指令信號進行有馬達控制(步驟S11)。在接收到電流檢測資訊、溫度檢測資訊及電壓檢測資訊中的至少一個的AD轉換器8中,將這些檢測資訊的值轉換為能夠被AD序列器9處理的數位值。在AD序列器9中,每固定週期保持AD轉換器8的轉換結果,當經過了該週期時,AD序列器9輸出轉換結束信號。 Next, the operation of the motor control circuit 300 will be described. FIG. 7 is a sequence diagram for explaining the operation of the motor control circuit in the comparative example of Embodiment 1. FIG. FIG. 8 is a flowchart for explaining the operation of the motor control circuit in the comparative example of Embodiment 1. FIG. The control circuit 11A performs motor control based on the speed command signal (step S11). In the AD converter 8 that receives at least one of the current detection information, temperature detection information, and voltage detection information, the values of these detection information are converted into digital values that can be processed by the AD sequencer 9 . The AD sequencer 9 holds the conversion result of the AD converter 8 every fixed period, and when the period elapses, the AD sequencer 9 outputs a conversion completion signal.

控制電路11A係判定是否接收到轉換結束信號(步驟S12)。在未接收到轉換結束信號的情況下(步驟S12的「否」),反復進行步驟S11和步驟S12的處理。在接收到轉換結束信號的情況下(步驟S12的「是」),控制電路11A係讀入AD序列器9所保持的轉換結果(步驟S13)。 The control circuit 11A determines whether the conversion end signal is received (step S12). If the conversion completion signal is not received (NO in step S12), the processing of steps S11 and S12 is repeated. When receiving the conversion completion signal (YES in step S12), the control circuit 11A reads the conversion result held by the AD sequencer 9 (step S13).

控制電路11A係比較已讀入的轉換結果的值與預先設定的判定值40,並判定轉換結果的值是否為判定值40以上(步驟S14)。在轉換結果的值小於判定值40的情況下(步驟S14的「否」),反復進行步驟S11至步驟S14的 處理。在轉換結果的值為判定值40以上的情況下(步驟S14的「是」),控制電路11A係進行外部通知(步驟S15)。 The control circuit 11A compares the read conversion result value with a preset judgment value 40, and determines whether the conversion result value is equal to or higher than the judgment value 40 (step S14). When the value of the conversion result is less than the determination value 40 (NO in step S14), steps S11 to S14 are repeated. handle. When the value of the conversion result is equal to or greater than the judgment value 40 (YES in step S14), the control circuit 11A performs external notification (step S15).

圖9是用於說明實施形態1的比較例的馬達控制電路的動作的時間圖。圖9中示出了控制電路11A的動作狀態、轉換結束信號變化的時機及轉換結果。在控制電路11A進行馬達控制時,在第一個轉換結束信號從低變化為高的情況下,自該轉換結束信號已從低變化為高的時間點起直到經過固定期間T1為止,控制電路11A代替馬達控制而進行判定處理。判定處理係與判定轉換結果的值是否為判定值40以上的步驟S14的處理相當。判定處理係以控制電路11A進行,因此直到經過固定期間T1為止,馬達控制被中斷。在該判定處理中,例如由於電流檢測資訊的值小於判定值40,因此不進行外部通知。另外,轉換結束信號從低變化為高之後立即再次變化為低。 FIG. 9 is a time chart for explaining the operation of the motor control circuit in the comparative example of Embodiment 1. FIG. FIG. 9 shows the operation state of the control circuit 11A, the timing of change of the conversion end signal, and the conversion result. When the control circuit 11A performs motor control, when the first conversion completion signal changes from low to high, the control circuit 11A controls the motor from the time point when the conversion completion signal changes from low to high until the fixed period T1 elapses. Determination processing is performed instead of motor control. The determination process corresponds to the process of step S14 for determining whether the value of the conversion result is equal to or greater than the determination value 40. Since the determination process is performed by the control circuit 11A, the motor control is interrupted until the fixed period T1 elapses. In this determination process, for example, since the value of the current detection information is smaller than the determination value 40, external notification is not performed. In addition, the conversion end signal changes from low to high immediately after changing to low again.

控制電路11A中,經過固定期間T1後再次開始進行馬達控制。進行該馬達控制時,在第二個轉換結束信號從低變化為高的情況下,自該轉換結束信號已從低變化為高的時間點起直到經過固定期間T2為止,控制電路11A進行判定處理。在該判定處理中,例如由於電流檢測資訊的值為判定值40以上,因此在經過了固定期間T2時進行外部通知。 In the control circuit 11A, motor control is resumed after the fixed period T1 has elapsed. When this motor control is performed, when the second conversion end signal changes from low to high, the control circuit 11A performs a determination process from the time when the conversion end signal changes from low to high until the fixed period T2 elapses. . In this determination process, for example, since the value of the current detection information is equal to or greater than the determination value 40, an external notification is performed when the fixed period T2 has elapsed.

這樣,在比較例的馬達控制電路300中,自轉換結束信號已從低變化為高的時間點起直到經過固定期間T1、T2為止,進行由控制電路11A所為的判定處理,亦即進行馬達4是否正故障或劣化的判定。因此,在該判定處理中馬達控制被中斷。 In this way, in the motor control circuit 300 of the comparative example, from the time point when the conversion completion signal changes from low to high until the fixed periods T1 and T2 elapse, the determination process performed by the control circuit 11A, that is, the motor 4 Determine whether it is malfunctioning or deteriorating. Therefore, motor control is interrupted during this determination process.

與此相對,在實施形態1的馬達控制電路3-1中,如圖5所示,自轉換結束信號已從低變化為高的時間點起直到經過固定期間T1、T2為止,進行由判定電路10所為的判定處理。亦即,用判定電路10代替以往由控制電路11所實施的運算處理(異常判定處理)。因此,在馬達控制電路3-1中,與馬 達4是否正故障或劣化的判定處理並行地繼續進行馬達控制。因此,馬達控制不會因該判定處理而中斷。像這樣,因馬達控制不被中斷,從而例如即使在圖5所示的固定期間T1、T2的期間速度指令信號的值變化了的情況下,也能夠針對速度指令信號的變化立即變更馬達控制。具體而言,例如在速度指令信號的導通占空比(on-duty)變長的情況下PWM信號的通電率變大,在速度指令信號的導通占空比變短的情況下PWM信號的通電率變小。其結果是,伴隨速度指令信號的變化的馬達控制的響應性提高。此外,控制電路11所實施的運算處理(異常判定處理)被判定電路10代替,藉此減輕控制電路11的處理負擔。 On the other hand, in the motor control circuit 3-1 of Embodiment 1, as shown in FIG. 5, from the time point when the conversion completion signal changes from low to high until the fixed periods T1 and T2 elapse, the determination circuit performs 10. Judgment and processing. That is, the determination circuit 10 is used instead of the arithmetic processing (abnormality determination processing) conventionally performed by the control circuit 11 . Therefore, in the motor control circuit 3-1, with the motor The motor control is continued in parallel with the determination process of whether there is a malfunction or deterioration. Therefore, motor control is not interrupted by this determination process. In this way, since the motor control is not interrupted, for example, even if the value of the speed command signal changes during the fixed periods T1 and T2 shown in FIG. 5 , the motor control can be changed immediately in response to the change in the speed command signal. Specifically, for example, when the on-duty of the speed command signal becomes longer, the energization rate of the PWM signal becomes larger, and when the on-duty of the speed command signal becomes shorter, the energization of the PWM signal becomes larger. rate becomes smaller. As a result, the responsiveness of the motor control accompanying changes in the speed command signal is improved. In addition, the calculation processing (abnormality determination processing) performed by the control circuit 11 is replaced by the determination circuit 10, thereby reducing the processing load of the control circuit 11.

此外,即使在速度指令信號的值在短期間頻繁地變化的情況下,PWM信號的通電率也能無延遲地變更,因此,藉由利用馬達控制電路3-1能夠在進行馬達故障判定、馬達劣化判定等並且得到也能夠與複雜的馬達控制對應的馬達控制裝置100-1。此外,對應於控制電路11的運算負荷減輕,能夠進行更複雜的馬達控制。此外,在馬達故障判定、馬達劣化判定等的結果被判斷為發生了故障或劣化的情況下,也能夠立即進行外部通知。 In addition, even when the value of the speed command signal changes frequently in a short period of time, the energization rate of the PWM signal can be changed without delay. Therefore, by using the motor control circuit 3-1, it is possible to perform motor failure determination and motor control. Deterioration determination, etc., and a motor control device 100-1 that can cope with complex motor control is obtained. In addition, as the calculation load on the control circuit 11 is reduced, more complex motor control can be performed. In addition, when it is determined that a failure or deterioration has occurred as a result of motor failure determination, motor deterioration determination, etc., an external notification can be made immediately.

圖10是表示實施形態1的馬達控制電路的變形例的圖。圖10所示的馬達控制電路3-1A係具備通知端子13。通知端子13係例如與判定電路10電性連接。通知端子13是用於將馬達4正故障以及馬達4正劣化的至少一個情況通知給被設置於馬達控制電路3-1A的外部的電路的端子。另外,通知端子13例如能夠利用被設置於印刷基板上的金屬端子、構成判定電路10的處理器(processor)的端子等,其中該印刷基板係設有判定資訊生成電路12、判定電路10及控制電路11。 FIG. 10 is a diagram showing a modification of the motor control circuit of Embodiment 1. FIG. The motor control circuit 3-1A shown in FIG. 10 is provided with the notification terminal 13. The notification terminal 13 is electrically connected to the determination circuit 10, for example. The notification terminal 13 is a terminal for notifying at least one of the failure of the motor 4 and the deterioration of the motor 4 to a circuit provided outside the motor control circuit 3-1A. In addition, the notification terminal 13 can be, for example, a metal terminal provided on a printed circuit board provided with the determination information generation circuit 12, the determination circuit 10 and the control circuit 10, or a terminal of a processor constituting the determination circuit 10. Circuit 11.

