TWI830864B - Thickness measurement of substrate using color metrology - Google Patents

Thickness measurement of substrate using color metrology Download PDF

Info

Publication number
TWI830864B
TWI830864B TW109103130A TW109103130A TWI830864B TW I830864 B TWI830864 B TW I830864B TW 109103130 A TW109103130 A TW 109103130A TW 109103130 A TW109103130 A TW 109103130A TW I830864 B TWI830864 B TW I830864B
Authority
TW
Taiwan
Prior art keywords
color
substrate
color image
image
angle
Prior art date
Application number
TW109103130A
Other languages
Chinese (zh)
Other versions
TW202042965A (en
Inventor
多明尼克J 班維紐
柏格斯勞A 史威克
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/388,777 external-priority patent/US11557048B2/en
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202042965A publication Critical patent/TW202042965A/en
Application granted granted Critical
Publication of TWI830864B publication Critical patent/TWI830864B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

A system for obtaining a measurement representative of a thickness of a layer on a substrate includes a support to hold a substrate, an optical assembly to capture two color images with light impinging the substrate at different angles of incidence, and a controller. The controller is configured to store a function that provides a value representative of a thickness as a function of position along a predetermined path in a coordinate space of at least four dimensions. For a pixel in the two color images, the controller determines a coordinate in the coordinate space from the color data, determines a position of a point on the predetermined path that is closest to the coordinate, and calculates a value representative of a thickness from the function and the position of the point on the predetermined path.

Description

使用色彩度量術進行的基板的厚度測量Thickness measurement of substrate using colorimetry

本揭示案係關於光學度量術,例如,用以偵測基板上之層的厚度。 The present disclosure relates to optical metrology, for example, used to detect the thickness of layers on a substrate.

通常藉由將導電層、半導體層或絕緣層按順序沉積在矽晶圓上而在基板上形成積體電路。一個製造步驟涉及在非平面的表面之上沉積填料層且使填料層平坦化。對於某些應用而言,平坦化填料層直至暴露了圖案化之層的頂表面為止。舉例而言,可在圖案化之絕緣層上沉積導電填料層以填充絕緣層中之溝槽或孔洞。在平坦化之後,剩餘在絕緣層之凸起圖案之間的金屬層之多個部分形成介層孔、插塞及接線,其提供基板上之薄膜電路之間的導電路徑。對於其他應用而言,在由其他層提供之下伏拓撲之上沉積填料層,且平坦化填充層直至保留了預定厚度為止。舉例而言,介電填料層可沉積在經圖案化之金屬層之上,且經圖案化以提供金屬區域之間的絕緣並提供平坦表面以用於進一步的光微影。 Integrated circuits are typically formed on a substrate by sequentially depositing conductive, semiconductor, or insulating layers on a silicon wafer. One fabrication step involves depositing and planarizing a filler layer over a non-planar surface. For some applications, the filler layer is planarized until the top surface of the patterned layer is exposed. For example, a conductive filler layer can be deposited on a patterned insulating layer to fill trenches or holes in the insulating layer. After planarization, portions of the metal layer remaining between the raised patterns of the insulating layer form vias, plugs, and wires that provide conductive paths between thin film circuits on the substrate. For other applications, the filler layer is deposited over the underlying topology provided by the other layers, and the filler layer is planarized until a predetermined thickness remains. For example, a dielectric filler layer can be deposited over a patterned metal layer and patterned to provide insulation between metal regions and provide a flat surface for further photolithography.

化學機械研磨(chemical mechanical polishing;CMP)為一種公認的平坦化方法。此平坦化方法通常需要將基板安裝在載體或研磨頭上。通常將基板之已暴露表面放置成抵靠旋轉研磨墊。承載頭在基板上提供可控負載以將基板推向研磨墊。通常將磨蝕研磨漿料供應至研磨墊之表面。Chemical mechanical polishing (CMP) is a recognized planarization method. This planarization method typically requires the substrate to be mounted on a carrier or grinding head. The exposed surface of the substrate is typically placed against a rotating polishing pad. The carrier head provides a controlled load on the substrate to push the substrate toward the polishing pad. An abrasive slurry is typically supplied to the surface of the polishing pad.

漿料分佈、研磨墊條件、研磨墊與基板之間的相對速度、基板上之負載的變化可能導致材料去除速率的變化。此些變化以及基板層之初始厚度的變化導致達到研磨端點所需時間的變化。因此,僅根據研磨時間來決定研磨端點可能導致基板之過度研磨或研磨不足。Changes in slurry distribution, polishing pad conditions, relative velocity between polishing pad and substrate, and load on the substrate may cause changes in material removal rate. These changes, along with changes in the initial thickness of the substrate layer, result in changes in the time required to reach the grinding endpoint. Therefore, determining the polishing endpoint solely based on polishing time may result in over-polishing or under-polishing of the substrate.

各種光學度量術系統(例如,光譜儀或橢圓儀)可用以(例如)在內嵌的或單獨的度量站處量測基板層在研磨前及研磨後之厚度。另外,可使用各種原位監控技術(諸如,單色光學或渦流監控)來偵測研磨端點。Various optical metrology systems (eg, spectrometers or ellipsometers) can be used to measure the thickness of substrate layers before and after polishing, for example, at an inline or separate metrology station. Additionally, various in-situ monitoring techniques such as monochromatic optical or eddy current monitoring can be used to detect grinding endpoints.

在一個態樣中,一種用於獲得代表基板上之層的厚度之量測值的系統包括:支撐件,該支撐件用以固持用於積體電路製造之基板;光學總成,該光學總成用以藉由光以第一入射角照射基板來俘獲基板之由支撐件固持的至少一部分之第一色彩影像,及藉由光以不同的第二入射角照射基板來俘獲基板之由支撐件固持的該至少一部分之第二色彩影像;以及控制器。控制器經配置以自光學總成接收第一色彩影像及第二色彩影像;儲存函數,該函數根據在至少四個維度之座標空間中沿預定路徑的位置來提供代表厚度之值,該至少四個維度包括來自於第一色彩影像之第一色彩通道及第二色彩通道以及來自第二色彩影像之第三色彩通道及第四色彩通道;針對第一色彩影像之像素以及第二色彩影像中之對應像素,自第一色彩影像中針對該像素之色彩資料以及第二色彩影像中針對該對應像素之色彩資料來決定在座標空間中之座標;決定在預定路徑上最靠近該座標之點的位置;以及自該函數以及預定路徑上之該點的該位置來計算代表厚度之值。 In one aspect, a system for obtaining a measurement representative of the thickness of a layer on a substrate includes: a support for holding a substrate for integrated circuit fabrication; an optical assembly, the optical assembly A method for capturing a first color image of at least a portion of the substrate held by the support by illuminating the substrate with light at a first angle of incidence, and capturing a first color image of the substrate by illuminating the substrate with light at a different second angle of incidence. holding at least a portion of the second color image; and a controller. The controller is configured to receive a first color image and a second color image from the optical assembly; store a function that provides a value representative of thickness based on a position along a predetermined path in a coordinate space of at least four dimensions, the at least four dimensions The dimensions include the first color channel and the second color channel from the first color image and the third color channel and the fourth color channel from the second color image; for the pixels of the first color image and the pixels in the second color image The corresponding pixel determines its coordinates in the coordinate space from the color data for the pixel in the first color image and the color data for the corresponding pixel in the second color image; determines the position of the point closest to the coordinates on the predetermined path. ; and a value representing the thickness is calculated from the function and the position of the point on the predetermined path.

在其他態樣中,一種電腦程式包括用於使處理器執行控制器之操作的指令,且一種研磨方法包括將用於積體電路製造之基板定位在色彩照相機的視野中,自色彩照相機產生基板之色彩影像,以及執行操作。 In other aspects, a computer program includes instructions for causing a processor to perform operations of a controller, and a polishing method includes positioning a substrate for integrated circuit fabrication within the field of view of a color camera, generating the substrate from the color camera color images, and perform operations.

該等態樣中之任一者的實施可包括以下特徵中之一或更多者。 Implementations of any of these aspects may include one or more of the following features.

座標空間可為四維的,或座標空間可為六維的。第一色彩通道及第二色彩通道可選自包括第一色彩影像之色調、飽和度、亮度、X、Y、Z、紅色色度、綠色色度及藍色色度的色彩通道之群。第三色彩通道及第四色彩通道可選自包括第二色彩影像之色調、飽和度、亮度、X、Y、Z、紅色色度、綠色色度及藍色色度的色彩通道之群。第一色彩通道及第三色彩通道可為紅色色度,且第二色彩通道及第四色彩通道可為綠色色度。 The coordinate space may be four-dimensional, or the coordinate space may be six-dimensional. The first color channel and the second color channel may be selected from a group of color channels including hue, saturation, brightness, X, Y, Z, red chroma, green chroma and blue chroma of the first color image. The third color channel and the fourth color channel may be selected from a group of color channels including hue, saturation, brightness, X, Y, Z, red chroma, green chroma and blue chroma of the second color image. The first and third color channels may be red chroma, and the second and fourth color channels may be green chroma.

第一入射角及第二入射角可均在約20°至85°之間。第一入射角可比第二入射角大至少5°,例如,大至少10°。The first angle of incidence and the second angle of incidence may each be between about 20° and 85°. The first angle of incidence may be at least 5° greater than the second angle of incidence, for example, at least 10° greater.

在另一態樣中,一種研磨系統包括研磨站,該研磨站包括用以支撐研磨墊之平臺;用以固持基板之支撐件;內嵌度量站,該內嵌度量站用以在研磨站中研磨基板之表面之前及之後量測該基板;以及控制器。該內嵌度量站包括一或更多個細長的白光源,其各自具有縱向軸線並經配置而以非零入射角將光導向基板,從而在基板上形成照明區域,該照明區域在基板之掃描期間沿第一軸線延伸;具有偵測器元件之第一色彩線掃描照相機,該等偵測器元件經佈置以接收以第一入射角照射基板之自基板反射的光,並形成在基板之掃描期間沿第一軸線延伸的影像部分;具有偵測器元件之第二色彩線掃描照相機,該等偵測器元件經佈置以接收以不同的第二入射角照射基板之自基板反射的光,並形成在基板之掃描期間沿第一軸線延伸的第二影像部分;支撐一或更多個光源、第一色彩線掃描照相機及第二色彩線掃描照相機之框;以及馬達,該馬達導致框與支撐件之間沿垂直該第一軸線之第二軸線的相對運動,從而導致一或更多個光源、第一色彩線掃描照相機及第二色彩線掃描照相機在基板上進行掃描。控制器經配置以自第一色彩線掃描照相機及第二色彩線掃描照相機接收色彩資料,自來自於第一色彩線掃描照相機之色彩資料產生第一二維色彩影像及自來自於第二色彩線掃描照相機之色彩資料產生第二二維色彩影像,以及基於第一二維色彩影像及第二二維色彩影像控制在研磨站處之研磨。In another aspect, a polishing system includes a polishing station including a platform for supporting a polishing pad; a support for holding a substrate; and an embedded metrology station for use in the polishing station. measuring the substrate before and after grinding the surface of the substrate; and a controller. The embedded metrology station includes one or more elongated white light sources, each having a longitudinal axis and configured to direct light toward the substrate at a non-zero angle of incidence, thereby forming an illuminated area on the substrate that scans the substrate extending along a first axis; a first color line scan camera having detector elements arranged to receive light reflected from the substrate illuminating the substrate at a first incident angle and forming a scan on the substrate an image portion extending along the first axis; a second color line scan camera having detector elements arranged to receive light reflected from the substrate striking the substrate at a different second angle of incidence, and forming a second image portion extending along a first axis during scanning of the substrate; a frame supporting one or more light sources, a first color line scan camera, and a second color line scan camera; and a motor causing the frame to contact the support Relative movement between the components along a second axis perpendicular to the first axis causes one or more light sources, a first color line scan camera and a second color line scan camera to scan the substrate. The controller is configured to receive color data from a first color line scan camera and a second color line scan camera, generate a first two-dimensional color image from the color data from the first color line scan camera and generate a first two-dimensional color image from the second color line scan camera. Scan the color data of the camera to generate a second two-dimensional color image, and control grinding at the grinding station based on the first two-dimensional color image and the second two-dimensional color image.

在其他態樣中,一種電腦程式包括用於使處理器執行控制器之操作的指令,且一種研磨方法包括將用於積體電路製造之基板定位在色彩照相機的視野中,自色彩照相機產生基板之色彩影像,以及執行操作。 In other aspects, a computer program includes instructions for causing a processor to perform operations of a controller, and a polishing method includes positioning a substrate for integrated circuit fabrication within the field of view of a color camera, generating the substrate from the color camera color images, and perform operations.

該等態樣中之任一者的實施可包括以下特徵中之一或更多者。 Implementations of any of these aspects may include one or more of the following features.

一或更多個漫射器可定位在一或更多個細長白光源與基板之間的光路徑上。 One or more diffusers may be positioned in the light path between one or more elongated white light sources and the substrate.

