TWI831222B - Test circuit for controlling stress voltage and semiconductor memory device - Google Patents

Test circuit for controlling stress voltage and semiconductor memory device Download PDF

Info

Publication number
TWI831222B
TWI831222B TW111119416A TW111119416A TWI831222B TW I831222 B TWI831222 B TW I831222B TW 111119416 A TW111119416 A TW 111119416A TW 111119416 A TW111119416 A TW 111119416A TW I831222 B TWI831222 B TW I831222B
Authority
TW
Taiwan
Prior art keywords
voltage
circuit
transistor
power supply
controlling
Prior art date
Application number
TW111119416A
Other languages
Chinese (zh)
Other versions
TW202346882A (en
Inventor
大平信裕
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW111119416A priority Critical patent/TWI831222B/en
Publication of TW202346882A publication Critical patent/TW202346882A/en
Application granted granted Critical
Publication of TWI831222B publication Critical patent/TWI831222B/en

Links

Landscapes

  • Dram (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

The present invention provides a test circuit for contolling stress voltage including a control circuit. In a test mode, the control circuit controls a supply voltage which is supplied to a precharge circuit including transistors in a semiconductor memory device. The control circuit controls the supply voltage according to a voltage of an external power supply and a threshold voltage of the transistors included in the precharge circuit.

Description

用以控制壓力電壓的測試電路以及半導體記 憶裝置 Test circuits and semiconductor records for controlling pressure voltages memory device

本發明係有關用以控制壓力電壓的測試電路以及半導體記憶裝置。 The present invention relates to a test circuit for controlling pressure voltage and a semiconductor memory device.

傳統上,在例如動態隨機記憶體(DRAM)或靜態隨機存取記憶體(SRAM)等之半導體記憶裝置的封裝工程前後,實施燒機測試(Burn-In Test)以進行積體電路之信賴性檢查。具體而言,燒機測試例如是藉由長時間將施加於位元線之預充電電壓設定為外部電源之電壓或更高的高電壓(簡稱為壓力電壓)後,再判別集成於晶片之記憶胞之良莠。為此,在測試裝置或半導體記憶裝置設置壓力測試電路,用以供給燒機用之壓力電壓(例如:特開平5-325547號公報)。 Traditionally, before and after the packaging process of semiconductor memory devices such as dynamic random access memory (DRAM) or static random access memory (SRAM), a burn-in test is implemented to evaluate the reliability of the integrated circuit. Check. Specifically, the burn-in test is, for example, by setting the precharge voltage applied to the bit line to the voltage of the external power supply or a higher high voltage (referred to as the pressure voltage) for a long time, and then judging the memory integrated in the chip. Good and bad cells. To this end, a pressure test circuit is provided in a test device or a semiconductor memory device to supply a pressure voltage for burning (for example, Japanese Patent Application Laid-Open No. 5-325547).

另外,習知的位元線的預充電電路包括一個以上的電晶體(例如:N型或P型之金屬氧化物半導場效電晶體(Metal-Oxide-Semiconductor Field Effect Transistor,MOSFET) 等),且被配置為在燒機測試中,藉由使一個以上的電晶體成為導通狀態,將所輸出的位元線之預充電電壓設定為壓力電壓。 In addition, the conventional precharge circuit of the bit line includes more than one transistor (for example, N-type or P-type Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)) etc.), and is configured to set the precharge voltage of the output bit line to the pressure voltage by turning more than one transistor into a conductive state during the burn-in test.

然而,由於位元線的預充電電路所供應的壓力電壓的大小取決於其中的電晶體之閾值電壓及反向偏壓效應,有可能發生實際供應的壓力電壓小於預期的壓力電壓的情況。如此一來,恐怕難以在燒機測試中供給充分的壓力電壓。 However, since the magnitude of the pressure voltage supplied by the precharge circuit of the bit line depends on the threshold voltage of the transistor and the reverse bias effect, the actual supplied pressure voltage may be smaller than the expected pressure voltage. As a result, it may be difficult to provide sufficient pressure voltage during the burn-in test.

有鑑於上述課題,本發明的目的為提供可以供給適當之壓力電壓的用以控制壓力電壓的測試電路以及半導體記憶裝置。 In view of the above problems, an object of the present invention is to provide a test circuit and a semiconductor memory device for controlling the pressure voltage that can supply an appropriate pressure voltage.

本發明提供一種用以控制壓力電壓的測試電路,包括:控制電路,在測試模式中,控制供給電壓,該供給電壓為被供給到半導體記憶裝置內的包含電晶體之預充電電路的電壓;其中,前述控制電路,基於外部電源之電壓,以及包含於前述預充電電路之電晶體的閾值電壓,控制前述供給電壓。 The present invention provides a test circuit for controlling pressure voltage, including: a control circuit that controls a supply voltage in a test mode, the supply voltage being a voltage supplied to a precharge circuit including a transistor in a semiconductor memory device; wherein , the aforementioned control circuit controls the aforementioned supply voltage based on the voltage of the external power supply and the threshold voltage of the transistor included in the aforementioned precharge circuit.

根據上述發明,因為可基於外部電源之電壓,及/或基於預充電電路之電晶體的閾值電壓控制供給電壓,即使在電晶體之閾值電壓發生變化時,也可以在燒機測試中依據該閾值電壓供給充分的供給電壓給預充電電路。藉此,可以供給適當的壓力電壓。 According to the above invention, since the supply voltage can be controlled based on the voltage of the external power supply and/or based on the threshold voltage of the transistor of the precharge circuit, even when the threshold voltage of the transistor changes, the threshold can be used in the burn-in test. Voltage supply provides sufficient supply voltage to the precharge circuit. Thereby, an appropriate pressure voltage can be supplied.

根據上述發明,可以供給適當的壓力電壓給半導體記憶裝置,以對半導體記憶裝置進行信賴性檢查。 According to the above invention, an appropriate pressure voltage can be supplied to the semiconductor memory device to perform a reliability check on the semiconductor memory device.

