TWI830680B - Fluorescence detection method - Google Patents
Fluorescence detection method Download PDFInfo
- Publication number
- TWI830680B TWI830680B TW112129375A TW112129375A TWI830680B TW I830680 B TWI830680 B TW I830680B TW 112129375 A TW112129375 A TW 112129375A TW 112129375 A TW112129375 A TW 112129375A TW I830680 B TWI830680 B TW I830680B
- Authority
- TW
- Taiwan
- Prior art keywords
- fluorescence
- excitation light
- light source
- irradiation area
- area
- Prior art date
Links
- 238000001917 fluorescence detection Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000005284 excitation Effects 0.000 claims abstract description 52
- 238000009825 accumulation Methods 0.000 claims abstract description 21
- 238000005286 illumination Methods 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 238000001514 detection method Methods 0.000 abstract description 41
- 238000002073 fluorescence micrograph Methods 0.000 description 29
- 230000005540 biological transmission Effects 0.000 description 4
- 239000000084 colloidal system Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005562 fading Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical group [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
本發明是有關於一種檢測系統及檢測方法,且特別是有關於一種螢光影像檢測系統及螢光檢測方法。The present invention relates to a detection system and a detection method, and in particular, to a fluorescence image detection system and a fluorescence detection method.
在傳統的可見光檢測技術中,高反射率或高穿透率的材質不易良好地被可見光檢測呈現。例如,待測物中存在金屬等高反射率的材質,使得檢測結果容易發生誤判。或者是,透明膠體在可見光檢測中不易明顯地被呈現。In traditional visible light detection technology, materials with high reflectivity or high transmittance are not easy to be well displayed by visible light detection. For example, there are materials with high reflectivity such as metal in the object to be tested, making the detection results prone to misjudgment. Alternatively, transparent colloids are not easily visible in visible light detection.
螢光是一種物體吸收短波長的激發光而發出長波長的出射光的現象。而螢光檢測利用待測物內的有機物來產生螢光,可提供更高的檢測品質,因此成為自動光學檢測(Automated Optical Inspection, AOI)的選項之一。例如,透明膠體可透過膠體照射激發光後所產生的螢光來明確凸顯其樣貌。Fluorescence is a phenomenon in which an object absorbs short-wavelength excitation light and emits long-wavelength emitted light. Fluorescence detection uses organic matter in the object to be tested to generate fluorescence, which can provide higher detection quality, so it has become one of the options for automated optical inspection (AOI). For example, the appearance of a transparent colloid can be clearly highlighted through the fluorescence produced by the colloid when irradiated with excitation light.
然而,由於螢光是種相當微弱的光源,在工業檢測之高產速需求下很難量產。而且,若為了提高螢光的強度而提高激發光的照射強度或時間,反而會導致光致褪色(Photobleaching)的效應,進而損害待測物。However, since fluorescence is a very weak light source, it is difficult to mass-produce it under the high production speed requirements of industrial inspection. Moreover, if the irradiation intensity or time of the excitation light is increased in order to increase the intensity of fluorescence, it will cause a photobleaching effect, thereby damaging the object to be measured.
本發明提供一種螢光影像檢測系統及螢光檢測方法,其能在避免光致褪色的情況下,提高螢光檢測效果。The invention provides a fluorescence image detection system and a fluorescence detection method, which can improve the fluorescence detection effect while avoiding light-induced fading.
本發明的一實施例提供一種用以檢測一待測物的螢光影像的螢光影像檢測系統。螢光影像檢測系統包括一激發光源、一面掃描影像擷取裝置、一濾光模組以及一控制器。激發光源產生一激發光至待測物上的至少一個照射區域上,使待測物產生螢光。面掃描影像擷取裝置接收自待測物上的螢光,以獲得待測物的螢光影像。濾光模組耦合於面掃描影像擷取裝置與待測物之間,以濾除激發光,並使螢光通過濾光模組。控制器耦合至面掃描影像擷取裝置,以接收並檢測螢光影像。An embodiment of the present invention provides a fluorescence image detection system for detecting a fluorescence image of an object to be tested. The fluorescence image detection system includes an excitation light source, a side scanning image capturing device, a filter module and a controller. The excitation light source generates an excitation light to at least one illumination area on the object to be measured, so that the object to be measured generates fluorescence. The area scanning image capturing device receives fluorescence from the object to be tested to obtain a fluorescent image of the object to be tested. The filter module is coupled between the area scanning image capturing device and the object to be measured to filter out the excitation light and allow the fluorescent light to pass through the filter module. The controller is coupled to the area scanning image capturing device to receive and detect the fluorescent image.