判定電路10係在轉換結果的值為判定值40以上時使被施加於通知端子13的電壓的值高於或低於轉換結果的值小於判定值40時被施加於通 知端子13的電壓的值。亦即,被施加於通知端子13的電壓被變更為不同的值。被設置於馬達控制電路3-1A的外部的電路係檢測出被施加於通知端子13的電壓的變化量比起例如用於檢測馬達4正故障或劣化等的規定值還增加的情況,藉此能夠檢測出馬達4已故障或劣化的情況。 The judgment circuit 10 causes the value of the voltage applied to the notification terminal 13 to be higher or lower when the value of the conversion result is equal to or higher than the judgment value 40. Know the value of the voltage at terminal 13. That is, the voltage applied to the notification terminal 13 is changed to a different value. A circuit provided outside the motor control circuit 3-1A detects that the change amount of the voltage applied to the notification terminal 13 has increased compared with a predetermined value for detecting a malfunction or deterioration of the motor 4, for example. It is possible to detect that the motor 4 has failed or deteriorated.

藉由這樣設置通知端子13,即使不進行由控制電路11所為的外部通知動作,也能夠僅藉由被施加於通知端子13的電壓變化來將馬達4是否正故障、劣化等傳達給外部電路。因此,不需要控制電路11的外部通知動作,進一步減輕控制電路11的運算負荷。 By arranging the notification terminal 13 in this way, even if the external notification operation by the control circuit 11 is not performed, whether the motor 4 is malfunctioning, deteriorating, etc. can be communicated to an external circuit only by the voltage change applied to the notification terminal 13 . Therefore, external notification operation of the control circuit 11 is unnecessary, further reducing the calculation load of the control circuit 11 .

(實施形態2) (Embodiment 2)

圖11是表示實施形態2的馬達控制裝置的結構的圖。以下,對與實施形態1相同的部分附加同一符號並省略其說明,針對不同的部分進行說明。實施形態2的馬達控制裝置100-2係具備馬達控制電路3-2來代替實施形態1的馬達控制電路3-1。 FIG. 11 is a diagram showing the structure of a motor control device according to Embodiment 2. FIG. In the following, the same parts as those in Embodiment 1 are assigned the same reference numerals and their descriptions are omitted, and different parts are explained. The motor control device 100-2 of the second embodiment includes a motor control circuit 3-2 instead of the motor control circuit 3-1 of the first embodiment.

圖12是表示實施形態2的馬達控制電路的結構的圖。實施形態2的馬達控制電路3-2係具備:控制電路31,係生成PWM信號;以及速度變化檢測電路20。速度變化檢測電路20係具備第1捕捉器(capturer)21、第2捕捉器22、計數器時鐘(counter clock)23以及比較電路24。圖13是表示以往的馬達控制電路的結構的圖。以往的馬達控制電路3-2’係具備:控制電路31’,係生成PWM信號;以及速度變化檢測電路20’。速度變化檢測電路20’係具備第1捕捉器21、第2捕捉器22及計數器時鐘23。計數器時鐘23係產生固定週期的時脈信號。為了測量速度指令信號為高的時間,第1捕捉器21係將例如自計數速度指令信號已從低變化為高的時間點起到速度指令信號從高變化為低為止的期間產生的時脈信號予以計數,並保持計數結果作為第1計數值。第1捕捉器21是保持第1計數值的暫存器(register)。第1捕捉器21的第1計數值例如在速度指令 信號從高變化為低時被更新。第2捕捉器22例如複製在更新前由第1捕捉器21所保持的第1計數值並作為第2計數值來保持。保持第2計數值的時機例如為速度指令信號從高變化為低的時刻。第2捕捉器22是保持第2計數值的暫存器。在以往的控制電路31’係輸入有由第1捕捉器21所保持的最新的第1計數值和由第2捕捉器22所保持的最新的第2計數值。控制電路31’係檢測出第1計數值與第2計數值的差值,亦即速度指令信號的速度差,實施判定速度差是否為某臨限值(threshold value)以上的運算。這樣,在以往的馬達控制電路3-2’中,以控制電路31’實施速度指令信號的變化判定處理,在控制電路31’中即使幾乎沒有速度指令信號的速度差的情況下,也以固定週期進行判定速度差是否為臨限值以上的運算。與此相對,實施形態2的馬達控制電路3-2係構成為藉由速度變化檢測電路20所具備的比較電路24來進行速度差是否為臨限值以上的判定,且僅在速度差超過了臨限值的情況下,控制電路31藉由來自速度變化檢測電路20的信號來變更馬達控制,因此控制電路31的處理負擔得以減輕。 Fig. 12 is a diagram showing the structure of a motor control circuit according to Embodiment 2. The motor control circuit 3-2 of the second embodiment includes a control circuit 31 that generates a PWM signal, and a speed change detection circuit 20. The speed change detection circuit 20 includes a first capturer 21 , a second capturer 22 , a counter clock 23 and a comparison circuit 24 . FIG. 13 is a diagram showing the structure of a conventional motor control circuit. The conventional motor control circuit 3-2' includes a control circuit 31' for generating a PWM signal, and a speed change detection circuit 20'. The speed change detection circuit 20' includes a first catcher 21, a second catcher 22, and a counter clock 23. The counter clock 23 generates a fixed period clock signal. In order to measure the time when the speed command signal is high, the first catcher 21 counts, for example, the clock signal generated during the period from the time when the speed command signal changes from low to high until the speed command signal changes from high to low. Count it and keep the counting result as the first count value. The first catcher 21 is a register that holds a first count value. The first count value of the first catcher 21 is, for example, the speed command Updated when the signal changes from high to low. For example, the second catcher 22 copies the first count value held by the first catcher 21 before the update and holds it as a second count value. The timing for holding the second count value is, for example, the timing when the speed command signal changes from high to low. The second catcher 22 is a register that holds the second count value. The latest first count value held by the first catcher 21 and the latest second count value held by the second catcher 22 are input to the conventional control circuit 31'. The control circuit 31' detects the difference between the first count value and the second count value, that is, the speed difference of the speed command signal, and performs a calculation to determine whether the speed difference is above a certain threshold value. In this way, in the conventional motor control circuit 3-2', the control circuit 31' performs the change determination process of the speed command signal. Even if there is almost no speed difference in the speed command signal, the control circuit 31' performs the process at a fixed speed. The operation to determine whether the speed difference is above a threshold value is performed periodically. In contrast, the motor control circuit 3-2 of Embodiment 2 is configured to use the comparison circuit 24 included in the speed change detection circuit 20 to determine whether the speed difference is equal to or greater than the threshold value, and only when the speed difference exceeds In the case of a threshold value, the control circuit 31 changes the motor control based on the signal from the speed change detection circuit 20, so the processing load of the control circuit 31 is reduced.

速度變化檢測電路20與用於輸入速度指令信號的輸入端子50連接。速度變化檢測電路20係檢測經由輸入端子50所輸入的速度指令信號的變化,且將表示速度指令信號已變化的信號作為中斷信號對控制電路31輸出,藉此使PWM信號的通電率變更。 The speed change detection circuit 20 is connected to an input terminal 50 for inputting a speed command signal. The speed change detection circuit 20 detects changes in the speed command signal input through the input terminal 50 and outputs a signal indicating that the speed command signal has changed as an interrupt signal to the control circuit 31, thereby changing the energization rate of the PWM signal.

比較電路24係比較第1捕捉器21所保持的最新的第1計數值與第2捕捉器22所保持的最新的第2計數值,藉此檢測出速度指令信號的變化,輸出表示速度指令信號已變化的信號。 The comparison circuit 24 compares the latest first count value held by the first catcher 21 with the latest second count value held by the second catcher 22, thereby detecting changes in the speed command signal and outputting a signal indicating the speed command. Signal that has changed.

接著,對馬達控制電路3-2的動作進行說明。圖14是用於說明實施形態2的馬達控制電路的動作的序列圖。圖15是用於說明實施形態2的馬達控制電路的動作的流程圖。控制電路31中根據速度指令信號進行馬達控制(步驟S21)。在速度指令信號未從低變化為高時(步驟S22的「否」),反復進行 步驟S21和步驟S22的處理。在速度指令信號從低變化為高時(步驟S22的「是」),第1捕捉器21係將時脈信號予以計數來求出第1計數值(步驟S23)。 Next, the operation of the motor control circuit 3-2 will be described. FIG. 14 is a sequence diagram for explaining the operation of the motor control circuit according to the second embodiment. FIG. 15 is a flowchart for explaining the operation of the motor control circuit according to the second embodiment. The control circuit 31 performs motor control based on the speed command signal (step S21). When the speed command signal does not change from low to high ("No" in step S22), the process is repeated. Processing of steps S21 and S22. When the speed command signal changes from low to high (YES in step S22), the first catcher 21 counts the clock signal to obtain a first count value (step S23).

之後,直到速度指令信號從高變化為低為止反復進行步驟S23和步驟S24的處理(步驟S24的「否」),在速度指令信號從高變化為低時(步驟S24的「是」),更新第1捕捉器21的第1計數值。此時,第2捕捉器22係保持更新前一刻的第1計數值作為第2計數值(步驟S25)。 Thereafter, the processing of steps S23 and S24 is repeated until the speed command signal changes from high to low ("No" in step S24). When the speed command signal changes from high to low ("Yes" in step S24), the update The first count value of the first catcher 21. At this time, the second catcher 22 holds the first count value just before the update as the second count value (step S25).