1:內部電壓調整電路 1: Internal voltage adjustment circuit

10:用以控制壓力電壓的測試電路 10: Test circuit for controlling pressure voltage

11:升壓電路 11: Boost circuit

12:振盪器 12:Oscillator

13:控制電路 13:Control circuit

13a:定電流源 13a: Constant current source

13b、13c、13d:MOSFET 13b, 13c, 13d: MOSFET

13e:比較器 13e: Comparator

20:預充電電路 20: Precharge circuit

21、22、23:N型MOSFET 21, 22, 23: N-type MOSFET

I0、I1:電流 I0, I1: current

BL、/BL:位元線 BL, /BL: bit line

BLEQ:閘電壓 BLEQ: gate voltage

en_CLK:訊號 en_CLK:signal

pump_CLK:時脈訊號 pump_CLK:clock signal

SW:開關 SW: switch

VBBSA:反向偏壓 VBBSA: reverse bias

VDD:外部電源之電壓 VDD: voltage of external power supply

VEQL:供給電壓 VEQL: supply voltage

Vm、Vp:電位 Vm, Vp: potential

VREF:基準電壓 VREF: reference voltage

VSS:低電源電壓 VSS: low supply voltage

第1圖為顯示根據本發明之一實施例之用以控制壓力電壓的測試電路以及半導體記憶裝置之構成例的方塊圖。 FIG. 1 is a block diagram showing a structural example of a test circuit for controlling pressure voltage and a semiconductor memory device according to an embodiment of the present invention.

第2圖為顯示控制電路之構成例的示意圖。 Figure 2 is a schematic diagram showing an example of the configuration of a control circuit.

第3圖為顯示電晶體之閾值電壓之變化的分布圖。 Figure 3 is a distribution diagram showing changes in threshold voltage of a transistor.

第4圖為顯示外部電源之電壓與供給電壓之關係的示意圖。 Figure 4 is a schematic diagram showing the relationship between the voltage of the external power supply and the supply voltage.

如第1圖所示,在本實施例中,半導體記憶裝置包括內部電壓調整電路1、用以控制壓力電壓的測試電路10、開關SW以及預充電電路20。另外,此處,為了簡化說明,未顯示半導體記憶裝置的指令解碼器、記憶胞陣列、輸入輸出介面部(介面接腳等)等習知的構成。 As shown in FIG. 1 , in this embodiment, the semiconductor memory device includes an internal voltage adjustment circuit 1 , a test circuit 10 for controlling the pressure voltage, a switch SW and a precharge circuit 20 . In addition, here, in order to simplify the description, conventional structures such as the instruction decoder, memory cell array, and input/output interface portion (interface pins, etc.) of the semiconductor memory device are not shown.

內部電壓調整電路1被配置為接收外部電源,且基於外部電源之電壓VDD生成內部電壓。另外,內部電壓調整電路1所生成之內部電壓可作為提供至由內部電壓驅動之一個或更多的其他電路(包含預充電電路20)的供給電壓VEQL。內部電壓之位準可以低於外部電源之電壓VDD之位準。於一些實施例中,內部電壓調整電路1也可以包括位準轉換器等其他習知的構成,該位準轉換器依據被供給內部電壓之其他電路轉換內部電壓之位準。 The internal voltage adjustment circuit 1 is configured to receive an external power supply and generate an internal voltage based on the voltage VDD of the external power supply. In addition, the internal voltage generated by the internal voltage adjustment circuit 1 can be used as the supply voltage VEQL provided to one or more other circuits (including the precharge circuit 20 ) driven by the internal voltage. The level of the internal voltage can be lower than the level of the external power supply voltage VDD. In some embodiments, the internal voltage adjustment circuit 1 may also include other conventional components such as a level converter, which converts the level of the internal voltage according to other circuits that are supplied with the internal voltage.

用以控制壓力電壓的測試電路10包括升壓電路11、振盪器12以及控制電路13。 The test circuit 10 for controlling the pressure voltage includes a boost circuit 11, an oscillator 12 and a control circuit 13.

升壓電路11被配置為將所接收的電源電壓進行升壓 以生成供給電壓VEQL。例如,升壓電路11被配置以對外部電源之電壓VDD進行升壓,且將升壓後之電壓作為供給電壓VEQL(在此情況下,VEQL>VDD)而輸出。升壓電路11也可以被配置為利用習知的電荷泵電路。 The boost circuit 11 is configured to boost the received power supply voltage. to generate the supply voltage VEQL. For example, the boost circuit 11 is configured to boost the voltage VDD of the external power supply and output the boosted voltage as the supply voltage VEQL (in this case, VEQL>VDD). The boost circuit 11 may also be configured to utilize a conventional charge pump circuit.

振盪器12被配置為生成用以驅動升壓電路11之時脈訊號pump_CLK。例如,當振盪器12藉由從控制電路13輸出之訊號en_CLK1被活化時,生成時脈訊號pump_CLK至升壓電路11。另外,由於基於時脈訊號pump_CLK之升壓電路11之運作與習知技術相同,在本實施例中省略說明。 The oscillator 12 is configured to generate a clock signal pump_CLK for driving the boost circuit 11 . For example, when the oscillator 12 is activated by the signal en_CLK1 output from the control circuit 13 , the clock signal pump_CLK is generated to the boost circuit 11 . In addition, since the operation of the boost circuit 11 based on the clock signal pump_CLK is the same as that of the conventional technology, the description is omitted in this embodiment.

在燒機測試模式中,控制電路13被配置為控制供給電壓VEQL,該供給電壓VEQL為供給半導體記憶裝置內的包含N型MOSFET 21、22、23之預充電電路20之電壓。此處,燒機測試模式為本發明之「測試模式」之一例。 In the burn-in test mode, the control circuit 13 is configured to control the supply voltage VEQL, which is the voltage supplied to the precharge circuit 20 including the N-type MOSFETs 21, 22, and 23 in the semiconductor memory device. Here, the burn-in test mode is an example of the "test mode" of the present invention.

