TWI833124B - 流體導入裝置以及成膜裝置 - Google Patents

流體導入裝置以及成膜裝置 Download PDF

Info

Publication number
TWI833124B
TWI833124B TW110140231A TW110140231A TWI833124B TW I833124 B TWI833124 B TW I833124B TW 110140231 A TW110140231 A TW 110140231A TW 110140231 A TW110140231 A TW 110140231A TW I833124 B TWI833124 B TW I833124B
Authority
TW
Taiwan
Prior art keywords
rectifying plate
flow path
chamber
nozzle
hole
Prior art date
Application number
TW110140231A
Other languages
English (en)
Other versions
TW202217056A (zh
Inventor
古谷優樹
醍醐佳明
梅津拓人
春山俊
塩澤恵子
Original Assignee
日商紐富來科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021175156A external-priority patent/JP2022074059A/ja
Application filed by 日商紐富來科技股份有限公司 filed Critical 日商紐富來科技股份有限公司
Publication of TW202217056A publication Critical patent/TW202217056A/zh
Application granted granted Critical
Publication of TWI833124B publication Critical patent/TWI833124B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/005Nozzles or other outlets specially adapted for discharging one or more gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本發明提供一種整流板,可抑制對成膜對象物的成膜速度的變動。根據實施形態,與噴射流體的多個噴嘴相向地設置且對流體進行整流的整流板具有:多個高流路阻力部區域,具有與多個噴嘴各自相向的噴嘴相向區域;以及低流路阻力區域,分別包圍多個高流路阻力區域,形成有多個第一貫通孔,流路阻力小於高流路阻力區域。