之後,直到速度指令信號從低變化為高為止反復進行步驟S25和步驟S26的處理(步驟S26的「否」),在速度指令信號從低變化為高時(步驟S26的「是」),比較電路24係比較第1計數值與第2計數值,判定第2計數值是否與第1計數值不同(步驟S27)。在第2計數值與第1計數值相同的情況下(步驟S27的「否」),反復進行步驟S21至步驟S27的處理。在第2計數值與第1計數值不同的情況下(步驟S27的「是」),比較電路24係輸出中斷信號(步驟S28)。接收到中斷信號的控制電路31係變更馬達控制(步驟S29)。 Thereafter, the processing of steps S25 and S26 is repeated until the speed command signal changes from low to high ("No" in step S26). When the speed command signal changes from low to high ("YES" in step S26), the comparison The circuit 24 compares the first count value with the second count value and determines whether the second count value is different from the first count value (step S27). When the second count value is the same as the first count value (NO in step S27), the processes from step S21 to step S27 are repeated. When the second count value is different from the first count value (YES in step S27), the comparison circuit 24 outputs an interrupt signal (step S28). The control circuit 31 that has received the interrupt signal changes the motor control (step S29).

圖16是用於說明實施形態2的馬達控制電路的動作的時間圖。圖16示出了速度指令信號、第1計數值、第2計數值、中斷信號及控制電路31的動作狀態。T所示的期間為速度指令信號的變化週期。Ton1、Ton2、Ton3所示的期間為速度指令信號為高的時間,亦即速度指令信號為導通(on)的時間。Ton1和Ton2係彼此相等,Ton3係比Ton1和Ton2短。第1捕捉器21所保持的第1計數值71係對應於Ton1,例如為「10」。第1計數值72係對應於Ton2,例如為「10」。第1計數值73係對應於Ton3,例如為「3」。第2捕捉器22所保持的第2計數值81係對應於第1計數值71,例如為「10」。同樣,第2計數值82係對應於第1計數值72,為「10」,第2計數值83係對應於第1計數值73,為「3」。 FIG. 16 is a time chart for explaining the operation of the motor control circuit according to the second embodiment. FIG. 16 shows the speed command signal, the first count value, the second count value, the interrupt signal, and the operating state of the control circuit 31 . The period shown by T is the change period of the speed command signal. The periods shown by T on1 , T on2 , and T on3 are the time when the speed command signal is high, that is, the time when the speed command signal is on. T on1 and T on2 are equal to each other, and T on3 is shorter than T on1 and T on2 . The first count value 71 held by the first catcher 21 corresponds to T on1 , for example, "10". The first count value 72 corresponds to T on2 , for example, "10". The first count value 73 corresponds to T on3 , for example, "3". The second count value 81 held by the second catcher 22 corresponds to the first count value 71, for example, "10". Similarly, the second count value 82 corresponds to the first count value 72 and is "10", and the second count value 83 corresponds to the first count value 73 and is "3".

在比較了第1計數值72與第2計數值81的情況下,第1計數值72與第2計數值81為彼此相同的值,因此中斷信號持續為低。亦即,不輸出中斷 信號。在比較了第1計數值73與第2計數值82的情況下,第1計數值73與第2計數值82為彼此不同的值,因此中斷信號從低變化為高。亦即,輸出中斷信號。在輸出了中斷信號時,控制電路31係判斷為速度指令信號已變化而生成PWM信號,亦即變更馬達控制,以使馬達4的旋轉速度追隨變化後的速度指令信號的值。在圖16的例子中,第2計數值82係比第1計數值73大,因此以使PWM信號的通電率增加的方式進行馬達控制。 When the first count value 72 and the second count value 81 are compared, the first count value 72 and the second count value 81 have the same value, so the interrupt signal continues to be low. That is, no interrupt is output signal. When the first count value 73 and the second count value 82 are compared, the first count value 73 and the second count value 82 are different values from each other, so the interrupt signal changes from low to high. That is, an interrupt signal is output. When the interrupt signal is output, the control circuit 31 determines that the speed command signal has changed and generates a PWM signal, that is, changes the motor control so that the rotation speed of the motor 4 follows the value of the changed speed command signal. In the example of FIG. 16 , since the second count value 82 is larger than the first count value 73 , the motor is controlled so as to increase the energization rate of the PWM signal.

在實施形態2的馬達控制電路3-2中,由於以速度變化檢測電路20進行速度變化判定,因此控制電路31的馬達控制的運算負荷不會因速度變化判定而增加。 In the motor control circuit 3-2 of the second embodiment, the speed change detection circuit 20 performs the speed change determination, so the calculation load of the motor control of the control circuit 31 does not increase due to the speed change determination.

圖17是表示實施形態2的比較例的馬達控制電路的結構的圖。圖17所示的馬達控制電路400係具備捕捉器計時器(capturer timer)20A和控制電路31A來代替圖12所示的速度變化檢測電路20和控制電路31。在控制電路31A中進行馬達控制和速度變化判定。捕捉器計時器20A係具備計數器時鐘23和捕捉器25。為了測量速度指令信號為高的時間,捕捉器25係例如將在自速度指令信號從低變化為高的時間點起到速度指令信號從高變化為低為止的期間產生的時脈信號予以計數,且將計數結果作為計數值而保持。時脈信號是從計數器時鐘23所輸出的信號。 FIG. 17 is a diagram showing the structure of a motor control circuit according to a comparative example of Embodiment 2. The motor control circuit 400 shown in FIG. 17 includes a capturer timer 20A and a control circuit 31A instead of the speed change detection circuit 20 and the control circuit 31 shown in FIG. 12 . Motor control and speed change determination are performed in the control circuit 31A. The catcher timer 20A includes a counter clock 23 and a catcher 25 . In order to measure the time when the speed command signal is high, the catcher 25 counts the clock signals generated during the period from the time when the speed command signal changes from low to high until the speed command signal changes from high to low, for example. And the count result is retained as the count value. The clock signal is a signal output from the counter clock 23 .

接著,對馬達控制電路400的動作進行說明。圖18是用於說明實施形態2的比較例的馬達控制電路的動作的序列圖。圖19是用於說明實施形態2的比較例的馬達控制電路的動作的流程圖。控制電路31A中根據速度指令信號進行馬達控制(步驟S31)。在速度指令信號未從低變化為高時(步驟S32的「否」),反復進行步驟S31和步驟S32的處理。在速度指令信號從低變化為高時(步驟S32的「是」),捕捉器25係將時脈信號予以計數來求出計數值(步驟S33)。 Next, the operation of the motor control circuit 400 will be described. FIG. 18 is a sequence diagram for explaining the operation of the motor control circuit in the comparative example of Embodiment 2. FIG. FIG. 19 is a flowchart for explaining the operation of the motor control circuit in the comparative example of Embodiment 2. FIG. In the control circuit 31A, the motor is controlled based on the speed command signal (step S31). When the speed command signal does not change from low to high (NO in step S32), the processes of steps S31 and S32 are repeated. When the speed command signal changes from low to high (YES in step S32), the catcher 25 counts the clock signal to obtain a count value (step S33).

之後,直到速度指令信號從高變化為低為止反復進行步驟S33和步驟S34的處理(步驟S34的「否」),在速度指令信號從高變化為低時(步驟S34的「是」),更新計數值,捕捉器25係輸出表示更新了計數值的計數器更新信號(步驟S35)。 Thereafter, the processing of steps S33 and S34 is repeated until the speed command signal changes from high to low ("No" in step S34). When the speed command signal changes from high to low ("Yes" in step S34), the update The count value catcher 25 outputs a counter update signal indicating that the count value has been updated (step S35).

接收到計數器更新信號的控制電路31A係讀入捕捉器25所保持的計數值(步驟S36),並比較更新前的計數值與更新後的計數值(步驟S37)。在比較的結果為計數值相同的情況下(步驟S37的「否」),反復進行步驟S36以及步驟S37的處理。在計數值不同的情況下(步驟S37的「是」),控制電路31A係變更馬達控制(步驟S38)。這樣,控制電路31A係一邊進行馬達控制一邊保持更新前的計數值,並且比較更新前的計數值與更新後的計數值。 The control circuit 31A that receives the counter update signal reads the count value held by the catcher 25 (step S36), and compares the count value before the update with the count value after the update (step S37). If the result of the comparison is that the count values are the same (NO in step S37), the processes of steps S36 and S37 are repeated. When the count values are different (YES in step S37), the control circuit 31A changes the motor control (step S38). In this way, the control circuit 31A maintains the count value before the update while performing motor control, and compares the count value before the update with the count value after the update.

圖20是用於說明實施形態2的比較例的馬達控制電路的動作的時間圖。圖20示出了速度指令信號、計數值、計數器更新信號、檢測出速度變化的時機及控制電路的動作狀態。Ton1、Ton2、Ton3所示的期間為速度指令信號為高的時間,亦即速度指令信號為導通的時間。Ton1和Ton2係彼此相等,Ton3係比Ton1和Ton2短。計數值91係對應於Ton1,例如為「10」。計數值92係對應於Ton2,例如為「10」。計數值93係對應於Ton3,例如為「3」。 FIG. 20 is a time chart for explaining the operation of the motor control circuit in the comparative example of Embodiment 2. FIG. FIG. 20 shows the speed command signal, count value, counter update signal, timing of detecting the speed change, and the operating state of the control circuit. The periods shown by T on1 , T on2 , and T on3 are the time when the speed command signal is high, that is, the time when the speed command signal is on. T on1 and T on2 are equal to each other, and T on3 is shorter than T on1 and T on2 . The count value 91 corresponds to T on1 , for example, "10". The count value 92 corresponds to T on2 , for example, "10". The count value 93 corresponds to T on3 , for example, "3".

