JPH0394104A - Film thickness measuring method and film thickness measuring device and film forming device using it - Google Patents

Film thickness measuring method and film thickness measuring device and film forming device using it

Info

Publication number
JPH0394104A
JPH0394104A JP23064389A JP23064389A JPH0394104A JP H0394104 A JPH0394104 A JP H0394104A JP 23064389 A JP23064389 A JP 23064389A JP 23064389 A JP23064389 A JP 23064389A JP H0394104 A JPH0394104 A JP H0394104A
Authority
JP
Japan
Prior art keywords
film
substrate
wavelength
film thickness
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23064389A
Other languages
Japanese (ja)
Inventor
Masamitsu Ito
正光 伊藤
Sachiko Kikuchi
幸子 菊池
Masaru Hori
勝 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23064389A priority Critical patent/JPH0394104A/en
Publication of JPH0394104A publication Critical patent/JPH0394104A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure with high accuracy the film thickness of an optical thin film which is being formed by using a monochromatic photometric method, and also, to execute the film thickness control with high accuracy by executing simultaneously the photometry by the combination of plural wavelength and an incident angle. CONSTITUTION:An electron beam vapor deposition device is provided with a chamber 15 for containing a substrate 14 to be processed, a vacuum pump 18, a vapor deposition source 19, etc., and by radiating an electron beam from the vapor deposition source 19, a vapor deposition substance is emitted, reaches the lower face of the substrate 14 and forms an accumulated film 13. Also, this device is provided with two photometric systems, provided with characteristic X-ray sources 11a, 11b for radiating a monochromatic light from the oblique direction to the substrate 14, and also, X-ray detectors 16a, 16b using a proportional counter tube for detecting independently each reflected light from the substrate 14. The X-ray sources 11a, 11b and the X-ray detectors 16a, 16b consist of a structure being capable of varying an angle against the substrate 14. In this state, since the photometry in the monochromatic photometric method is not executed by the combination of one wavelength and an incident angle but executed simultaneously by the combination of plural wavelength and the incident angle, the accuracy for measuring the film thickness can be improved.

Description

【発明の詳細な説明】 [発明の目的] (産業」二の利用分野) 本発明は、膜厚測定技術に係わり、特に膜形戊中の膜厚
を測定する膜厚測定方法及び膜厚測定装置、さらにこの
膜厚測定装置を備えた膜形成装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Field of Application in Industry) The present invention relates to film thickness measurement technology, and in particular to a film thickness measurement method and film thickness measurement method for measuring film thickness in a film shape. The present invention relates to an apparatus and a film forming apparatus equipped with this film thickness measuring apparatus.

(従来の技術) 従来、薄膜の膜厚を測定する方広としては、膜形成中に
測定可能なものと、膜形成後に測定するものとの2種類
に分けることができる。膜形成中に測定iI能な膜厚a
1リ定方法には、水晶振動子法、光学的方法としての1
11色Allj光法,2色測光法,波長走査法及びエリ
プソメトリー等がある。膜形成後に測定可能な膜厚測定
方法には、触針法、光学的方法としての多重光束干渉法
,位相差顕微鏡及びエリプソメトリー等がある。
(Prior Art) Conventionally, methods for measuring the thickness of a thin film can be divided into two types: those that can be measured during film formation, and those that can be measured after film formation. Film thickness a that can be measured during film formation
The 1st determination method includes the crystal oscillator method and the 1st optical method.
Examples include 11-color Allj photometry, two-color photometry, wavelength scanning method, and ellipsometry. Film thickness measurement methods that can be measured after film formation include the stylus method, multiple beam interference method as an optical method, phase contrast microscope, and ellipsometry.

それぞれに長所,短所を有しており、形成する膜物質,
膜厚及び膜構造に応じて適切な膜厚測定方法を用いて膜
形成がイjわれでいる。
Each has its advantages and disadvantages, and the film material to be formed,
The film is formed using an appropriate film thickness measurement method depending on the film thickness and film structure.

例えば、形成する膜物質が金属で、膜厚が数ミクロンの
111層膜である場合、膜は光学的に不透明であるので
、触針法や多重光束干渉法等が有効であり、光学的方法
である単色測光法は適さない。また、形成する膜が多層
膜である場合、膜形成後でなければ測定できない触針法
等は適さず、膜形成中の測定が可能な方法が有効である
。しかしながら、その中で水晶振動子法は膜厚誤差が累
積される欠点を持つ。
For example, when the film material to be formed is a 111-layer film with a film thickness of several microns, the film is optically opaque, so methods such as the stylus method and multiple beam interference method are effective, and optical methods Monochromatic photometry is not suitable. Further, when the film to be formed is a multilayer film, methods such as a stylus method that can be measured only after the film is formed are not suitable, and methods that can perform measurements during the film formation are effective. However, among these methods, the crystal oscillator method has the drawback of accumulating film thickness errors.

さらに、形成する膜厚が数10入というオーダーである
場合、多重光束干渉法や触針法等は、その測定限界を越
えてしまう。また、2色測光法では、波長がX線領域に
なるために、一方の波長が他方の波長の整数倍である2
種類の波長(2色)を取り出すためのフィルターが存在
せず、そのために特性X線を用いることが考えられる。
Furthermore, when the thickness of the film to be formed is on the order of several tens of layers, the measurement limits of multiple beam interference method, stylus method, etc. are exceeded. In addition, in two-color photometry, since the wavelength is in the X-ray region, one wavelength is an integral multiple of the other wavelength.
There is no filter to extract different wavelengths (two colors), and therefore characteristic X-rays may be used.

しかし、特性X線を用いて、目的とする膜厚に適した波
長で、しかも一方の波長が他方の波長の整数倍となる2
つの波長を見つけるのは極めて困難である。そこで、こ
のような極薄膜の場合、単色測光法.エリブソメトリー
及び水晶振動子法が用いられる。
However, using characteristic
It is extremely difficult to find one wavelength. Therefore, in the case of such ultra-thin films, monochromatic photometry is used. Eribsometry and quartz crystal methods are used.