Description

流體導入裝置以及成膜裝置
本發明的實施形態是有關於一種整流板、具有該整流板的流體導入裝置以及具有該流體導入裝置的成膜裝置。
已知有下述流體導入裝置,即:從噴嘴噴射氣體,將氣體通過具有貫通孔的整流板導入至腔室內。另外,已知有下述成膜裝置,即:使用此種流體導入裝置向腔室內導入氣體,於晶圓等基板上成膜。
[先前技術文獻]
[專利文獻]
[專利文獻1]日本專利特開2012-126968號公報
[專利文獻2]日本專利第4819411號公報
[專利文獻3]日本專利特開2013-149513號公報
本發明所欲解決的課題在於提供一種整流板、流體導入裝置以及成膜裝置,可抑制對成膜對象物的成膜速度的變動。
根據實施形態,與噴射流體的多個噴嘴相向地設置且對所述流體進行整流的整流板具有:多個高流路阻力區域,具有與多個噴嘴各自相向的噴嘴相向區域;以及低流路阻力區域,分別包圍多個高流路阻力區域,形成有多個第一貫通孔,流路阻力小於高流路阻力區域。
以下,一方面參照圖式,一方面對第一實施形態及第二實施形態進行說明。
[第一實施形態] 圖1中示出成膜裝置10,該成膜裝置10例如利用化學氣相沈積(Chemical Vapor Deposition,CVD)法,於晶圓等基板8的表面使單晶膜進行磊晶成長。所述成膜裝置10例如具有:圓筒狀的腔室12;流體導入裝置(整流裝置)14,可裝卸地固定於腔室12的一端(上部);排氣部16,設於腔室12的另一端(下部);以及基板8的旋轉平台18,設於腔室12內。
腔室12的一端配置於腔室12的上端,腔室12的另一端配置於腔室12的下端。腔室12較佳為相對於中心軸C而形成為旋轉對稱。於腔室12的一端,固定有流體導入裝置14。於腔室12的另一端,設有排氣部16。腔室12內可為大氣壓,例如亦可藉由連接於排氣部16的未圖示的抽吸泵等而設為較大氣壓更為低壓。此處,設腔室12內為較大氣壓更為低壓來進行說明。
旋轉平台18設於腔室12的下方。旋轉平台18可保持基板8。旋轉平台18可藉由未圖示的馬達等,繞腔室12的中心軸C相對於腔室12旋轉。較佳為旋轉平台18的旋轉軸與腔室12的中心軸C一致。因此,成膜裝置10藉由在將基板8保持於旋轉平台18的狀態下,例如使旋轉平台18以1000 rpm的轉速以腔室12的中心軸C為中心旋轉,從而使基板8以1000 rpm的轉速旋轉。
再者,本實施形態中,作為一例,基板8為具有6吋(約150 mm)的直徑的圓盤狀。
流體導入裝置14具有:整流板22,對流體進行整流;以及多個噴嘴24,向整流板22噴射來自成膜裝置10的外部的未圖示的氣體源的、多種氣體。整流板22與噴射流體的噴嘴24相向。此外,作為一例,流體導入裝置14成為下述結構,即:具有防止氣體洩漏的蓋(閉塞板)26,並且多個噴嘴24將蓋26貫通。各噴嘴24的外周面與蓋26之間經密封。即,為了防止導入至成膜裝置10的氣體的洩漏,腔室12的一端由流體導入裝置14的蓋26閉塞。流體導入裝置14在蓋26與整流板22之間具有供給氣體的空間(流體導入部)28。
圖2表示第一實施形態的成膜裝置10的、從圖1中的箭頭II所示的方向觀看的噴嘴24及整流板22的俯視圖。圖3為表示對整流板22以虛線描畫圖2所示的噴嘴24的位置的、整流板22的概略圖。圖4表示第一實施形態的成膜裝置10的、表示相對於腔室12將整流板22安裝於基準位置時的整流板22與噴嘴24的位置關係的、沿著圖2及圖3中的IV-IV線的位置的概略截面圖。圖5表示於將圖4所示的整流板22安裝於圖1所示的成膜裝置10的腔室12的一端的狀態下,於靜止的基板8上成膜時的、基板8上的成膜速度分佈的立體圖。圖6示出下述概略截面圖,即:表示針對腔室12將整流板22相對於基準位置偏離容許誤差的範圍內的0.3 mm而安裝時的、整流板22與噴嘴24的位置關係的概略截面圖。圖7表示於將圖6所示的整流板22安裝於圖1所示的成膜裝置10的腔室12的一端的狀態下,於靜止的基板8上成膜時的、基板8上的成膜速度分佈的立體圖。
如圖2至圖4及圖6所示,整流板22例如由石英等透光材料形成為圓盤狀。較佳為整流板22的中心軸、圖1所示的腔室12的中心軸C及旋轉平台18的旋轉軸一致。圖4所示的示例中,整流板22的中心軸、腔室12的中心軸C及旋轉平台18的旋轉軸一致。然而,圖6所示的示例中,整流板22的中心軸雖然與腔室12的中心軸C及旋轉平台18的旋轉軸平行,但相對於腔室12的中心軸C及旋轉平台18的旋轉軸產生0.3 mm的偏移。
本實施形態中,作為一例,整流板22的直徑為基板8的直徑的1.2倍左右的186 mm。再者,腔室12的一端與旋轉平台18之間的腔室12內的區域的內徑形成為與整流板22的直徑相同程度的大小,或者形成為較整流板22的直徑更大。
整流板22可裝卸地固定於腔室12的一端。整流板22可更換。此時,關於對腔室12的一端固定整流板22時的容許誤差,作為一例,例如相對於中心軸C於徑向為±0.3 mm等既定大小。
如圖2及圖3所示,整流板22具有閉塞部(流路阻力無限大的高流路阻力區域)32、及以包圍閉塞部(高流路阻力區域)32的方式設置的具有多個貫通孔(第一貫通孔)34的低流路阻力區域33。多個貫通孔34分別形成為氣體的流路。此處,所謂流路阻力,是指流體通過某形狀的流路時流動因其形狀而受阻的力。
貫通孔34例如基本上以既定的間隔(間距)形成,但局部具有間隔不同的區域。貫通孔34的開口量(開口徑)較佳為分別相同,但亦可不同。開口量例如適當設定為直徑2.6 mm至3.5 mm左右等。較佳為從整流板22的中心軸附近到外周附近,每單位面積的貫通孔34的大小及個數為一定。作為一例,貫通孔34配置成格子狀的位置。貫通孔34的間距寬度例如為8 mm。
再者,較佳為整流板22的貫通孔34中,距整流板22的中心軸最遠的靠近外周緣的位置的貫通孔34位於基板8的外周緣的正上方、或較基板8的外周緣更靠外側的位置。此時,於基板8的外周緣的位置亦容易均勻成膜。
圖4及圖6所示的噴嘴24例如以與整流板22的中心軸平行地噴射成膜用的氣體的方式配置。本實施形態中,多個噴嘴24噴射氣體的方向較佳為與腔室12的中心軸C平行。
如圖2至圖4及圖6所示,各噴嘴24以向閉塞部(高流路阻力區域)32噴射流體的方式與閉塞部(高流路阻力區域)32相向。各噴嘴24的頂端與閉塞部(高流路阻力區域)32之間遠離。閉塞部(高流路阻力區域)32雖根據噴嘴24的形狀、噴射的氣體等流體的流量、噴霧角度(意指噴射的氣體等流體擴展的角度)、噴霧寬度(意指噴射的氣體等流體從噴嘴24的頂端到達的距離的擴展寬度)、噴霧圖案(意指噴射的氣體等流體擴散時的截面形狀)等而變化,但為自噴嘴24直接噴射氣體的區域。另一方面,作為閉塞部(高流路阻力區域)32以外的區域的、設有多個貫通孔34的低流路阻力區域33為不自噴嘴24直接噴射氣體的區域,多個貫通孔(第一貫通孔)34中,最接近與噴嘴24的頂端相向的噴嘴相向區域36的貫通孔34配置於間接地導入自噴嘴24噴射的氣體的位置。即,以噴嘴24與整流板22之間的距離(噴霧距離)的、與噴霧角度等的關係而言,於由自噴嘴24噴射的氣體所形成的噴霧圖案的外側形成有貫通孔34。多個貫通孔34中,最接近噴嘴相向區域36的貫通孔34形成於作為噴嘴24的頂端與閉塞部32之間的距離而規定的噴霧距離的、除了噴霧圖案以外的區域。
即,閉塞部(高流路阻力區域)32具有與噴嘴24相向的噴嘴相向區域36(參照圖3、圖4、圖6)。噴嘴相向區域36位於除了貫通孔34以外的區域,為未設有貫通孔34的無通孔(through-hole less)。換言之,流體導入裝置14在不與貫通孔34相向的位置,配置有噴射流體的噴嘴24。噴嘴相向區域36形成於基本上規則性地(以相同間隔)形成的貫通孔34的間隔不同的區域。
再者,噴嘴24的開口徑例如為13 mm。
本實施形態中,整流板22如圖2及圖3所示,從上側觀看整流板22時,相對於自整流板22的中心軸朝向徑向外方穿過後述三個高溫計(pyrometer)用噴嘴44的中心的假想線(X軸)而形成為線對稱。本實施形態中,貫通孔34形成於相對於整流板22的中心軸而成為點對稱或大致點對稱的位置,或者形成於相對於沿著閉塞部(高流路阻力區域)32穿過整流板22的中心軸的既定的軸而成為線對稱或大致線對稱的位置。