第一入射角及第二入射角可均在約5°至85°之間,例如,均在約20°至75°之間。第一入射角可比第二入射角大至少5°,例如,大至少10°。第一色彩線掃描照相機及第二線掃描照相機可經配置以使基板上之重合區域成像。一或更多個細長光源可包括用以產生以第一入射角照射基板之光的第一細長光源,及用以產生以第二入射角照射基板之光的第二細長光源。來自第一光源之光及來自第二光源之光可照射基板上之重疊區域,例如,重合區域。 The first angle of incidence and the second angle of incidence may each be between about 5° and 85°, for example, both may be between about 20° and 75°. The first angle of incidence may be at least 5° greater than the second angle of incidence, for example, at least 10° greater. The first color line scan camera and the second line scan camera may be configured to image overlapping areas on the substrate. The one or more elongated light sources may include a first elongated light source to generate light that illuminates the substrate at a first angle of incidence, and a second elongated light source that generates light that illuminates the substrate at a second angle of incidence. Light from the first light source and light from the second light source may illuminate overlapping areas on the substrate, for example, overlapping areas.

框可為固定的,且馬達可耦接至支撐件,且控制器可經配置以導致馬達使支撐件移動,而同時一或更多個細長光源及第一色彩線掃描照相機及第二色彩線掃描照相機保持固定以便在基板上進行掃描。 The frame can be fixed and the motor can be coupled to the support, and the controller can be configured to cause the motor to move the support while simultaneously one or more elongated light sources and the first color line scan camera and the second color line The scanning camera remains stationary to scan over the substrate.

實施可包括以下潛在優勢中之一或更多者。可提高厚度量測之準確度。此資訊可用在用以控制研磨參數之前饋或反饋中,從而提供改良的厚度均勻性。用以決定變化之演算法可能簡單且具有低的計算負荷。Implementation may include one or more of the following potential advantages. It can improve the accuracy of thickness measurement. This information can be used in feedforward or feedback to control grinding parameters, thereby providing improved thickness uniformity. The algorithm used to determine changes may be simple and have low computational load.

在隨附圖式及以下描述中闡述一或更多個實施之細節。其他態樣、特徵及優勢將自描述及圖式以及自申請專利範圍顯而易見。The details of one or more implementations are set forth in the accompanying drawings and the description below. Other aspects, features and advantages will be apparent from the description and drawings and from the patent application.

可在研磨之前或之後(例如,在內嵌的或獨立的度量站處)或在研磨期間(例如,藉由原位監控系統)以光學方式量測基板上之層的厚度。然而,一些光學技術(諸如,光譜測定法)需要昂貴的光譜儀及對光譜資料之計算繁重的操縱。即使除了計算負荷以外,在某些情況下,演算法結果還是無法滿足使用者不斷增長之準確度要求。 The thickness of a layer on a substrate can be measured optically before or after grinding (eg, at an inline or stand-alone metrology station) or during grinding (eg, by an in-situ monitoring system). However, some optical techniques, such as spectrometry, require expensive spectrometers and computationally intensive manipulation of spectral data. Even apart from the computational load, in some cases the algorithm results cannot meet the ever-increasing accuracy requirements of users.

一種量測技術為獲取基板之色彩影像,並在色彩空間中分析該影像以決定層之厚度。特定而言,二維色彩空間中沿路徑的位置可提供關於研磨之當前狀態的資訊,例如,去除量或剩餘材料的量。然而,在一些情況下,可能難以解析出影像中之色彩之間的差別。藉由對影像執行色彩校正,可增大色彩對比度。因此,可增強厚度解析度,且可提高厚度量測之可靠性及準確度。 One measurement technique is to obtain a color image of a substrate and analyze the image in color space to determine layer thickness. In particular, the position along the path in the two-dimensional color space can provide information about the current state of grinding, for example, the amount removed or the amount of material remaining. However, in some cases, it may be difficult to resolve the differences between colors in an image. By performing color correction on the image, color contrast can be increased. Therefore, the thickness resolution can be enhanced, and the reliability and accuracy of thickness measurement can be improved.

另一個問題是二維色彩空間中之路徑可能具有簡併性。藉由增加色彩空間之維數,可降低簡併的可能性。一種技術為使用一種類型之照相機(例如,高光譜照相機),其產生具有四個或更多個(例如,六至二十個)色彩通道之影像。另一技術為使用多個照相機,但以不同入射角使用(由於以不同入射角穿過薄膜層之光線路徑的長度不同,會產生不同的撞擊並因而產生不同的色彩)。 Another problem is that paths in two-dimensional color space may be degenerate. By increasing the dimensionality of the color space, the possibility of degeneracy can be reduced. One technique is to use a type of camera (eg, a hyperspectral camera) that produces images with four or more (eg, six to twenty) color channels. Another technique is to use multiple cameras, but at different angles of incidence (due to the different lengths of the light paths passing through the film layers at different angles of incidence, different impacts and therefore different colors will be produced).

參考第1圖,研磨設備100包括內嵌(亦稱作序列中)光學度量系統160,例如,色彩成像系統。Referring to Figure 1, abrasive apparatus 100 includes an inline (also referred to as in-series) optical metrology system 160, such as a color imaging system.

研磨設備100包括一或更多個承載頭126(其中每一者經配置以承載基板10)、一或更多個研磨站106,及傳送站,該傳送站用以將基板裝載至承載頭及自承載頭卸載基板。每一研磨站106包括被支撐在平臺120上之研磨墊130。研磨墊130可為具有外研磨層及較軟背托層之兩層研磨墊。The grinding apparatus 100 includes one or more carrier heads 126 (each configured to carry a substrate 10 ), one or more grinding stations 106 , and a transfer station for loading substrates into the carrier heads and The self-carrying head unloads the substrate. Each polishing station 106 includes a polishing pad 130 supported on a platform 120 . The polishing pad 130 may be a two-layer polishing pad having an outer polishing layer and a softer backing layer.

承載頭126可自支撐件128懸垂,且可在研磨站之間移動。在一些實施中,支撐件128為架空軌道,且承載頭126耦接至托架108,該托架108安裝至該軌道。架空軌道128允許將每一托架108選擇性地定位在研磨站124及傳送站之上方。或者,在一些實施中,支撐件128為可旋轉轉盤,且轉盤之旋轉使承載頭126同時沿圓形路徑移動。The carrier head 126 may depend from the support 128 and may be moved between grinding stations. In some implementations, the support 128 is an overhead rail, and the carrying head 126 is coupled to a bracket 108 that is mounted to the rail. Overhead rails 128 allow each carriage 108 to be selectively positioned above the grinding station 124 and the transfer station. Alternatively, in some implementations, the support 128 is a rotatable turntable, and the rotation of the turntable causes the carrying head 126 to simultaneously move along a circular path.

研磨設備100之每一研磨站106可包括埠(例如,在臂134之末端處),以將研磨液體136(諸如,磨蝕漿料)施配至研磨墊130上。研磨設備100之每一研磨站106亦可包括襯墊調節設備,以刮擦研磨墊130以便將研磨墊130維持在一致的磨蝕狀態。Each grinding station 106 of grinding apparatus 100 may include a port (eg, at the end of arm 134 ) to dispense grinding liquid 136 (such as an abrasive slurry) onto grinding pad 130 . Each polishing station 106 of the polishing apparatus 100 may also include a pad conditioning device to scrape the polishing pad 130 to maintain the polishing pad 130 in a consistent abrasive state.

每一承載頭126可操作以將基板10固持成抵靠研磨墊130。每一承載頭126可具有對與每一相應基板相關聯之研磨參數(例如,壓力)的獨立控制。特定而言,每一承載頭126可包括固定環142,以將基板10固定在可撓性膜狀物144下方。每一承載頭126亦包括由膜狀物限定之複數個可獨立控制可加壓腔室(例如,三個腔室146a至146c),該等腔室可將可獨立控制之加壓施加至可撓性膜狀物144上之相關聯區並因而施加至基板10上。儘管為了易於說明而僅在第1圖中圖示了三個腔室,但可能存在一個或兩個腔室,或四個或更多個腔室,例如,五個腔室。 Each carrier head 126 is operable to hold the substrate 10 against the polishing pad 130 . Each carrier head 126 may have independent control of grinding parameters (eg, pressure) associated with each respective substrate. Specifically, each carrier head 126 may include a securing ring 142 to secure the substrate 10 beneath the flexible membrane 144 . Each carrier head 126 also includes a plurality of independently controllable pressurizable chambers (eg, three chambers 146a to 146c) defined by a membrane that can apply independently controllable pressure to the The associated areas on the flexible membrane 144 are thus applied to the substrate 10 . Although only three chambers are illustrated in Figure 1 for ease of illustration, there may be one or two chambers, or four or more chambers, for example, five chambers.

每一承載頭126自支撐件128懸垂,且藉由驅動軸154連接至承載頭旋轉馬達156,以使得承載頭可圍繞軸線127旋轉。視情況,每一承載頭140可橫向地振蕩,例如,藉由驅動軌道128上之托架108,或藉由轉盤自身之可旋轉振蕩。在操作中,平臺圍繞其中心軸線121旋轉,且每一承載頭圍繞其中心軸線127旋轉且在研磨墊之頂表面上橫向地平移。橫向掃動是在平行於研磨表面212之方向上。橫向掃動可為直線的或弧形的運動。 Each carrier head 126 is suspended from the support member 128 and is connected to a carrier head rotation motor 156 via a drive shaft 154 so that the carrier head can rotate about an axis 127 . Optionally, each carrier head 140 may be laterally oscillated, for example, by drive carriage 108 on track 128, or by rotatable oscillation of the turntable itself. In operation, the platform rotates about its central axis 121 and each carrier head rotates about its central axis 127 and translates laterally on the top surface of the polishing pad. The lateral sweep is in a direction parallel to the grinding surface 212. Lateral sweeps can be linear or arcuate movements.

控制器190(諸如,可程式化電腦)連接至每一馬達,以獨立地控制平臺120及承載頭126之旋轉速率。舉例而言,每一馬達可包括編碼器,該編碼器量測相關聯驅動軸之角位置或旋轉速率。類似地,控制器190連接至每一托架108中之致動器及/或轉盤之旋轉馬達,以獨立地控制每一承載頭126之橫向運動。舉例而言,每一致動器可包括直線編碼器,該直線編碼器量測托架108沿軌道128之位置。 A controller 190 (such as a programmable computer) is connected to each motor to independently control the rotation rate of the platform 120 and the carrier head 126. For example, each motor may include an encoder that measures the angular position or rate of rotation of the associated drive shaft. Similarly, a controller 190 is connected to the actuator and/or rotation motor of the turntable in each carriage 108 to independently control the lateral movement of each carrier head 126 . For example, each actuator may include a linear encoder that measures the position of carriage 108 along track 128 .

控制器190可包括中央處理單元(central processing unit;CPU)、記憶體,及支援電路,例如,輸入/輸出電路系統、電源供應器、時鐘電路、快取記憶體及其類似者。記憶體連接至CPU。記憶體為非暫時性電腦可讀媒體,且可為一或更多種易獲取的記憶體,諸如,隨機存取記憶體(random access memory; RAM)、唯讀記憶體(read only memory; ROM)、軟碟、硬碟,或其他形式之數位儲存器。另外,儘管被圖示成單個電腦,但控制器190可為分散式系統,例如,包括多個獨立操作之處理器及記憶體。The controller 190 may include a central processing unit (CPU), memory, and support circuitry, such as input/output circuitry, power supplies, clock circuitry, cache memory, and the like. Memory is connected to the CPU. Memory is a non-transitory computer-readable medium, and can be one or more easily accessible memories, such as random access memory (RAM), read only memory (ROM) ), floppy disk, hard disk, or other form of digital storage. Additionally, although illustrated as a single computer, controller 190 may be a distributed system, for example, including multiple independently operating processors and memories.

內嵌光學度量系統160定位於研磨設備100內,但不在研磨操作期間執行量測;而量測是在研磨操作之間(例如,在基板自一個研磨站移動至另一研磨站或自一個傳送站移動至另一傳送站的同時)收集的。Inline optical metrology system 160 is positioned within grinding apparatus 100 but does not perform measurements during grinding operations; rather, measurements are made between grinding operations (e.g., while the substrate is moving from one grinding station to another or from a transfer Station moves to another teleport station) collected at the same time.

內嵌光學度量系統160包括感測器總成161,該感測器總成161被支撐在研磨站106中之兩者之間的一位置處(例如,在兩個平臺120之間)。特定而言,感測器總成161位於一位置處,以使得受支撐件128支撐之承載頭126可將基板10定位在感測器總成161之上方。Inline optical metrology system 160 includes sensor assembly 161 supported at a location between two of grinding stations 106 (eg, between two platforms 120). Specifically, the sensor assembly 161 is located in a position such that the carrier head 126 supported by the support member 128 can position the substrate 10 above the sensor assembly 161 .

在其中研磨設備100包括三個研磨站且按順序將基板自第一研磨站載運至第二研磨站、至第三研磨站之實施中,一或更多個感測器總成161可定位在傳送站與第一研磨站之間、在第一及第二研磨站之間、在第二及第三研磨站之間,及/或在第三研磨站與傳送站之間。In implementations in which the grinding apparatus 100 includes three grinding stations and the substrates are sequentially carried from a first grinding station to a second grinding station to a third grinding station, one or more sensor assemblies 161 may be positioned at between the transfer station and the first grinding station, between the first and second grinding stations, between the second and third grinding stations, and/or between the third grinding station and the transfer station.