在比較了計數值91與計數值92的情況下,由於計數值91與計數值92為彼此相同的值,因此檢測不出速度變化。在比較了計數值92與計數值93的情況下,由於計數值92與計數值93為彼此不同的值,因此檢測出速度變化。在檢測出了速度變化時,控制電路31A係判斷為速度指令信號已變化而變更PWM信號的通電率,以使馬達4的旋轉速度追隨變化後的速度指令信號的值。在比較例的馬達控制電路400中,由於以控制電路31A進行速度變化判定,因此控制電路31A的運算負荷與僅進行馬達控制的運算時相比增加。 When the count value 91 and the count value 92 are compared, since the count value 91 and the count value 92 have the same value, no speed change is detected. When the count value 92 and the count value 93 are compared, since the count value 92 and the count value 93 are different values from each other, a speed change is detected. When the speed change is detected, the control circuit 31A determines that the speed command signal has changed and changes the energization rate of the PWM signal so that the rotation speed of the motor 4 follows the value of the changed speed command signal. In the motor control circuit 400 of the comparative example, since the control circuit 31A performs the speed change determination, the calculation load of the control circuit 31A increases compared with the case where only motor control calculations are performed.

與此相對,在實施形態2的馬達控制電路3-2中,以速度變化檢 測電路20進行速度變化判定。因此,控制電路31能夠僅進行馬達控制。因此,控制電路31的運算負荷減輕,即使在速度指令信號已變化的情況下,也能夠針對速度指令信號的變化立即變更馬達控制。其結果是,伴隨速度指令信號的變化的馬達控制的響應性提高。此外,在速度指令信號的值在短期間頻繁變化的情況下,PWM信號的通電率也能無延遲地變更,因此也可以得到能夠與複雜的馬達控制對應的馬達控制裝置100-2。此外,能夠與控制電路31的運算負荷減輕對應地進行更複雜的馬達控制。 On the other hand, in the motor control circuit 3-2 of the second embodiment, the speed change detection The measuring circuit 20 determines the speed change. Therefore, the control circuit 31 can perform only motor control. Therefore, the calculation load of the control circuit 31 is reduced, and even if the speed command signal has changed, the motor control can be immediately changed in response to the change in the speed command signal. As a result, the responsiveness of the motor control accompanying changes in the speed command signal is improved. In addition, even when the value of the speed command signal changes frequently in a short period of time, the energization rate of the PWM signal can be changed without delay. Therefore, the motor control device 100-2 can also be obtained that can cope with complex motor control. In addition, more complex motor control can be performed while reducing the calculation load on the control circuit 31 .

圖21是表示實施形態2的馬達控制電路的變形例的圖。圖21所示的馬達控制電路3-2A的速度變化檢測電路20係具備比較電路24A來代替比較電路24。在比較電路24A中,運算變化前的速度指令信號與變化後的速度指令信號的差值,並比較該差值與被設定於比較電路24A的判定值60。此外,比較電路24A係在比較了差值與判定值60的結果為差值小於判定值60時不輸出中斷信號,在差值為判定值60以上時係輸出中斷信號。另外,比較電路24A的判定處理並不限定於此,比較電路24A也可以構成為在差值為判定值60以下時不輸出中斷信號,在差值超過了判定值60時輸出中斷信號。 FIG. 21 is a diagram showing a modification of the motor control circuit of Embodiment 2. FIG. The speed change detection circuit 20 of the motor control circuit 3-2A shown in FIG. 21 includes a comparison circuit 24A instead of the comparison circuit 24. In the comparison circuit 24A, the difference between the speed command signal before the change and the speed command signal after the change is calculated, and the difference is compared with the determination value 60 set in the comparison circuit 24A. In addition, the comparison circuit 24A does not output an interrupt signal when the difference value is smaller than the judgment value 60 as a result of comparing the difference value with the judgment value 60, but outputs an interrupt signal when the difference value is equal to or greater than the judgment value 60. In addition, the determination processing of the comparison circuit 24A is not limited to this, and the comparison circuit 24A may be configured not to output an interrupt signal when the difference is equal to or less than the determination value 60, but to output an interrupt signal when the difference exceeds the determination value 60.

接著,對馬達控制電路3-2A的動作進行說明。圖22是用於說明圖21所示的馬達控制電路的動作的流程圖。圖22所示的步驟S21至步驟S27的處理係與圖15所示的步驟S21至步驟S27的處理相同,因此省略說明。 Next, the operation of the motor control circuit 3-2A will be described. FIG. 22 is a flowchart for explaining the operation of the motor control circuit shown in FIG. 21 . The processing from step S21 to step S27 shown in FIG. 22 is the same as the processing from step S21 to step S27 shown in FIG. 15 , so the description is omitted.

步驟S27的處理之後,比較電路24A係運算變化前的速度指令信號與變化後的速度指令信號的差值。亦即,運算第1捕捉器21所保持的第1計數值與第2捕捉器22所保持的第2計數值的差值。比較電路24A係判斷運算出的差值是否為判定值60以上(步驟S30的「是」)。在差值小於判定值60的情況下(步驟S30的「否」),反復進行步驟S21至步驟S30的處理。在運算出的差值為判定值60以上的情況下(步驟S30的「是」),反復進行步驟S28和步驟S29 的處理。步驟S28和步驟S29的處理係與圖15所示的步驟S28和步驟S29的處理相同,因此省略說明。 After the processing of step S27, the comparison circuit 24A calculates the difference between the speed command signal before the change and the speed command signal after the change. That is, the difference between the first count value held by the first catcher 21 and the second count value held by the second catcher 22 is calculated. The comparison circuit 24A determines whether the calculated difference is equal to or greater than the determination value 60 (YES in step S30). When the difference is smaller than the determination value 60 (NO in step S30), the processes from steps S21 to S30 are repeated. If the calculated difference is equal to or greater than the judgment value 60 (YES in step S30), steps S28 and S29 are repeated. processing. The processing of steps S28 and S29 is the same as the processing of steps S28 and S29 shown in FIG. 15 , so the description thereof is omitted.

例如,在第1計數值為「3」且第2計數值為「10」的情況下,差值為「7」。並且,在判定值60的值例如為「2」的情況下,由於差值「7」為判定值60以上,因此變更馬達控制。另一方面,在第1計數值為「9」且第2計數值為「10」的情況下,由於差值為「1」,因此在判定值60的值例如為「2」的情況下,差值「1」小於判定值60,不變更馬達控制。 For example, when the first count value is "3" and the second count value is "10", the difference is "7". Furthermore, when the value of the determination value 60 is, for example, "2", the difference value "7" is equal to or greater than the determination value 60, so the motor control is changed. On the other hand, when the first count value is "9" and the second count value is "10", since the difference is "1", when the value of the determination value 60 is, for example, "2", If the difference value "1" is less than the judgment value 60, the motor control will not be changed.

在馬達控制電路3-2A中,即使在例如因從被設置於馬達控制電路3-2A周圍的處理器等產生的雜訊而速度指令信號的波形變形了的情況下,對於速度指令信號的較小的變化也可以不變更馬達控制,因此能夠得到穩健性(robustness)高的馬達控制裝置100-2。此外,在馬達控制電路3-2A中,由於能夠僅在速度指令信號變化了特定值時使馬達控制變化,因此伴隨控制電路31中的運算動作的處理負擔得以減輕,並且能夠減輕電力消耗量。 In the motor control circuit 3-2A, even if the waveform of the speed command signal is deformed due to, for example, noise generated from a processor or the like provided around the motor control circuit 3-2A, the relative speed of the speed command signal is Motor control does not need to be changed even if a small change is made, so a motor control device 100-2 with high robustness can be obtained. In addition, in the motor control circuit 3-2A, the motor control can be changed only when the speed command signal changes by a specific value. Therefore, the processing load accompanying the calculation operation in the control circuit 31 is reduced, and the power consumption can be reduced.

另外,本發明的實施形態2的馬達控制電路3-2、3-2A係具備判別馬達的旋轉速度的馬達旋轉速度判別電路(控制電路31),且因應馬達的旋轉速度來切換馬達驅動波形生成處理。此外,本發明的實施形態2的馬達控制電路3-2、3-2A係具備速度變化檢測電路20,且檢測出速度指令信號的變化。此外,本發明的實施形態2的馬達控制電路3-2、3-2A係僅以硬體檢測出速度指令信號的變化並反映於馬達控制。 In addition, the motor control circuits 3-2 and 3-2A according to the second embodiment of the present invention include a motor rotation speed determination circuit (control circuit 31) that determines the rotation speed of the motor, and switches the motor drive waveform generation in accordance with the rotation speed of the motor. handle. Furthermore, the motor control circuits 3-2 and 3-2A according to Embodiment 2 of the present invention include a speed change detection circuit 20 and detect changes in the speed command signal. In addition, the motor control circuits 3-2 and 3-2A according to Embodiment 2 of the present invention only use hardware to detect changes in the speed command signal and reflect them in the motor control.

(實施形態3) (Embodiment 3)

圖23是表示實施形態3的馬達控制裝置的結構的圖。以下,對於與實施形態1同樣的部分賦予同一符號並省略其說明,對不同的部分進行敘述。實施形態3的馬達控制裝置100-3係具備馬達控制電路3-3來代替實施形態1的馬達控制電路3-1。於馬達控制電路3-3係連接有IC溫度檢測部6A和軸承襯 溫度檢測部6B。 FIG. 23 is a diagram showing the structure of a motor control device according to Embodiment 3. FIG. In the following, the same parts as in Embodiment 1 are assigned the same reference numerals and their descriptions are omitted, and different parts are described. The motor control device 100-3 of the third embodiment includes a motor control circuit 3-3 instead of the motor control circuit 3-1 of the first embodiment. The IC temperature detection part 6A and the bearing bushing are connected to the motor control circuit 3-3. Temperature detection unit 6B.