再者,本實施形態中,流體導入裝置14具有用於藉由高溫計來間接地監視基板8的溫度的、高溫計用噴嘴44。於高溫計用噴嘴44導入有沖洗氣體,於與高溫計用噴嘴44相向的位置(高溫計用噴嘴相向區域46(參照圖3)),未設有貫通孔34。換言之,流體導入裝置14於不與貫通孔34相向的位置,配置有高溫計用噴嘴44。高溫計透過作為透光材料的整流板22及高溫計用噴嘴44接收自基板8放射的光(紅外光)並測量溫度。
再者,高溫計用噴嘴44的開口徑為與噴嘴24相同程度的例如13 mm。高溫計用噴嘴44的開口徑可大於噴嘴24的開口徑,亦可小於噴嘴24的開口徑。
繼而,對第一實施形態的成膜裝置10的流體導入裝置14的動作加以說明。
一方面使圖1所示的旋轉平台18上的基板8以例如1000 rpm旋轉,一方面自噴嘴24向流體導入裝置14的整流板22的閉塞部(高流路阻力區域)32噴射氣體作為多種流體。此時,貫通孔34較佳為在多種氣體各自的噴霧圖案的範圍外。另外,如圖4所示,向閉塞部32噴射的多種氣體分別以既定的噴霧角度到達整流板22的表面的閉塞部32後,自閉塞部32放射狀地擴展,到達貫通孔34。
再者,作為用於在腔室12內使氣體進行化學反應的能量,例如使用熱等。
自閉塞部(高流路阻力區域)32向貫通孔34流動的氣體自腔室12的一端通過貫通孔34向腔室12的另一端流動。即,藉由流體通過流體導入裝置14的貫通孔34流入至腔室12,從而將多種氣體導入至腔室12內,於基板8上成膜。
另一方面,所述圖4所示的示例中,將整流板22設置於基準位置(正規的安裝位置)。圖6所示的示例中,將整流板22自基準位置偏離0.3 mm而設置。
圖5中示出將整流板22安裝於圖4所示的腔室12的基準位置時的、成膜速度分佈的模擬結果,圖7中示出圖6所示的以自腔室12的基準位置產生0.3 mm的誤差的方式安裝時的基板8上的、成膜速度分佈的模擬結果。圖5及圖7中的成膜速度分佈以將圖5中的最低速度設為1.0時的相對速度的形式來表示。再者,圖5及圖7所示的模擬結果表示不使旋轉平台18旋轉,於使基板8靜止的狀態下進行成膜時的結果。成膜速度均於自基板8的中心稍許偏離的位置變大,可知顯示相同傾向。
另外,模擬圖4所示的示例、圖6所示的示例各自的基板8內的成膜速度,結果成為如圖8所示。若將圖4所示的對腔室12的一端將整流板22無誤差地安裝於基準位置(正規的安裝位置)時(以黑圓點繪圖)、與圖6所示的對腔室12的一端以自基準位置產生0.3 mm的誤差的方式安裝整流板22時(以白圓點繪圖)比較,則可知未見大的變化。此時,基板8的中心部分的成膜速度的變動率抑制於6%左右。
(比較例1) 此處,使用圖9至圖14對比較例1的整流板122加以說明。
如圖9、圖10、圖12所示,比較例1除了流體導入裝置14的整流板122及噴嘴124的位置關係與第一實施形態不同以外,與所述第一實施形態的流體導入裝置14的整流板22及噴嘴24的位置關係相同。
圖9表示流體導入裝置14的比較例1的整流板122及噴嘴124的位置關係。圖10表示比較例1的成膜裝置10的、表示對腔室12將整流板122安裝於基準位置時的整流板122與噴嘴124的位置關係的、沿著圖9中的X-X線的位置的概略截面圖。圖12示出下述概略截面圖,即:表示對成膜裝置的腔室12的一端將整流板122相對於基準位置偏離容許誤差的範圍內的0.3 mm而安裝時的、整流板122與噴嘴124的位置關係的概略截面圖。
與第一實施形態不同,比較例1中,各噴嘴124如圖9、圖10及圖12所示,與貫通孔134而非閉塞部(高流路阻力區域)132相向。即,於噴嘴124的正下方形成有貫通孔134。於噴嘴124與整流板122的位置關係為既定位置而無位置偏移的、圖10的情形時,較佳為噴嘴124的中心軸與貫通孔134的中心軸位於同軸上。
圖11中示出圖10所示的對腔室12的一端於基準位置無誤差地安裝整流板122時的、基板8上的成膜速度分佈的模擬結果的立體圖。圖13中示出對圖12所示的腔室12的一端以相對於基準位置產生0.3 mm的誤差的方式安裝整流板122時的、基板8上的成膜速度分佈的模擬結果的立體圖。圖11及圖13中的成膜速度分佈以將圖13中的最低速度設為1.0時的相對速度的形式來表示。再者,圖11及圖13所示的模擬結果表示不使旋轉平台18旋轉,於使基板8靜止的狀態下進行成膜時的結果。圖11中,成膜速度分佈於基板8的中心變大。圖13中,成膜速度分佈於自基板8的中心稍許偏離的位置變大。圖11及圖13所示的模擬結果可知,成膜速度分佈的傾向不同。
另外,模擬圖10所示的示例、圖12所示的示例各自的基板8內的成膜速度。如圖14所示,可知對腔室12的一端於基準位置無誤差地安裝整流板122時(以黑圓點繪圖)與自基準位置偏離誤差0.3 mm而安裝時(以白圓點繪圖)相比,成膜速度變快,成膜速度大幅度地變化。此時,基板8的中心部分的、成膜速度的變動率成為20%左右。
(本實施形態與比較例1的比較) 比較例1中,於噴嘴124的正下方形成有貫通孔134,故而自噴嘴124噴射的氣體的一部分直接通過貫通孔134。另外,於對腔室12自基準位置偏離0.3 mm而安裝整流板122時,噴嘴124與整流板122的貫通孔134的相對位置偏離,導致自噴嘴124直接通過貫通孔134導入至腔室12內的氣體的流入方向、速度等變化。因此,可認為基板8的中心的成膜速度產生20%的差。
另一方面,本實施形態中,於噴嘴24的正下方形成有閉塞部(高流路阻力區域)32,因而自噴嘴24噴射的氣體不直接通過貫通孔34,而是到達閉塞部(高流路阻力區域)32並放射狀地擴展後,通過貫通孔34導入至腔室12內。因此,即便對腔室12自基準位置偏離0.3 mm而安裝整流板22,噴嘴24與整流板22的貫通孔34的相對位置偏離0.3 mm,亦可將偏離所致的成膜速度的變化抑制於6%左右。
因此,可藉由本實施形態的成膜裝置10、流體導入裝置14及整流板22,來抑制整流板22對腔室12的安裝誤差所致的、基板8上的成膜速度的變動。
本實施形態的流體導入裝置14不僅用於自噴嘴24噴出氣體時,而且亦可用於噴出液體時。
本實施形態中,對整流板22為圓盤狀的示例進行了說明。整流板22不限於圓盤狀,容許為橢圓形狀、矩形狀等各種形狀。
[第二實施形態] 繼而,使用圖15至圖20對第二實施形態加以說明。第二實施形態為第一實施形態的變形例,且對與第一實施形態中說明的構件相同的構件或具有相同功能的構件儘量標註相同符號,省略詳細的說明。
圖15中示出下述概略俯視圖,即:表示第二實施形態的成膜裝置10的流體導入裝置14的整流板222的概略俯視圖。圖16中示出下述圖,即:表示圖15中的符號XVI所示的位置的圖。圖17中示出圖15中的XVII-XVII截面圖。
本實施形態中,對使用整流板222代替第一實施形態中說明的成膜裝置10的流體導入裝置14的整流板22的示例進行說明。本實施形態的成膜裝置10的流體導入裝置14具有對流體進行整流的整流板222、向整流板222噴射來自氣體源的多種氣體的多個噴嘴24、及多個高溫計用噴嘴。
如圖15所示,本實施形態的整流板222為與第一實施形態中說明的整流板22相同的大小,且例如為圓盤狀。整流板222例如具有三個沖洗氣體流路246。導入沖洗氣體的高溫計用噴嘴配置於整流板222的沖洗氣體流路246的正上方。沖洗氣體流路246自整流板222的中心軸沿著徑向例如大致等間隔地配置。各沖洗氣體流路246的中心軸位於以整流板222的中心軸為原點的+X軸上。在沖洗氣體流路246,通過整流板222向腔室12內流通例如氬氣或氫氣作為沖洗氣體。因此,通過沖洗氣體流路246向腔室12內供給沖洗氣體。本實施形態中,各沖洗氣體流路246的開口徑為例如18 mm。
如圖16所示,整流板222具有:高流路阻力區域232,具有與噴嘴24相向的噴嘴相向區域;以及低流路阻力區域234,以包圍高流路阻力區域232的方式設置。於整流板222,以一定間距配置有作為使成膜用的反應氣體通過的流路的多個貫通孔252、254。整流板222中,只要於高流路阻力區域232的外側形成有低流路阻力區域234即可。本實施形態中,多個貫通孔252、254例如配置成8 mm的間距。另外,整流板222中,亦可具有於一定間距未形成有貫通孔254的位置。於整流板222中,亦可具有第一貫通孔252與第二貫通孔254之間未形成為一定間距的位置。