另外,控制電路13也可以監控從升壓電路11輸出之供給電壓VEQL。詳細而言,控制電路13可藉由控制振盪器12,將由升壓電路11生成之供給電壓VEQL設定為特定位準,從而控制供給電壓VEQL。因此,藉由控制振盪器12、升壓電路11與包含於預充電電路20之N型MOSFET 21、22、23之閾值電壓Vth,可設定供給電壓VEQL為使預充電電路20產生適當的壓力電壓。 In addition, the control circuit 13 may also monitor the supply voltage VEQL output from the boost circuit 11. In detail, the control circuit 13 can control the supply voltage VEQL by controlling the oscillator 12 to set the supply voltage VEQL generated by the boost circuit 11 to a specific level. Therefore, by controlling the threshold voltage Vth of the oscillator 12, the boost circuit 11 and the N-type MOSFETs 21, 22, and 23 included in the precharge circuit 20, the supply voltage VEQL can be set to enable the precharge circuit 20 to generate an appropriate pressure voltage. .

開關SW被配置為一端連接內部電壓調整電路1或用以控制壓力電壓的測試電路10,且另一端連接預充電電路20。例如,當半導體記憶裝置運作於正常運作模式時,開關SW被控制為 一端連接內部電壓調整電路1。因此,在正常運作模式中,供給到預充電電路20的供給電壓VEQL為小於外部電源之電壓VDD的內部電壓。另一方面,當半導體記憶裝置運作於燒機測試模式時,開關SW被控制為一端連接用以控制壓力電壓的測試電路10。因此,在燒機測試模式中,供給到預充電電路20的供給電壓VEQL為大於外部電源之電壓VDD之電壓。 The switch SW is configured such that one end is connected to the internal voltage adjustment circuit 1 or the test circuit 10 for controlling the pressure voltage, and the other end is connected to the precharge circuit 20 . For example, when the semiconductor memory device operates in the normal operating mode, the switch SW is controlled as One end is connected to the internal voltage adjustment circuit 1. Therefore, in the normal operation mode, the supply voltage VEQL supplied to the precharge circuit 20 is an internal voltage smaller than the voltage VDD of the external power supply. On the other hand, when the semiconductor memory device operates in the burn-in test mode, the switch SW is controlled to have one end connected to the test circuit 10 for controlling the pressure voltage. Therefore, in the burn-in test mode, the supply voltage VEQL supplied to the precharge circuit 20 is a voltage greater than the voltage VDD of the external power supply.

在本實施例中,預充電電路20被配置為對耦接至記憶胞陣列(在圖示中省略)之一對互補位元線BL、/BL預充電。因此,在燒機測試中,可以藉由適當的壓力電壓預充電半導體記憶裝置內之位元線BL、/BL。另外,在本實施例中,預充電電路20包括3個N型MOSFET 21、22、23。 In this embodiment, the precharge circuit 20 is configured to precharge a pair of complementary bit lines BL, /BL coupled to a memory cell array (omitted in the illustration). Therefore, during the burn-in test, the bit lines BL and /BL in the semiconductor memory device can be precharged with appropriate pressure voltages. In addition, in this embodiment, the precharge circuit 20 includes three N-type MOSFETs 21, 22, and 23.

在預充電電路20中,N型MOSFET 21、22之汲極連接外部電源之電壓VDD。N型MOSFET 21之源極以及MOSFET 23之汲極連接位元線BL。N型MOSFET 22、23之源極連接位元線/BL。從內部電壓調整電路1或用以控制壓力電壓的測試電路10輸出之供給電壓VEQL作為閘電壓BLEQ,施加到N型MOSFET 21、22之閘極。另外,N型MOSFET 21、22、23被施加相等之反向偏壓VBBSA。此處,N型MOSFET 21為本發明之「第四電晶體」之一例,N型MOSFET 22為本發明之「第五電晶體」之一例,N型MOSFET 23為本發明之「第六電晶體」之一例。另外,位元線BL為本發明之「第一位元線」之一例,位元線/BL為本發明之「第二位元線」之一例。 In the precharge circuit 20, the drain terminals of the N-type MOSFETs 21 and 22 are connected to the voltage VDD of the external power supply. The source of the N-type MOSFET 21 and the drain of the MOSFET 23 are connected to the bit line BL. The sources of N-type MOSFETs 22 and 23 are connected to bit line /BL. The supply voltage VEQL output from the internal voltage adjustment circuit 1 or the test circuit 10 for controlling the pressure voltage is applied to the gates of the N-type MOSFETs 21 and 22 as the gate voltage BLEQ. In addition, N-type MOSFETs 21, 22, and 23 are applied with equal reverse bias voltages VBBSA. Here, N-type MOSFET 21 is an example of the "fourth transistor" of the present invention, N-type MOSFET 22 is an example of the "fifth transistor" of the present invention, and N-type MOSFET 23 is an example of the "sixth transistor" of the present invention. ” an example. In addition, bit line BL is an example of the "first bit line" of the present invention, and bit line /BL is an example of the "second bit line" of the present invention.

另外,在本實施例中,N型MOSFET 21、22、23也可以分別具有相等的尺寸(通道之寬度以及長度)。在此情況下,N型MOSFET 21、22、23各自的增益係數可以相等。 In addition, in this embodiment, the N-type MOSFETs 21, 22, and 23 may also have equal dimensions (width and length of the channel). In this case, the respective gain coefficients of the N-type MOSFETs 21, 22, and 23 may be equal.

另外,一對互補位元線BL、/BL係分別連接至感應放大器(在圖示中省略)。另外,由於在正常運作模式中,對記憶胞陣列(在圖示中省略)內之記憶胞(在圖示中省略)之資料控制以及預充電運作之詳細內容與習知技術相同,在本實施例中省略說明。 In addition, a pair of complementary bit lines BL and /BL are respectively connected to sense amplifiers (omitted in the illustration). In addition, since in the normal operation mode, the details of the data control and precharge operation of the memory cells (omitted in the illustration) in the memory cell array (omitted in the illustration) are the same as those in the conventional technology, in this implementation Explanation is omitted in the example.