接著,參照圖24和圖25說明馬達4的結構例與馬達控制電路3-3的結構,前述馬達控制電路3-3係利用以IC溫度檢測部6A和軸承襯溫度檢測部6B的各個檢測出的檢測資訊來進行外部通信等。 Next, a structural example of the motor 4 and the structure of the motor control circuit 3-3 will be described with reference to FIGS. 24 and 25. The motor control circuit 3-3 uses the IC temperature detection unit 6A and the bearing lining temperature detection unit 6B to detect detection information for external communication, etc.

圖24是表示馬達4的結構例的圖。如圖24所示,馬達4係具備殼體4-1、軸承襯4-2、軸承4-3、絕緣子(insulator)4-4、鐵芯4-5、線圈4-6、印刷基板4-7、IC410、IC溫度檢測部6A以及軸承襯溫度檢測部6B。設有2個軸承4-3的筒形狀的軸承襯4-2。為了便於說明,在圖24中係將IC溫度檢測部6A配置於IC410的外部,但IC溫度檢測部6A係被內建於IC410內。IC溫度檢測部6A是檢測作為被設置在印刷基板4-7的電路零件的一例的IC410的內部溫度(以下稱為IC內部溫度)的電路零件溫度檢測部。藉由IC410內建IC溫度檢測部6A,不需要用於檢測IC410的溫度的外設零件,能夠降低印刷基板4-7的製造成本,進一步簡化印刷基板4-7的構造而可靠性提升。另外,也可以將IC溫度檢測部6A設置於IC410的外部來檢測IC410的外部溫度。 FIG. 24 is a diagram showing a structural example of the motor 4 . As shown in Figure 24, the motor 4 series includes a casing 4-1, a bearing bush 4-2, a bearing 4-3, an insulator 4-4, an iron core 4-5, a coil 4-6, and a printed circuit board 4- 7. IC410, IC temperature detection part 6A and bearing lining temperature detection part 6B. A cylindrical bearing bush 4-2 is provided with two bearings 4-3. For convenience of explanation, the IC temperature detection unit 6A is arranged outside the IC 410 in FIG. 24 , but the IC temperature detection unit 6A is built into the IC 410 . The IC temperature detection unit 6A is a circuit component temperature detection unit that detects the internal temperature of the IC 410 (hereinafter referred to as the IC internal temperature) which is an example of a circuit component provided on the printed circuit board 4 - 7 . Since the IC temperature detection unit 6A is built into the IC 410 , no external parts are required for detecting the temperature of the IC 410 , thereby reducing the manufacturing cost of the printed circuit board 4 - 7 , further simplifying the structure of the printed circuit board 4 - 7 and improving reliability. In addition, the IC temperature detection unit 6A may be provided outside the IC 410 to detect the external temperature of the IC 410 .

圖25是表示實施形態3的馬達控制電路的結構的圖。馬達控制電路3-3係具備判定電路10A來代替判定電路10。IC溫度檢測部6A係將用以表示檢測出的IC內部溫度的值的檢測資訊輸入到馬達控制電路3-3。 Fig. 25 is a diagram showing the structure of the motor control circuit according to the third embodiment. The motor control circuit 3-3 is provided with a determination circuit 10A instead of the determination circuit 10. The IC temperature detection unit 6A inputs detection information indicating the value of the detected IC internal temperature to the motor control circuit 3-3.

若產生軸承4-3的潤滑不良等而軸承4-3的內輪、轉動體以及外輪的相互的滑動摩擦變大,則軸承4-3發熱而該熱被傳達給軸承襯4-2。軸承襯溫度檢測部6B係檢測出軸承襯4-2的溫度(以下稱為軸承襯溫度),將用以表示檢測出的溫度的值的檢測資訊輸入到馬達控制電路3-3。 If poor lubrication of the bearing 4-3 occurs and the sliding friction between the inner ring, the rolling element, and the outer ring of the bearing 4-3 increases, the bearing 4-3 generates heat and the heat is transmitted to the bearing bush 4-2. The bushing temperature detection unit 6B detects the temperature of the bearing bush 4-2 (hereinafter referred to as the bushing temperature) and inputs detection information indicating the value of the detected temperature to the motor control circuit 3-3.

IC溫度檢測部6A以及軸承襯溫度檢測部6B分別是例如由熱敏電阻(thermistor)、熱電偶、矽帶隙(silicon band gap)溫度感測器、數位溫度感測器、以及這些的任意組合所構成的感測器等。 The IC temperature detection part 6A and the bearing lining temperature detection part 6B are each made of, for example, a thermistor, a thermocouple, a silicon band gap temperature sensor, a digital temperature sensor, or any combination thereof. Sensors composed of.

在馬達控制電路3-3的判定資訊生成電路12中,將這些檢測資訊轉換為判定資訊並輸入到判定電路10A。與上述的判定電路10同樣地,判定電路10A係根據由判定資訊生成電路12所生成的判定資訊,判定馬達4是否正故障或劣化,將用以表示馬達4正故障或劣化的資訊作為中斷信號來輸出至包含運算處理功能的控制電路11。 In the judgment information generation circuit 12 of the motor control circuit 3-3, these detection information are converted into judgment information and input to the judgment circuit 10A. Like the above-mentioned determination circuit 10 , the determination circuit 10A determines whether the motor 4 is malfunctioning or degrading based on the determination information generated by the determination information generation circuit 12 , and uses information indicating that the motor 4 is malfunctioning or degrading as an interrupt signal. to be output to the control circuit 11 including arithmetic processing functions.

接著,參照圖26和圖27,對馬達控制電路3-3的動作進行說明。圖26是用於說明實施形態3的馬達控制電路的動作的流程圖。在圖26中,與圖4的不同點在於,代替步驟S4的處理而進行步驟S40和步驟S41的處理。步驟S1、步驟S2、步驟S3、步驟S5以及步驟S6的各自的處理係與實施形態1相同,因此省略說明。圖27是表示實施形態3中的IC內部溫度、軸承襯溫度的一例的圖。圖27的縱軸為溫度,橫軸為時間。 Next, the operation of the motor control circuit 3-3 will be described with reference to FIGS. 26 and 27 . FIG. 26 is a flowchart for explaining the operation of the motor control circuit according to the third embodiment. In FIG. 26 , the difference from FIG. 4 is that the processing of steps S40 and S41 is performed instead of the processing of step S4 . The respective processes of steps S1, S2, S3, S5, and S6 are the same as those in Embodiment 1, and therefore descriptions thereof are omitted. FIG. 27 is a diagram showing an example of IC internal temperature and bearing lining temperature in Embodiment 3. FIG. The vertical axis of Figure 27 is temperature, and the horizontal axis is time.

在圖26的步驟S3中,讀入了AD序列器9所保持的轉換結果的判定電路10A係在步驟S40中,例如藉由從IC內部溫度減去軸承襯溫度來求出IC內部溫度與軸承襯溫度的差值。並且,判定電路10A係藉由運算IC內部溫度與軸承襯溫度的差值的絕對值,來計算IC內部溫度與軸承襯溫度的第1溫度差。 In step S3 of FIG. 26 , the determination circuit 10A, which has read the conversion result held by the AD sequencer 9 , determines the relationship between the IC internal temperature and the bearing lining by, for example, subtracting the bearing lining temperature from the IC internal temperature in step S40 . The difference in lining temperature. Furthermore, the determination circuit 10A calculates the first temperature difference between the IC internal temperature and the bearing lining temperature by calculating the absolute value of the difference between the IC internal temperature and the bearing lining temperature.

計算出第1溫度差的判定電路10A係在步驟S41中將預先設定的溫度判定用的第1溫度臨限值與第1溫度差予以比較。第1溫度臨限值為判定值40的一例。 The determination circuit 10A that calculates the first temperature difference compares the preset first temperature threshold value for temperature determination with the first temperature difference in step S41. The first temperature threshold value is an example of the judgment value 40.

例如,在圖27中,在從向馬達4的通電開始起經過固定時間後的時刻t1的IC內部溫度為50℃,且在軸承襯溫度為75℃的情況下,第1溫度差為25℃。例如,由於第1溫度臨限值為50℃的情況下判斷為第1溫度差低於第1溫度臨限值(步驟S41,否),因此在該情況下,判定電路10A係反復進行步驟S1以後的處理。 For example, in FIG. 27 , when the IC internal temperature at time t1 after a fixed time has elapsed since the start of power supply to the motor 4 is 50°C, and the bearing bush temperature is 75°C, the first temperature difference is 25°C. . For example, when the first temperature threshold value is 50°C, it is determined that the first temperature difference is lower than the first temperature threshold value (step S41, No). Therefore, in this case, the determination circuit 10A repeats step S1. future processing.

另一方面,因軸承4-3的潤滑不良等而引起軸承襯4-2達到高溫時,有第1溫度差超過第1溫度臨限值的情形。具體而言,向馬達4的通電持續,在從時刻t1起經過固定時間後的時刻t2的IC內部溫度為50℃,且軸承襯溫度超過100℃的情況下,第1溫度差係超過50℃。第1溫度臨限值為50℃的情況下,判斷為第1溫度差超過了第1溫度臨限值(步驟S41,是),在該情況下,判定電路10A係進行步驟S5以及步驟S6的處理,藉此向外部通知馬達4中可能發生了異常。 On the other hand, when the bearing bush 4-2 reaches a high temperature due to poor lubrication of the bearing 4-3, etc., the first temperature difference may exceed the first temperature threshold value. Specifically, if the power supply to the motor 4 continues and the IC internal temperature at time t2 after a fixed time has elapsed from time t1 is 50°C, and the bearing bush temperature exceeds 100°C, the first temperature difference exceeds 50°C. . When the first temperature threshold value is 50°C, it is determined that the first temperature difference exceeds the first temperature threshold value (step S41, YES). In this case, the determination circuit 10A performs steps S5 and S6. processing, thereby notifying the outside that an abnormality may have occurred in motor 4.