再者,整流板222的貫通孔252、貫通孔254中,較佳為距整流板222的中心軸最遠的、靠近整流板222的外周緣的位置的貫通孔252、貫通孔254位於基板8的外周緣的正上方、或較基板8的外周緣更靠外側的位置。此時,於基板8的外周緣的位置亦容易均勻成膜。
高流路阻力區域232具有第一徑的多個第一貫通孔(第二貫通孔)252。低流路阻力區域234分別以包圍高流路阻力區域232的方式設置,具有開口率較高流路阻力區域232的第一貫通孔252更大的、第二徑的一個或多個第二貫通孔(第一貫通孔)254。第一貫通孔252與第二貫通孔254相比形成得小徑。例如,第一貫通孔252的直徑為5 mm,第二貫通孔254的直徑為7 mm。
如圖15所示,整流板222從內側向外側具有第一區Z1、第二區Z2及第三區Z3。第一區Z1為與整流板222的中心軸為同心狀的圓盤的內側的區域。第二區Z2為第一區Z1的外側的圓環狀的區域。第三區Z3為第二區Z2的外側的圓環狀的區域。第三區Z3的外緣與整流板222的外緣一致。整流板222的中心軸與第一區Z1的外緣(第二區Z2的內緣)之間的距離、第一區Z1的外緣與第二區Z2的外緣(第三區Z3的內緣)之間的距離、及第二區Z2的外緣與第三區Z3的外緣之間的距離例如為等距離。各區Z1、Z2、Z3分別具有高流路阻力區域232及低流路阻力區域234。第一區Z1中的第一貫通孔252、第二區Z2中的第一貫通孔252及第三區Z3中的第一貫通孔252分別四個為一組。於該些情形時,各區Z1、Z2、Z3中的第一貫通孔252位於由相當於一定間距的長度的線段所形成的正方形的頂點。
圖17所示的噴嘴24的開口徑為例如13 mm。如圖17所示,各噴嘴24以向高流路阻力區域232噴射流體的方式,與高流路阻力區域232相向。各噴嘴24的頂端與整流板222的高流路阻力區域232之間遠離。雖取決於噴嘴24的形狀、噴射的氣體等流體的流量、噴霧角度(意指噴射的氣體等流體擴展的角度)、噴霧寬度(意指噴射的氣體等流體自噴嘴24的頂端到達的距離的擴展寬度)、以及噴霧圖案(意指噴射的氣體等流體擴散時的截面形狀)等,但多個第一貫通孔252配置於直接導入自噴嘴24噴射的氣體的位置。因此,以噴嘴24與整流板222之間的距離(噴霧距離)的、與噴霧角度等的關係而言,於由自噴嘴24噴射的氣體所形成的噴霧圖案的外緣的內側形成有第一貫通孔252。
再者,噴嘴24的中心軸較佳為以如下方式配置,即:與以四個為一組的各第一貫通孔252的中心為頂點的正方形的重心交叉。
另一方面,低流路阻力區域234的多個第二貫通孔254配置於間接地導入自噴嘴24噴射的氣體的位置。第二貫通孔254以噴嘴24與整流板222之間的距離(噴霧距離)的、與噴霧角度等的關係而言,形成於由自噴嘴24噴射的氣體所形成的噴霧圖案的外緣的外側。因此,多個第二貫通孔254中,最接近高流路阻力區域232的第二貫通孔254形成於作為噴嘴24的頂端與高流路阻力區域232之間的距離而規定的噴霧距離的、除了噴霧圖案以外的區域。
關於噴嘴24與第一貫通孔252的位置關係,例如較佳為相對於噴嘴24的中心軸而分別以等距離遠離。亦可將第一貫通孔252形成於例如噴嘴24的中心軸上,於第一貫通孔252的外側以圓環狀進而形成有第一貫通孔252。即,噴嘴24的中心軸與第一貫通孔252的各組的一個貫通孔252的中心軸亦可一致。此時,噴嘴24亦不與第二貫通孔254相向。
噴嘴24與整流板222之間的距離設定為氣體不僅於第一貫通孔252中而且於第二貫通孔254中流動的距離。本實施形態中,噴嘴24與整流板222之間的距離例如設定為2.5 mm。
對將本實施形態的整流板222與第一實施形態中說明的整流板22同樣地安裝於腔室12,對腔室12內的基板8進行成膜時的氣體的流動加以說明。
若自噴嘴24向整流板222噴射成膜用的氣體,則氣體的一部分通過由氣體所形成的圖16及圖17所示的噴霧圖案的內側的高流路阻力區域232的第一貫通孔252,進入腔室12內。其餘氣體抵接於整流板222的上表面,沿著整流板222的上表面擴展。於自噴嘴24噴射的氣體的噴霧圖案的外側,形成有低流路阻力區域234的第二貫通孔254,故而氣體的一部分通過第二貫通孔254進入腔室12內。
若氣體通過整流板222導入至腔室12內,則整流板222的下表面附近的腔室12內的壓力分佈變化。相對於第一貫通孔252,第二貫通孔254的開口徑更大,相較於第一貫通孔252而氣體更容易通過第二貫通孔254。另外,第二貫通孔254的個數較第一貫通孔252更多。因此,整流板222可取得通過第一貫通孔252直接進入腔室12內的氣體的流量、與通過第二貫通孔254進入腔室內的氣體的流量的平衡。另外,貫通孔252、貫通孔254配置成一定間距,因而抑制整流板222的下表面附近的腔室12內的壓力分佈產生偏差。
例如,於使用第一實施形態所說明的整流板22的情形時,向閉塞部(高流路阻力區域)32噴射氣體後,氣體通過閉塞部(高流路阻力區域)32的外側的貫通孔34,向腔室12內導入氣體。由於氣體通過貫通孔34導入至腔室12內,因而設想於貫通孔34的正下方壓力高,鄰接的貫通孔34彼此之間的整流板22的下表面側的區域中壓力降低。因此,有可能氣體向貫通孔34正下方以外的壓力低的區域的下表面側流動,於腔室12內產生氣體的攪拌或倒流,難以控制腔室12內的氣體流。
本實施形態的整流板222如第一實施形態所說明,可抑制整流板222對腔室12的安裝誤差所致的、基板8上的成膜速度的變動。另外,本實施形態的整流板222可藉由第一貫通孔252來抑制整流板222的下表面附近的腔室12內的壓力分佈的偏差。因此,藉由將本實施形態的整流板222安裝於腔室12而使用,從而抑制腔室12內的氣體的攪拌或倒流,腔室12內的氣體流的控制變容易。另外,例如藉由對每個區Z1、Z2、Z3分別控制腔室12內的氣體流,從而可根據距基板8的中心的距離來控制成膜速度。
再者,第一貫通孔252及第二貫通孔254可藉由維持大小關係而設定為適當孔徑等適當大小。另外,雖亦依存於通過沖洗氣體流路246進入腔室12內的沖洗氣體的每單位時間的流量、自噴嘴24噴射的氣體的每單位時間的流量等,但藉由適當增大第一貫通孔252及第二貫通孔254,從而可增強有助於成膜的氣體線(gas line)的流動,抑制通過整流板222供給於腔室12內的沖洗氣體的流動所致的影響。
圖18中,表示自腔室12的基準位置向+X軸方向偏離1.5 mm而安裝整流板222時的成膜裝置10的、旋轉的基板8上的任意時刻的成膜速度分佈的模擬結果。圖18以基板8的立體圖的形式表示。圖19中,表示自腔室12的基準位置向-X軸方向偏離1.5 mm而安裝整流板222時的成膜裝置10的、旋轉的基板8上的任意時刻的成膜速度分佈的模擬結果。圖19以基板8的立體圖的形式表示。再者,此處的1.5 mm大於對腔室12安裝整流板222時的、作為相對於基準位置的容許誤差的0.3 mm。圖18及圖19中的成膜速度分佈以將圖18中的最低速度設為1.0時的相對速度的形式來表示。圖18所示的示例中,成膜速度於基板8的中心附近變大。圖19所示的示例中,成膜速度於自基板8的中心偏離的位置變大。
模擬圖18所示的示例、圖19所示的示例各自的基板8內的成膜速度,結果成為如圖20所示。圖20為表示將第二實施形態的整流板222相對於腔室12的基準位置偏離地配置的成膜裝置10的、距基板8的中心軸的距離與經時間平均的成膜速度的關係的圖表。圖20所示的黑圓點繪圖為對腔室12的一端自基準位置向+X軸方向偏離1.5 mm而安裝整流板222時的示例。圖20所示的白圓點繪圖為對腔室12的一端自基準位置向-X軸方向偏離1.5 mm而安裝整流板222時的示例。若將圖20中的黑圓點繪圖與白圓點繪圖比較,則可知未見大的變化。該傾向與第一實施形態的圖8所示的傾向大致一致。再者,基板8的中心部分的成膜速度的變動率抑制於7%左右。隨著使整流板222對腔室12的安裝位置靠近基準位置,而相對於噴嘴24的中心軸等距離地配置有四個第一貫通孔252。因此,於將整流板222安裝於腔室12而使用的情形時,設想基板8的中心部分的成膜速度的變動率可進一步降低。