本發明的一實施例提供一種螢光檢測方法,其包括以下步驟。基於一待測物,於待測物上定義至少一個照射區域。根據至少一個照射區域,對應地設定至少一個照射區域的能量累積閥值。以一激發光源照射待測物上的至少一個照射區域,使待測物產生螢光。透過螢光,影像檢測待測物。其中,於至少一個照射區域所累積的能量達到能量累積閥值時,停止以激發光源照射照射區域。An embodiment of the present invention provides a fluorescence detection method, which includes the following steps. Based on an object to be measured, at least one irradiation area is defined on the object to be measured. According to the at least one irradiation area, the energy accumulation threshold of the at least one irradiation area is correspondingly set. An excitation light source is used to illuminate at least one illumination area on the object to be tested, so that the object to be tested generates fluorescence. Through fluorescence, the object to be tested is image-detected. Wherein, when the accumulated energy of at least one irradiation area reaches an energy accumulation threshold, the irradiation area with the excitation light source is stopped.
基於上述,在本發明的一實施例中,由於螢光影像檢測系統及螢光檢測方法根據能量累積閥值來控制激發光照射待測物的照射區域的時間,因此,螢光影像檢測系統及螢光檢測方法能在避免光致褪色的情況下,提高螢光檢測效果。而且,由於使用大面陣列的面掃描影像擷取裝置,相對於採用線陣列影像感測器,本發明實施例的螢光影像檢測系統可做到高速檢測的要求。Based on the above, in one embodiment of the present invention, since the fluorescence image detection system and the fluorescence detection method control the time during which the excitation light irradiates the irradiation area of the object to be measured according to the energy accumulation threshold, the fluorescence image detection system and The fluorescence detection method can improve the fluorescence detection effect while avoiding light-induced fading. Furthermore, due to the use of a large-area array area scanning image capture device, the fluorescence image detection system of the embodiment of the present invention can meet the high-speed detection requirements compared to the use of a line array image sensor.
請參考圖1-3,本發明的一實施例的螢光影像檢測系統100用以檢測一待測物S的螢光影像。螢光影像檢測系統100包括一激發光源110、一面掃描影像擷取裝置120、一濾光模組140A以及一控制器130。在本實施例中,包含但不限於,待測物S例如是印刷電路板、晶圓或其他含有有機物的物體,且有機物例如是印刷電路板上的透明膠體或晶圓上的汙染物。Please refer to FIGS. 1-3. A fluorescence
在本實施中,激發光源110用以發出激發光EL。激發光源110可為發光二極體(light-emitting diode, LED)光源、雷射二極體(Laser Diode)光源或其他合適的光源。激發光EL可為紫外光、藍光、白光或其他色光。在本實施中,激發光源110產生激發光EL至待測物S的至少一個照射區域IR上,使待測物S產生螢光F。舉例來說,待測物S可將紫外光轉換為藍光或可將藍光轉換為綠光,但本發明不以此為限。In this implementation, the
在本實施例中,面掃描影像擷取裝置120接收自待測物S上的螢光F,以獲得待測物S的螢光影像。面掃描影像擷取裝置120可為互補式金屬氧化物半導體(Complementary Metal-Oxide Semiconductor, CMOS)、電荷耦合元件(charge coupled device, CCD)或光電二極體(photodiode)等光感測器,但本發明不以此為限。In this embodiment, the area scanning image capturing