另外,在實施形態3中,對將軸承襯溫度與IC內部溫度予以比較的結構例進行了說明,但只要能夠比較馬達4內部的不同位置的溫度即可,例如也可以設置檢測線圈4-6的溫度的溫度檢測單元,比較由該溫度檢測單元所檢測出的線圈溫度與IC內部溫度。此外,也可以設置檢測鐵芯4-5的溫度的溫度檢測單元,比較由該溫度檢測單元所檢測出的鐵芯溫度與IC內部溫度。 In addition, in Embodiment 3, the structural example in which the bearing bush temperature and the internal temperature of the IC are compared is explained. However, as long as the temperature at different positions inside the motor 4 can be compared, for example, the detection coil 4-6 may be provided. The temperature detection unit of the temperature detects the temperature of the coil and compares the coil temperature detected by the temperature detection unit with the internal temperature of the IC. In addition, a temperature detection unit that detects the temperature of the core 4 - 5 may be provided, and the core temperature detected by the temperature detection unit may be compared with the IC internal temperature.

根據實施形態3的馬達控制裝置100-3,利用複數個溫度檢測單元來比較檢測相對容易的馬達4內部的不同位置的溫度,藉此能夠判斷馬達4是否正故障或劣化而進行外部通知。 According to the motor control device 100-3 of Embodiment 3, a plurality of temperature detection units are used to comparatively detect temperatures at different locations inside the motor 4 which is relatively easy, thereby determining whether the motor 4 is malfunctioning or deteriorating and providing external notification.

此外,構成為比較軸承襯溫度與IC內部溫度,藉此能夠檢測出馬達4中劣化最早的軸承4-3的潤滑不良等引起的溫度上升,因此與利用馬達4的其他位置的溫度的情況相比,能夠提高劣化等的診斷的精度。 In addition, it is configured to compare the bearing lining temperature and the internal temperature of the IC to detect a temperature rise caused by poor lubrication of the bearing 4-3 that deteriorates the earliest in the motor 4. Therefore, it is similar to the case where the temperature of other locations in the motor 4 is used. ratio, it is possible to improve the accuracy of diagnosis of deterioration and the like.

(實施形態4) (Embodiment 4)

圖28是表示實施形態4的馬達控制裝置的結構的圖。以下,對於與實施形態3同樣的部分賦予同一符號並省略其說明,對不同的部分進行敘述。實施形態4的馬達控制裝置100-4係具備馬達控制電路3-4來代替實施形態3的馬達控制電路3-3。於馬達控制電路3-4係連接有IC溫度檢測部6A、軸承襯溫度檢測部6B以及馬達外部溫度檢測部6C。 Fig. 28 is a diagram showing the structure of the motor control device according to the fourth embodiment. Hereinafter, the same parts as in Embodiment 3 are assigned the same reference numerals and their description is omitted, and different parts are described. The motor control device 100-4 of the fourth embodiment includes a motor control circuit 3-4 instead of the motor control circuit 3-3 of the third embodiment. The IC temperature detection part 6A, the bearing bush temperature detection part 6B, and the motor external temperature detection part 6C are connected to the motor control circuit 3-4.

接著,參照圖29說明馬達控制電路3-4的結構,前述馬達控制電路3-4係利用以IC溫度檢測部6A、軸承襯溫度檢測部6B以及馬達外部溫度檢測部6C的各個檢測出的檢測資訊來進行外部通知等。 Next, the structure of the motor control circuit 3-4 will be described with reference to FIG. 29. The motor control circuit 3-4 uses the detection signals detected by each of the IC temperature detection unit 6A, the bearing lining temperature detection unit 6B, and the motor external temperature detection unit 6C. Information for external notifications, etc.

圖29是表示實施形態4的馬達控制電路的結構的圖。馬達外部溫度檢測部6C係例如設於馬達4的殼體4-1等。另外,馬達外部溫度檢測部6C既可以經由絕熱零件等固定於殼體4-1以便不受馬達4驅動而產生的熱的影響,也可以設於殼體4-1的周圍以便能夠檢測出馬達4的附近的外部空氣溫度。 Fig. 29 is a diagram showing the structure of the motor control circuit according to the fourth embodiment. The motor external temperature detection unit 6C is provided, for example, in the casing 4-1 of the motor 4 or the like. In addition, the motor external temperature detection part 6C may be fixed to the casing 4-1 via a heat insulating part or the like so as not to be affected by the heat generated by driving the motor 4, or may be provided around the casing 4-1 so as to be able to detect the motor. The outside air temperature is around 4.

馬達外部溫度檢測部6C係檢測出殼體4-1周圍的外部空氣溫度、殼體4-1的表面溫度等,且將用以表示檢測出的溫度的值的檢測資訊作為馬達外部溫度來輸入到馬達控制電路3-4。馬達外部溫度檢測部6C例如是由熱敏電阻、熱電偶、矽帶隙溫度感測器、數位溫度感測器、以及這些的任意組合構成的感測器等。 The motor external temperature detection unit 6C detects the external air temperature around the casing 4-1, the surface temperature of the casing 4-1, and the like, and inputs detection information indicating the value of the detected temperature as the motor external temperature. to motor control circuit 3-4. The motor external temperature detection unit 6C is, for example, a thermistor, a thermocouple, a silicon bandgap temperature sensor, a digital temperature sensor, or a sensor composed of any combination thereof.

在馬達控制電路3-4的判定資訊生成電路12中,將這些檢測資訊轉換為判定資訊並輸入到判定電路10B。與上述的判定電路10同樣地,判定電路10B係根據由判定資訊生成電路12所生成的判定資訊,判定馬達4是否正故障或劣化,將表示馬達4正故障或劣化的信號作為中斷信號來輸出至包含運算處理功能的控制電路11。 In the judgment information generation circuit 12 of the motor control circuit 3-4, these detection information are converted into judgment information and input to the judgment circuit 10B. Like the above-mentioned determination circuit 10 , the determination circuit 10B determines whether the motor 4 is malfunctioning or degrading based on the determination information generated by the determination information generation circuit 12 , and outputs a signal indicating that the motor 4 is malfunctioning or degrading as an interrupt signal. to the control circuit 11 including arithmetic processing functions.

接著,參照圖30、圖31和圖32,對馬達控制電路3-4的動作進行說明。 Next, the operation of the motor control circuit 3-4 will be described with reference to FIGS. 30, 31, and 32.

圖30是用於說明實施形態4的馬達控制電路的動作的流程圖。在圖30中,與圖26的不同點在於在步驟S41和步驟S5的處理之間進行有步驟S42等的處理。 Fig. 30 is a flowchart for explaining the operation of the motor control circuit according to the fourth embodiment. In FIG. 30 , the difference from FIG. 26 is that processing such as step S42 is performed between the processing of step S41 and step S5 .

圖31是表示實施形態4中的IC內部溫度、軸承襯溫度、馬達外部溫度等的一例的第一圖。圖32是表示實施形態4中的IC內部溫度、軸承襯溫 度、馬達外部溫度等的一例的第二圖。圖31以及圖32的縱軸為溫度,橫軸為時間。 31 is a first diagram showing an example of IC internal temperature, bearing lining temperature, motor external temperature, etc. in Embodiment 4. Figure 32 shows the IC internal temperature and bearing lining temperature in Embodiment 4. The second diagram shows an example of temperature, motor external temperature, etc. The vertical axis of FIG. 31 and FIG. 32 represents temperature, and the horizontal axis represents time.

圖31係表示馬達外部溫度相對於經過時間沒有變化時的軸承襯溫度和IC內部溫度的推移。在圖31中,在時刻t2的軸承襯溫度與IC內部溫度的第1溫度差比在時刻t1的第1溫度差增大。 FIG. 31 shows the transition of the bearing lining temperature and the IC internal temperature when the motor external temperature does not change with the elapsed time. In FIG. 31 , the first temperature difference between the bearing bushing temperature and the IC internal temperature at time t2 is larger than the first temperature difference at time t1 .

另一方面,如圖32所示,例如當馬達外部溫度因被設於馬達4之周圍的熱源產生的熱的影響而上升時,則該熱經由馬達4的殼體4-1傳達給IC410,藉此不僅軸承襯溫度,IC410溫度也逐漸變大。因此,軸承襯溫度與IC內部溫度的第1溫度差係相對於經過時間以大致相同的值推移。考慮到像這樣當馬達外部溫度上升則IC內部溫度上升的情況,說明圖30所示的流程圖。 On the other hand, as shown in FIG. 32 , for example, when the temperature outside the motor rises due to the influence of heat generated by a heat source provided around the motor 4 , the heat is transmitted to the IC 410 via the casing 4 - 1 of the motor 4 . As a result, not only the bearing lining temperature, but also the IC410 temperature gradually increases. Therefore, the first temperature difference between the bearing bushing temperature and the IC internal temperature changes at approximately the same value with respect to the elapsed time. Taking into consideration that when the external temperature of the motor rises, the internal temperature of the IC rises, the flow chart shown in FIG. 30 will be described.

在圖30的步驟S41中,判斷為IC內部溫度與軸承襯溫度的第1溫度差超過了第1溫度臨限值的情況下(步驟S41,是),馬達控制電路3-4係執行步驟S42的處理。 In step S41 of FIG. 30 , when it is determined that the first temperature difference between the IC internal temperature and the bearing lining temperature exceeds the first temperature threshold (step S41 , yes), the motor control circuit 3 - 4 executes step S42 processing.

在步驟S42中,馬達控制電路3-4係運算軸承襯溫度與馬達外部溫度的差值的絕對值,藉此計算出IC內部溫度與馬達外部溫度的第2溫度差。 In step S42, the motor control circuit 3-4 calculates the absolute value of the difference between the bearing lining temperature and the motor external temperature, thereby calculating the second temperature difference between the IC internal temperature and the motor external temperature.