因此,根據本實施形態,可提供一種整流板222、具有該整流板222的流體導入裝置14及具有該流體導入裝置14的成膜裝置10,所述整流板222可抑制因例如維護而更換整流板222前後的、對成膜對象物的成膜速度的變動。
本實施形態中,以四個第一貫通孔252為一組進行了說明,但第一貫通孔252只要於高流路阻力區域232設有一個以上即可。只要以高流路阻力區域232較低流路阻力區域234而流路阻力更大的方式,使高流路阻力區域232的開口面積密度小於低流路阻力區域234的開口面積密度即可。例如,可將以兩個為一組的第一貫通孔252配置於既定的間距,亦可將以三個為一組的第一貫通孔252配置於例如正三角形的頂點的位置,即便將以五個為一組的第一貫通孔252配置於例如正五邊形的頂點的位置,亦可獲得同樣的效果。第一貫通孔252的配置只要可抑制整流板222的下表面附近的腔室12內的壓力分佈的偏差即可。
本實施形態中,對第一貫通孔252及第二貫通孔254為圓形貫通孔的示例進行了說明。第一貫通孔252及第二貫通孔254亦可為三角形、四邊形等多邊形。另外,第二貫通孔254亦可形成為將多個連結而成的長孔等。第二貫通孔254亦可形成為將多個第一貫通孔252的周圍的一部分或全部包圍的、連續的一個孔。
(第一變形例) 使用圖21及圖22對第二實施形態的第一變形例加以說明。
圖21中示出本變形例的整流板322的概略俯視圖。圖21中省略噴嘴24的圖示。本變形例的整流板322相對於第二實施形態中說明的整流板222,第一貫通孔252及第二貫通孔254的配置及個數不同。貫通孔252、254的間距於本變形例的整流板322中為10 mm。
如圖21所示,第一區Z1中的第一貫通孔252是兩個為一組。此時,第一貫通孔252位於相當於一定間距的長度的線段的、一端與另一端的位置。第二區Z2中的第一貫通孔252是三個為一組。此時,第一貫通孔252位於具有相當於一定間距的長度的兩條線段的、直角等腰三角形的頂點。第三區Z3中的第一貫通孔252是四個為一組。此時,第一貫通孔252位於由相當於一定間距的長度的線段所形成的、正方形的頂點。
相對於整流板322,噴嘴24是與第二實施形態的整流板222相對於第一貫通孔252的位置關係同樣地配置。即,噴嘴24於各區Z1、Z2、Z3中,與高流路阻力區域232的第一貫通孔252相向,所述高流路阻力區域232具有與噴嘴24相向的噴嘴相向區域。若自噴嘴24向整流板322噴射成膜用的氣體,則氣體的一部分通過由氣體所形成的噴霧圖案的內側的第一貫通孔252導入至腔室12內。其餘氣體抵接於整流板322的上表面,沿著整流板322的上表面擴展。於自噴嘴24噴射的氣體的噴霧圖案的外側,形成有第二貫通孔254,因而氣體的一部分通過第二貫通孔254導入至腔室12內。
若氣體通過整流板322進入腔室12內,則整流板322的下表面附近的腔室12內的壓力分佈變化。第一貫通孔252及第二貫通孔254的孔徑大小的大小關係與第二實施形態中說明的整流板222相同。因此,整流板322可取得通過第一貫通孔252直接進入腔室12內的氣體的流量、與通過第二貫通孔254進入腔室內的氣體的流量的平衡。另外,貫通孔252、貫通孔254配置成一定間距,因而可抑制整流板222的下表面附近的腔室12內的壓力分佈的偏差。
藉由將本實施形態的整流板322安裝於腔室12而使用,從而於腔室12內抑制氣體的攪拌或倒流,腔室12內的氣體流的控制變容易。另外,例如可對每個區Z1、Z2、Z3分別控制腔室12內的氣體流,因而可根據距基板8的中心的距離來控制成膜速度。
因此,根據本變形例,可提供一種整流板322、具有該整流板322的流體導入裝置14及具有該流體導入裝置14的成膜裝置10,所述整流板322可抑制因例如維護而更換整流板322前後的、對成膜對象物的成膜速度的變動。
此處,圖22中示出對腔室12將本變形例的整流板322自整流板322的中心軸向朝向沖洗氣體流路246的三個中心軸的+X軸方向偏離1.5 mm進行安裝時、與自整流板322的中心軸向與沖洗氣體流路246的三個中心軸側為相反側的-X軸方向偏離1.5 mm而安裝時的、基板8上的成膜速度分佈的關係。再者,此處的1.5 mm大於對腔室12安裝整流板322時的、作為相對於基準位置的容許誤差的0.3 mm。
另外,如圖23所示的數式般,將自基板8的中心(包含中心)至基板8的邊緣為止的、各點的成膜速度之差量除以成膜速度(X+1.5 mm)的平均,以自中心至邊緣為止的16點累計後除以16,再乘以100而以(%)表示。將其作為自基板8的中心至邊緣為止的成膜速度的差量。
於將第二實施形態的整流板222安裝於腔室12而使用時,自基板8的中心至基板8的邊緣為止的成膜速度的差量若使用圖20所示的資料來算出,則成為4.6%。於將本變形例的整流板322安裝於腔室12而使用時,自基板8的中心至基板8的邊緣為止的成膜速度的差量若使用圖22所示的資料來算出,則成為31.1%。因此,可謂第一貫通孔252的個數較佳為於各區Z1、Z2、Z3中為相同數量。藉由如第二實施形態的整流板222般於各區Z1、Z2、Z3中將第一貫通孔252的個數設為相同數量,從而可與使用本變形例中說明的整流板322的情形相比,減小自基板8的中心至基板8的邊緣為止的、成膜速度之差。
(第二變形例) 使用圖24至圖28對第二實施形態的第二變形例加以說明。
圖24中示出本變形例的整流板422的概略俯視圖。圖24中省略噴嘴24的圖示。噴嘴24於各區Z1、Z2、Z3中,與高流路阻力區域232的第一貫通孔252相向,所述高流路阻力區域232具有與噴嘴24相向的噴嘴相向區域。本變形例的整流板422的第一貫通孔252的直徑為3 mm,小於第二實施形態的整流板222的第一貫通孔252的直徑5 mm。整流板422的第二貫通孔254的直徑為7 mm,與第二實施形態的整流板222相同。整流板422的貫通孔252、254的一定間距與第二實施形態的整流板222相同,為8 mm。
對將本變形例的整流板422安裝於腔室12的適當位置的狀態下的、整流板422的正下方100 mm的位置的氣體流動進行分析。
圖25表示於整流板422與旋轉平台18之間,腔室12內的整流板422的正下方100 mm的位置的、圓筒狀的腔室12的概略截面。另外,圖25表示把握腔室12內的整流板422的正下方100 mm的位置的、氣體向上方(+Z方向)的移動的模擬結果。因此,圖25為表示將本變形例的整流板422安裝於腔室12的基準位置的狀態下對基板8進行成膜時,於整流板422的正下方100 mm的腔室12內未產生氣體的上升氣流的等高線圖。圖25中,未表示氣體向下方的移動。另外,圖25中,伴隨氣體向上方移動的速度分佈是以將最低速度設為1.0時的相對速度的形式來表示。如圖25所示,於整流板422的正下方100 mm的腔室12內的位置的、全面積區域,未確認到氣體向上方移動。雖取決於自噴嘴24的氣體的流量、沖洗氣體的流量等,但於某條件下,將本變形例的整流板422安裝於腔室12而使用時,於整流板422的下側的區域可確認氣體未上升。
此處,為了與本變形例的整流板422進行比較,對將第二實施形態的整流板222安裝於腔室12的適當位置的狀態下的、整流板222的正下方100 mm的位置的氣體流動進行分析。
圖26表示於整流板222與旋轉平台18之間,腔室12內的整流板222的正下方100 mm的位置的、圓筒狀的腔室12的概略截面。圖26表示把握腔室12內的整流板222的正下方100 mm的位置的、氣體向上方(+Z方向)的移動的模擬結果。因此,圖26為表示將第二實施形態的圖15所示的整流板222安裝於腔室12的基準位置的狀態下對基板8進行成膜時,整流板222的正下方100 mm的腔室12內的氣體的上升氣流的等高線圖。
圖26中,未表示氣體向下方的移動。另外,圖26中,伴隨氣體向上方移動的速度分佈是以將最低速度設為1.0時的相對速度的形式來表示。如圖26所示,於整流板222的正下方100 mm的腔室12內的位置的、全面積的21%的區域中,可確認氣體向上方移動。雖取決於自噴嘴24的氣體的流量、沖洗氣體的流量等,但於某條件下,將第二實施形態的整流板222安裝於腔室12而使用時,於整流板222的下側的腔室12內的區域中可確認氣體上升。