如第2圖所示,控制電路13包括、定電流源13a、3個N型MOSFET 13b、13c、13d,以及比較器13e。 As shown in FIG. 2 , the control circuit 13 includes a constant current source 13a, three N-type MOSFETs 13b, 13c, and 13d, and a comparator 13e.

定電流源13a耦接於N型MOSFET 13b之源極與低電源電壓VSS(VSS<VDD、VEQL)之間。 The constant current source 13a is coupled between the source of the N-type MOSFET 13b and the low power supply voltage VSS (VSS<VDD, VEQL).

N型MOSFET 13b之汲極以及閘極連接從升壓電路11輸出之供給電壓VEQL。另外,在本實施例中,與施加在預充電電路20中的N型MOSFET 21、22、23之反向偏壓VBBSA相等的反向偏壓VBBSA,被施加於N型MOSFET 13b。因此,能以N型MOSFET 13b之閾值電壓Vth與預充電電路20之N型MOSFET 21、22、23之閾值電壓Vth相等的狀態,設定供給電壓VEQL。再者,在本實施例中,N型MOSFET 13b也可以具有與預充電電路20之N型MOSFET 21、22、23相等的尺寸(通道之寬度以及長度)。因此,能以N型MOSFET 13b的增益係數與預充電電路20之N型MOSFET 21、22、23的增益係數相等的狀態,設定供給電壓VEQL。N型MOSFET 13b為本發明之「第一電晶體」之一例。 The drain and gate of the N-type MOSFET 13b are connected to the supply voltage VEQL output from the boost circuit 11. In addition, in this embodiment, a reverse bias voltage VBBSA equal to the reverse bias voltage VBBSA applied to the N-type MOSFETs 21, 22, and 23 in the precharge circuit 20 is applied to the N-type MOSFET 13b. Therefore, the supply voltage VEQL can be set in a state where the threshold voltage Vth of the N-type MOSFET 13b is equal to the threshold voltage Vth of the N-type MOSFETs 21, 22, and 23 of the precharge circuit 20. Furthermore, in this embodiment, the N-type MOSFET 13b may also have the same size (channel width and length) as the N-type MOSFETs 21, 22, and 23 of the precharge circuit 20. Therefore, the supply voltage VEQL can be set in a state where the gain coefficient of the N-type MOSFET 13b is equal to the gain coefficient of the N-type MOSFETs 21, 22, and 23 of the precharge circuit 20. The N-type MOSFET 13b is an example of the "first transistor" of the present invention.

N型MOSFET 13c之汲極以及閘極連接外部電源之電壓VDD。N型MOSFET 13c之源極連接N型MOSFET 13d之汲極。低電源電壓VSS作為反向偏壓施加於N型MOSFET 13c。另外,N型MOSFET 13c為本發明之「第二電晶體」之一例。 The drain and gate of the N-type MOSFET 13c are connected to the voltage VDD of the external power supply. The source of N-type MOSFET 13c is connected to the drain of N-type MOSFET 13d. The low power supply voltage VSS is applied to the N-type MOSFET 13c as a reverse bias voltage. In addition, the N-type MOSFET 13c is an example of the "second transistor" of the present invention.

N型MOSFET 13d之閘極連接基準電壓VREF。此處,基準電壓VREF可以藉由基準電壓調整部(在圖示中省略)可調整地生成。基準電壓VREF也可以比外部電源之電壓VDD更低。N型MOSFET 13d之源極連接低電源電壓VSS。低電源電壓VSS作為反向偏壓施加於N型MOSFET 13d。另外,N型MOSFET 13d為本發明之「第三電晶體」之一例。 The gate of the N-type MOSFET 13d is connected to the reference voltage VREF. Here, the reference voltage VREF can be adjustably generated by a reference voltage adjustment unit (omitted in the illustration). The reference voltage VREF can also be lower than the voltage VDD of the external power supply. The source of the N-type MOSFET 13d is connected to the low supply voltage VSS. The low power supply voltage VSS is applied to the N-type MOSFET 13d as a reverse bias voltage. In addition, the N-type MOSFET 13d is an example of the "third transistor" of the present invention.

比較器13e之+端子連接N型MOSFET 13b之源極與定電流源13a之間的連接節點。比較器13e之-端子連接N型MOSFET 13c之源極與N型MOSFET 13d之汲極之間的連接節點。比較器13e輸出用以控制振盪器12之活性化以及非活性化的訊號en_CLK。另外,在本實施例中,振盪器12被配置為在訊號en_CLK為低位準的情況下被活性化,在訊號en_CLK為高位準的情況下被非活性化。 The + terminal of the comparator 13e is connected to the connection node between the source of the N-type MOSFET 13b and the constant current source 13a. The - terminal of the comparator 13e is connected to the connection node between the source of the N-type MOSFET 13c and the drain of the N-type MOSFET 13d. The comparator 13e outputs a signal en_CLK for controlling activation and deactivation of the oscillator 12. In addition, in this embodiment, the oscillator 12 is configured to be activated when the signal en_CLK is at a low level, and to be inactivated when the signal en_CLK is at a high level.

接著說明在本實施例中控制電路13之運作。將流經控制電路13之N型MOSFET 13c以及N型MOSFET 13d之電流設為I1時,I1可以如下所示利用MOSFET之飽和區之電流式表示。 Next, the operation of the control circuit 13 in this embodiment will be described. When the current flowing through the N-type MOSFET 13c and the N-type MOSFET 13d of the control circuit 13 is set to I1, I1 can be expressed using the current formula in the saturation region of the MOSFET as shown below.

[數學式1]

Figure 111119416-A0305-02-0010-2
[Mathematical formula 1]
Figure 111119416-A0305-02-0010-2

另外,在數學式(1)中,β為增益係數,Vm為N型MOSFET13c之源極與N型MOSFET 13d之汲極之間之連接節點的電位,Vth為N型MOSFET 13c、13d之閾值電壓。接著,基於數學式(1),可以表示以下之數學式(2)。 In addition, in the mathematical formula (1), β is the gain coefficient, Vm is the potential of the connection node between the source of the N-type MOSFET 13c and the drain of the N-type MOSFET 13d, and Vth is the threshold voltage of the N-type MOSFETs 13c and 13d. . Next, based on the mathematical formula (1), the following mathematical formula (2) can be expressed.