然後,計算出第2溫度差的馬達控制電路3-4係在步驟S43中比較預先設定的溫度判定用的第2溫度臨限值與第2溫度差。第2溫度臨限值為判定值40的一例。 Then, the motor control circuit 3-4 that has calculated the second temperature difference compares the preset second temperature threshold value for temperature determination with the second temperature difference in step S43. The second temperature threshold value is an example of the judgment value 40.

在第2溫度差低於第2溫度臨限值的情況下(步驟S43,否),馬達控制電路3-4係反復進行步驟S1以後的處理。 When the second temperature difference is lower than the second temperature threshold value (step S43, No), the motor control circuit 3-4 repeats the processing from step S1 onwards.

在第2溫度差超過第2溫度臨限值的情況下(步驟S43,是),馬達控制電路3-4係進行步驟S5和步驟S6的處理,藉此向外部通知在馬達4中有可能發生了異常。 When the second temperature difference exceeds the second temperature threshold value (step S43, Yes), the motor control circuit 3-4 performs the processing of steps S5 and S6, thereby notifying the outside that a possible occurrence in the motor 4 Exception.

具體說明步驟S42和步驟S43的處理。 The processing of steps S42 and S43 will be described in detail.

在圖31中,在向馬達4的通電剛開始之後的時刻t1的IC內部溫度例如為30℃,馬達外部溫度為25℃,軸承襯溫度為50℃的情況下,第1溫度差為20℃(=軸承襯溫度50℃-IC內部溫度30℃),第2溫度差為5℃(=IC內部溫度30℃-馬達外部溫度25℃)。第1溫度臨限值例如為30℃的情況下,由於第1溫度差為第1溫度臨限值以下,因此在時刻t1不進行向外部的通知。 In FIG. 31 , when the IC internal temperature at time t1 immediately after the power supply to the motor 4 is started is, for example, 30°C, the motor external temperature is 25°C, and the bearing bushing temperature is 50°C, the first temperature difference is 20°C. (=Bearing lining temperature 50℃-IC internal temperature 30℃), the second temperature difference is 5℃ (=IC internal temperature 30℃-Motor external temperature 25℃). When the first temperature threshold is, for example, 30° C., since the first temperature difference is equal to or less than the first temperature threshold, notification to the outside is not performed at time t1.

之後,馬達外部溫度不發生變化,在時刻t2因馬達4的異常而軸承襯溫度例如超過100℃的情況下,由於第1溫度差係超過70℃(=軸承襯溫度100℃-IC內部溫度30℃)而超過第1溫度臨限值,因此進行向外部的通知。另外,隨著軸承襯溫度的上升,IC內部溫度可能稍微上升,但在圖31中為了便於說明,假定為IC內部溫度不受軸承襯溫度的影響。 After that, if the external temperature of the motor does not change and the bearing lining temperature exceeds, for example, 100°C due to an abnormality in the motor 4 at time t2, the first temperature difference exceeds 70°C (= bearing lining temperature 100°C - IC internal temperature 30 ℃) and exceeds the first temperature threshold value, therefore an external notification is performed. In addition, as the bearing lining temperature rises, the IC internal temperature may rise slightly. However, for convenience of explanation in Figure 31, it is assumed that the IC internal temperature is not affected by the bearing lining temperature.

與此相對,如圖32所示,馬達外部溫度因從被設於馬達4之周圍的熱源產生的熱的影響而上升時,IC內部溫度也上升。在該情況下,假定在時刻t2的軸承襯溫度超過100℃,IC內部溫度為70℃,馬達外部溫度為65℃,第1溫度臨限值為30℃的情況下,由於第1溫度差係超過30℃,因此超過第1溫度臨限值。 On the other hand, as shown in FIG. 32 , when the temperature outside the motor rises due to the influence of heat generated from the heat source provided around the motor 4 , the temperature inside the IC also rises. In this case, assume that the bearing lining temperature at time t2 exceeds 100°C, the IC internal temperature is 70°C, the motor external temperature is 65°C, and the first temperature threshold is 30°C, due to the first temperature difference system exceeds 30°C, thus exceeding the first temperature threshold.

然而,即使在第1溫度差超過第1溫度臨限值的情況下,例如也假定第2溫度臨限值為10℃時,則由於第2溫度差為5℃(=IC內部溫度70℃-馬達外部溫度65℃),因此為第2溫度臨限值以下。亦即,藉由比較第2溫度臨限值與第2溫度差,能夠區分軸承襯溫度的上升是由馬達外部溫度引起的還是由馬達4的故障引起的。 However, even if the first temperature difference exceeds the first temperature threshold value, for example, assuming that the second temperature threshold value is 10°C, since the second temperature difference is 5°C (= IC internal temperature 70°C - The motor external temperature is 65°C), so it is below the second temperature threshold value. That is, by comparing the second temperature threshold value and the second temperature difference, it can be distinguished whether the increase in the bearing lining temperature is caused by the temperature outside the motor or by a failure of the motor 4 .

根據實施形態4,能夠判別是由馬達外部溫度的上升引起的軸承襯溫度的上升,還是由馬達4的故障引起的軸承襯溫度的上升,因此能夠提高馬達4正故障或劣化的判定精度。因此,在馬達4未故障或劣化的情況下,能夠抑制不必要的外部通知,能夠提高監視外部通知的作業者的作業效率。 According to Embodiment 4, it can be determined whether the increase in the bearing lining temperature is caused by an increase in the temperature outside the motor or by a failure of the motor 4 . Therefore, it is possible to improve the accuracy of determining whether the motor 4 is malfunctioning or deteriorating. Therefore, when the motor 4 does not malfunction or deteriorate, unnecessary external notifications can be suppressed, and the work efficiency of the operator who monitors the external notifications can be improved.

另外,以上的實施形態所示的結構為表示本發明的內容的一例的結構,既能夠與其他公知技術進行組合,也可以在不脫離本發明的宗旨的範圍內省略、變更結構的一部分。 In addition, the structure shown in the above embodiment is an example of the content of the present invention, and may be combined with other known techniques, or part of the structure may be omitted or changed within the scope that does not deviate from the gist of the present invention.

3-1:馬達控制電路 3-1: Motor control circuit

5:電流檢測部 5:Current detection part

6:溫度檢測部 6: Temperature detection department

7:電源電壓檢測部 7: Power supply voltage detection part

8:AD轉換器 8:AD converter

9:AD序列器 9:AD sequencer

10:判定電路 10: Determination circuit

11:控制電路 11:Control circuit

12:判定資訊生成電路 12: Determination information generation circuit

40:判定值 40: Judgment value

Claims (8)