另外,為了與本變形例的整流板422及第二實施形態的整流板222進行比較,作為比較例,使用圖27所示的整流板522。圖27中示出下述概略俯視圖,即:表示比較例的整流板522的概略俯視圖。圖27中省略噴嘴24的圖示。噴嘴24於各區Z1、Z2、Z3中,與高流路阻力區域232的第一貫通孔552相向,所述高流路阻力區域232包含與噴嘴24相向的噴嘴相向區域。整流板522的第一貫通孔552設為與圖24所示的整流板422的第一貫通孔252的配置相同。整流板522的第二貫通孔254設為與圖24所示的整流板422的第二貫通孔254的配置相同。比較例的整流板522的第一貫通孔552的直徑及第二貫通孔254的直徑分別為7 mm而相同。整流板522的貫通孔552、貫通孔254的一定間距與第二實施形態的整流板222相同,為8 mm。
對將比較例的整流板522安裝於腔室12的適當位置的狀態下的、整流板522的正下方100 mm的位置的氣體流動進行分析。
圖28表示把握腔室12內的整流板522的正下方100 mm的位置的、氣體向上方(+Z方向)的移動的模擬結果。因此,圖28為表示將比較例的圖27所示的整流板522安裝於腔室12的基準位置的狀態下對基板8進行成膜時,整流板522的正下方100 mm的腔室12內的氣體的上升氣流的等高線圖。
圖28中,未表示氣體向下方的移動。另外,圖28中,伴隨氣體向上方移動的速度分佈是以將最低速度設為1.0時的相對速度的形式表示。如圖28所示,於整流板522的正下方100 mm的腔室12內的位置的、全面積的31%的區域中,可確認氣體向上方移動。雖取決於自噴嘴24的氣體的流量、沖洗氣體的流量等,但於某條件下,將比較例的整流板522安裝於腔室12而使用時,於整流板522的下側的區域中可確認氣體上升。
因此,可謂第一貫通孔252的直徑相對於第二貫通孔254而越大(開口面積越大),則於整流板的下側的區域中,氣體越容易上升,於腔室12內意外地攪拌氣體等。因此,本變形例的整流板422的第一貫通孔252的直徑較佳為小於5 mm。第一貫通孔252的直徑例如較佳為第二貫通孔254的0.7倍以內。
另一方面,於抑制氣體的攪拌或倒流、控制氣體流的觀點而言,可認為藉由減小第一貫通孔252的直徑無法獲得充分的效果。因此,對於變形例的整流板422的第一貫通孔252而言,將以於腔室12內的既定位置防止氣體倒流的方式對腔室12內的氣體流動進行整流的孔徑設為最小徑(最小開口面積)。此時,第一貫通孔252的孔徑的最小徑雖取決於自噴嘴24噴射的氣體、沖洗氣體的流量等,但以防止氣體倒流的方式設定。或者,也能以抑制第一貫通孔252經時被閉塞而流路阻力變動導致氣體流變化的方式,來設定最小徑(最小開口面積)。
因此,藉由適當設定本變形例的整流板422的、第一貫通孔252相對於第二貫通孔254的孔徑,從而可於將整流板422安裝於腔室12時,於腔室12內抑制氣體的攪拌或倒流,根據距基板8的中心的距離來控制成膜速度。
如此,關於第二貫通孔254、第一貫通孔252的關係,較佳為下述孔徑,即:不因通過第一貫通孔252向下方流入的氣體而產生向整流板422的下表面的倒流。例如,雖取決於自噴嘴24的每單位時間的流量等各種條件,但於整流板422與噴嘴24之間的間隙為2.5 mm,整流板422的第一貫通孔252及第二貫通孔254配置成8 mm的一定間距,第二貫通孔254的孔徑為7 mm,第一貫通孔252的孔徑為小於第二貫通孔254的0.7倍的3 mm時,於自噴嘴24噴射氣體並且自沖洗氣體噴嘴噴射氫氣時,可於腔室12內抑制氣體倒流的產生。
即便相對於腔室12而整流板422的位置發生偏移,亦可抑制成膜速度分佈的偏差。
根據本變形例,可提供一種整流板422、具有該整流板422的流體導入裝置14及具有該流體導入裝置14的成膜裝置10,所述整流板422可抑制因例如維護而更換整流板422前後的、對成膜對象物的成膜速度的變動。
根據以上所述的至少一個實施形態,可提供一種整流板、具有該整流板的流體導入裝置及具有該流體導入裝置的成膜裝置,所述整流板可抑制因例如維護而更換整流板前後的、對成膜對象物的成膜速度的變動。
對本發明的若干實施形態進行了說明,但該些實施形態是作為示例而提示,並非意在限定發明的範圍。該些新穎的實施形態能以其他各種形態實施,可於不偏離發明主旨的範圍內進行各種省略、替換、變更。該些實施形態或其變形包含於發明的範圍或主旨,並且包含於申請專利範圍所記載的發明及其均等範圍。
8:基板 10:成膜裝置 12:腔室 14:流體導入裝置 16:排氣部 18:旋轉平台 22、122、222、322、422、522:整流板 24、124:噴嘴 26:蓋 28:空間 32、132:閉塞部(高流路阻力區域) 33、234:低流路阻力區域 34、134:貫通孔 36:噴嘴相向區域 44:高溫計用噴嘴 46:高溫計用噴嘴相向區域 232:高流路阻力區域 246:沖洗氣體流路 252、552:第一貫通孔 254:第二貫通孔 C:中心軸 X:軸 Z1:第一區 Z2:第二區 Z3:第三區
圖1為表示第一實施形態、比較例1、第二實施形態的成膜裝置的概略立體圖。 圖2為從圖1中的箭頭II所示的方向觀看第一實施形態及第二實施形態的成膜裝置的俯視圖。 圖3為表示第一實施形態及第二實施形態的成膜裝置的、圖2所示的流體導入裝置的整流板與噴嘴的位置關係的概略圖。 圖4為圖2及圖3中的IV-IV截面圖。 圖5為表示第一實施形態的成膜裝置的、靜止的基板上的成膜速度分佈的概略立體圖。 圖6為表示將第一實施形態的流體導入裝置的整流板相對於腔室的基準位置偏離0.3 mm而安裝時的、整流板與噴嘴的位置關係的概略截面圖。 圖7為表示第一實施形態的成膜裝置的、靜止的基板上的成膜速度分佈的概略立體圖。 圖8為表示第一實施形態的成膜裝置的、距圖5及圖7所示的基板的中心軸的距離與成膜速度的關係的圖表。 圖9為表示比較例1的成膜裝置的流體導入裝置的整流板與噴嘴的位置關係的概略圖。 圖10為比較例1的圖9中的X-X截面圖。 圖11為表示比較例1的成膜裝置的、靜止的基板上的成膜速度分佈的概略立體圖。 圖12為表示將比較例1的流體導入裝置的整流板相對於腔室的基準位置偏離0.3 mm而安裝時的、整流板與噴嘴的位置關係的概略截面圖。 圖13為表示比較例1的成膜裝置的、靜止的基板上的成膜速度分佈的概略立體圖。 圖14為表示比較例1的成膜裝置的、距圖11及圖13所示的基板的中心軸的距離與成膜速度的關係的圖表。 圖15為表示第二實施形態的成膜裝置的流體導入裝置的整流板的概略俯視圖。 圖16為表示圖15中的符號XVI所示的位置的圖。 圖17為圖15中的XVII-XVII截面圖。 圖18為表示將第二實施形態的整流板相對於腔室的基準位置偏離X+1.5 mm而配置的成膜裝置的、旋轉的基板上的任意時刻的成膜速度分佈的概略立體圖。 圖19為表示將第二實施形態的整流板相對於腔室的基準位置偏離X-1.5 mm而配置的成膜裝置的、旋轉的基板上的任意時刻的成膜速度分佈的概略立體圖。 圖20為表示將第二實施形態的整流板相對於腔室的基準位置偏離地配置的成膜裝置中的、距基板的中心軸的距離與經時間平均的成膜速度的關係的圖表。 圖21為表示第二實施形態的第一變形例的整流板的概略俯視圖。 圖22為表示將第二實施形態的第一變形例的整流板相對於腔室的基準位置偏離地配置的成膜裝置中的、距基板的中心軸的距離與成膜速度的關係的圖表。 圖23為求出自基板的中心至邊緣為止的成膜速度之差量的數式。 圖24為表示第二實施形態的第二變形例的整流板的概略俯視圖。 圖25為表示將圖24所示的整流板安裝於腔室的基準位置的狀態下對基板進行成膜時,於整流板的正下方的腔室內未產生氣體的上升氣流的等高線圖。 圖26為表示將第二實施形態的圖15所示的整流板安裝於腔室的基準位置的狀態下對基板進行成膜時,整流板的正下方的腔室內的、氣體的上升氣流的等高線圖。 圖27為表示比較例的整流板的概略俯視圖。 圖28為表示將圖27所示的整流板安裝於腔室的基準位置的狀態下對基板進行成膜時,整流板的正下方的腔室內的、氣體的上升氣流的等高線圖。
24:噴嘴
222:整流板
246:沖洗氣體流路
252:第一貫通孔
254:第二貫通孔
X:軸
Z1:第一區
Z2:第二區
Z3:第三區