ところで、現在の半導体産業において、集積回路の高集
積化に伴いX線リソグラフィーの研究開発が盛んであり
、また一方で、X線顕微鏡等の開発も行われている。こ
のような、X線の波長領域での研究開発が進む中で、X
線光学素子であるX線反射鏡の開発も急速な進展を見せ
ている。
Incidentally, in the current semiconductor industry, research and development of X-ray lithography is active as integrated circuits become more highly integrated, and on the other hand, X-ray microscopes and the like are also being developed. As research and development in the X-ray wavelength region progresses,
Rapid progress is also being made in the development of X-ray reflectors, which are radiation optical elements.

X線反射鏡は光学定数の大きく異なる2物質を交互に積
層したもので、1層の厚さは、使用される波長の4分の
1であり、数入〜数100λである。このX線多層膜反
射鏡の形成における膜厚測定には、水晶振動子法,エリ
プソメトリ及び単色測光が用いられている( M.Ya
mamotoat. SPIEvo1.68g,99(
198G), E.Spillcr SPIE5 vo1.563.387(1985))。その中で、水
晶振動子法は先に述べたように、多層膜を形成する場合
には膜厚誤差が累積されるという欠点がある。また、温
度変化に対して不安定であり高融点金属の蒸着等には適
さない。一方、i11.色測光法は膜厚誤差が累積され
ることなく、温度変化に対しでも非常に安定である。さ
らに、実際に反射鏡で使用される波長及び入射角で測定
を行うので、膜厚測定と同時に反射率等の反射鏡の特性
も測定できる長所があり、X線反射鏡形成に非常に有効
な手段である。
The X-ray reflecting mirror is made by alternately laminating two materials with greatly different optical constants, and the thickness of each layer is one-fourth of the wavelength used, and is several to several hundred λ. The crystal oscillator method, ellipsometry, and monochromatic photometry are used to measure the film thickness in forming this X-ray multilayer film reflector (M.Ya
mamotoat. SPIEvo1.68g, 99(
198G), E. Spillcr SPIE5 vol. 563.387 (1985)). Among them, as mentioned above, the crystal resonator method has the disadvantage that film thickness errors are accumulated when forming a multilayer film. Furthermore, it is unstable against temperature changes and is not suitable for vapor deposition of high melting point metals. On the other hand, i11. Color photometry does not accumulate film thickness errors and is very stable against temperature changes. Furthermore, since the measurement is performed at the wavelength and incident angle actually used in the reflector, it has the advantage of being able to measure reflectance and other properties of the reflector at the same time as measuring the film thickness, making it extremely effective for forming X-ray reflectors. It is a means.

この単色測光法とは、膜形成系内(例えば蒸着装置内)
に単色測光系を設け、光学的に透明な薄膜の反射又は透
過率の極値を検出して膜形成を停止することにより、λ
/4膜,3λ/4膜等が得られるというものである。原
理的構成を第4図に示す。被処理基板42の下面に蒸着
源46から原料蒸気が供給され、これにより基板42の
下面に薄膜43が堆積されているものとする。単色光源
40からの光41は基板426 に対して斜めから照射され、その反射光は受光器44で
検出される。受光器44の出力は、波形メモリ45に供
給され記憶される。そして、この波形メモリ45の記憶
内容に裁づいて薄膜43の膜厚が測定されるものとなっ
ている。
This monochromatic photometry method is used within the film forming system (for example, inside the vapor deposition equipment).
By installing a monochromatic photometry system in the λ
/4 film, 3λ/4 film, etc. can be obtained. The basic configuration is shown in Figure 4. It is assumed that raw material vapor is supplied from the evaporation source 46 to the lower surface of the substrate 42 to be processed, and thereby the thin film 43 is deposited on the lower surface of the substrate 42 . Light 41 from a monochromatic light source 40 is obliquely irradiated onto a substrate 426 , and the reflected light is detected by a light receiver 44 . The output of the light receiver 44 is supplied to a waveform memory 45 and stored therein. Then, the thickness of the thin film 43 is measured based on the contents stored in the waveform memory 45.

X線多層膜の場合、λ/4層の積み重ねになり、測光す
る波長もX線である。第5図に、シリコン基板上に形成
したタングステン膜の波長44.7入( C − Kα
)のX線の反射率変化を示す。
In the case of an X-ray multilayer film, λ/4 layers are stacked, and the wavelength for photometry is also X-ray. Figure 5 shows the wavelength of 44.7 (C - Kα) of a tungsten film formed on a silicon substrate.
) shows the change in X-ray reflectance.

膜厚が地加するにつれ、反射強度がサインカーブを描い
て変化するのが判る。この強度な化の極値で膜形成を止
めることにより、λ/4膜(この場合膜厚200入)を
得ることができる。
It can be seen that as the film thickness increases, the reflection intensity changes in a sine curve. By stopping film formation at this extreme value of strength, a λ/4 film (film thickness 200 in this case) can be obtained.

なお、反射強度のピークは、膜の題折率をn,膜厚をd
2人射角度をθ,入射光の波長をAとするとき、 2ndcosθ:mA (mは正の整数)のとき得られ
る。
Note that the peak of the reflection intensity is determined by the refractive index of the film as n and the film thickness as d.
2nd cos θ: mA (m is a positive integer) is obtained when the angle of 2-person incidence is θ and the wavelength of the incident light is A.

しかしながら、この種の方法にあっては次のような問題
があった。即ち、膜形成中に反射光強度の極値を極値と
して精度良く検出するのは非常に困難であり、極値検出
して膜形成を止めても必ず多めの膜厚となる。2色fl
ll光法はこの11j,色測光法の誤差を少なくした方
法であるが、前述したようにX線の波長領域では、測光
に使用できる適当な2色の波長を得ることが不可能であ
る。
However, this type of method has the following problems. That is, it is very difficult to accurately detect the extreme value of the reflected light intensity as an extreme value during film formation, and even if the film formation is stopped after detecting the extreme value, the film will always be thicker. 2 colors fl
The ll light method is a method that reduces the errors of the color photometry, but as described above, in the X-ray wavelength region, it is impossible to obtain suitable two-color wavelengths that can be used for photometry.