[數學式2]Vm=VDD-VREF…(2) [Math 2] Vm = VDD - VREF …(2)

接著,將流經控制電路13之N型MOSFET 13b以及定電流源13a之電流設為I0時,I0可以如下所示利用MOSFET之飽和區之電流式表示。 Next, when the current flowing through the N-type MOSFET 13b and the constant current source 13a of the control circuit 13 is set to I0, I0 can be expressed by the current formula of the saturation region of the MOSFET as follows.

Figure 111119416-A0305-02-0010-3
Figure 111119416-A0305-02-0010-3

另外,在數學式(3)中,Vp為N型MOSFET 13b之源極與定電流源13a之間之連接節點的電位,Vth為N型MOSFET 13b之閾值電壓。接著,基於數學式(3),可以表示以下之數學式(4)。 In addition, in the mathematical expression (3), Vp is the potential of the connection node between the source of the N-type MOSFET 13b and the constant current source 13a, and Vth is the threshold voltage of the N-type MOSFET 13b. Next, based on the mathematical formula (3), the following mathematical formula (4) can be expressed.

Figure 111119416-A0305-02-0010-4
Figure 111119416-A0305-02-0010-4

另外,假設Vm與Vp相等時,基於數學式(2)以及數學式(4),可以表示以下之數學式(5)。 In addition, assuming that Vm and Vp are equal, the following mathematical expression (5) can be expressed based on mathematical expression (2) and mathematical expression (4).

[數學式5]

Figure 111119416-A0305-02-0011-5
[Mathematical formula 5]
Figure 111119416-A0305-02-0011-5

再者,基於數學式(5),可以表示以下之數學式(6)。 Furthermore, based on mathematical formula (5), the following mathematical formula (6) can be expressed.

Figure 111119416-A0305-02-0011-6
Figure 111119416-A0305-02-0011-6

如上述之數學式(6)所示,在控制電路13中,隨著外部電源之電壓VDD提升,控制供給電壓VEQL提升。因此,由於可以藉由提升外部電源之電壓VDD提升供給電壓VEQL,變得可以容易地控制供給電壓VEQL。 As shown in the above mathematical formula (6), in the control circuit 13, as the voltage VDD of the external power supply increases, the control supply voltage VEQL increases. Therefore, since the supply voltage VEQL can be raised by raising the voltage VDD of the external power supply, the supply voltage VEQL can be easily controlled.

另外,如上述之數學式(6)所示,在控制電路13中,隨著(與預充電電路20之N型MOSFET 21、22、23之閾值電壓Vth相等之)N型MOSFET 13b之閾值電壓Vth提升,可控制供給電壓VEQL提升。因此,由於可以隨著預充電電路20之N型MOSFET 21、22、23之閾值電壓Vth的提升來提升供給電壓VEQL,因此可以依據閾值電壓Vth來控制預充電電路20供給充分之壓力電壓。 In addition, as shown in the above mathematical formula (6), in the control circuit 13, the threshold voltage of the N-type MOSFET 13b (which is equal to the threshold voltage Vth of the N-type MOSFETs 21, 22, and 23 of the precharge circuit 20) As Vth increases, the supply voltage VEQL can be controlled to increase. Therefore, since the supply voltage VEQL can be increased as the threshold voltage Vth of the N-type MOSFETs 21, 22, and 23 of the precharge circuit 20 increases, the precharge circuit 20 can be controlled to supply sufficient pressure voltage according to the threshold voltage Vth.

再者,如上述之數學式(6)所示,在控制電路13中,可以藉由調整基準電壓VREF,調整供給電壓VEQL。 Furthermore, as shown in the above mathematical formula (6), in the control circuit 13, the supply voltage VEQL can be adjusted by adjusting the reference voltage VREF.

另外,在從升壓電路11輸出之供給電壓VEQL比數學式(6)之右邊更小的情況下,從比較器13e輸出低位準之訊號en_CLK。另一方面,在從升壓電路11輸出之供給電壓VEQL比數 學式(6)之右邊更大或相等的情況下,從比較器13e輸出高位準之訊號en_CLK。 In addition, when the supply voltage VEQL output from the boost circuit 11 is smaller than the right side of the mathematical expression (6), a low-level signal en_CLK is output from the comparator 13e. On the other hand, when the supply voltage VEQL output from the boosting circuit 11 is When the right-hand side of equation (6) is greater or equal, a high-level signal en_CLK is output from the comparator 13e.

另外,MOSFET之閾值電壓Vth之變化,一般而言,大多遵循如第3圖所示之標準常態分佈。此處,標準差σ變得比0更大時,包含於該標準差σ之MOSFET之閾值電壓Vth,變得比標準(σ±0)之MOSFET之閾值電壓Vth更高。在此情況下,MOSFET之飽和電流變低,回應時間也變慢。因此,在本實施例中,將包含標準差σ=+3之MOSFET稱為低速MOSFET。另一方面,標準差σ變得比0更小時,包含於該標準差σ之MOSFET之閾值電壓Vth,變得比標準(σ±0)之MOSFET之閾值電壓Vth更低。在此情況下,MOSFET之飽和電流變高,回應時間也變快。因此,在本實施例中,將包含標準差σ=-3之MOSFET稱為高速MOSFET。 In addition, the changes in the threshold voltage Vth of the MOSFET generally follow the standard normal distribution as shown in Figure 3. Here, when the standard deviation σ becomes larger than 0, the threshold voltage Vth of the MOSFET included in the standard deviation σ becomes higher than the threshold voltage Vth of the MOSFET of the standard (σ±0). In this case, the saturation current of the MOSFET becomes lower and the response time becomes slower. Therefore, in this embodiment, a MOSFET having a standard deviation σ=+3 is called a low-speed MOSFET. On the other hand, when the standard deviation σ becomes smaller than 0, the threshold voltage Vth of the MOSFET included in the standard deviation σ becomes lower than the threshold voltage Vth of the MOSFET of the standard (σ±0). In this case, the saturation current of the MOSFET becomes higher and the response time becomes faster. Therefore, in this embodiment, a MOSFET with a standard deviation of σ=-3 is called a high-speed MOSFET.