在一實施例中,控制器130例如是包括中央處理單元(central processing unit, CPU)、微處理器(microprocessor)、數位訊號處理器(digital signal processor, DSP)、可程式化控制器、可程式化邏輯裝置(programmable logic device, PLD)或其他類似裝置或這些裝置的組合,本發明並不加以限制。此外,在一實施例中,控制器130的各功能可被實作為多個程式碼。這些程式碼會被儲存在一個記憶單元中,由控制器130來執行這些程式碼。或者,在一實施例中,控制器130的各功能可被實作為一或多個電路。本發明並不限制用軟體或硬體的方式來實作控制器130的各功能。In one embodiment, the
在本實施例中,控制器130耦合至激發光源110或耦合至面掃描影像擷取裝置120,以接收並檢測螢光影像。控制器130控制激發光源110在能量累積閥值內持續發出激發光EL,並於照射區域IR所累積的能量達到能量累積閥值時,停止以激發光源110照射照射區域IR。在本實施例中,停止以激發光EL照射照射區域IR的方式例如是關閉激發光源110。或者是,在激發光EL的傳遞路徑上設置光圈,且控制器130控制光圈來使照射區域IR被激發光EL照射或停止被照射。In this embodiment, the
於一實施例中,以待測物S是光阻為例,包含但不限於,有機物為酚醛樹脂。照射區域IR例如是待測物S上的10 mm 2大小的區域。以激發光EL為近紫外光照射至照射區域IR,約在能量累積至50 mj/mm 2後會發生光致褪色。若激發光EL以每秒10 mj/mm 2強度照射至照射區域IR,此能量累積可對應為5秒。也就是說,累積照射約在5秒後可能會使待測物S的照射區域IR上的有機物發生光致褪色。在本實施例中,包含但不限於,可設定發生光致褪色的能量80%作為能量累積閥值。 In one embodiment, the object S to be tested is a photoresist, including but not limited to, the organic substance is phenolic resin. The irradiation area IR is, for example, a 10 mm 2 area on the object S. When the excitation light EL is near-ultraviolet light and is irradiated to the irradiation area IR, photofading will occur after the energy is accumulated to 50 mj/ mm2 . If the excitation light EL is irradiated to the irradiation area IR with an intensity of 10 mj/ mm2 per second, this energy accumulation can correspond to 5 seconds. In other words, cumulative irradiation may cause photofading of the organic matter in the irradiation area IR of the object S after about 5 seconds. In this embodiment, including but not limited to, 80% of the energy that causes photofading can be set as the energy accumulation threshold.
在本實施例中,面掃描影像擷取裝置120的畫素例如是14,000×10,000;因此,面掃描影像擷取裝置120相較於一般線陣掃描而言,有10000倍的曝光時間可利用。在一實施例中,面掃描影像擷取裝置120的總畫素可為工藝的上限。而且,可藉由提高面掃描影像擷取裝置120的曝光時間來提高訊躁比,例如面掃描影像擷取裝置120的曝光時間可提高至約大於等於能量累積閥值所對應的時間。因此,在螢光通常是微弱光源的情況下,藉由採用大面陣列的面掃描影像擷取裝置,並藉由提高曝光時間,相對於採用線陣列影像感測器,本發明實施例的螢光影像檢測系統100可做到高速檢測的要求。In this embodiment, the pixels of the area scanning image capturing
在本實施例中,激發光源110包括多個照射方向不同的導光光纖光源。如圖2所示,利用導光光纖光源於四個對角的方向將激發光EL照射至待測物S上。如此,除了可提供均勻光源,並可提升供給螢光所需的能量。於另一實施例,激發光源可包含一環型光源。In this embodiment, the
在本實施例中,螢光影像檢測系統100更包括一濾光模組140A。濾光模組140A耦合於面掃描影像擷取裝置120與待測物S之間,且用以濾除激發光EL,並使螢光F通過濾光模組140A。在一實施例,螢光影像檢測系統100更包括另一濾光模組140B。濾光模組140B在激發光EL的傳遞路徑上耦合於激發光源110與待測物S之間,以使激發光EL通過,並使其餘色光被過濾。In this embodiment, the fluorescence
在一實施例中,螢光影像檢測系統100更包括分光鏡200。分光鏡200用以使激發光EL反射,並使螢光F穿透。分光鏡200在激發光EL的傳遞路徑上耦合於濾光模組140B與待測物S之間,在螢光F的傳遞路徑上耦合於濾光模組140A與待測物S之間。In one embodiment, the fluorescence
在一實施例中,螢光影像檢測系統100更包括物鏡300。分光鏡200設置於物鏡300與濾光模組140A之間。In one embodiment, the fluorescence
在本實施例中,螢光影像檢測系統100更包括變倍鏡頭400。控制器130與變倍鏡頭400耦合,使螢光影像檢測系統100可針對待測物S的型態調整鏡頭的放大率。In this embodiment, the fluorescence