(発明が解決しようとする課題) このように、X線反射鏡に用いる多層膜形成や反射肋止
膜の形成等の光学薄膜の形成における膜厚測定方法とし
て非′J:9にH効であるのが、膜形成中に形成してい
る光学薄膜の光学的特性(反射率等)を同時に測定でき
る単色測光法と2色測光法である。さらに、X線等の適
当なフィルターの存在しない波長領域では、2色測光法
は使用できず、単色測光法のみが有効な膜厚測定法とし
て使用される。しかしながら、単色測光法は膜厚制御の
精度が前述した通り原理上悪く、必ず多めの膜厚となる
ことが問題となっていた。
(Problems to be Solved by the Invention) As described above, as a film thickness measurement method for forming optical thin films such as multilayer film formation for X-ray reflecting mirrors and reflective rib film formation, H effect is not suitable for non-'J:9. There are monochromatic photometry and two-color photometry that can simultaneously measure the optical properties (reflectance, etc.) of an optical thin film being formed during film formation. Furthermore, in a wavelength region such as X-rays where no suitable filter exists, two-color photometry cannot be used, and only monochromatic photometry is used as an effective method for measuring film thickness. However, the monochromatic photometry method has a problem in that the accuracy of film thickness control is poor in principle as described above, and the film thickness always ends up being too thick.

本発明は、上記事情を考慮してなされたもので、その1
」的とするところは、弔色測光法を用いて形成中の光学
薄膜の膜j¥゛を測定することができ、口つ高精度の膜
厚測定を可能とした膜厚7111定方法を提供すること
にある。
The present invention has been made in consideration of the above circumstances.
The purpose of the present invention is to provide a film thickness determination method that can measure the film thickness of an optical thin film that is being formed using the photometric method, and that enables highly accurate film thickness measurement. It's about doing.

また、本発明の他の目的は、上記方法を実施するための
膜厚測定装置、さらに高精度の阪厚制御を可能とした膜
形成装置を提供することにある。
Another object of the present invention is to provide a film thickness measuring device for carrying out the above method, and a film forming device that enables highly accurate thickness control.

[発明の構或] (課題を解決するための手段) 本発明の骨子は、単色測光法における7lll1光を1
つの波長と入射角の組合わせで行うのではなく、複数の
波長と入射角の組合わせで同時に測光を行い、膜厚測定
の精度を向上させることにある。
[Structure of the Invention] (Means for Solving the Problems) The gist of the present invention is to convert 7lll1 light into 1 in monochromatic photometry.
The purpose of this method is to improve the accuracy of film thickness measurement by simultaneously performing photometry using multiple combinations of wavelengths and angles of incidence, rather than using a single combination of wavelength and angle of incidence.

即ち本発明は、薄膜形成に供される基板に電磁波を入射
させ、その反射強度の極値から形成中の薄膜の厚さを7
1111定する股厚i’llll定法において、前記話
板に同II.7に2種類以上の波長と入対角の9 組合わせの電磁波を人躬させ、入射させる電磁波の波長
を八,入射角をθとして D−A−’eosθと定義したとき、測定すべき膜厚値
で最初の極値が得られる波長と人1J角の組合わせのD
の値をDAと、他の電磁波のDの値がDAの整数倍とな
るような入射角と波長を用いるようにした方法である。
That is, in the present invention, an electromagnetic wave is incident on a substrate to be used for forming a thin film, and the thickness of the thin film being formed is determined from the extreme value of the reflected intensity.
1111 In the crotch thickness i'llll standard method, the same II. When the electromagnetic waves of 9 combinations of two or more wavelengths and incident diagonals are detected in 7, and the wavelength of the incident electromagnetic waves is 8 and the angle of incidence is θ, it is defined as D-A-'eosθ, then the film to be measured is D of the combination of wavelength and human 1J angle that gives the first extreme value of the thickness value
In this method, the value of DA is used, and the incident angle and wavelength are used such that the value of D of other electromagnetic waves is an integral multiple of DA.

また本発明は、薄膜形成に供される基板に電磁波を照射
する少なくとも2つの単波長放射源と、基板からの反射
波を独立に検出する受波器と、これらの受波器で得られ
る反射波強度の極値から基板に形成される薄膜の膜厚を
測定する手段とを具備した膜厚測定装置であって、前記
基板に照射する電磁波の波長をΛ、入射角をθとしてD
=Λ−1cosθと定義したとき、前記単波長放射源の
一つを測定すべき膜厚値で最初の極値が得られる波長と
入射角の組合わせのDの値DAに設定し、他の単波長放
対源のDの値がDAの整数倍となるような入射角と波長
に設定するようにしたものである。
The present invention also provides at least two single-wavelength radiation sources that irradiate electromagnetic waves onto a substrate to be subjected to thin film formation, a receiver that independently detects reflected waves from the substrate, and a receiver that independently detects reflected waves from the substrate. A film thickness measuring device comprising a means for measuring the thickness of a thin film formed on a substrate from the extreme value of wave intensity, wherein D is the wavelength of the electromagnetic wave irradiated to the substrate and θ is the incident angle.
= Λ-1 cos θ, one of the single wavelength radiation sources is set to the value DA of the combination of wavelength and incidence angle that yields the first extreme value at the film thickness value to be measured, and the other The incident angle and wavelength are set so that the value of D of the single wavelength radiation source is an integral multiple of DA.

10 さらに本発明は、膜形成に供される基板を収容したチャ
ンバと、基板の表面に膜形成刊料を供給する手段とから
なる膜形成装置に、上記膜厚測定装置を組み込むように
したものである。
10 Furthermore, the present invention is such that the film thickness measuring device is incorporated into a film forming apparatus comprising a chamber containing a substrate to be subjected to film formation and means for supplying a film forming material to the surface of the substrate. It is.