如第4圖所示,不論是高速MOSFET、標準MOSFET以及低速MOSFET之供給電壓VEQL,均與外部電源之電壓VDD呈正比例變化。另外,在外部電源之電壓VDD相等(不變)的情況下,隨著閾值電壓Vth降低(即隨著MOSFET變得高速),可以降低供給電壓VEQL。因此,可以依據預充電電路20中的MOSFET之閾值電壓Vth之變化,提供適當的壓力電壓。 As shown in Figure 4, the supply voltage VEQL of high-speed MOSFET, standard MOSFET and low-speed MOSFET changes in proportion to the voltage VDD of the external power supply. In addition, when the voltage VDD of the external power supply is equal (unchanged), as the threshold voltage Vth decreases (that is, as the MOSFET becomes high-speed), the supply voltage VEQL can be reduced. Therefore, an appropriate pressure voltage can be provided according to the change of the threshold voltage Vth of the MOSFET in the precharge circuit 20 .

如上所述,根據本實施例之用以控制壓力電壓的測試電路10以及半導體記憶裝置,由於基於外部電源之電壓VDD,及/或預充電電路20之N型MOSFET 21、22、23之閾值電壓Vth 來控制供給電壓VEQL,即使在N型MOSFET 21、22、23之閾值電壓Vth發生變化的情況下,仍可在燒機測試中,依據該閾值電壓Vth的變化對預充電電路20供給充分的供給電壓。 As mentioned above, according to the test circuit 10 and the semiconductor memory device for controlling the pressure voltage of this embodiment, due to the voltage VDD of the external power supply and/or the threshold voltage of the N-type MOSFETs 21, 22, and 23 of the precharge circuit 20 vth To control the supply voltage VEQL, even when the threshold voltage Vth of the N-type MOSFETs 21, 22, and 23 changes, sufficient supply can still be provided to the precharge circuit 20 according to the change of the threshold voltage Vth during the burn-in test. voltage.

另外,根據本實施例之用以控制壓力電壓的測試電路10以及半導體記憶裝置,供給電壓VEQL基於外部電源之電壓VDD,以及預充電電路20之N型MOSFET 21、22、23之閾值電壓Vth而產生,因此藉由控制振盪器12以及升壓電路11可設定供給電壓VEQL,使得接受供給電壓VEQL的預充電電路20可以提供適當的壓力電壓。 In addition, according to the test circuit 10 and the semiconductor memory device for controlling the pressure voltage of this embodiment, the supply voltage VEQL is based on the voltage VDD of the external power supply and the threshold voltage Vth of the N-type MOSFETs 21, 22, and 23 of the precharge circuit 20. Therefore, the supply voltage VEQL can be set by controlling the oscillator 12 and the boost circuit 11 so that the precharge circuit 20 that receives the supply voltage VEQL can provide an appropriate pressure voltage.

再者,根據本實施型態之用以控制壓力電壓的測試電路10,以及半導體記憶裝置,可以控制振盪器12以及升壓電路11基於外部電源之電壓VDD,以及包含於電壓被供給部20之N型MOSFET 21、22、23之閾值電壓Vth設定供給電壓VEQL。 Furthermore, according to the test circuit 10 for controlling the pressure voltage and the semiconductor memory device of this embodiment, the oscillator 12 and the boost circuit 11 can be controlled based on the voltage VDD of the external power supply and the voltage included in the voltage supply part 20 The threshold voltage Vth of the N-type MOSFETs 21, 22, and 23 sets the supply voltage VEQL.

再者,根據本實施例之用以控制壓力電壓的測試電路10及半導體記憶裝置,可以藉由預充電電路20預充電一對互補位元線BL、/BL。 Furthermore, according to the test circuit 10 and the semiconductor memory device for controlling the pressure voltage of this embodiment, a pair of complementary bit lines BL and /BL can be precharged through the precharge circuit 20 .

以上說明之各實施例,係是為了使本發明容易理解而記載,上述記載並非用以限制本發明。因此,上述各實施例所揭露之各元件,目的為包含屬於本發明之技術範圍內之所有設計變更或均等物。 Each of the embodiments described above is described to make the present invention easier to understand, and the above description is not intended to limit the present invention. Therefore, each element disclosed in the above embodiments is intended to include all design changes or equivalents that fall within the technical scope of the present invention.

例如,在上述實施例中,雖然以用以控制壓力電壓的測試電路10被設置於DRAM的情況作為一例進行說明,本發明 不限於此情況。例如,用以控制壓力電壓的測試電路10也可以被設置於SRAM、快閃記憶體或其他半導體記憶裝置。 For example, in the above-mentioned embodiment, the case where the test circuit 10 for controlling the pressure voltage is provided in the DRAM has been described as an example. Not limited to this case. For example, the test circuit 10 for controlling the stress voltage can also be provided in SRAM, flash memory or other semiconductor memory devices.

另外,在上述實施例中,雖然以控制電路13包括3個N型MOSFET 13b、13c、13d的情況作為一例進行說明,本發明不限於此。例如,控制電路13也可以被配置為將3個N型MOSFET 13b、13c、13d置換為3個P型MOSFET的情況。 In addition, in the above-mentioned embodiment, although the case where the control circuit 13 includes three N-type MOSFETs 13b, 13c, and 13d is described as an example, the present invention is not limited to this. For example, the control circuit 13 may be configured to replace three N-type MOSFETs 13b, 13c, and 13d with three P-type MOSFETs.