感測器總成161可包括光源162、光偵測器164,以及用於在控制器190與光源162及光偵測器164之間發送及接收訊號的電路系統166。Sensor assembly 161 may include a light source 162, a light detector 164, and circuitry 166 for sending and receiving signals between the controller 190 and the light source 162 and light detector 164.

光源162可操作以發射白光。在一個實施中,所發射之白光包括具有200至800奈米之波長的光。適當光源為白光發光二極體(white-light light emitting diode;LED)之陣列,或氙氣燈或氙氣汞燈。光源162經定向以非零入射角α將光168導向至基板10之已暴露表面上。入射角α可為(例如)約30°至75°,例如,為50°。 Light source 162 is operable to emit white light. In one implementation, the emitted white light includes light having a wavelength of 200 to 800 nanometers. A suitable light source is an array of white-light emitting diodes (LEDs), or a xenon lamp or a xenon mercury lamp. Light source 162 is oriented to direct light 168 onto the exposed surface of substrate 10 at a non-zero angle of incidence α. The angle of incidence α may be, for example, about 30° to 75°, for example, 50°.

光源可照明橫跨基板10之寬度的大體上呈直線之細長區域。光源162可包括光學元件(例如,擴束器),以使來自光源之光散佈至細長區域中。或者或另外,光源162可包括光源之直線陣列。光源162自身以及基板上被照明之區域可為細長的,且具有平行於基板表面之縱向軸線。 The light source may illuminate a generally rectilinear elongated area across the width of the substrate 10 . Light source 162 may include optical elements (eg, a beam expander) to spread light from the light source into an elongated area. Alternatively or additionally, light source 162 may include a linear array of light sources. The light source 162 itself, and the illuminated area on the substrate, may be elongated, with a longitudinal axis parallel to the substrate surface.

來自光源162之光168可為部分準直的。 Light 168 from light source 162 may be partially collimated.

可將漫射器170放置在光168之路徑上,或光源162可包括漫射器,以便在光到達基板10之前將光擴散。 Diffuser 170 may be placed in the path of light 168 , or light source 162 may include a diffuser to diffuse the light before it reaches substrate 10 .

偵測器164可為對來自光源162之光敏感的色彩照相機。偵測器164包括用於每一色彩通道之偵測元件178的陣列。舉例而言,偵測器164可包括用於每一色彩通道之CCD陣列。在一些實施中,該陣列為偵測器元件178之單列。舉例而言,照相機可為線掃描照相機。偵測器元件之列可平行於光源162所照明之細長區域的縱向軸線或垂直於基板上之已照明區域的運動方向延伸(第1A圖示意性地圖示元件178,但該等元件178可佈置成一排延伸至圖式之平面以外)。在一些實施中,偵測器為基於稜鏡之色彩照相機。偵測器164內部之稜鏡將光束168分成三個單獨光束,其中每一者被發送至單獨的偵測器元件陣列。Detector 164 may be a color camera sensitive to light from light source 162 . Detector 164 includes an array of detection elements 178 for each color channel. For example, detector 164 may include a CCD array for each color channel. In some implementations, the array is a single column of detector elements 178 . For example, the camera may be a line scan camera. The array of detector elements may extend parallel to the longitudinal axis of the elongated area illuminated by light source 162 or perpendicular to the direction of motion of the illuminated area on the substrate (FIG. 1A schematically illustrates elements 178, but these elements 178 Can be arranged in a row extending beyond the plane of the drawing). In some implementations, the detector is a camera-based color camera. The detector 164 internally splits the beam 168 into three separate beams, each of which is sent to a separate array of detector elements.

在光源162包括發光元件之列的情況下,偵測器元件之列可沿平行於光源162之縱向軸線的第一軸線延伸。偵測器元件之列可包括1024個或更多個元件。Where the light source 162 includes an array of light emitting elements, the array of detector elements may extend along a first axis parallel to the longitudinal axis of the light source 162 . The array of detector elements may include 1024 or more elements.

決定偵測器元件之列的平行或垂直定位應慮及光束的反射,例如,藉由折疊鏡或自稜鏡面反射。Determining the parallel or vertical positioning of the rows of detector elements should take into account reflections of the beam, for example, by folding mirrors or self-reflections.

偵測器164配置有合適的聚焦光學元件172,以將基板之視場投影至偵測器元件178之陣列上。視場可足夠長,以觀看基板10之整個寬度,例如,150 mm至300 mm長。感測器總成161(包括偵測器164及相關聯之光學元件172)可經配置以使得個別像素對應於具有等於或小於約0.5 mm之長度的區域。舉例而言,假設視場為約200 mm長且偵測器164包括1024個元件,則線掃描照相機所產生之影像可具有長度為約0.5 mm之像素。為了決定影像之長度解析度,視場(field of view; FOV)的長度可除以FOV成像至其上之像素的數目,以獲得長度解析度。Detector 164 is configured with suitable focusing optics 172 to project the substrate's field of view onto an array of detector elements 178 . The field of view may be long enough to view the entire width of the substrate 10, for example, 150 mm to 300 mm long. Sensor assembly 161 (including detector 164 and associated optical element 172) may be configured such that individual pixels correspond to regions having a length equal to or less than about 0.5 mm. For example, assuming the field of view is approximately 200 mm long and detector 164 includes 1024 elements, the image produced by the line scan camera may have pixels with a length of approximately 0.5 mm. To determine the length resolution of an image, the length of the field of view (FOV) can be divided by the number of pixels onto which the FOV is imaged to obtain the length resolution.

偵測器164亦可經配置以使得像素寬度與像素長度相當。舉例而言,線掃描照相機之優勢為其非常快的圖框率。圖框率可為至少5 kHz。可將圖框率設定為一定的頻率,以使得當成像區域在基板10上掃描時,像素寬度與像素長度相當,例如,等於或小於約0.3 mm。舉例而言,像素寬度及長度可為約0.1 mm至0.2 mm。Detector 164 may also be configured such that the pixel width is comparable to the pixel length. For example, the advantage of line scan cameras is their very fast frame rate. The frame rate can be at least 5 kHz. The frame rate can be set to a certain frequency such that when the imaging area is scanned on the substrate 10, the pixel width is equivalent to the pixel length, for example, equal to or less than about 0.3 mm. For example, the pixel width and length may be approximately 0.1 mm to 0.2 mm.

光源162及光偵測器164可被支撐在臺180上。在光偵測器164為線掃描照相機的情況下,光源162及照相機164可相對於基板10移動,以使得成像區域可在整個基板長度上掃描。特定而言,相對運動可在平行於基板10之表面且垂直於線掃描照相機164之偵測器元件之列的方向上。 Light source 162 and light detector 164 may be supported on stage 180 . In the case where the light detector 164 is a line scan camera, the light source 162 and the camera 164 can be moved relative to the substrate 10 so that the imaging area can be scanned across the entire length of the substrate. In particular, the relative motion may be in a direction parallel to the surface of the substrate 10 and perpendicular to the array of detector elements of the line scan camera 164 .

在一些實施中,臺180為固定的,且承載頭126(例如)藉由托架108之運動或藉由轉盤之旋轉振蕩而移動。在一些實施中,臺180可移動,而承載頭126保持固定以用於影像獲取。舉例而言,臺180可藉由直線致動器182沿軌道184移動。在任一情形下,此准許當被掃描區域在基板10上移動時,光源162及照相機164相對於彼此停留在固定位置處。 In some implementations, the stage 180 is stationary and the carrier head 126 is moved, for example, by movement of the carriage 108 or by rotational oscillations of the turntable. In some implementations, the stage 180 is moveable while the carrier head 126 remains stationary for image acquisition. For example, stage 180 may be moved along track 184 by linear actuator 182 . In either case, this allows the light source 162 and camera 164 to remain in fixed positions relative to each other as the scanned area moves across the substrate 10 .

另外,基板可由機器人固持並移動經過固定光學總成161。舉例而言,在盒式介面單元或其他要素介面單元的情形下,基板可由機器人固持,該機器人用以將基板傳送至盒或自盒傳送基板(而不是支撐在單獨的臺上)。光偵測器可為盒式介面單元中之固定元件(例如,線掃描照相機),且機器人可使基板移動經過光偵測器以掃描基板,從而產生影像。 Additionally, the substrate may be held and moved by the robot through the fixed optical assembly 161 . For example, in the case of a cassette interface unit or other elemental interface unit, the substrates may be held by a robot that is used to transfer the substrates to and from the cassette (rather than being supported on a separate table). The light detector can be a fixed component (eg, a line scan camera) in the cassette interface unit, and the robot can move the substrate past the light detector to scan the substrate to produce an image.

具有一起在基板上移動之線掃描照相機及光源的可能優勢在於(例如,如與習知2D照相機相比較而言),對於在晶圓上之不同位置,光源與照相機之間的相對角度保持恆定。因此,可減少或消除由視角之變化所引起的假影。另外,線掃描照相機可消除透視失真,而習知2D照相機表現出固有的透視失真,繼而需要藉由影像變換來校正該透視失真。 A possible advantage of having a line scan camera and light source moving together on the substrate is that (eg, as compared to conventional 2D cameras) the relative angle between the light source and the camera remains constant for different positions on the wafer . Therefore, artifacts caused by changes in viewing angle can be reduced or eliminated. In addition, line scan cameras can eliminate perspective distortion, while conventional 2D cameras exhibit inherent perspective distortion, which requires image transformation to correct the perspective distortion.

感測器總成161可包括用以調整基板10與光源162及偵測器164之間的垂直距離之機構。舉例而言,感測器總成161可為用以調整臺180之垂直位置的致動器。 The sensor assembly 161 may include a mechanism for adjusting the vertical distance between the substrate 10 and the light source 162 and the detector 164 . For example, the sensor assembly 161 may be an actuator for adjusting the vertical position of the table 180 .

視情況,偏光濾光片174可定位在光的路徑上,例如,在基板10與偵測器164之間。偏光濾光片174可為圓形偏光片(circular polarizer;CPL)。典型CPL為直線偏光片與四分之一波板的組合。偏光濾光片174之偏光軸的恰當定向可減少影像中之霧度並銳化或增強期望的視覺特徵。 Optionally, polarizing filter 174 may be positioned in the path of the light, for example, between substrate 10 and detector 164 . The polarizing filter 174 may be a circular polarizer (CPL). A typical CPL is a combination of linear polarizer and quarter wave plate. Proper orientation of the polarizing axis of polarizing filter 174 can reduce haze in the image and sharpen or enhance desired visual features.

可在偵測器164附近放置一或更多個擋板188,以防止雜散光或環境光到達偵測器164(參見第1C圖)。舉例而言,擋板可大體平行於光束168且在光束進入偵測器164之區域周圍延伸。另外,偵測器164可具有窄的允許角,例如,1°至10°。此些機構可藉由減少雜散光或環境光的影響而提高影像品質。 One or more baffles 188 may be placed near the detector 164 to prevent stray or ambient light from reaching the detector 164 (see Figure 1C). For example, the baffle may extend generally parallel to the beam 168 and around the area where the beam enters the detector 164 . Additionally, detector 164 may have a narrow allowable angle, for example, 1° to 10°. These mechanisms can improve image quality by reducing the impact of stray light or ambient light.

假設基板上之最外層為半透明層(例如,介電層),則在偵測器164處偵測到之光的色彩取決於(例如)基板表面之成分、基板表面光滑度,及/或自基板上之一或更多個層(例如,介電層)的不同介面反射的光之間的干涉量。 Assuming that the outermost layer on the substrate is a translucent layer (eg, a dielectric layer), the color of the light detected at detector 164 depends, for example, on the composition of the substrate surface, the smoothness of the substrate surface, and/or The amount of interference between light reflected from different interfaces of one or more layers (eg, dielectric layers) on a substrate.

如上所述,光源162及光偵測器164可連接至計算裝置(例如,控制器190),該計算裝置可操作以控制光源162及光偵測器164之操作並接收光源162及光偵測器164之訊號。As described above, light source 162 and light detector 164 can be connected to a computing device (eg, controller 190 ) that is operable to control the operation of light source 162 and light detector 164 and receive light source 162 and light detection. The signal of device 164.

內嵌光學度量系統160定位於研磨設備100內,但不在研磨操作期間執行量測;而量測是在研磨操作之間(例如,在基板自一個研磨站移動至另一研磨站或自一個傳送站移動至另一傳送站的同時)收集的。The inline optical metrology system 160 is positioned within the grinding apparatus 100 but does not perform measurements during grinding operations; rather, measurements are made between grinding operations (e.g., while the substrate is moving from one grinding station to another or from a transfer Station is moved to another transfer station) collected at the same time.

內嵌光學度量系統160包括感測器總成161,該感測器總成161被支撐在研磨站106中之兩者之間的位置處(例如,在兩個平臺120之間)。特定而言,感測器總成161位於一位置處,以使得受支撐件128支撐之承載頭126可將基板10定位在感測器總成161之上方。The inline optical metrology system 160 includes a sensor assembly 161 supported at a location between one of the grinding stations 106 (eg, between the two platforms 120). Specifically, the sensor assembly 161 is located in a position such that the carrier head 126 supported by the support member 128 can position the substrate 10 above the sensor assembly 161 .