(作用) 本発明によれば、一つの測光系で得られる反射率変化は
第6図に1点鎖線で示す如くなり、この測光系にχ・1
しDの値が例えば5倍(周期が5分の1)である他の測
光系で得られる反射串変化は同図に実線で示す如くなる
(Function) According to the present invention, the change in reflectance obtained with one photometric system is as shown by the dashed line in FIG.
The reflection skew change obtained with another photometric system in which the value of D is, for example, 5 times (the period is 1/5) is as shown by the solid line in the figure.

1点鎖線と実線とを比較すると、1点鎖線で示す曲線の
最初の極値(λ/4)に相当する膜厚は、火線で示す曲
線の3つ目の極値に相当する膜厚と一致する。従って、
従来法ではλ/4膜を形成するのに、第6図に1点鎖線
で示す曲線から、反射率の最初の極値を検出しなければ
ならなかったものが、膜厚変化に対する反射率変化の周
期が短い実線で示す曲線の3つ目の極値から検出するこ
とができ、これにより膜厚測定の精度を向上させること
が可能となる。ここ11 で、実線で示す曲線のみから3つ目の反射率の極値を検
出するのは、極値をカウントする必要があり、その回路
構戊が複雑になる。1点鎖線及び′実線の2つの曲線を
用いることにより、1点鎖線の極値を大線の極値から容
易に求めることができるのである。なお、1点鎖線の2
つ目以降の極値に相当する膜厚は、2つ目の極値(3λ
/4)が実線の8つ目、3つ目の極値が丈線の13個目
というように、1点鎖線のある也値から次の極値が得ら
れるまでに、実線では5つの極値が存在することになる
Comparing the dash-dotted line and the solid line, the film thickness corresponding to the first extreme value (λ/4) of the curve shown by the dash-dotted line is the same as the film thickness corresponding to the third extreme value of the curve shown by the caustic line. Match. Therefore,
In the conventional method, to form a λ/4 film, it was necessary to detect the first extreme value of the reflectance from the curve shown by the dashed line in Figure 6, but the change in reflectance with respect to the change in film thickness was can be detected from the third extreme value of the curve shown by the solid line with a short cycle, thereby making it possible to improve the accuracy of film thickness measurement. Here, in order to detect the third extreme value of reflectance only from the curve shown by the solid line, it is necessary to count the extreme values, and the circuit configuration becomes complicated. By using two curves, the dashed line and the solid line, the extreme value of the dashed line can be easily determined from the extreme value of the large line. In addition, the dashed line 2
The film thickness corresponding to the extreme value after the second extreme value (3λ
/4) is the 8th point on the solid line, and the 3rd extreme value is the 13th point on the length line, and so on, from one value to the next extreme value on the dashed-dotted line, there are 5 extremes on the solid line. value will exist.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例に係わる膜形成装置を示す概
略構或図である。この装置は電子ビーム蒸着装置と単色
測光法による膜厚測定装置とを組み合わせたものである
FIG. 1 is a schematic diagram showing a film forming apparatus according to an embodiment of the present invention. This device is a combination of an electron beam evaporation device and a film thickness measuring device using monochromatic photometry.

電子ビーム蒸着装置は、被処理基板14を収容するチャ
ンバ15、チャンバ15内を真空排1 2 気ずる真空ポンブ18,蒸省源19及び恭着蝕19に電
子ビームを照射する電子ビームガン(図示せず)等から
なる。そして、蒸着源1つから電子ビームの照射により
蒸着物質が放出され、これが基板]4の下面に到達して
堆積膜13を形戊するものとなっている。
The electron beam evaporation apparatus includes an electron beam gun (not shown) that irradiates an electron beam onto a chamber 15 that accommodates a substrate 14 to be processed, a vacuum pump 18 that evacuates the inside of the chamber 15, an evaporation source 19, and a deposition layer 19. ), etc. Then, a deposition material is emitted from one deposition source by irradiation with an electron beam, and this reaches the lower surface of the substrate 4 to form a deposited film 13.

膜厚測定装置としては、fflll光系を2つ設けた。Two fflll optical systems were provided as film thickness measuring devices.

即ち、基板14に対し斜め方向から単色光を照均・1す
る電子線励起型の2つの特性X線源11a,1lbを設
けると共に、基板14からの各反射光を独立に検出する
比例係数管を用いた2つのX線検出器16a,16bを
設けた。これらX線源11a,llb及びX線検出器1
6a16bは、基板14に対してその角度を変化させる
ことが61能な構造になっている。つまり、X線の入射
角を変化させることが可能になっている。また、X線検
出器16a,16bの各検出出力は波形メモリ17に記
憶され、この記憶内容により膜形成動作が制御されるも
のとなっている。
That is, two characteristic X-ray sources 11a and 1lb of the electron beam excitation type are provided to uniformly illuminate monochromatic light from an oblique direction to the substrate 14, and a proportional coefficient tube is provided to independently detect each reflected light from the substrate 14. Two X-ray detectors 16a and 16b were provided. These X-ray sources 11a, llb and X-ray detector 1
6a16b has a structure that allows its angle to be changed with respect to the substrate 14. In other words, it is possible to change the incident angle of X-rays. Further, each detection output of the X-ray detectors 16a and 16b is stored in a waveform memory 17, and the film forming operation is controlled based on the stored contents.

13 次に、この装置を用いた膜形成方法について説明する。13 Next, a film forming method using this apparatus will be explained.

波長44.7λ(C−Kα)、入1114角85度で最
も高い反射率を得ることができるタングステン(W)と
シリコン(St)を用いたX線多層膜反射鏡をシリコン
基板上に形成した。
An X-ray multilayer film reflector using tungsten (W) and silicon (St) that can obtain the highest reflectance at a wavelength of 44.7λ (C-Kα) and an angle of 1114 of 85 degrees was formed on a silicon substrate. .