在本實施例中,螢光影像檢測系統100更包括移動載台500。控制器130與移動載台500耦合,使螢光影像檢測系統100可調整螢光影像檢測系統100與待測物S之間的相對位置,進而調整照射區域IR的位置。In this embodiment, the fluorescence
在本實施例中,螢光影像檢測系統100更包括前導式對焦模組600。其中,前導式對焦方式是在測量N+1位置的對焦前,先在N位置偵測N+1位置的Z深度,並在攝影機從N位置移動到N+1位置時,調整Z深度始之對焦,以減少找尋下一位置的對焦時間。控制器130與前導式對焦模組600耦合,使螢光影像檢測系統100可藉由對焦回饋而即時反應正確的對焦平面,因此有利於提高檢測的品質及降低檢測時間。In this embodiment, the fluorescence
請參考圖4,本發明的一實施例的螢光檢測方法包括以下步驟。步驟S100,基於一待測物S,於待測物S上定義至少一個照射區域IR。步驟S110,根據至少一個照射區域IR,對應地設定至少一個照射區域IR的能量累積閥值。步驟S120,以一激發光源110照射待測物S上的至少一個照射區域IR,使待測物S產生螢光F。步驟S130,透過螢光F,影像檢測待測物S。其中,於至少一個照射區域IR所累積的能量達到能量累積閥值時,停止以激發光源110照射照射區域IR。Please refer to Figure 4. A fluorescence detection method according to an embodiment of the present invention includes the following steps. Step S100: Based on an object S, at least one irradiation area IR is defined on the object S. Step S110, correspondingly set the energy accumulation threshold of at least one irradiation area IR according to the at least one irradiation area IR. Step S120: Use an
在本實施例中,螢光檢測方法更包括以下步驟。校正激發光源110所提供的單位照射能量。例如,以能量偵測器先確認激發光源110的單位照射能量(如焦耳/秒或毫焦耳/秒)。In this embodiment, the fluorescence detection method further includes the following steps. The unit irradiation energy provided by the
在本實施例中,上述的激發光源110照射待測物S上的至少一個照射區域IR的步驟包括:紀錄至少一個照射區域IR的能量累積狀態。In this embodiment, the above step of irradiating at least one irradiation area IR on the object S by the
在本實施例中,上述的設定至少一個照射區域IR的能量累積閥值的步驟包括:根據至少一個照射區域IR的材質類型,設定能量累積閥值。In this embodiment, the above step of setting the energy accumulation threshold of at least one irradiation region IR includes: setting the energy accumulation threshold according to the material type of the at least one irradiation region IR.
綜上所述,在本發明的一實施例中,由於螢光影像檢測系統及螢光檢測方法根據所建立的照射區域及照射區域所對應的能量累積閥值來控制激發光照射待測物的時間,因此,螢光影像檢測系統及螢光檢測方法能在避免光致褪色的情況下,提高螢光檢測效果。而且,由於使用大面陣列的面掃描影像擷取裝置,相對於採用線陣列影像感測器,本發明實施例的螢光影像檢測系統可做到高速檢測的要求。To sum up, in an embodiment of the present invention, the fluorescence image detection system and the fluorescence detection method control the excitation light to illuminate the object to be measured according to the established irradiation area and the energy accumulation threshold corresponding to the irradiation area. Therefore, the fluorescence image detection system and fluorescence detection method can improve the fluorescence detection effect while avoiding light-induced fading. Furthermore, due to the use of a large-area array area scanning image capture device, the fluorescence image detection system of the embodiment of the present invention can meet the high-speed detection requirements compared to the use of a line array image sensor.