參考第1B圖,研磨設備100'包括原位光學監控系統160',例如,色彩成像系統。原位光學監控系統160'與內嵌光學度量系統160構造類似,但感測器總成161之各種光學部件(例如,光源162、光偵測器164、漫射器170、聚焦光學元件172及偏光濾光片174)可定位在平臺120中之凹槽122中。當基板接觸研磨墊130並由研磨墊130研磨時,光束168可穿過窗口132以照射基板10之表面。平臺120之旋轉導致感測器總成161(且因此導致光束168)掃過基板10。當感測器總成161掃動至基板10下方時,可自線影像之序列重構2D影像。臺180並非必需,因為感測器總成161之運動是由平臺120之旋轉提供的。Referring to Figure 1B, the grinding apparatus 100' includes an in-situ optical monitoring system 160', such as a color imaging system. The in-situ optical monitoring system 160' is similar in structure to the in-line optical metrology system 160, but the various optical components of the sensor assembly 161 (eg, light source 162, light detector 164, diffuser 170, focusing optical element 172 and Polarizing filter 174) may be positioned in groove 122 in platform 120. When the substrate contacts and is polished by the polishing pad 130 , the light beam 168 can pass through the window 132 to illuminate the surface of the substrate 10 . Rotation of the platform 120 causes the sensor assembly 161 (and thus the light beam 168 ) to sweep across the substrate 10 . When the sensor assembly 161 sweeps under the substrate 10, a 2D image can be reconstructed from the sequence of line images. Stage 180 is not required since movement of sensor assembly 161 is provided by rotation of platform 120 .

參考第2圖,控制器將來自光偵測器164之個別影像線(無論是內嵌度量系統還是原位監控系統)組裝成二維色彩影像(步驟200)。作為色彩照相機,光偵測器164可包括用於紅色、藍色及綠色中之每一者的單獨偵測器元件。二維色彩影像可包括分別針對紅色、藍色及綠色色彩通道之單色影像204、206、208。Referring to Figure 2, the controller assembles individual image lines from light detectors 164 (whether an inline metrology system or an in-situ monitoring system) into a two-dimensional color image (step 200). As a color camera, light detector 164 may include separate detector elements for each of red, blue, and green. The two-dimensional color images may include monochrome images 204, 206, 208 for red, blue, and green color channels respectively.

控制器可將偏移及/或增益調整施加至每一色彩通道中之影像的強度值(步驟210)。每一色彩通道可具有不同的偏移及/或增益。The controller may apply offset and/or gain adjustments to the intensity values of the image in each color channel (step 210). Each color channel can have a different offset and/or gain.

為了設定增益,可藉由系統160、160'進行之量測使參考基板(例如,裸矽晶圓)成像。可接著設定針對每一色彩通道之增益,以使得參考基板在影像中呈現灰色。舉例而言,可設定增益以使得紅色、綠色及藍色通道可皆給出同一8位元值,例如,RGB=(121,121,121)或RGB=(87,87,87)。可使用同一參考基板對多個系統執行增益校準。To set the gain, a reference substrate (eg, a bare silicon wafer) may be imaged through measurements performed by the system 160, 160'. The gain for each color channel can then be set so that the reference substrate appears gray in the image. For example, the gain can be set so that the red, green, and blue channels all give the same 8-bit value, for example, RGB=(121,121,121) or RGB=(87,87,87). Gain calibration can be performed on multiple systems using the same reference substrate.

視情況,可將影像歸一化(步驟220)。舉例而言,可計算所量測影像與標準預定義影像之間的差別。舉例而言,控制器可為紅色、綠色及藍色色彩通道中之每一者儲存背景影像,且可自每一色彩通道之已量測影像中減去該背景影像。或者,可將已量測影像除以標準預定義影像。Optionally, the images may be normalized (step 220). For example, the difference between a measured image and a standard predefined image can be calculated. For example, the controller may store a background image for each of the red, green, and blue color channels and may subtract the background image from the measured image for each color channel. Alternatively, the measured image can be divided by the standard predefined image.

可對影像濾光以去除低頻空間變化(步驟230)。在一些實施中,影像自紅綠藍(red green blue; RGB)色彩空間變換為色度飽和度亮度(hue saturation luminance; HSL)色彩空間,在HSL色彩空間中應用濾光片,並接著將影像變換回紅綠藍(RGB)色彩空間。舉例而言,在HSL色彩空間中,可對亮度通道濾光以去除低頻空間變化,亦即,不對色調及飽和度通道進行濾光。在一些實施中,亮度通道用以產生濾光片,該濾光片接著被應用於紅色、綠色及藍色影像。The image may be filtered to remove low-frequency spatial variations (step 230). In some implementations, the image is transformed from a red green blue (RGB) color space to a hue saturation luminance (HSL) color space, a filter is applied in the HSL color space, and then the image is Convert back to red, green, and blue (RGB) color space. For example, in the HSL color space, the luminance channel can be filtered to remove low-frequency spatial variations, that is, the hue and saturation channels are not filtered. In some implementations, the luminance channel is used to generate filters that are then applied to red, green, and blue images.

在一些實施中,僅沿第一軸線執行平滑化。舉例而言,像素沿行進方向186之亮度值可一起進行平均,以提供平均亮度值,該平均亮度值僅為沿第一軸線之位置的函數。接著,影像像素之每一列可除以平均亮度值之對應部分,該平均亮度值為沿第一軸線之位置的函數。In some implementations, smoothing is performed only along the first axis. For example, the brightness values of pixels along the direction of travel 186 may be averaged together to provide an average brightness value that is a function only of position along the first axis. Each column of image pixels can then be divided by a corresponding portion of the average brightness value as a function of position along the first axis.

可執行色彩校正,以增大影像中之色彩對比度(步驟235)。儘管被圖示成在步驟230之濾光之後,但色彩校正可在濾光之前執行,但在步驟220之歸一化之後。另外,可稍後執行色彩校正,例如,在厚度計算(在步驟270中)之前。Color correction may be performed to increase color contrast in the image (step 235). Although illustrated after filtering at step 230 , color correction may be performed before filtering, but after normalization at step 220 . Additionally, color correction may be performed later, for example, before thickness calculation (in step 270).

可藉由將色彩空間中之值乘以色彩校正矩陣來執行色彩校正。這可表示為運算I CORR = I ORIG X CCM,其中I ORIG 為原始的未經校正之影像,CCM為色彩校正矩陣,且I CORR 為經校正之影像。Color correction can be performed by multiplying the values in the color space by the color correction matrix. This can be expressed as the operation I CORR = I ORIG X CCM, where I ORIG is the original uncorrected image, CCM is the color correction matrix, and I CORR is the corrected image.

更正式言之,色彩校正可作為如下所表示之矩陣乘法來執行:(方程式1) 其中IO1 、IO2 及IO3 為來自色彩空間(例如,HSL色彩空間、RGB色彩空間,等等)之三個色彩通道的原始值,a11 ... a33為色彩校正矩陣之值,且IC1 、IC2 及IC3 為色彩空間中之三個色彩通道的經校正值。可使用伽馬函數而非具有恆定值之色彩校正矩陣。More formally, color correction can be performed as matrix multiplication expressed as follows: (Equation 1) where I O1 , I O2 and I O3 are the original values of the three color channels from the color space (for example, HSL color space, RGB color space, etc.), a11 ... a33 are the color correction matrices values, and I C1 , I C2 and I C3 are the corrected values of the three color channels in the color space. A gamma function can be used instead of a color correction matrix with constant values.

如第9A圖及第9B圖中所示,應用色彩校正導致直方圖之比例增大。此可能使得層厚度之決定更容易,因為在直方圖中區分不同點由於更大的分隔而變得更加容易。因此,可增強厚度解析度。As shown in Figures 9A and 9B, applying color correction results in an increase in the scale of the histogram. This may make the decision of layer thickness easier, since distinguishing different points in the histogram becomes easier due to the larger separation. Therefore, thickness resolution can be enhanced.

可藉由製作具有多種預選色彩之參考基板的色彩影像而產生色彩校正矩陣。量測每一色彩通道之值,且接著計算用於將低對比度影像變換為較高對比度影像之最佳矩陣。A color correction matrix can be generated by making color images of a reference substrate with a variety of preselected colors. The value of each color channel is measured, and then the optimal matrix for transforming a low-contrast image into a higher-contrast image is calculated.

控制器可使用影像處理技術來分析影像以在基板10上定位晶圓定向特徵16(例如,晶圓凹口或晶圓片)(參見第4圖)(步驟240)。影像處理技術亦可用以定位基板10之中心18(參見第4圖)。The controller may analyze the images using image processing techniques to locate wafer orientation features 16 (eg, wafer notches or wafers) on substrate 10 (see FIG. 4 ) (step 240 ). Image processing techniques can also be used to locate the center 18 of the substrate 10 (see Figure 4).

基於此資料,將影像變換(例如,縮放及/或旋轉及/或平移)成標準影像座標系(步驟250)。舉例而言,可平移影像以使得晶圓中心位元於影像之中心點處,及/或可縮放影像以使得基板之邊緣位於影像之邊緣,及/或可旋轉影像以使得在影像之x軸與連接晶圓中心與晶圓定向特徵的徑向區段之間存在0°角。Based on this data, the image is transformed (eg, scaled and/or rotated and/or translated) into a standard image coordinate system (step 250). For example, the image can be translated so that the wafer center bit is at the center point of the image, and/or the image can be scaled so that the edge of the substrate is at the edge of the image, and/or the image can be rotated so that the x-axis of the image is There is an angle of 0° from the radial segment connecting the center of the wafer to the wafer orientation feature.

視情況,可施加影像遮罩以篩選出影像資料之多個部分(步驟260)。舉例而言,參考第3圖,典型基板10包括多個晶粒12。劃線14可將晶粒12分離開。對於一些應用而言,可能有用的是僅處理對應於晶粒之影像資料。在此情形下,參考第4圖,影像遮罩可由控制器儲存,該影像遮罩具有在空間位置上對應於晶粒12之未遮住區域22以及對應於劃線14之已遮罩區域24。對應於已遮罩區域24之影像資料在閾值化步驟期間未經處理或不使用。或者,已遮罩區域24可對應於晶粒以使得未遮住區域對應於劃線,或未遮住區域可僅為每一晶粒之一部分而每一晶粒之剩餘部分被遮罩,或未遮住區域可為(若干)特定晶粒而剩餘晶粒及劃線被遮罩,未遮住區域可僅為(若干)特定晶粒之一部分,而基板上之每一晶粒的剩餘部分被遮罩。在一些實施中,使用者可使用控制器190上之圖形使用者介面來定義遮罩。 Optionally, an image mask may be applied to filter out portions of the image data (step 260). For example, referring to FIG. 3 , a typical substrate 10 includes a plurality of dies 12 . Score lines 14 separate the dies 12 . For some applications it may be useful to process only the image data corresponding to the die. In this case, referring to Figure 4, an image mask may be stored by the controller having an unmasked area 22 spatially corresponding to the die 12 and a masked area 24 corresponding to the scribe line 14 . The image data corresponding to the masked area 24 is not processed or used during the thresholding step. Alternatively, the masked area 24 may correspond to the die such that the unmasked area corresponds to the scribe line, or the unmasked area may be only a portion of each die with the remaining portion of each die masked, or The unmasked area may be a specific die(s) and the remaining die and scribe lines may be masked. The unmasked area may be only a portion of the specific die(s) and the remaining portion of each die on the substrate masked. In some implementations, the user may define the mask using a graphical user interface on controller 190 .

可使用此階段之色彩資料來計算代表厚度之值(步驟270)。此值可為厚度,或已去除材料的量,或指示研磨製程之進程量(例如,與參考研磨製程相比較而言)的值。可針對影像中之每一未遮住像素執行該計算。接著可在用以控制研磨參數之前饋或反饋演算法中使用此值,從而提供改良的厚度均勻性。舉例而言,可將每一像素之值與目標值進行比較以產生誤差信號影像,並且此誤差訊號影像可用於前饋或反饋控制。 The color data at this stage can be used to calculate a value representing thickness (step 270). This value may be a thickness, or an amount of material that has been removed, or a value that indicates how far the grinding process has progressed (eg, compared to a reference grinding process). This calculation can be performed for each unoccluded pixel in the image. This value can then be used in feedforward or feedback algorithms to control grinding parameters, thereby providing improved thickness uniformity. For example, the value of each pixel can be compared with a target value to generate an error signal image, and this error signal image can be used for feedforward or feedback control.