1層の厚さは、Wは139λ,Siは200入となる。The thickness of one layer is 139λ for W and 200 for Si.

まず、比較のために、2つの測光系のうちの1つを使用
して、従来法であるlj色AIII光法を用いてX線多
層膜反射鏡を形成した場合を示す。
First, for comparison, a case will be shown in which an X-ray multilayer film reflecting mirror is formed using one of the two photometric systems using the conventional lj color AIII light method.

測光系は当然のことながら反射鏡で使用される波長と入
射角で行った。このときの反射率変化の結果を第2図(
a)に示す。最初の極値が現れる毎に蒸着を停止し、次
の膜物質を蒸着した。
Naturally, the photometry was performed using the wavelength and incidence angle used by the reflector. The results of reflectance changes at this time are shown in Figure 2 (
Shown in a). Each time the first extreme value appeared, the deposition was stopped and the next film material was deposited.

層数が増加するにつれ反射率が増加し、IO層目でその
増加が止まっているのが判る。また、その反射率は、1
5%であった。また、反射率変化の極値付近を詳しく見
るために2〜4層目の反射率を拡大して表示した第2図
(b)から極値を過ぎてから蒸着を止めているのが判る
。平均し14 てlO入程度多く蒸着していた。これは、極値を過ぎて
からでないと極値を極値として検出できないために発生
した誤差である。つまり、捉来法である!11色測光法
の問題点である。
It can be seen that the reflectance increases as the number of layers increases, and the increase stops at the IOth layer. Also, its reflectance is 1
It was 5%. In addition, from FIG. 2(b), which shows the reflectance of the second to fourth layers enlarged in order to see in detail the vicinity of the extreme value of the change in reflectance, it can be seen that the vapor deposition is stopped after the extreme value has been passed. On average, an amount of about 14 liters of 10% was deposited. This is an error that occurs because an extreme value cannot be detected as an extreme value until after the extreme value has passed. In other words, it's a trick! This is a problem with the 11-color photometry method.

次に、同じ多層膜を本発明である2つの測光系を用いて
、間時に2棟類の波長と入射角の組合わせで膜厚測定を
行い形成した場合を示す。
Next, a case will be shown in which the same multilayer film is formed using two photometric systems according to the present invention, and the film thickness is measured at the same time using two different combinations of wavelengths and angles of incidence.

ここで、膜の屈折早をn,膜厚をd,入射角度をθ,入
射光波長をAとすると、 2ndcosθ=mA(mは正の整数)で検出信号に極
値が現れる。この式から、となり、測光系Aに対し測光
系Bの( A /eosθ)をl/3にすると測光系B
の3番口の極値かi5111光系Aの最初の極値と一致
し、(A/cosθ)を1/5にするとΔ1り光系Bの
5番目の極値がmll光系Aの最初の極値と一致する。
Here, if the refractive index of the film is n, the film thickness is d, the incident angle is θ, and the wavelength of the incident light is A, then an extreme value appears in the detection signal at 2ndcosθ=mA (m is a positive integer). From this equation, it becomes, and if ( A /eosθ) of photometric system B is set to l/3 with respect to photometric system A, then photometric system B
The third extreme value of i5111 coincides with the first extreme value of optical system A, and when (A/cos θ) is set to 1/5, the fifth extreme value of optical system B becomes the first extreme value of optical system A. coincides with the extreme value of

つまり、 D=Λ−  cosθ と定義し、最初の極値がi’lll定ずべき膜厚となる
15 測光系AのDの値をDAとすると、測光系BのDの値を
DAの整数倍にすれば、測光系Bの複数番目の極値を測
光系Aの最初の極値に一致させることができる。本実施
例では、1つの波長と入射角の組合わせ(測光系A)は
、反射鏡で実際に使用される波長44.7入、入射角8
5度であり、Dの値は1cosθ= 1.95X 10
−3である。
In other words, D = Λ - cos θ is defined, and the first extreme value is the film thickness that should be determined by i'llll. By doubling it, the plurality of extreme values of photometric system B can be matched with the first extreme value of photometric system A. In this example, one wavelength and incidence angle combination (photometry system A) is the wavelength 44.7 and the incidence angle 8, which are actually used in the reflecting mirror.
5 degrees, and the value of D is 1cosθ=1.95X 10
-3.

2つ目はこのDの値の整数倍のD値を有した波長と入射
角の組合わせとするので、それぞれの値を適当に選べば
よい。今同の場合、波長は同じ44.7入とし、入射角
を64度として5倍のD値を有した波長と入射角の組合
わせ( 7TllI光系B)とした。
The second is a combination of a wavelength and an incident angle that have a D value that is an integral multiple of this D value, so each value can be appropriately selected. In the same case, the wavelength was the same at 44.7 degrees, the incident angle was set at 64 degrees, and a combination of wavelength and incident angle (7TllI optical system B) with a D value of 5 times was used.

δIl1光系Aの反射率変化を第3図(a)に示す。The change in reflectance of the δIl1 optical system A is shown in FIG. 3(a).

また、allj光系A及びδIl1光系Bの反射率変化
を2〜4層目の間で示したのが第3図(b)である。
Further, FIG. 3(b) shows changes in reflectance of the allj optical system A and the δIl1 optical system B between the second to fourth layers.