Claims (8)

  1. 一種流體導入裝置,包括:噴射流體的多個噴嘴;以及整流板,與所述多個噴嘴相向地設置,對所述流體進行整流,其中所述整流板包括:多個高流路阻力區域;以及低流路阻力區域,分別包圍所述多個高流路阻力區域,形成有使所述流體通過的多個第一貫通孔,流路阻力小於所述高流路阻力區域,其中所述多個噴嘴分別與所述多個高流路阻力區域之一各自相向地設置。
  2. 如請求項1所述的流體導入裝置,其中所述高流路阻力區域閉塞。
  3. 如請求項1所述的流體導入裝置,其中於所述高流路阻力區域,形成有開口面積小於所述多個第一貫通孔的、一個或多個第二貫通孔。
  4. 如請求項3所述的流體導入裝置,其中所述高流路阻力區域的開口面積密度小於所述低流路阻力區域的開口面積密度。
  5. 如請求項3所述的流體導入裝置,其中在多個所述高流路阻力區域的每一個中,其形成的多個所述第二貫通孔的個數分別為相同數量。
  6. 如請求項1至請求項5中任一項所述的流體導入裝置,其中所述多個第一貫通孔以既定的間距形成於所述整流板。
  7. 如請求項1至請求項5中任一項所述的流體導入裝置,其中所述整流板為圓盤狀,所述多個第一貫通孔形成於相對於所述整流板的中心而成為點對稱的位置、或者相對於穿過所述整流板的中心的既定的軸而成為線對稱的位置。
  8. 一種成膜裝置,包括:如請求項1所述的流體導入裝置;以及腔室,供所述流體自所述流體導入裝置流入。
TW110140231A 2020-10-30 2021-10-29 流體導入裝置以及成膜裝置 TWI833124B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-182540 2020-10-30
JP2020182540 2020-10-30
JP2021-175156 2021-10-27
JP2021175156A JP2022074059A (ja) 2020-10-30 2021-10-27 整流板、流体導入装置、及び、成膜装置