將論述一些有助於理解值代表之計算的背景。對於來自色彩影像之任何給定像素而言,可自給定像素之色彩資料提取對應於兩個色彩通道之一對值。因此,每對值可定義第一色彩通道及不同的第二色彩通道之座標空間中的座標。可能的色彩通道包括色調、飽和度、亮度、X、Y、Z(例如,來自CIE 1931 XYZ色彩空間)、紅色色度、綠色色度及藍色色度。根據已知演算法,可根據來自其他通道之值的元組來計算此些色彩通道之此些值(例如,可自R、G及B來計算X、Y及Z)。Some background will be discussed to help understand the calculation of value representations. For any given pixel from the color image, a pair of values corresponding to one of the two color channels can be extracted from the color data of the given pixel. Thus, each pair of values defines a coordinate in the coordinate space of a first color channel and a different second color channel. Possible color channels include hue, saturation, lightness, X, Y, Z (for example, from the CIE 1931 XYZ color space), red chroma, green chroma, and blue chroma. According to known algorithms, these values for these color channels can be calculated from tuples of values from other channels (eg, X, Y, and Z can be calculated from R, G, and B).

參考第5圖,例如,當研磨開始時,值對(例如,V10 、V20 )定義兩個色彩通道之座標空間500中的初始座標502。然而,因為反射光之光譜隨著研磨進行而改變,所以光的色彩組成改變,且兩個色彩通道中之值(V1,V2)將改變。因此,隨著研磨進行,兩個色彩通道之座標空間內的座標位置將改變,從而在座標空間500中繪製出路徑504。Referring to Figure 5, for example, when grinding begins, pairs of values (eg, V1 0 , V2 0 ) define initial coordinates 502 in coordinate space 500 for both color channels. However, because the spectrum of the reflected light changes as grinding proceeds, the color composition of the light changes, and the values in the two color channels (V1, V2) will change. Therefore, as grinding proceeds, the coordinate positions within the coordinate space of the two color channels will change, thereby drawing path 504 in coordinate space 500 .

參考第6圖及第7圖,為了計算代表厚度之值,儲存(例如,在控制器190之記憶體中)兩個色彩通道之座標空間500中的預定路徑604(步驟710)。該預定路徑是在基板之量測之前產生的。路徑404可自開始座標402行進至結束座標406。路徑404可表示整個研磨製程,其中開始座標402對應於基板上之層的開始厚度,且結束座標對應於該層之最終厚度。或者,該路徑可僅表示研磨製程之一部分,例如,在研磨終點處基板上之層厚度的預期分佈。Referring to Figures 6 and 7, in order to calculate a value representing the thickness, a predetermined path 604 in the coordinate space 500 for the two color channels is stored (eg, in the memory of the controller 190) (step 710). The predetermined path is generated before the measurement of the substrate. Path 404 may travel from start coordinate 402 to end coordinate 406 . Path 404 may represent the entire grinding process, with a start coordinate 402 corresponding to the starting thickness of a layer on the substrate and an end coordinate corresponding to the final thickness of the layer. Alternatively, the path may represent only a portion of the grinding process, for example, the expected distribution of layer thickness on the substrate at the grinding end point.

在一些實施中,為了產生預定路徑404,將已設置基板研磨至大致為將用於元件基板之目標厚度。使用光學度量系統160或光學監控系統160'來獲得已設置基板之色彩影像。因為基板上之研磨速率通常並不均勻,所以基板上之不同位置將具有不同厚度,且因而反射出不同色彩,且從而在第一色彩通道及第二色彩之座標空間內具有不同座標。In some implementations, to create the predetermined path 404, the provided substrate is ground to approximately a target thickness that will be used for the device substrate. An optical metrology system 160 or an optical monitoring system 160' is used to obtain a color image of the arranged substrate. Because the polishing rate on the substrate is usually not uniform, different locations on the substrate will have different thicknesses, and thus reflect different colors, and thus have different coordinates in the coordinate space of the first color channel and the second color.

參考第8圖,使用未遮住區域內所含之像素來計算二維(2D)直方圖。亦即,使用經色彩校正之色彩影像,使用來自經設置基板的未遮住部分之一些或全部像素的座標值,在第一色彩通道及第二色彩通道之座標空間中產生散點圖800。散點圖中之每一點802為特定像素之針對兩個色彩通道之值對(V1,V2)。散點圖800可顯示在控制器190或另一電腦之顯示器上。Referring to Figure 8, a two-dimensional (2D) histogram is calculated using the pixels contained in the unoccluded area. That is, using the color corrected color image, a scatter plot 800 is generated in the coordinate space of the first color channel and the second color channel using coordinate values of some or all pixels from the unoccluded portion of the configured substrate. Each point 802 in the scatter plot is a value pair (V1, V2) for two color channels of a specific pixel. Scatter plot 800 may be displayed on the display of controller 190 or another computer.

如上所述,可能的色彩通道包括色調、飽和度、亮度、X、Y、Z(例如,來自CIE 1931 XYZ色彩空間)、紅色色度、綠色色度及藍色色度。在一些實施中,第一色彩通道為紅色色度(r)且第二色彩通道為綠色色度(g),其可分別由r=定義,其中R、G及B為色彩影像之紅色、綠色及藍色色彩通道的強度值。As mentioned above, possible color channels include hue, saturation, lightness, X, Y, Z (for example, from the CIE 1931 XYZ color space), red chroma, green chroma, and blue chroma. In some implementations, the first color channel is the red chroma (r) and the second color channel is the green chroma (g), which can be respectively represented by r= and Definition, where R, G and B are the intensity values of the red, green and blue color channels of the color image.

可由使用者(例如,半導體製造設施之操作者)使用圖形使用者介面結合電腦(例如,控制器190)手動地產生厚度路徑604。舉例而言,在顯示散點圖的同時,使用者可手動構建遵循散點圖並覆蓋散點圖之路徑,例如,使用滑鼠操作以點選散點圖中之顯示的選定點。Thickness path 604 may be generated manually by a user (eg, a semiconductor manufacturing facility operator) using a graphical user interface in conjunction with a computer (eg, controller 190 ). For example, while a scatter plot is displayed, the user can manually construct a path that follows and overlays the scatter plot, for example, by using mouse operations to click on selected points displayed in the scatter plot.

或者,可使用軟體自動產生厚度路徑604,該軟體被設計成分析散點圖中之座標集合並(例如)使用拓撲骨架化來產生擬合散點圖800中之點的路徑。Alternatively, the thickness path 604 can be automatically generated using software designed to analyze coordinate sets in the scatter plot and combine them (eg, using topological skeletonization) to generate a path that fits the points in the scatter plot 800 .

可藉由多種功能來提供厚度路徑604,例如,使用單條線、多段線、一或更多個圓弧、一或更多個貝塞爾曲線,及其類似者。在一些實施中,藉由多段線來提供厚度路徑604,該多段線為在座標空間中之離散點之間繪製的線段集合。Thickness path 604 may be provided through a variety of functions, such as using a single line, a polyline, one or more arcs, one or more Bezier curves, and the like. In some implementations, thickness path 604 is provided by a polyline, which is a collection of line segments drawn between discrete points in coordinate space.

返回第6圖,函數提供預定厚度路徑604上的位置與厚度值之間的關係。舉例而言,控制器190可儲存針對預定厚度路徑604之起點602的第一厚度值,及針對預定厚度路徑604之終點606的第二厚度值。Returning to Figure 6, the function provides a relationship between a position on a predetermined thickness path 604 and a thickness value. For example, the controller 190 may store a first thickness value for the starting point 602 of the predetermined thickness path 604 and a second thickness value for the end point 606 of the predetermined thickness path 604 .

可藉由使用習知厚度度量系統在對應於提供分別最靠近起點602及終點606的點802之像素的位置處量測基板層之厚度來獲得第一及第二厚度值。The first and second thickness values may be obtained by measuring the thickness of the substrate layer using a conventional thickness measurement system at locations corresponding to pixels providing points 802 closest to the start point 602 and the end point 606, respectively.

在操作中,控制器190可藉由基於自起點602至給定點610沿路徑604之距離在第一及第二值之間進行插值,來計算表示路徑604上之給定點610之厚度的值。舉例而言,若控制器可根據以下等式來計算給定點610之厚度T:, 其中T1為起點602之值,T2為終點606之厚度,L為起點602與終點606之間沿該路徑之總距離,且D為起點602與給定點610之間沿該路徑之距離。In operation, the controller 190 may calculate a value representing the thickness of a given point 610 on the path 604 by interpolating between first and second values based on the distance along the path 604 from the starting point 602 to the given point 610 . For example, if the controller can calculate the thickness T of a given point 610 according to the following equation: , where T1 is the value of the starting point 602, T2 is the thickness of the end point 606, L is the total distance along the path between the starting point 602 and the end point 606, and D is the distance between the starting point 602 and the given point 610 along the path.

作為另一實例,控制器190可儲存預定厚度路徑604上之每個頂點的厚度值,且基於兩個最近頂點之間的插值來計算表示該路徑上給定點之厚度的值。對於此配置而言,可藉由使用習知厚度度量系統在對應於提供最靠近頂點之的點802之像素的位置處量測基板層之厚度,來獲得頂點的各種值。As another example, the controller 190 may store the thickness value for each vertex on the predetermined thickness path 604 and calculate a value representing the thickness at a given point on the path based on interpolation between the two nearest vertices. For this configuration, various values for the vertex may be obtained by measuring the thickness of the substrate layer using a conventional thickness measurement system at the location corresponding to the pixel providing the point 802 closest to the vertex.

使路徑上之位置與厚度相關之其他函數是可能的。Other functions relating position on the path to thickness are possible.

另外,可基於光學模型進行計算而不是使用度量系統量測已設置基板之厚度,來獲得厚度值。In addition, the thickness value can be obtained by performing calculations based on an optical model instead of using a metrology system to measure the thickness of the set substrate.

若吾人基於已知的「已設置」晶圓使用理論模擬或經驗學習,則厚度值可為實際厚度值。或者,預定厚度路徑上給定點處之厚度值可為(例如)相對於基板之研磨程度的相對值。此後一個值可在下游製程中縮放以獲得經驗值,或可簡單地用於表示厚度之增加或減少而無需指定絕對厚度值。If we use theoretical simulations or empirical learning based on a known "set up" wafer, the thickness values can be actual thickness values. Alternatively, the thickness value at a given point along the predetermined thickness path may be, for example, a relative value relative to the degree of grinding of the substrate. This latter value can then be scaled in downstream processes to obtain an empirical value, or can simply be used to represent an increase or decrease in thickness without specifying an absolute thickness value.

參考第6圖及第7圖,對於自基板之影像中分析的像素,自彼像素之色彩資料中提取兩個色彩通道之值(步驟720)。此提供兩個色彩通道之座標系統600中的座標620。Referring to Figures 6 and 7, for a pixel analyzed from the image of the substrate, the values of two color channels are extracted from the color data of that pixel (step 720). This provides coordinates 620 in coordinate system 600 for both color channels.

接下來,計算在預定厚度路徑604上最靠近像素之座標620的點(例如,點610)(步驟730)。在此上下文中,「最靠近」不一定指示幾何完美。可以各種方式定義「最靠近」點,且處理能力之局限性、為易於計算而選擇搜索函數、在搜索函數中存在多個局部最大值等等皆可阻止幾何理想的決定,但仍提供足以使用之結果。在一些實施中,將最靠近點定義成厚度路徑604上之定義了穿過像素的座標620之針對厚度路徑的法線向量的點。在一些實施中,藉由使歐幾里德距離最小化來計算最靠近點。Next, the point (eg, point 610) closest to the coordinate 620 of the pixel on the predetermined thickness path 604 is calculated (step 730). In this context, "closest" does not necessarily indicate geometric perfection. The "closest" point can be defined in various ways, and limitations in processing power, the choice of the search function for ease of calculation, the presence of multiple local maxima in the search function, etc. can prevent a geometrically ideal determination, but still provide sufficient the result. In some implementations, the closest point is defined as the point on the thickness path 604 that defines the normal vector to the thickness path through the coordinates 620 of the pixel. In some implementations, the closest point is calculated by minimizing the Euclidean distance.

接著,基於點610在路徑604上之位置自函數計算出表示厚度之值,如上所述(步驟740)。最靠近點不一定為多段線之頂點中的一者。如上所述,在此情形下,使用插值來獲得厚度值(例如,基於多段線之最近頂點之間的簡單直線插值)。Next, a value representing the thickness is calculated from the function based on the position of point 610 on path 604, as described above (step 740). The closest point is not necessarily one of the vertices of the polyline. As mentioned above, in this case interpolation is used to obtain the thickness value (for example, based on simple straight-line interpolation between the nearest vertices of the polyline).

藉由針對彩色影像中之一些或全部像素重複步驟720至740,可產生基板層之厚度圖。By repeating steps 720-740 for some or all pixels in the color image, a thickness map of the substrate layer can be generated.

對於基板上之一些層堆疊而言,預定厚度路徑將自身交叉,此導致稱作簡併的情況。預定厚度路徑上之簡併點(例如,點650)具有與其相關聯之兩個或更多個厚度值。因此,在無一些額外資訊的情況下,可能無法知曉哪一厚度值為正確值。然而,有可能分析與來自基板上給定物理區域(例如,在給定晶粒內)之像素相關聯的座標群集的性質,並使用此額外資訊來解決簡併。舉例而言,可假設基板之給定小區域內的量測值不會明顯變化,且因此將沿散佈圖佔據較小部分,亦即,不會沿兩個分支延伸。For some layer stacks on a substrate, predetermined thickness paths will cross themselves, leading to a condition called degeneracy. A degenerate point on a predetermined thickness path (eg, point 650) has two or more thickness values associated therewith. Therefore, it may not be possible to know which thickness value is correct without some additional information. However, it is possible to analyze the properties of the coordinate clusters associated with pixels from a given physical region on the substrate (eg, within a given die) and use this additional information to resolve degeneracy. For example, it can be assumed that measurements within a given small area of the substrate will not vary significantly and will therefore occupy a smaller portion along the scatter plot, that is, not extend along both branches.