第3図(b)から、測光系Bが測光系Aの丁度5分の1
の周期で変化しているのが判る。つまり、測光系Bの反
射率変化は膜厚増加に対して測光系八より敏感であり、
この測光系Bの極値で蒸16 着を止めることにより、より精度良く膜厚を制御するこ
とが可能となる。第3図(b)のAIII光系Aの極値
付近を詳しく見ると、ほぼ極値で蒸着を止めるのに成功
しているのが判る。約2入以内の誤差である。単色測光
法の場合が10入程度の誤差を有していたのと比較する
と、格段に膜厚制御の精度が向上した。測光系Aでも同
時に測定する意味は、;llll光系Aで実際に反射鏡
に使用される波長と入射角での反8・1率が゛1′リる
ために、反射鏡としての特性を形成中にfllll定で
きる利点があることと、さらに、層数が増加すると4I
lj光系2だけでは、反射率の極値の数が膨大になり目
的としている膜厚の極値の認識が難しくなるためである
From Figure 3(b), photometric system B is exactly one-fifth of photometric system A.
It can be seen that it changes with the period of . In other words, the reflectance change of photometric system B is more sensitive to the increase in film thickness than that of photometric system 8.
By stopping the vapor deposition at the extreme value of this photometric system B, it becomes possible to control the film thickness with higher accuracy. If we look closely at the vicinity of the extreme value of the AIII optical system A in FIG. 3(b), we can see that the deposition is successfully stopped almost at the extreme value. The error is within about 2 points. Compared to the case of monochromatic photometry, which had an error of about 10 in, the accuracy of film thickness control was significantly improved. The meaning of measuring at the same time with photometric system A is that the ratio of 8.1 at the wavelength and angle of incidence actually used for the reflecting mirror in optical system A is 1', so the characteristics of the reflecting mirror cannot be measured. It has the advantage of being able to be fixed during formation, and furthermore, as the number of layers increases, 4I
This is because if only the lj optical system 2 is used, the number of extreme values of reflectance becomes enormous, making it difficult to recognize the intended extreme value of film thickness.

第3図(a)の測光系Aの反射早変化から8層で最高の
反射率28%を得ていることが判る。この値は、単色測
光法により膜厚測定を行った場合より、少ない層数で、
しかもより高い反1・1率を得たことを示しており、膜
厚制御の高精度化の結果である。
It can be seen from the rapid change in reflection of photometric system A in FIG. 3(a) that the highest reflectance of 28% was obtained with eight layers. This value requires fewer layers than when measuring film thickness using monochromatic photometry.
Moreover, it shows that a higher ratio of 1.1 was obtained, which is the result of higher precision in film thickness control.

17 かくして本実施例によれば、2つの測光系を用い、一方
の測光系におけるD (=Λ  ’ cosθ)の値を
DAとし、他方のillll光系のDの値をDAの整数
倍に設定することにより、形成中の光学薄膜の膜厚を高
精度に測定することができる。
17 Thus, according to this embodiment, two photometric systems are used, and the value of D (=Λ' cosθ) in one photometric system is set to DA, and the value of D in the other illll optical system is set to an integral multiple of DA. By doing so, the thickness of the optical thin film being formed can be measured with high precision.

そして、この測定に基づいて蒸着操作を制御することに
より、基板上に形成される薄膜の膜厚を高精度に設定す
ることができる。従ってX線多層膜反射鏡等を精度よく
丈現することができ、その有用性は絶大である。しかも
、D−DAの測光系では実際に反射鏡に使用される波長
と入射角を設定しているので、反射鏡としての特性を膜
形戊中に測定できる利点がある。
By controlling the vapor deposition operation based on this measurement, the thickness of the thin film formed on the substrate can be set with high precision. Therefore, an X-ray multilayer film reflecting mirror or the like can be formed with high precision, and its usefulness is tremendous. Furthermore, since the D-DA photometry system sets the wavelength and incidence angle that are actually used for the reflecting mirror, it has the advantage that the characteristics of the reflecting mirror can be measured while the film is in the form of a film.

なお、本発明は上述した丈施例に眼定されるものではな
い。実施例では、測光系の波長がX線であったが、形成
する薄膜の特性にあった波長を選択すればよく、X線に
限るものではない。
Note that the present invention is not limited to the length examples described above. In the embodiment, the wavelength of the photometric system was X-rays, but the wavelength is not limited to X-rays as long as the wavelength is selected according to the characteristics of the thin film to be formed.

また、2つの測光系における波長Aと入射角θの組合わ
せD (=Λ−’ cosθ)は一方が他方の5倍とな
るように定めたが、形成する膜物質,18 膜厚等に応じて適当な整数倍にすればよい。さらに、2
つのiilll光系て膜厚i11l1定を行ったが、よ
り精度を上げるためには3つ以上のap+光系で同時に
測定することも考えられる。
In addition, the combination D (=Λ-'cosθ) of wavelength A and incident angle θ in the two photometric systems was determined so that one was five times that of the other, but it may vary depending on the film material to be formed, film thickness, etc. You can multiply it by an appropriate integer. Furthermore, 2
Although the film thickness i11l1 was determined using two illumination optical systems, it is conceivable to simultaneously measure the film thickness using three or more ap+ optical systems in order to further improve accuracy.

膜形成には電子ビーム蒸着装置を用いたか、測光系が設
置可能な膜形成装置ならば、他の方法の膜形成装置ても
よい。また、形成する膜も多層膜反射鏡に限ったもので
はなく、他の目的を有した例えば反射防止膜や全く光学
に関連のない薄膜形成にも用いることも可能である。そ
の他、本発明の要旨を逸脱しない範囲で、種々変形して
実施することができる。
For film formation, an electron beam evaporation device may be used, or a film forming device using any other method may be used as long as it can be equipped with a photometric system. Furthermore, the film to be formed is not limited to multilayer reflective mirrors, but can also be used for other purposes, such as antireflection films and thin films completely unrelated to optics. In addition, various modifications can be made without departing from the gist of the present invention.