Publications (2)

Publication Number Publication Date
TW202217056A TW202217056A (zh) 2022-05-01
TWI833124B true TWI833124B (zh) 2024-02-21

Family

ID=78414504

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110140231A TWI833124B (zh) 2020-10-30 2021-10-29 流體導入裝置以及成膜裝置

Country Status (5)

Country Link
US (1) US20220134359A1 (zh)
EP (1) EP3992329A1 (zh)
KR (1) KR20220058463A (zh)
CN (2) CN114438589A (zh)
TW (1) TWI833124B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1061155A1 (en) * 1998-03-06 2000-12-20 Tokyo Electron Limited Vacuum processing apparatus

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4819411B1 (zh) 1966-12-22 1973-06-13
US6402847B1 (en) * 1998-11-27 2002-06-11 Kabushiki Kaisha Toshiba Dry processing apparatus and dry processing method
AU2001247685A1 (en) * 2000-03-30 2001-10-15 Tokyo Electron Limited Method of and apparatus for tunable gas injection in a plasma processing system
US20050223986A1 (en) * 2004-04-12 2005-10-13 Choi Soo Y Gas diffusion shower head design for large area plasma enhanced chemical vapor deposition
US7718030B2 (en) * 2005-09-23 2010-05-18 Tokyo Electron Limited Method and system for controlling radical distribution
TWI354320B (en) * 2006-02-21 2011-12-11 Nuflare Technology Inc Vopor phase deposition apparatus and support table
TWI490366B (zh) * 2009-07-15 2015-07-01 Applied Materials Inc Cvd腔室之流體控制特徵結構
JP2012126968A (ja) 2010-12-16 2012-07-05 Sharp Corp 気相成長装置および気相成長方法
US9440210B2 (en) * 2011-05-11 2016-09-13 Institutt For Energiteknikk Gas distribution arrangement for a fluidized bed
JP6038618B2 (ja) * 2011-12-15 2016-12-07 株式会社ニューフレアテクノロジー 成膜装置および成膜方法
JP2013149513A (ja) 2012-01-20 2013-08-01 Ulvac Japan Ltd プラズマ処理装置
JP6158025B2 (ja) * 2013-10-02 2017-07-05 株式会社ニューフレアテクノロジー 成膜装置及び成膜方法
JP6386901B2 (ja) * 2014-12-17 2018-09-05 株式会社ニューフレアテクノロジー 気相成長装置及び気相成長方法
US10378107B2 (en) * 2015-05-22 2019-08-13 Lam Research Corporation Low volume showerhead with faceplate holes for improved flow uniformity
JP6718730B2 (ja) * 2016-04-19 2020-07-08 株式会社ニューフレアテクノロジー シャワープレート、気相成長装置及び気相成長方法
US10607817B2 (en) * 2016-11-18 2020-03-31 Applied Materials, Inc. Thermal repeatability and in-situ showerhead temperature monitoring
JP2019054164A (ja) * 2017-09-15 2019-04-04 株式会社東芝 シャワーヘッド、処理装置、及びシャワープレート
KR20220164035A (ko) * 2020-05-08 2022-12-12 가부시키가이샤 뉴플레어 테크놀로지 성막 장치 및 플레이트
US20220134362A1 (en) * 2020-11-02 2022-05-05 Changxin Memory Technologies, Inc. Detaching and installing device for gas distribution plate of etching machine, and etching machine
KR20230043056A (ko) * 2021-09-23 2023-03-30 에이에스엠 아이피 홀딩 비.브이. 가스 분배용 시스템 및 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1061155A1 (en) * 1998-03-06 2000-12-20 Tokyo Electron Limited Vacuum processing apparatus

Also Published As

Publication number Publication date
CN114438589A (zh) 2022-05-06
KR20220058463A (ko) 2022-05-09
TW202217056A (zh) 2022-05-01
US20220134359A1 (en) 2022-05-05
CN216585315U (zh) 2022-05-24
EP3992329A1 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
KR102110610B1 (ko) 에지-중심 가스 전달을 갖는 이중 플리넘 축대칭성 샤워헤드
KR101562327B1 (ko) 가스분배판 및 이를 포함하는 기판처리장치
TWI661079B (zh) 成膜裝置
US20160215395A1 (en) Substrate processing apparatus
JPH04348031A (ja) 化学気相成長装置
TWI746222B (zh) 鍍膜設備
TWI833124B (zh) 流體導入裝置以及成膜裝置
US10745824B2 (en) Film forming apparatus
KR101324207B1 (ko) 가스 분사 장치 및 이를 포함하는 기판 처리 장치
TWI584392B (zh) 基板處理設備
CN112323043A (zh) 一种气体分配器以及原子层沉积反应设备
JPH05226268A (ja) 高効率、高均一付着用cvd装置
JP2022074059A (ja) 整流板、流体導入装置、及び、成膜装置
KR100925061B1 (ko) 화학 기상 증착 장치용 방산노즐
KR20210073235A (ko) 기판 지지대, 기판 처리 장치 및 기판 처리 방법
US10538843B2 (en) Vaporizer and thin film deposition apparatus including the same
CN111161992B (zh) 半导体设备的反应腔冷却装置
TWI817102B (zh) 具有局部化的流動控制的面板
KR102588171B1 (ko) 회전 유지 장치 및 그것을 구비하는 기판 처리 장치
JP2018093148A (ja) 給排気構造
KR102632876B1 (ko) 기판 처리 장치
KR20090058769A (ko) 화학 기상 증착 장치
TWI755196B (zh) 基板支撐架及基板處理裝置
JP2022043971A (ja) 回転保持装置およびそれを備える基板処理装置
TWM643164U (zh) 氣體噴淋頭及等離子體處理裝置