如此,控制器可分析與來自基板上之給定物理區域的像素相關聯之座標群集,該給定物理區域圍繞需要解決簡併之像素。特定而言,控制器可決定群集在座標空間中之主軸。可選擇預定厚度路徑之最接近地平行於群集之主軸的分支,並將其用以計算表示厚度之值。In this manner, the controller may analyze clusters of coordinates associated with pixels from a given physical region on the substrate surrounding the pixel for which degeneracy needs to be resolved. Specifically, the controller determines the principal axis of the cluster in coordinate space. The branch of the predetermined thickness path that is most closely parallel to the principal axis of the cluster can be selected and used to calculate a value representing the thickness.

返回第2圖,視情況,可對基板之每一區域(例如,每一晶粒)或對整個影像執行均勻性分析(步驟280)。舉例而言,可將每個像素之值與目標值進行比較,且可針對晶粒計算晶粒內「失效」像素(亦即,不符合目標值)之總數目。可將此總數與閾值進行比較,以決定該晶粒是否為可接受的,例如,若總數小於閾值,則將該晶粒標記為可接受的。此給出了每一晶粒之通過/失效指示。Returning to Figure 2, uniformity analysis (step 280) may be performed on each area of the substrate (eg, each die) or on the entire image, as appropriate. For example, the value of each pixel can be compared to a target value, and the total number of "failed" pixels within the die (ie, that do not meet the target value) can be calculated for the die. This total can be compared to a threshold to determine whether the die is acceptable, for example, if the total is less than the threshold, the die is marked as acceptable. This gives a pass/fail indication for each die.

作為另一實例,可計算在基板之未遮住區域內的「失效」像素之總數。可將此總數與閾值進行比較,以決定該基板是否為可接受的,例如,若總數小於閾值,則將該基板標記為可接受的。閾值可由使用者設定。此給出了基板之通過/失效指示。As another example, the total number of "failed" pixels within the unmasked area of the substrate can be counted. This total can be compared to a threshold to determine whether the substrate is acceptable, for example, if the total is less than the threshold, the substrate is marked as acceptable. The threshold can be set by the user. This gives a pass/fail indication of the substrate.

在晶粒或晶圓被決定為「失效」的情況下,控制器190可產生警報或使研磨系統100採取校正動作。舉例而言,可產生聲音或視覺警報,或可產生指示特定晶粒不可用之資料檔案。作為另一實例,可將基板送回進行返工。In the event that a die or wafer is determined to be "failed," the controller 190 may generate an alarm or cause the polishing system 100 to take corrective action. For example, an audible or visual alarm may be generated, or a data file may be generated indicating that a specific die is unavailable. As another example, the substrate can be returned for rework.

與通常由1024個或更多個強度值表示像素之光譜處理相反,在色彩影像中,可僅藉由三個強度值(紅、綠及藍)表示像素,且僅需要兩個色彩通道來進行計算。因此,處理色彩影像之計算負荷明顯降低。In contrast to spectral processing, where pixels are typically represented by 1024 or more intensity values, in color images pixels can be represented by only three intensity values (red, green, and blue) and only two color channels are required to perform calculate. Therefore, the computational load of processing color images is significantly reduced.

然而,在一些實施中,光偵測器164為光譜儀而不是色彩照相機。舉例而言,光偵測器可包括高光譜照相機。此光譜照相機可為每一像素產生30至200個(例如,100個)不同波長之強度值。接著,不是如上所述之二維色彩空間中的值對,而是將該技術(步驟210至270)應用於具有帶有N個色彩通道之N維色彩空間的影像,其中N明顯大於2,例如,10至1000個維度。舉例而言,厚度路徑604可為N維色彩空間中之路徑。However, in some implementations, light detector 164 is a spectrometer rather than a color camera. For example, the light detector may include a hyperspectral camera. This spectral camera can generate 30 to 200 (eg, 100) intensity values at different wavelengths for each pixel. Next, instead of pairs of values in a two-dimensional color space as described above, the technique (steps 210 to 270) is applied to images with an N-dimensional color space with N color channels, where N is significantly greater than 2, For example, 10 to 1000 dimensions. For example, thickness path 604 may be a path in an N-dimensional color space.

在一些實施中,在後續步驟中不會減少色彩空間之維數及色彩通道之數目;每一維度對應於藉由高光譜照相機量測強度值之波長。在一些實施中,色彩空間之維數及通道之數目減少了(例如)10至100倍,例如,減少至10至100個維度及通道。可藉由僅選擇某些通道(例如,某些波長)或藉由組合通道(例如,組合(諸如,取平均)為多個波長量測之強度值)來減少通道數目。大體而言,較大的通道數目減少了路徑中簡併之可能性,但具有較大的電腦處理成本。可憑經驗決定合適的通道數目。In some implementations, the dimensions of the color space and the number of color channels are not reduced in subsequent steps; each dimension corresponds to a wavelength at which intensity values are measured by a hyperspectral camera. In some implementations, the number of dimensions and channels of the color space is reduced, for example, by a factor of 10 to 100, eg, to 10 to 100 dimensions and channels. The number of channels can be reduced by selecting only certain channels (eg, certain wavelengths) or by combining channels (eg, combining (such as averaging) intensity values measured for multiple wavelengths). In general, a larger number of channels reduces the likelihood of degeneracy in the path, but at the cost of greater computer processing. The appropriate number of channels can be determined empirically.

用以增大色彩影像之維數的另一技術為使用具有不同入射角之多個光束。除了如下所述內容以外,此實施例可類似於第1A圖及第1B圖進行配置。參考第1C圖,(內嵌度量系統160或原位監控系統160'之)感測器總成161可包括多個光源,例如,兩個光源162a、162b。每一光源皆產生光束(例如,光束168a及168b),該光束以不同入射角導向基板10。光束168a及168b之入射角可至少間隔5°,例如至少間隔10°,例如至少間隔20°。如第1C圖中所示,光束168a、168b可照射基板10上之同一區域,例如,在基板10上重合。或者,光束可照射不同區域,例如,部分但不完全重疊之區域,或不重疊之區域。Another technique used to increase the dimensionality of a color image is to use multiple light beams with different angles of incidence. This embodiment may be configured similarly to Figures 1A and 1B except as described below. Referring to Figure 1C, the sensor assembly 161 (of the in-line metrology system 160 or the in-situ monitoring system 160') may include multiple light sources, for example, two light sources 162a, 162b. Each light source produces a light beam (eg, light beams 168a and 168b) that is directed to substrate 10 at different angles of incidence. The incident angles of light beams 168a and 168b may be at least 5° apart, such as at least 10° apart, such as at least 20° apart. As shown in FIG. 1C , the light beams 168 a and 168 b may illuminate the same area on the substrate 10 , for example, overlap on the substrate 10 . Alternatively, the beams may illuminate different areas, for example, areas that partially but not completely overlap, or areas that do not overlap.

光束168a、168b自基板10反射,且分別藉由偵測器元件178a、178b之兩個不同陣列在多個像素處量測多個色彩之強度值。如第1C圖中所示,偵測器元件178a、178b可由不同的光偵測器164a、164b提供。舉例而言,兩個偵測器164a、164b可各自為色彩線掃描照相機。然而,在一些實施中,存在具有二維陣列之單個光偵測器,且光束168a、168b照射偵測器之陣列的不同區域。舉例而言,偵測器可為2D色彩照相機。The light beams 168a, 168b are reflected from the substrate 10, and the intensity values of multiple colors are measured at multiple pixels by two different arrays of detector elements 178a, 178b respectively. As shown in Figure 1C, detector elements 178a, 178b may be provided by different photodetectors 164a, 164b. For example, the two detectors 164a and 164b may each be a color line scan camera. However, in some implementations, there is a single light detector with a two-dimensional array, and beams 168a, 168b illuminate different areas of the array of detectors. For example, the detector may be a 2D color camera.

使用具有不同入射角之兩個光束有效地使色彩影像之維數加倍。舉例而言,使用兩個光束168a、168b(其中每一光偵測器164a、164b為色彩照相機),對於總共六個色彩通道而言,每一偵測器將藉由三個色彩通道(例如,分別為紅色、藍色及綠色色彩通道)輸出色彩影像。此提供了較大的通道數目並減少了路徑中簡併之可能性,但仍具有可管理之處理成本。Using two beams with different angles of incidence effectively doubles the dimensionality of the color image. For example, using two light beams 168a, 168b (where each photodetector 164a, 164b is a color camera), for a total of six color channels, each detector will be detected by three color channels (e.g. , respectively red, blue and green color channels) output color image. This provides a larger number of channels and reduces the possibility of degeneracy in the path, but still has a manageable processing cost.

儘管第1C圖將每一光束168a、168b圖示為具有其自己的光學部件(例如,漫射器170、聚焦光學元件172及偏光片174),但亦有可能使該等束共享一些部件。舉例而言,可在兩個光束168a、168b之路徑中放置單個漫射器170及/或單個偏光片174。類似地,儘管示出多個光源162a、162b,但來自單個光源之光可(例如,藉由部分反射鏡)分成多個束。Although Figure 1C illustrates each beam 168a, 168b as having its own optical components (eg, diffuser 170, focusing optic 172, and polarizer 174), it is possible for the beams to share some components. For example, a single diffuser 170 and/or a single polarizer 174 may be placed in the path of the two light beams 168a, 168b. Similarly, although multiple light sources 162a, 162b are shown, light from a single light source may be split into multiple beams (eg, by partially reflecting mirrors).

可用通道之數目來縮放色彩校正。對於色彩校正步驟而言,不是I ORIG 為1x3矩陣且CCM為3x3矩陣,而是I ORIG 可為1xN矩陣且CCM可為NxN矩陣。舉例而言,對於兩個光束以不同角度入射並由兩個色彩照相機量測之實施例而言,I ORIG 可為1x6矩陣且CCM可為6x6矩陣。Color correction can be scaled by the number of channels available. For the color correction step, instead of I ORIG being a 1x3 matrix and CCM being a 3x3 matrix, I ORIG can be a 1xN matrix and CCM can be an NxN matrix. For example, for an embodiment where two beams are incident at different angles and measured by two color cameras, the IORIG can be a 1x6 matrix and the CCM can be a 6x6 matrix.

大體而言,可使用資料(諸如,基板上之層的已計算厚度)來控制CMP設備之一或更多個操作參數。操作參數包括(例如)平臺旋轉速度、基板旋轉速度、基板之研磨路徑、基板在板上之速度、施加在基板上之壓力、漿料成分、漿料流動速率,以及基板表面之溫度。可實時地控制操作參數,且可在不需要進一步人工幹預的情況下自動地調整該等操作參數。In general, information, such as calculated thicknesses of layers on a substrate, may be used to control one or more operating parameters of a CMP device. Operating parameters include, for example, platform rotation speed, substrate rotation speed, substrate grinding path, substrate speed on the plate, pressure exerted on the substrate, slurry composition, slurry flow rate, and substrate surface temperature. Operating parameters can be controlled in real time and automatically adjusted without further manual intervention.

如在本說明書中所使用,術語基板可包括(例如)產品基板(例如,其包括多個記憶體或處理器晶粒)、測試基板、裸基板及閘控基板。基板可處於積體電路製造之各個階段,例如,基板可為裸晶圓,或它可包括一或更多個已沉積及/或經圖案化的層。術語基板可包括圓碟及矩形薄片。As used in this specification, the term substrate may include, for example, production substrates (eg, including multiple memory or processor dies), test substrates, bare substrates, and gated substrates. The substrate may be at various stages of integrated circuit fabrication, for example, the substrate may be a bare wafer, or it may include one or more deposited and/or patterned layers. The term substrate may include discs and rectangular sheets.

然而,以上所述之色彩影像處理技術在3D垂直NAND(VNAND)快閃記憶體之情形中可為尤其有用的。特定而言,在VNAND製造中所使用之層堆疊如此複雜,以致於目前的度量方法(例如,Nova光譜分析)在偵測厚度不適當之區域時可能無法以足夠的可靠性執行。相反,色彩影像處理技術可具有出眾的處理量。However, the color image processing techniques described above may be particularly useful in the case of 3D vertical NAND (VNAND) flash memory. Specifically, the layer stacks used in VNAND fabrication are so complex that current metrology methods (e.g., Nova spectroscopy) may not perform with sufficient reliability when detecting areas of inappropriate thickness. In contrast, color image processing technology allows for superior throughput.