再者,在上述實施例中,雖然以預充電電路20被配置為包括3個N型MOSFET 21、22、23的情況作為一例進行說明,本發明不限於此。例如,預充電電路20也可以被配置為將3個N型MOSFET 21、22、23置換為3個P型MOSFET的情況。 Furthermore, in the above-mentioned embodiment, although the case where the precharge circuit 20 is configured to include three N-type MOSFETs 21, 22, and 23 has been described as an example, the present invention is not limited to this. For example, the precharge circuit 20 may be configured to replace three N-type MOSFETs 21, 22, and 23 with three P-type MOSFETs.

再者,在上述實施例中,雖然以預充電電路20被配置為預充電一對互補位元線BL、/BL的情況作為一例進行說明,本發明不限於此。例如,預充電電路20也可以被配置為預充電一對字元線或IO線(本地IO線/主IO線)等,也可以被配置為預充電相鄰之位元線或相鄰之字元線等。 Furthermore, in the above-mentioned embodiment, although the case where the precharge circuit 20 is configured to precharge a pair of complementary bit lines BL and /BL is described as an example, the present invention is not limited thereto. For example, the precharge circuit 20 may also be configured to precharge a pair of word lines or IO lines (local IO lines/main IO lines), etc., or may be configured to precharge adjacent bit lines or adjacent zigzag lines. Yuanxian et al.

另外,第1圖所示之用以控制壓力電壓的測試電路10、預充電電路20以及第2圖所示之控制電路13僅為一例,可以被適宜地變更,也可以採用習知的構成或其他各種構成。 In addition, the test circuit 10 for controlling the pressure voltage, the precharge circuit 20 and the control circuit 13 shown in FIG. 2 shown in FIG. 1 are only examples and can be appropriately changed, or a conventional structure or a conventional configuration can be adopted. Various other compositions.

13:控制電路 13:Control circuit

13a:定電流源 13a: Constant current source

13b、13c、13d:MOSFET 13b, 13c, 13d: MOSFET

13e:比較器 13e: Comparator

en_CLK:訊號 en_CLK:signal

I0、I1:電流 I0, I1: current

VBBSA:反向偏壓 VBBSA: reverse bias

VDD:外部電源之電壓 VDD: voltage of external power supply

Vm、Vp:電位 Vm, Vp: potential

VEQL:供給電壓 VEQL: supply voltage

VREF:基準電壓 VREF: reference voltage

VSS:低電源電壓 VSS: low supply voltage

Claims (9)

一種用以控制壓力電壓的測試電路,包括:升壓電路,將外部電源之電壓升壓並生成供給電壓;振盪器,生成用以驅動該升壓電路之時脈訊號;以及控制電路,耦接於該升壓電路與該振盪器之間,該控制電路包括耦接至該供給電壓的第一電晶體,以及耦接至該外部電源之電壓的第二電晶體,該控制電路被配置為在測試模式中輸出用以控制該振盪器的訊號,藉以控制在該測試模式中被供給到半導體記憶裝置內的包含電晶體之預充電電路的電壓;其中,該控制電路基於該外部電源之電壓,以及包含於該預充電電路之電晶體的閾值電壓,控制該電壓;其中,該控制電路藉由控制該振盪器將由該升壓電路生成之該供給電壓設定為特定位準,以控制該電壓。 A test circuit for controlling pressure voltage, including: a boost circuit that boosts the voltage of an external power supply and generates a supply voltage; an oscillator that generates a clock signal for driving the boost circuit; and a control circuit that is coupled Between the boost circuit and the oscillator, the control circuit includes a first transistor coupled to the supply voltage, and a second transistor coupled to the voltage of the external power supply, the control circuit being configured to A signal for controlling the oscillator is output in the test mode to control a voltage supplied to a precharge circuit including a transistor in the semiconductor memory device in the test mode; wherein the control circuit is based on the voltage of the external power supply, And the threshold voltage of the transistor included in the precharge circuit controls the voltage; wherein the control circuit controls the voltage by controlling the oscillator to set the supply voltage generated by the boost circuit to a specific level. 如請求項1之用以控制壓力電壓的測試電路,其中,該預充電電路被配置為預充電半導體記憶裝置內之位元線。 A test circuit for controlling a stress voltage as claimed in claim 1, wherein the precharge circuit is configured to precharge bit lines in a semiconductor memory device. 如請求項1之用以控制壓力電壓的測試電路,其中,隨著該外部電源之電壓提升,該控制電路控制該電壓提升。 A test circuit for controlling pressure voltage as claimed in claim 1, wherein as the voltage of the external power supply increases, the control circuit controls the voltage increase. 如請求項1之用以控制壓力電壓的測試電路,其中,隨著該閾值電壓提升,該控制電路控制該電壓提升。 A test circuit for controlling a pressure voltage as claimed in claim 1, wherein as the threshold voltage increases, the control circuit controls the voltage to increase. 如請求項1之用以控制壓力電壓的測試電路,其中,該控制電路更包括:定電流源,其中該第一電晶體連接於該供給電壓與該定電流源 之間;第三電晶體,連接於該第二電晶體與低電源電壓之間;以及比較器,包含第一輸入端子以及第二輸入端子,該第一輸入端子連接該第一電晶體與該定電流源之間的節點,該第二輸入端子連接該第二電晶體與該第三電晶體之間的節點,基於分別輸入該第一輸入端子以及該第二輸入端子的訊號,輸出用以控制該振盪器的該訊號。 The test circuit for controlling pressure voltage as claimed in claim 1, wherein the control circuit further includes: a constant current source, wherein the first transistor is connected to the supply voltage and the constant current source. between; a third transistor connected between the second transistor and the low power supply voltage; and a comparator including a first input terminal and a second input terminal, the first input terminal connecting the first transistor and the low power supply voltage. The node between the constant current sources, the second input terminal is connected to the node between the second transistor and the third transistor, based on the signals respectively input to the first input terminal and the second input terminal, the output is used to The signal that controls the oscillator. 如請求項1之用以控制壓力電壓的測試電路,其中,該第一電晶體被施加反向偏壓,該反向偏壓與施加在該預充電電路之電晶體上的反向偏壓相等。 The test circuit for controlling the pressure voltage of claim 1, wherein the first transistor is applied with a reverse bias voltage, and the reverse bias voltage is equal to the reverse bias voltage applied to the transistor of the precharge circuit. . 如請求項1或6之用以控制壓力電壓的測試電路,其中,該第一電晶體具有與該預充電電路之電晶體相等的尺寸。 The test circuit for controlling pressure voltage as claimed in claim 1 or 6, wherein the first transistor has the same size as the transistor of the precharge circuit. 如請求項2至6中任一項之用以控制壓力電壓的測試電路,其中:該預充電電路包括:第四電晶體,連接於該外部電源之電壓與該半導體記憶裝置內之第一位元線之間;第五電晶體,連接於該外部電源之電壓與該半導體記憶裝置內之第二位元線之間;及第六電晶體,連接於該第一位元線與該第二位元線之間。 The test circuit for controlling pressure voltage according to any one of claims 2 to 6, wherein: the precharge circuit includes: a fourth transistor connected to the voltage of the external power supply and the first bit in the semiconductor memory device between the bit lines; the fifth transistor is connected between the voltage of the external power supply and the second bit line in the semiconductor memory device; and the sixth transistor is connected between the first bit line and the second bit line. between bit lines. 一種半導體記憶裝置,包括:請求項1至8中任一項之用以控制壓力電壓的測試電路; 該預充電電路,於該半導體記憶裝置運作於該測試模式時根據該供給電壓產生壓力電壓;內部電壓調整電路,被配置為接收該外部電源,且基於該外部電源之電壓生成內部電壓;及開關,被配置為一端連接該內部電壓調整電路或該用以控制壓力電壓的測試電路,且另一端連接該預充電電路,其中,當運作於該測試模式時,該開關被控制為連接該用以控制壓力電壓的測試電路。 A semiconductor memory device, including: a test circuit for controlling pressure voltage according to any one of claims 1 to 8; The precharge circuit generates a pressure voltage based on the supply voltage when the semiconductor memory device operates in the test mode; the internal voltage adjustment circuit is configured to receive the external power supply and generate an internal voltage based on the voltage of the external power supply; and the switch , is configured such that one end is connected to the internal voltage adjustment circuit or the test circuit for controlling the pressure voltage, and the other end is connected to the precharge circuit, wherein, when operating in the test mode, the switch is controlled to be connected to the Test circuit for controlling pressure voltage.
TW111119416A 2022-05-25 2022-05-25 Test circuit for controlling stress voltage and semiconductor memory device TWI831222B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111119416A TWI831222B (en) 2022-05-25 2022-05-25 Test circuit for controlling stress voltage and semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111119416A TWI831222B (en) 2022-05-25 2022-05-25 Test circuit for controlling stress voltage and semiconductor memory device