一種馬達控制電路,係具備:控制電路,係控制向馬達供給交流電力的逆變器電路的開關動作;判定資訊生成電路,係生成用於判定前述馬達是否正故障或劣化的判定資訊;判定電路,係根據前述判定資訊判定前述馬達是否正故障或劣化,並將表示前述馬達正故障或劣化的信號作為中斷信號對前述控制電路輸出;以及通知端子,係與前述判定電路連接,且將前述馬達正故障或劣化的情況對被設於前述馬達控制電路的外部的電路通知;前述判定電路係在比較了前述判定資訊的值與預先設定的判定值的結果為前述判定資訊的值為前述判定值以上時,將對前述通知端子施加的電壓設為與在前述判定資訊的值小於前述判定值時對前述通知端子施加的電壓的值不同的值。 A motor control circuit including: a control circuit that controls the switching operation of an inverter circuit that supplies AC power to the motor; a determination information generation circuit that generates determination information for determining whether the motor is malfunctioning or deteriorating; and a determination circuit , determines whether the aforementioned motor is malfunctioning or deteriorating based on the aforementioned determination information, and outputs a signal indicating that the aforementioned motor is malfunctioning or deteriorating as an interrupt signal to the aforementioned control circuit; and the notification terminal is connected to the aforementioned determination circuit, and connects the aforementioned motor A malfunction or deterioration is notified to a circuit provided outside the motor control circuit; the judgment circuit compares the value of the judgment information with a preset judgment value and determines that the value of the judgment information is the judgment value. In the above case, the voltage applied to the notification terminal is set to a value different from the voltage applied to the notification terminal when the value of the determination information is smaller than the determination value. 如請求項1所記載之馬達控制電路,其中前述控制電路係在檢測到前述馬達的故障或劣化時生成前述判定資訊。 The motor control circuit as described in claim 1, wherein the control circuit generates the determination information when detecting failure or degradation of the motor. 如請求項1所記載之馬達控制電路,其中前述馬達係具備:複數個溫度檢測部,係檢測至少兩個不同位置的溫度;前述判定資訊生成電路係輸入用以表示以複數個前述溫度檢測部的各個檢測出的溫度的值的檢測資訊來生成前述判定資訊;前述判定電路係根據與前述檢測資訊對應的前述判定資訊,在第1溫度差超過第1溫度臨限值時,對前述馬達控制電路的外部通知前述馬達正故障或劣化,前述第1溫度差係用以表示以複數個前述溫度檢測部的各個檢測出的溫度的差值。 The motor control circuit as described in claim 1, wherein the motor is provided with: a plurality of temperature detection parts, which detect the temperatures of at least two different positions; and the judgment information generation circuit is an input to indicate the plurality of temperature detection parts. The judgment information is generated based on the detection information of each detected temperature value; the judgment circuit controls the motor when the first temperature difference exceeds the first temperature threshold based on the judgment information corresponding to the detection information. The outside of the circuit notifies that the motor is malfunctioning or deteriorating, and the first temperature difference is used to represent a difference in temperature detected by each of the plurality of temperature detection units. 一種馬達控制電路,係具備: 控制電路,係控制向馬達供給交流電力的逆變器電路的開關動作;判定資訊生成電路,係生成用於判定前述馬達是否正故障或劣化的判定資訊;判定電路,係根據前述判定資訊判定前述馬達是否正故障或劣化,並將表示前述馬達正故障或劣化的信號作為中斷信號對前述控制電路輸出;前述馬達係具備:複數個溫度檢測部,係檢測至少兩個不同位置的溫度;前述判定資訊生成電路係輸入用以表示以複數個前述溫度檢測部的各個檢測出的溫度的值的檢測資訊來生成前述判定資訊;前述判定電路係根據與前述檢測資訊對應的前述判定資訊,在第1溫度差超過第1溫度臨限值時,對前述馬達控制電路的外部通知前述馬達正故障或劣化,前述第1溫度差係用以表示以複數個前述溫度檢測部的各個檢測出的溫度的差值。 A motor control circuit having: The control circuit controls the switching operation of the inverter circuit that supplies AC power to the motor; the determination information generation circuit generates determination information for determining whether the motor is malfunctioning or deteriorating; the determination circuit determines whether the motor is malfunctioning or deteriorating based on the determination information. Whether the motor is malfunctioning or deteriorating, and a signal indicating that the motor is malfunctioning or deteriorating is output as an interrupt signal to the aforementioned control circuit; the aforementioned motor system is equipped with: a plurality of temperature detection parts, which detect the temperature of at least two different positions; the aforementioned determination The information generation circuit generates the determination information by inputting detection information indicating the value of the temperature detected by each of the plurality of temperature detection units; the determination circuit generates the determination information in the first step based on the determination information corresponding to the detection information. When the temperature difference exceeds the first temperature threshold value, a malfunction or deterioration of the motor is notified to the outside of the motor control circuit. The first temperature difference is used to represent the difference in temperature detected by each of the plurality of temperature detection parts. value. 如請求項4所記載之馬達控制電路,其中複數個前述溫度檢測部是電路零件溫度檢測部和軸承襯溫度檢測部,前述電路零件溫度檢測部係檢測被設置在印刷基板的電路零件的溫度,前述印刷基板係被設置在前述馬達,前述軸承襯溫度檢測部係檢測被設置於前述馬達的軸承襯的溫度。 The motor control circuit according to claim 4, wherein the plurality of temperature detection units are circuit component temperature detection units and bearing lining temperature detection units, and the circuit component temperature detection unit detects the temperature of circuit components provided on the printed circuit board, The printed circuit board is provided in the motor, and the bearing bush temperature detection unit detects the temperature of the bearing bush provided in the motor. 如請求項5所記載之馬達控制電路,其中前述判定電路係在前述第1溫度差超過前述第1溫度臨限值且第2溫度差超過第2溫度臨限值時,對前述馬達控制電路的外部通知前述馬達正故障或劣化,前述第2溫度差係表示前述電路零件的溫度與前述馬達的外部溫度的差值。 The motor control circuit as described in claim 5, wherein the determination circuit determines whether the first temperature difference exceeds the first temperature threshold and the second temperature difference exceeds the second temperature threshold. An external notification indicates that the motor is malfunctioning or deteriorating, and the second temperature difference represents the difference between the temperature of the circuit component and the external temperature of the motor. 一種馬達控制裝置,係具備: 請求項1至6中任一項所記載之馬達控制電路;前述逆變器電路;以及驅動信號生成電路,係根據用以控制前述開關動作的脈衝寬度調變信號,生成使被設於前述逆變器電路的開關元件動作的驅動信號。 A motor control device having: The motor control circuit described in any one of claims 1 to 6; the inverter circuit; and the drive signal generation circuit are configured to generate, based on the pulse width modulation signal used to control the switching operation, the inverter circuit. The driving signal for the operation of the switching elements of the inverter circuit. 一種馬達控制電路,係具備:控制電路,係控制向馬達供給交流電力的逆變器電路的開關動作;判定資訊生成電路,係生成用於判定前述馬達是否正故障或劣化的判定資訊;判定電路,係根據前述判定資訊判定前述馬達是否正故障或劣化,並將表示前述馬達正故障或劣化的信號對前述控制電路輸出;以及通知端子,係與前述判定電路連接,且將前述馬達正故障或劣化的情況對被設於前述馬達控制電路的外部的電路通知;前述判定電路係在比較了前述判定資訊的值與預先設定的判定值的結果為前述判定資訊的值為前述判定值以上時,將對前述通知端子施加的電壓設為與在前述判定資訊的值小於前述判定值時對前述通知端子施加的電壓的值不同的值。 A motor control circuit including: a control circuit that controls the switching operation of an inverter circuit that supplies AC power to the motor; a determination information generation circuit that generates determination information for determining whether the motor is malfunctioning or deteriorating; and a determination circuit , determines whether the aforementioned motor is malfunctioning or deteriorating based on the aforementioned determination information, and outputs a signal indicating that the aforementioned motor is malfunctioning or deteriorating to the aforementioned control circuit; and the notification terminal is connected to the aforementioned determination circuit, and outputs a signal indicating that the aforementioned motor is malfunctioning or deteriorating. The deterioration is notified to a circuit provided outside the motor control circuit; and when the judgment circuit compares the value of the judgment information with a preset judgment value and the result is that the value of the judgment information is greater than or equal to the judgment value, The voltage applied to the notification terminal is set to a value different from the voltage applied to the notification terminal when the value of the determination information is smaller than the determination value.
TW108133949A 2018-09-27 2019-09-20 Motor control circuit and motor control apparatus TWI833808B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-182504 2018-09-27
JP2018182504 2018-09-27
JP2019-155831 2019-08-28
JP2019155831A JP7364871B2 (en) 2018-09-27 2019-08-28 Motor control circuit and motor control device

Publications (2)

Publication Number Publication Date
TW202037065A TW202037065A (en) 2020-10-01
TWI833808B true TWI833808B (en) 2024-03-01

Family

ID=70107954

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108133949A TWI833808B (en) 2018-09-27 2019-09-20 Motor control circuit and motor control apparatus

Country Status (2)

Country Link
JP (1) JP7364871B2 (en)
TW (1) TWI833808B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8405339B2 (en) * 2010-07-01 2013-03-26 Eaton Corporation System and method for detecting fault in an AC machine
US9018881B2 (en) * 2013-01-10 2015-04-28 GM Global Technology Operations LLC Stator winding diagnostic systems and methods
TW201721166A (en) * 2015-12-04 2017-06-16 山洋電氣股份有限公司 Motor control apparatus
US20170187321A1 (en) * 2015-12-28 2017-06-29 Ricoh Company, Ltd. Motor control device, motor control system, image forming apparatus, conveyance apparatus, and motor control method
US20180183368A1 (en) * 2016-12-27 2018-06-28 Minebea Mitsumi Inc. Motor driving control device and control method of motor driving control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184214U (en) * 1987-05-19 1988-11-28
JPH04168077A (en) * 1990-10-31 1992-06-16 Nec Off Syst Ltd Printing device
JP4661739B2 (en) * 2006-08-30 2011-03-30 パナソニック株式会社 Motor drive device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8405339B2 (en) * 2010-07-01 2013-03-26 Eaton Corporation System and method for detecting fault in an AC machine
US9018881B2 (en) * 2013-01-10 2015-04-28 GM Global Technology Operations LLC Stator winding diagnostic systems and methods
TW201721166A (en) * 2015-12-04 2017-06-16 山洋電氣股份有限公司 Motor control apparatus
US20170187321A1 (en) * 2015-12-28 2017-06-29 Ricoh Company, Ltd. Motor control device, motor control system, image forming apparatus, conveyance apparatus, and motor control method
US20180183368A1 (en) * 2016-12-27 2018-06-28 Minebea Mitsumi Inc. Motor driving control device and control method of motor driving control device
JP2018107914A (en) * 2016-12-27 2018-07-05 ミネベアミツミ株式会社 Motor drive controller and method for controlling motor drive controller

Also Published As

Publication number Publication date
JP7364871B2 (en) 2023-10-19
JP2020058224A (en) 2020-04-09
TW202037065A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP2007006566A (en) Motor controller
TWI443923B (en) Power supply
JP2012135119A (en) Inverter device
JP2009197602A (en) Service life degree forecasting method of electronic component of vacuum pump device and vacuum pump device
JP2008172938A (en) Abnormality diagnosing equipment for cooler
WO2012101822A9 (en) Controller and semiconductor system
CN110957959B (en) Motor control circuit and motor control device
TWI833808B (en) Motor control circuit and motor control apparatus
TWI833809B (en) Motor control circuit and motor control apparatus
JP2009303427A (en) Motor driving unit
JP2015159630A (en) Combustion device and hot water supply device
JP2006296114A (en) Power frequency abnormality detecting apparatus and method of power converter
US10739168B2 (en) Absolute encoder comprising a clock control circuit to change the pulse width of each backup clock pulse
JP6758494B2 (en) Rotation angle detector and AC rotor control device
JP2012130121A (en) Motor control system
JP5463215B2 (en) Control device for motor for electric power steering
JP7553724B2 (en) Power conversion device and method for determining deterioration of smoothing capacitor
JP2008096079A (en) Heat pump controller
JP5509132B2 (en) Electromagnetic flow meter
JP5762685B2 (en) Control rotational speed calculation device, control rotational speed calculation method, and control rotational speed calculation program
JP5430388B2 (en) Load control circuit
JP2006296117A (en) Inverter apparatus
JP2006280085A (en) Motor controller and its built-in fan control method
JP6005802B2 (en) Overspeed determination device, overspeed determination method, overspeed determination program, control rotation speed calculation device, control rotation speed calculation method, and control rotation speed calculation program
JP2010033119A (en) Analog output device with self-diagnostic function