本發明之實施例以及在本說明書中所描述之所有功能操作可在數位電子電路系統中實施,或在電腦軟體、韌體或硬體中(包括本說明書中所揭示之結構構件以及其結構等效物)實施,或在其組合中實施。可將本發明之實施例實施為一或更多個電腦程式產品,亦即,有形地體現在非暫時性機器可讀儲存媒體中的一或更多個電腦程式,以用於由資料處理設備(例如,可程式化處理器、電腦,或多個處理器或電腦)執行或用以控制該資料處理設備之操作。 The embodiments of the present invention and all functional operations described in this specification can be implemented in a digital electronic circuit system, or in computer software, firmware or hardware (including the structural components and their structures disclosed in this specification, etc. effect), or in a combination thereof. Embodiments of the invention may be implemented as one or more computer program products, that is, one or more computer programs tangibly embodied in a non-transitory machine-readable storage medium for use by a data processing device (e.g., a programmable processor, computer, or multiple processors or computers) that performs or is used to control the operation of the data processing equipment.

相對定位的術語用以表示系統之部件相對於彼此之定位,而不一定是關於重力;應理解,可將研磨表面及基板固持在垂直定向或一些其他定向上。 The term relative positioning is used to refer to the positioning of the components of the system relative to each other, and not necessarily with respect to gravity; it is understood that the abrasive surface and substrate may be held in a vertical orientation or some other orientation.

已描述了諸多實施。然而,將理解,可作出各種修改。舉例而言: Many implementations have been described. However, it will be understood that various modifications may be made. For example:

.可使用使整個基板成像之照相機,而不是線掃描照相機。在此情形下,不需要照相機相對於基板之運動。 . A camera that images the entire substrate can be used instead of a line scan camera. In this case, no movement of the camera relative to the substrate is required.

.照相機可覆蓋小於基板之整個寬度。在此情形下,照相機需要在兩個垂直方向上進行運動(例如,被支撐在X-Y臺上),以便掃描整個基板。 . The camera can cover less than the entire width of the substrate. In this case, the camera needs to move in two vertical directions (eg, supported on an X-Y stage) in order to scan the entire substrate.

.光源可照明整個基板。在此情形下,光源不需要相對於基板移動。 . The light source illuminates the entire substrate. In this case, the light source does not need to move relative to the substrate.

.儘管以上論述了在二維座標空間中由值對表示之座標,但該技術適用於具有由三個或更多個色彩通道定義之三個或更多個維度的座標空間。. Although the above discusses coordinates represented by pairs of values in a two-dimensional coordinate space, the technique is applicable to coordinate spaces with three or more dimensions defined by three or more color channels.

·感測器總成不需要定位在研磨站之間或研磨站與傳送站之間的內嵌系統。舉例而言,感測器總成可定位在傳送站內,定位在盒式介面單元中,或為獨立的系統。 ·均勻性分析步驟為可選的。舉例而言,可將藉由應用閾值變換而產生之影像饋入前饋過程中以調整對基板之後一處理步驟,或饋入反饋過程中以調整對後續基板之處理步驟。 ·對於原位量測而言,不構造影像,監控系統可簡單地偵測自基板上的光斑反射之白光束的色彩,並使用此色彩資料以使用上述技術來決定在彼光斑處之厚度。 ·儘管描述聚焦於研磨,但該等技術可應用於添加或去除層並可進行光學監控之其他種類的半導體製造製程,諸如,蝕刻(例如,濕式或乾式蝕刻)、沉積(例如,化學氣相沉積(chemical vapor deposition; CVD)、物理氣相沉積(physical vapor deposition; PVD)或原子層沉積(atomic layer deposition; ALD))、旋塗介電質,或光阻劑塗層。·The sensor assembly does not require an inline system positioned between grinding stations or between grinding stations and transfer stations. For example, the sensor assembly may be located within a transfer station, within a cassette interface unit, or as a stand-alone system. ·The homogeneity analysis step is optional. For example, images generated by applying a threshold transformation can be fed into a feedforward process to adjust a subsequent processing step on a substrate, or into a feedback process to adjust a processing step on a subsequent substrate. ·For in-situ measurements, without constructing an image, the monitoring system can simply detect the color of the white beam reflected from the spot on the substrate and use this color data to determine the thickness at that spot using the techniques described above. Although the description focuses on grinding, these techniques can be applied to other kinds of semiconductor manufacturing processes where layers are added or removed and optically monitored, such as etching (e.g., wet or dry etching), deposition (e.g., chemical vapor etching) chemical vapor deposition (CVD), physical vapor deposition (PVD) or atomic layer deposition (ALD)), spin-on dielectric, or photoresist coating.

因此,其他實施在申請專利範圍之範疇內。Therefore, other implementations are within the scope of the patent application.

10:基板 12:晶粒 14:劃線 16:晶圓定向特徵 18:中心 22:未遮住區域 24:已遮罩區域 100:研磨設備 100':研磨設備 106:研磨站 108:托架 120:平臺 122:凹槽 126:承載頭 127:軸線 128:支撐件 130:研磨墊 132:窗口 134:臂 136:研磨液體 142:固定環 144:可撓性膜狀物 146a:腔室 146b:腔室 146c:腔室 154:驅動軸 156:承載頭旋轉馬達 160:光學度量系統 160':原位光學監控系統 161:感測器總成 162:光源 162a:光源 162b:光源 164:光偵測器 164a:偵測器 164b:偵測器 166:電路系統 168:光 168a:光束 168b:光束 170:漫射器 172:聚焦光學元件 174:偏光濾光片 178:偵測器元件 178a:偵測器元件 178b:偵測器元件 180:臺 182:直線致動器 184:軌道 186:行進方向 188:擋板 190:控制器 200:步驟 210:步驟 220:步驟 230:步驟 235:步驟 240:步驟 250:步驟 260:步驟 270:步驟 280:步驟 500:座標空間 502:初始座標 504:路徑 602:起點 604:預定路徑 606:終點 610:給定點 620:座標 650:點 710:步驟 720:步驟 730:步驟 740:步驟 800:散點圖 802:點10:Substrate 12:Grain 14: underline 16: Wafer orientation characteristics 18:Center 22: Uncovered area 24: Masked area 100:Grinding equipment 100':Grinding equipment 106:Grinding station 108: Bracket 120:Platform 122: Groove 126:Carrying head 127:Axis 128:Support 130: Polishing pad 132:Window 134:Arm 136:Grinding liquid 142:Fixed ring 144: Flexible membrane 146a: Chamber 146b: Chamber 146c: Chamber 154:Drive shaft 156:Carrying head rotation motor 160: Optical measurement system 160': In-situ optical monitoring system 161: Sensor assembly 162:Light source 162a:Light source 162b:Light source 164:Light detector 164a: Detector 164b:Detector 166:Circuit system 168:Light 168a:Beam 168b:Beam 170: Diffuser 172: Focusing optics 174:Polarizing filter 178:Detector component 178a: Detector component 178b: Detector component 180: Taiwan 182:Linear actuator 184:Orbit 186: Direction of travel 188:Baffle 190:Controller 200: steps 210: Step 220:Step 230:Step 235:Step 240:Step 250:Step 260: Steps 270: Steps 280: Steps 500:Coordinate space 502:Initial coordinates 504:Path 602: starting point 604: Predetermined path 606:End point 610: given point 620:Coordinates 650:point 710: Steps 720: Step 730: Steps 740:Step 800: Scatter plot 802:point

第1A圖圖示內嵌光學量測系統之實例的示意圖。Figure 1A illustrates a schematic diagram of an example of an embedded optical measurement system.

第1B圖圖示原位光學量測系統之實例的示意圖。Figure 1B illustrates a schematic diagram of an example of an in-situ optical measurement system.

第1C圖圖示量測系統之一部分之實例的示意圖。Figure 1C illustrates a schematic diagram of an example of a portion of a measurement system.

第2圖為決定層厚度之方法的流程圖。Figure 2 is a flow chart of a method for determining layer thickness.

第3圖為基板之示意性俯視圖。Figure 3 is a schematic top view of the substrate.

第4圖為遮罩之示意圖。Figure 4 is a schematic diagram of the mask.

第5圖圖示實例曲線圖,該曲線圖示出在兩個色彩通道之座標空間中自基板反射之光的色彩演變。Figure 5 illustrates an example graph showing the color evolution of light reflected from a substrate in the coordinate space of two color channels.

第6圖圖示實例曲線圖,該曲線圖示出在兩個色彩通道之座標空間中的預定路徑。Figure 6 illustrates an example graph showing a predetermined path in the coordinate space of two color channels.

第7圖為由色彩影像資料來決定層厚度之方法的流程圖。Figure 7 is a flow chart of a method for determining layer thickness from color image data.

第8圖圖示實例曲線圖,該曲線圖示出自測試基板之色彩影像導出的兩個色彩通道之座標空間中的直方圖。Figure 8 illustrates an example graph showing a histogram in coordinate space for two color channels derived from a color image of a test substrate.

第9A圖及第9B圖圖示實例曲線圖,該等曲線圖分別示出在色彩校正之前及之後兩個色彩通道之座標空間中的直方圖。Figures 9A and 9B illustrate example graphs showing histograms in coordinate space for two color channels before and after color correction, respectively.

在各種圖式中相同元件符號指示相同元件。The same reference symbols refer to the same elements in the various drawings.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無Domestic storage information (please note in order of storage institution, date and number) without Overseas storage information (please note in order of storage country, institution, date, and number) without

10:基板 10:Substrate

161:感測器總成 161: Sensor assembly

162a:光源 162a:Light source

162b:光源 162b:Light source

164a:偵測器 164a: Detector

164b:偵測器 164b:Detector

168a:光束 168a:Beam

168b:光束 168b:Beam

170:漫射器 170: Diffuser

172:聚焦光學元件 172: Focusing optics

174:偏光濾光片 174:Polarizing filter

178a:偵測器元件 178a: Detector component

178b:偵測器元件 178b: Detector component

184:軌道 184:Orbit

188:擋板 188:Baffle

Claims (19)