[発明の効果コ 以上詳述したように本発明によれば、!11一色測光法
における測光を1つの波長と入射角の組合わせで行うの
ではなく、複数の波長と入射角の組合わせで同時に測光
を行うことにより、形成中の光学薄膜の膜厚を測定する
ことができ、且つ高精度の膜厚測定が可能となる。また
、これを膜厚形成に適用すれば、高精度の膜厚制御を1
9 可能とした膜形成装置を実現することが可能となる。
[Effects of the Invention] As detailed above, according to the present invention! 11 The thickness of the optical thin film being formed is measured by simultaneously performing photometry using multiple wavelengths and angles of incidence, rather than using a combination of one wavelength and angle of incidence in monochromatic photometry. It is possible to measure the film thickness with high accuracy. Also, if this is applied to film thickness formation, highly accurate film thickness control can be achieved in one step.
9. It becomes possible to realize a film forming apparatus that is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一大施例に係わる膜形成装置を示す概
略横成図、第2図は単色δII光系の一方を用いて膜厚
測定を行ったときの反射率変化を示す特性図、第3図は
単色測光系の両方を用いて膜厚測定を行ったときの反射
率変化を示す特性図、第4図及び第5図は促来の問題点
を説明するためのもので、第4図は01色測光法の基本
原理を示す図、第5図は!11色測光法を用いた場合の
シリコン基板上に形成したタングステン膜の波長44,
7入の反射率変化を示す図、第6図は本発明の作用を説
明するためのものでDの値が1倍である測光系と5倍で
ある測光系の反射率変化を示す図である。 1 1 a, 1 1 b−X線源、 13・・・薄膜、 14・・被処理基板、 15・・・チャンバ、 20 6a,16b−=X線検出器、 7・・・波形メモリ、 8・・・真空ポンプ、 9・・・蒸着源、
Fig. 1 is a schematic diagram showing a film forming apparatus according to a major embodiment of the present invention, and Fig. 2 is a characteristic showing reflectance changes when film thickness is measured using one of the monochromatic δII light systems. Figures 3 and 3 are characteristic diagrams showing changes in reflectance when film thickness is measured using both monochromatic photometry systems, and Figures 4 and 5 are for explaining the problems with the conventional method. , Figure 4 is a diagram showing the basic principle of 01 color photometry, Figure 5 is! The wavelength of the tungsten film formed on the silicon substrate when using 11-color photometry is 44,
Figure 6 is a diagram showing the change in reflectance for a 7-input system, and is for explaining the effect of the present invention, and is a diagram showing changes in reflectance for a photometry system where the value of D is 1 and a photometry system where the value of D is 5 times. be. 1 1 a, 1 1 b - X-ray source, 13... thin film, 14... substrate to be processed, 15... chamber, 20 6a, 16b-=X-ray detector, 7... waveform memory, 8 ...vacuum pump, 9...evaporation source,

Claims (3)

【特許請求の範囲】[Claims] (1)薄膜形成に供される基板に電磁波を入射させ、そ
の反射強度の極値から形成中の薄膜の厚さを測定する膜
厚測定方法において、 前記基板に同時に2種類以上の波長と入射角の組合わせ
の電磁波を入射させ、入射させる電磁波の波長をΛ、入
射角をθとして D=Λ^−^1cosθと定義したとき、測定すべき膜
厚値で最初の極値が得られる波長と入射角の組合わせの
Dの値をD_Λとし、他の電磁波のDの値がD_Λの整
数倍となるような入射角と波長を用いることを特徴とす
る膜厚測定方法。
(1) In a film thickness measurement method in which electromagnetic waves are incident on a substrate to be used for forming a thin film, and the thickness of the thin film being formed is measured from the extreme value of the reflected intensity, two or more wavelengths are incident on the substrate at the same time. When electromagnetic waves of a combination of angles are incident, and the wavelength of the incident electromagnetic waves is Λ and the angle of incidence is θ, it is defined as D=Λ^-^1cosθ, the wavelength at which the first extreme value is obtained in the film thickness value to be measured. A method for measuring film thickness, characterized in that the value of D of the combination of and angle of incidence is set to D_Λ, and the value of D of other electromagnetic waves is used such that the value of D is an integral multiple of D_Λ.
(2)薄膜形成に供される基板に電磁波を照射する少な
くとも2つの単波長放射源と、前記基板からの各反射波
を独立に検出する受波器と、これらの受波器で得られる
反射波強度の極値から前記基板に形成される薄膜の膜厚
を測定する手段とを具備し、 前記基板に照射する電磁波の波長をΛ、入射角をθとし
てD=Λ^−^1cosθと定義したとき、前記単波長
放射源の一つを測定すべき膜厚値で最初の極値が得られ
る波長と入射角の組合わせのDの値D_Λに設定し、他
の単波長放射源のDの値がD_Λの整数倍となるような
入射角と波長に設定してなることを特徴とする膜厚測定
装置。
(2) at least two single-wavelength radiation sources that irradiate electromagnetic waves onto a substrate to be subjected to thin film formation; a receiver that independently detects each reflected wave from the substrate; and reflections obtained by these receivers. and means for measuring the thickness of the thin film formed on the substrate from the extreme value of the wave intensity, and where the wavelength of the electromagnetic wave irradiated to the substrate is Λ and the angle of incidence is θ, D=Λ^-^1cosθ is defined. Then, one of the single wavelength radiation sources is set to the value D_Λ of the combination of wavelength and incident angle that yields the first extreme value of the film thickness value to be measured, and D of the other single wavelength radiation source is set to D_Λ. A film thickness measuring device characterized in that the incident angle and wavelength are set such that the value of D_Λ is an integral multiple of D_Λ.
(3)膜形成に供される基板を収容したチャンバと、前
記基板の表面に膜形成材料を供給する手段と、前記基板
の表面に電磁波を照射する少なくとも2つの単波長放射
源と、前記基板からの各反射波を独立に検出する受波器
と、これらの受波器で得られる反射波強度の極値に基づ
き膜形成操作を停止又は形成膜種を変える手段とを備え
た膜形成装置であって、 前記基板に照射する電磁波の波長をΛ、入射角をθとし
てD=Λ^−^1cosθと定義したとき、前記単波長
放射源の一つを測定すべき膜厚値で最初の極値が得られ
る波長と入射角の組合わせのDの値D_Λに設定し、他
の単波長放射源のDの値がD_Λの整数倍となるような
入射角と波長に設定してなることを特徴とする膜形成装
置。
(3) a chamber containing a substrate to be subjected to film formation; means for supplying a film-forming material to the surface of the substrate; at least two single-wavelength radiation sources that irradiate the surface of the substrate with electromagnetic waves; A film forming apparatus equipped with a receiver that independently detects each reflected wave from the receiver, and means for stopping the film forming operation or changing the type of film to be formed based on the extreme value of the reflected wave intensity obtained by these receivers. When the wavelength of the electromagnetic waves irradiated to the substrate is Λ, and the angle of incidence is θ, it is defined as D=Λ^-^1cosθ, then one of the single wavelength radiation sources is used at the first film thickness value to be measured. The value of D for the combination of wavelength and incident angle that yields an extreme value is set to D_Λ, and the value of D for other single wavelength radiation sources is set to an incident angle and wavelength that are an integral multiple of D_Λ. A film forming device characterized by:
JP23064389A 1989-09-06 1989-09-06 Film thickness measuring method and film thickness measuring device and film forming device using it Pending JPH0394104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23064389A JPH0394104A (en) 1989-09-06 1989-09-06 Film thickness measuring method and film thickness measuring device and film forming device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23064389A JPH0394104A (en) 1989-09-06 1989-09-06 Film thickness measuring method and film thickness measuring device and film forming device using it