Publications (2)

Publication Number Publication Date
TW202346882A TW202346882A (en) 2023-12-01
TWI831222B true TWI831222B (en) 2024-02-01

Family

ID=90039314

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111119416A TWI831222B (en) 2022-05-25 2022-05-25 Test circuit for controlling stress voltage and semiconductor memory device

Country Status (1)

Country Link
TW (1) TWI831222B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031773A (en) * 1998-12-18 2000-02-29 Stmicroelectronics, Inc. Method for stress testing the memory cell oxide of a DRAM capacitor
TW428103B (en) * 1998-05-25 2001-04-01 Hyundai Electronics Ind A circuit and method for fully on-chip wafer level burn-in test
US7054200B2 (en) * 1999-11-05 2006-05-30 Hitachi, Ltd. Semiconductor device
TW201530547A (en) * 2014-01-20 2015-08-01 Winbond Electronics Corp Flash memory apparatus and data reading method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW428103B (en) * 1998-05-25 2001-04-01 Hyundai Electronics Ind A circuit and method for fully on-chip wafer level burn-in test
US6031773A (en) * 1998-12-18 2000-02-29 Stmicroelectronics, Inc. Method for stress testing the memory cell oxide of a DRAM capacitor
US7054200B2 (en) * 1999-11-05 2006-05-30 Hitachi, Ltd. Semiconductor device
TW201530547A (en) * 2014-01-20 2015-08-01 Winbond Electronics Corp Flash memory apparatus and data reading method thereof

Also Published As

Publication number Publication date
TW202346882A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
KR0166402B1 (en) Semiconductor integrated circuit
US8085085B1 (en) Substrate bias feedback scheme to reduce chip leakage power
KR910005599B1 (en) Power supply voltage converting circuit of high density semiconductor memory device
US20110069574A1 (en) Semiconductor memory device
US20100290300A1 (en) Semiconductor integrated device
GB2258329A (en) Sense amplifier control circuit of a semiconductor memory device
JP3536515B2 (en) Semiconductor storage device
US6628162B2 (en) Semiconductor integrated circuit
US7859135B2 (en) Internal power supply circuit having a cascode current mirror circuit
JP3526100B2 (en) Mode setting circuit
TWI831222B (en) Test circuit for controlling stress voltage and semiconductor memory device
US6222781B1 (en) Semiconductor integrated circuit device capable of externally applying power supply potential to internal circuit while restricting noise
JP7268226B1 (en) Stress test circuit and semiconductor memory device
KR102681285B1 (en) Stress test circuit and semiconductor memory device
US7084675B2 (en) Circuit and method of generating a boosted voltage
US5771198A (en) Source voltage generating circuit in semiconductor memory
CN112204495B (en) System and method for initializing a bandgap circuit
KR20240002068A (en) Stress test circuit and semiconductor memory device
KR950000533B1 (en) Data output buffer
JP3677322B2 (en) Internal power circuit
KR100282761B1 (en) Semiconductor memory device with I / O clamp circuit
JP3224712B2 (en) Logic &amp; level conversion circuit and semiconductor device
KR100850276B1 (en) Internal voltage generating circuit for use in semiconductor device
JPH0335493A (en) Dynamic semiconductor memory device
KR940009249B1 (en) Boosting compensation circuit of the semiconductor memory device