一種用於獲得代表一基板上之一層的一厚度之一量測值的系統,包括:一支撐件,該支撐件用以固持用於積體電路製造之一基板;一光學總成,該光學總成用以藉由光以一第一入射角照射該基板來俘獲該基板之由該支撐件固持的至少一部分之一第一色彩影像,及藉由光以一不同的第二入射角照射該基板來俘獲該基板之由該支撐件固持的該至少一部分之一第二色彩影像;以及一控制器,該控制器經配置以自該光學總成接收該第一色彩影像及該第二色彩影像,儲存一函數,該函數根據在至少四個維度之一座標空間中沿一預定路徑的位置來提供代表一厚度之一值,該至少四個維度包括來自於該第一色彩影像之一第一色彩通道及一第二色彩通道以及來自該第二色彩影像之一第三色彩通道及一第四色彩通道,針對該第一色彩影像之一像素以及該第二色彩影像中之一對應像素,自該第一色彩影像中針對該像素之色彩資料以及該第二色彩影像中針對該對應像素之該色彩資料來決定在該座標空間中之一座標,決定在該預定路徑上最靠近該座標之一點的一位置,以及 自該函數以及該預定路徑上之該點的該位置來計算代表一厚度之一值。 A system for obtaining a measurement representative of a thickness of a layer on a substrate includes: a support for holding a substrate for integrated circuit manufacturing; an optical assembly, the optical assembly The assembly is configured to capture a first color image of at least a portion of the substrate held by the support by illuminating the substrate with light at a first angle of incidence, and by illuminating the substrate with light at a different second angle of incidence. a substrate to capture a second color image of at least a portion of the substrate held by the support; and a controller configured to receive the first color image and the second color image from the optical assembly , storing a function that provides a value representing a thickness based on a position along a predetermined path in a coordinate space in one of at least four dimensions, the at least four dimensions including a first color image from the first color image. A color channel and a second color channel and a third color channel and a fourth color channel from the second color image, for a pixel of the first color image and a corresponding pixel in the second color image, automatically The color data for the pixel in the first color image and the color data for the corresponding pixel in the second color image determine a coordinate in the coordinate space and determine a point closest to the coordinate on the predetermined path. a position, and A value representing a thickness is calculated from the function and the location of the point on the predetermined path. 如請求項1所述之系統,其中該座標空間為四維的。 The system of claim 1, wherein the coordinate space is four-dimensional. 如請求項1所述之系統,其中該座標空間為六維的。 The system of claim 1, wherein the coordinate space is six-dimensional. 如請求項1所述之系統,其中該第一色彩通道及該第二色彩通道選自包括該第一色彩影像之色調、飽和度、亮度、X、Y、Z、紅色色度、綠色色度及藍色色度的色彩通道之群,且該第三色彩通道及該第四色彩通道選自包括該第二色彩影像之色調、飽和度、亮度、X、Y、Z、紅色色度、綠色色度及藍色色度的色彩通道之群。 The system of claim 1, wherein the first color channel and the second color channel are selected from the group consisting of hue, saturation, brightness, X, Y, Z, red chroma, and green chroma of the first color image. and a group of color channels of blue chroma, and the third color channel and the fourth color channel are selected from the group consisting of hue, saturation, brightness, X, Y, Z, red chroma, green color of the second color image A group of color channels for chroma and blue chroma. 如請求項4所述之系統,其中該第一色彩通道及第三色彩通道為紅色色度,且該第二色彩通道及該第四色彩通道為綠色色度。 The system of claim 4, wherein the first color channel and the third color channel are red chroma, and the second color channel and the fourth color channel are green chroma. 如請求項1所述之系統,其中該第一入射角及該第二入射角均在約20°至85°之間。 The system of claim 1, wherein the first angle of incidence and the second angle of incidence are both between approximately 20° and 85°. 如請求項1所述之系統,其中該第一入射角比該第二入射角大至少5°。 The system of claim 1, wherein the first incident angle is at least 5° greater than the second incident angle. 如請求項1所述之系統,其中該第一入射角比該第二入射角大至少10°。 The system of claim 1, wherein the first incident angle is at least 10° greater than the second incident angle. 一種用於獲得代表一基板上之一層的一厚度之一量測值的電腦程式產品,該電腦程式產品有形地體現在一非暫時性電腦可讀媒體中,包括用於使一處理器 進行以下各者之指令:自一或更多個照相機接收該基板之一第一色彩影像及該基板之一第二色彩影像;儲存一函數,該函數根據在至少四個維度之一座標空間中沿一預定路徑的一位置來提供代表一厚度之一值,該至少四個維度包括來自於該第一色彩影像之一第一色彩通道及一第二色彩通道以及來自該第二色彩影像之一第三色彩通道及一第四色彩通道;針對該第一色彩影像之一像素以及該第二色彩影像中之一對應像素,自該第一色彩影像中針對該像素之色彩資料以及該第二色彩影像中針對該對應像素之該色彩資料來決定在該座標空間中之一座標;決定在該預定路徑上最靠近該座標之一點的一位置;以及自該函數以及該預定路徑上之該點的該位置來計算代表該基板上之一層的一厚度之一值。 A computer program product for obtaining a measurement representative of a thickness of a layer on a substrate, the computer program product tangibly embodied in a non-transitory computer-readable medium, including a method for causing a processor to Instructions to perform the following: receive a first color image of the substrate and a second color image of the substrate from one or more cameras; store a function based on a coordinate space in one of at least four dimensions A value representing a thickness is provided at a position along a predetermined path, the at least four dimensions including a first color channel and a second color channel from the first color image and one from the second color image a third color channel and a fourth color channel; for a pixel in the first color image and a corresponding pixel in the second color image, color data for the pixel in the first color image and the second color The color data for the corresponding pixel in the image determines a coordinate in the coordinate space; determines a position closest to the point on the predetermined path that is closest to the coordinate; and from the function and the point on the predetermined path The position is used to calculate a value representing a thickness of a layer on the substrate. 一種用於獲得代表一基板上之一層的一厚度之一量測值的方法,包括以下步驟:將用於積體電路製造之一基板定位在一色彩照相機的視野中;使用一或更多個色彩照相機產生該基板之一第一色彩影像及該基板之一第二色彩影像,該第一色彩影像是藉由光以一第一入射角照射該基板而產生的,且該第二色彩影像是藉由光以一不同的第二入射角照射該基板而產 生的;儲存一函數,該函數根據在至少四個維度之一座標空間中沿一預定路徑的一位置來提供代表一厚度之一值,該至少四個維度包括來自於該第一色彩影像之一第一色彩通道及一第二色彩通道以及來自該第二色彩影像之一第三色彩通道及一第四色彩通道;針對該第一色彩影像之一像素以及該第二色彩影像中之一對應像素,自該第一色彩影像中針對該像素之色彩資料以及該第二色彩影像中針對該對應像素之該色彩資料來決定在該座標空間中之一座標;決定在該預定路徑上最靠近該座標之一點的一位置;以及自該函數以及該預定路徑上之該點的該位置來計算代表該基板上之一層的一厚度之一值。 A method for obtaining a measurement representative of a thickness of a layer on a substrate, comprising the steps of: positioning a substrate for integrated circuit fabrication within the field of view of a color camera; using one or more The color camera generates a first color image of the substrate and a second color image of the substrate, the first color image is generated by illuminating the substrate with light at a first incident angle, and the second color image is Produced by irradiating the substrate with light at a different second angle of incidence generated; storing a function that provides a value representing a thickness based on a position along a predetermined path in a coordinate space in at least four dimensions, the at least four dimensions including the thickness from the first color image a first color channel and a second color channel and a third color channel and a fourth color channel from the second color image; for a pixel of the first color image and a corresponding one in the second color image For a pixel, a coordinate in the coordinate space is determined from the color data for the pixel in the first color image and the color data for the corresponding pixel in the second color image; determine the closest position to the pixel on the predetermined path. a position of a point on the coordinates; and calculating a value representing a thickness of a layer on the substrate from the function and the position of the point on the predetermined path. 一種研磨系統,包括:一研磨站,該研磨站包括用以支撐一研磨墊之一平臺;一支撐件,該支撐件用以固持一基板;一內嵌度量站,該內嵌度量站用以在該研磨站中研磨該基板之一表面之前或之後量測該基板,該內嵌度量站包括一或更多個細長的白光源,其各自具有一縱向軸線並經配置而以一非零入射角將光導向該基板,從而在該基板上形成一照明區域,該照明區域在該基板之掃 描期間沿一第一軸線延伸,具有偵測器元件之一第一色彩線掃描照相機,該等偵測器元件經佈置以接收以一第一入射角照射該基板之自該基板反射的光,並形成在該基板之掃描期間沿該第一軸線延伸的一影像部分,具有偵測器元件之第二色彩線掃描照相機,該等偵測器元件經佈置以接收以一不同的第二入射角照射該基板之自該基板反射的光,並形成在該基板之掃描期間沿該第一軸線延伸的一第二影像部分,支撐該一或更多個光源、該第一色彩線掃描照相機及該第二色彩線掃描照相機之一框,以及一馬達,該馬達導致該框與該支撐件之間沿垂直於該第一軸線之一第二軸線的相對運動,從而導致該一或更多個光源、該第一色彩線掃描照相機及該第二色彩線掃描照相機在該基板上進行掃描;以及一控制器,該控制器經配置以自該第一色彩線掃描照相機及該第二色彩線掃描照相機接收色彩資料,自來自於該第一色彩線掃描照相機之色彩資料產生一第一二維色彩影像及自來自於該第二色彩線掃描照相機之色彩資料產生一第二二維色彩影像,以及基於該第一二維色彩影像及該第二二維色彩影像控制在該研磨站處之研磨。 A grinding system includes: a grinding station, the grinding station includes a platform for supporting a grinding pad; a support member for holding a substrate; an embedded measuring station for Measuring the substrate before or after grinding a surface of the substrate in the grinding station, the embedded metrology station including one or more elongated white light sources, each having a longitudinal axis and configured to illuminate with a non-zero incidence The angle directs light to the substrate, thereby forming an illuminated area on the substrate that is swept across the substrate. a first color line scan camera extending along a first axis during scanning and having detector elements arranged to receive light reflected from the substrate striking the substrate at a first angle of incidence, and forming an image portion extending along the first axis during scanning of the substrate, a second color line scan camera having detector elements arranged to receive a second, different incident angle Illuminating the substrate with light reflected from the substrate and forming a second image portion extending along the first axis during scanning of the substrate, supporting the one or more light sources, the first color line scan camera and the a frame of a second color line scan camera, and a motor causing relative movement between the frame and the support along a second axis perpendicular to the first axis, thereby causing the one or more light sources , the first color line scan camera and the second color line scan camera scan on the substrate; and a controller configured to scan from the first color line scan camera and the second color line scan camera receiving color data, generating a first two-dimensional color image from the color data from the first color line scan camera and generating a second two-dimensional color image from the color data from the second color line scan camera, and based on The first two-dimensional color image and the second two-dimensional color image control grinding at the grinding station. 如請求項11所述之系統,包括在該一或更多個細長白光源與該基板之間的一光路徑中之一或更多個漫射器。 The system of claim 11, including one or more diffusers in a light path between the one or more elongated white light sources and the substrate. 如請求項11所述之系統,其中該第一入射角及該第二入射角均在約5°至85°之間。 The system of claim 11, wherein the first angle of incidence and the second angle of incidence are both between about 5° and 85°. 如請求項13所述之系統,其中該第一入射角及該第二入射角均在約20°至75°之間。 The system of claim 13, wherein the first angle of incidence and the second angle of incidence are both between about 20° and 75°. 如請求項11所述之系統,其中該第一入射角比該第二入射角大至少5°。 The system of claim 11, wherein the first angle of incidence is at least 5° greater than the second angle of incidence. 如請求項11所述之系統,其中該第一入射角比該第二入射角大至少10°。 The system of claim 11, wherein the first angle of incidence is at least 10° greater than the second angle of incidence. 如請求項11所述之系統,其中該第一色彩線掃描照相機及該第二線掃描照相機經配置以使該基板上之一重合區域成像。 The system of claim 11, wherein the first color line scan camera and the second line scan camera are configured to image an overlapping area on the substrate. 如請求項11所述之系統,其中該一或更多個細長光源包括用以產生以該第一入射角照射該基板之該光的一第一細長光源,及用以產生以該第二入射角照射該基板之該光的一第二細長光源。 The system of claim 11, wherein the one or more elongated light sources include a first elongated light source for generating the light that illuminates the substrate at the first incident angle, and for generating the light at the second incident angle. A second elongated light source illuminates the light at an angle to the substrate. 如請求項11所述之系統,其中該框是固定的,且該馬達耦接至該支撐件,且該控制器經配置以導致該馬達使該支撐件移動,而同時該一或更多個細長光源及該第一色彩線掃描照相機及第二色彩線掃描照相機保持固定以便在該基板上進行掃描。 The system of claim 11, wherein the frame is fixed and the motor is coupled to the support, and the controller is configured to cause the motor to move the support while the one or more The elongated light source and the first and second color line scan cameras remain stationary for scanning on the substrate.
TW109103130A 2019-02-07 2020-02-03 Thickness measurement of substrate using color metrology TWI830864B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962802662P 2019-02-07 2019-02-07
US62/802,662 2019-02-07
US16/388,777 US11557048B2 (en) 2015-11-16 2019-04-18 Thickness measurement of substrate using color metrology
US16/388,777 2019-04-18

Publications (2)

Publication Number Publication Date
TW202042965A TW202042965A (en) 2020-12-01
TWI830864B true TWI830864B (en) 2024-02-01

Family

ID=71948073

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109103130A TWI830864B (en) 2019-02-07 2020-02-03 Thickness measurement of substrate using color metrology

Country Status (4)

Country Link
JP (1) JP7254197B2 (en)
CN (1) CN113518691B (en)
TW (1) TWI830864B (en)
WO (1) WO2020163570A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102334026A (en) * 2009-02-18 2012-01-25 株式会社尼康 Surface examining device and surface examining method
TW201819108A (en) * 2016-08-26 2018-06-01 美商應用材料股份有限公司 Thickness measurement of substrate using color metrology
TW201819896A (en) * 2016-10-07 2018-06-01 美商克萊譚克公司 Three-dimensional imaging for semiconductor wafer inspection

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394104A (en) * 1989-09-06 1991-04-18 Toshiba Corp Film thickness measuring method and film thickness measuring device and film forming device using it
US6939198B1 (en) * 2001-12-28 2005-09-06 Applied Materials, Inc. Polishing system with in-line and in-situ metrology
TWI252301B (en) * 2004-07-30 2006-04-01 Delta Electronics Inc Deposition system and film thickness monitoring device thereof
US8989890B2 (en) * 2008-11-07 2015-03-24 Applied Materials, Inc. GST film thickness monitoring
US9528814B2 (en) * 2011-05-19 2016-12-27 NeoVision, LLC Apparatus and method of using impedance resonance sensor for thickness measurement
US10565701B2 (en) * 2015-11-16 2020-02-18 Applied Materials, Inc. Color imaging for CMP monitoring
KR20180066381A (en) * 2016-12-08 2018-06-19 삼성전자주식회사 Substrate Inspecting System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102334026A (en) * 2009-02-18 2012-01-25 株式会社尼康 Surface examining device and surface examining method
TW201819108A (en) * 2016-08-26 2018-06-01 美商應用材料股份有限公司 Thickness measurement of substrate using color metrology
TW201819896A (en) * 2016-10-07 2018-06-01 美商克萊譚克公司 Three-dimensional imaging for semiconductor wafer inspection

Also Published As

Publication number Publication date
CN113518691B (en) 2024-03-08
TW202042965A (en) 2020-12-01
JP2022519628A (en) 2022-03-24
CN113518691A (en) 2021-10-19
WO2020163570A1 (en) 2020-08-13
JP7254197B2 (en) 2023-04-07
KR20210112414A (en) 2021-09-14

Similar Documents

Publication Publication Date Title
TWI814980B (en) Thickness measurement of substrate using color metrology
TWI743176B (en) Method of obtaining measurement representative of thickness of layer on substrate, and metrology system and computer program product
TWI757154B (en) Color imaging for cmp monitoring
US11557048B2 (en) Thickness measurement of substrate using color metrology
TWI830864B (en) Thickness measurement of substrate using color metrology
TWI837057B (en) Thickness measurement of substrate using color metrology
KR102672511B1 (en) Board thickness measurement using color metrology
TWI839399B (en) A method of determining whether a substrate is properly polished, a computer program product, and a system for obtaining a measurement representative of a thickness of a layer on a substrate
TWI837569B (en) Color imaging for cmp monitoring