Publications (1)

Publication Number Publication Date
JPH0394104A true JPH0394104A (en) 1991-04-18

Family

ID=16911005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23064389A Pending JPH0394104A (en) 1989-09-06 1989-09-06 Film thickness measuring method and film thickness measuring device and film forming device using it

Country Status (1)

Country Link
JP (1) JPH0394104A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674910U (en) * 1993-03-30 1994-10-21 三菱重工業株式会社 Deposition film thickness measuring device
WO1999056116A1 (en) * 1998-04-29 1999-11-04 Alexandr Mikhailovich Baranov Method for controlling the parameters of thin-film coatings and surfaces in real time and device for realising the same
WO2001096841A3 (en) * 2000-06-14 2002-05-10 European Community X-ray reflectivity apparatus and method
JP2008101849A (en) * 2006-10-19 2008-05-01 Ntt Facilities Inc Air conditioning duct and air conditioning duct system
CN113518691A (en) * 2019-02-07 2021-10-19 应用材料公司 Thickness measurement of substrates using color metrology
US11557048B2 (en) 2015-11-16 2023-01-17 Applied Materials, Inc. Thickness measurement of substrate using color metrology
US11715193B2 (en) 2015-11-16 2023-08-01 Applied Materials, Inc. Color imaging for CMP monitoring
US11776109B2 (en) 2019-02-07 2023-10-03 Applied Materials, Inc. Thickness measurement of substrate using color metrology

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674910U (en) * 1993-03-30 1994-10-21 三菱重工業株式会社 Deposition film thickness measuring device
WO1999056116A1 (en) * 1998-04-29 1999-11-04 Alexandr Mikhailovich Baranov Method for controlling the parameters of thin-film coatings and surfaces in real time and device for realising the same
WO2001096841A3 (en) * 2000-06-14 2002-05-10 European Community X-ray reflectivity apparatus and method
JP2008101849A (en) * 2006-10-19 2008-05-01 Ntt Facilities Inc Air conditioning duct and air conditioning duct system
US11557048B2 (en) 2015-11-16 2023-01-17 Applied Materials, Inc. Thickness measurement of substrate using color metrology
US11715193B2 (en) 2015-11-16 2023-08-01 Applied Materials, Inc. Color imaging for CMP monitoring
CN113518691A (en) * 2019-02-07 2021-10-19 应用材料公司 Thickness measurement of substrates using color metrology
JP2022519628A (en) * 2019-02-07 2022-03-24 アプライド マテリアルズ インコーポレイテッド Substrate thickness measurement using color measurement
US11776109B2 (en) 2019-02-07 2023-10-03 Applied Materials, Inc. Thickness measurement of substrate using color metrology
CN113518691B (en) * 2019-02-07 2024-03-08 应用材料公司 Thickness measurement of substrates using color metrology

Similar Documents

Publication Publication Date Title
US5619548A (en) X-ray thickness gauge
US5365340A (en) Apparatus and method for measuring the thickness of thin films
US4999014A (en) Method and apparatus for measuring thickness of thin films
EP0545738B1 (en) Apparatus for measuring the thickness of thin films
US5543919A (en) Apparatus and method for performing high spatial resolution thin film layer thickness metrology
JP3673968B2 (en) Manufacturing method of multilayer mirror
KR20040071146A (en) Method and apparatus for measuring stress in semiconductor wafers
US4472633A (en) Method and apparatus of measuring carrier distribution
CN115398563A (en) Soft X-ray optics with improved filtering
JPH0394104A (en) Film thickness measuring method and film thickness measuring device and film forming device using it
WO2003007327A2 (en) Shallow-angle interference process and apparatus for determining real-time etching rate
JPH0341399A (en) Manufacture of multilayered film reflecting mirror
US5206706A (en) Alignment of an ellipsometer or other optical instrument using a diffraction grating
Boher et al. In situ spectroscopic ellipsometry: present status and future needs for thin film characterisation and process control
RU2199110C2 (en) Procedure testing parameters of film coats and surfaces in process of their change and device for is implementation
JP5045498B2 (en) Method and apparatus for detecting end point of dry etching
Fedortsov et al. A fast operating laser device for measuring the thicknesses of transparent solid and liquid films
WO2021064348A1 (en) Optical microcavity device, alignment structure for an optical device, and method for aligning an optical device
JPH07208937A (en) Equipment and method for measuring film thickness and permittivity
US11366059B2 (en) System and method to measure refractive index at specific wavelengths
JPH10135112A (en) Measurement of resist photosensitive parameter and semiconductor lithography based thereon
JPH04236306A (en) Device and method for measuring film thickness and manufacturing apparatus of semiconductor device provided with measuring means of film thickness
IT202100006434A1 (en) POLARIMETER AND RELATED USING PROCEDURE
JPH03111713A (en) Interference type apparatus for detecting tilt or height, reduction stepper and method therefor
Braun et al. Optical Elements for EUV Lithography and X‐ray Optics