100:螢光影像檢測系統
110:激發光源
120:面掃描影像擷取裝置
130:控制器
140A、140B:濾光模組
200:分光鏡
300:物鏡
400:變倍鏡頭
500:移動載台
600:前導式對焦模組
EL:激發光
F:螢光
IR:照射區域
S:待測物
S100、S110、S120、S130:步驟100: Fluorescence image detection system
110: Excitation light source
120: Area scanning image capture device
130:
圖1是根據本發明的一實施例的一種螢光影像檢測系統的光路示意圖。 圖2是根據本發明的一實施例的一種螢光影像檢測系統的立體示意圖。 圖3是對待測物建立多個照射區域的示意圖。 圖4是根據本發明的一實施例的一種螢光檢測方法的流程圖。 Figure 1 is a schematic optical path diagram of a fluorescence image detection system according to an embodiment of the present invention. Figure 2 is a three-dimensional schematic diagram of a fluorescence image detection system according to an embodiment of the present invention. Figure 3 is a schematic diagram of establishing multiple irradiation areas for the object to be measured. Figure 4 is a flow chart of a fluorescence detection method according to an embodiment of the present invention.
100:螢光影像檢測系統 100: Fluorescence image detection system
110:激發光源 110: Excitation light source
130:控制器 130:Controller
140A、140B:濾光模組 140A, 140B: Filter module
200:分光鏡 200: Beam splitter
300:物鏡 300:Objective lens
EL:激發光 EL: excitation light
F:螢光 F: Fluorescent
S:待測物 S: object to be tested
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112129375A TWI830680B (en) | 2021-05-07 | 2021-05-07 | Fluorescence detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112129375A TWI830680B (en) | 2021-05-07 | 2021-05-07 | Fluorescence detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI830680B true TWI830680B (en) | 2024-01-21 |
TW202405406A TW202405406A (en) | 2024-02-01 |
Family
ID=90459332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112129375A TWI830680B (en) | 2021-05-07 | 2021-05-07 | Fluorescence detection method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI830680B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060120065A1 (en) * | 2003-05-16 | 2006-06-08 | Universiteit Van Amsterdam | Method and apparatus for shaping an image of an object |
CN101946201A (en) * | 2008-02-22 | 2011-01-12 | 株式会社尼康 | Laser scanning microscope |
CN103994987A (en) * | 2013-02-19 | 2014-08-20 | Fei公司 | In situ reactivation of fluorescence marker |
CN104285175A (en) * | 2012-05-02 | 2015-01-14 | 法国国家科学研究中心 | Method and apparatus for single-particle localization using wavelet analysis |
-
2021
- 2021-05-07 TW TW112129375A patent/TWI830680B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060120065A1 (en) * | 2003-05-16 | 2006-06-08 | Universiteit Van Amsterdam | Method and apparatus for shaping an image of an object |
CN101946201A (en) * | 2008-02-22 | 2011-01-12 | 株式会社尼康 | Laser scanning microscope |
CN104285175A (en) * | 2012-05-02 | 2015-01-14 | 法国国家科学研究中心 | Method and apparatus for single-particle localization using wavelet analysis |
CN103994987A (en) * | 2013-02-19 | 2014-08-20 | Fei公司 | In situ reactivation of fluorescence marker |
Also Published As
Publication number | Publication date |
---|---|
TW202405406A (en) | 2024-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2969403B2 (en) | Bonding wire inspection device | |
TWI830022B (en) | Fluorescence image detection system | |
JP5830229B2 (en) | Wafer defect inspection system | |
CN110741464B (en) | Defect detecting device, defect detecting method, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method | |
TWI830680B (en) | Fluorescence detection method | |
CN111610197B (en) | Defect detection device and defect detection method | |
JP2007101494A (en) | Surface inspection device | |
KR20070001301A (en) | Method of inspecting defects of a wafer and apparatus for performing the same | |
JP5726463B2 (en) | Laser processing equipment | |
JP7372173B2 (en) | Board edge inspection equipment | |
TWI813782B (en) | Laser processing method, semiconductor device manufacturing method, and inspection device | |
TWI705244B (en) | Semiconductor defects inspection apparatus | |
TWI814365B (en) | Optical inspection system based on laser light source and laser optical system | |
KR20070010619A (en) | Apparatus for inspecting a wafer | |
JP3505655B2 (en) | Glass container inspection equipment | |
KR102713155B1 (en) | PL-Based Automatic Optical Inspection Apparatus with Improved Precision of Inspection | |
KR102388563B1 (en) | Optical insptection device being able to control real-time focus | |
JP7465425B2 (en) | Inspection method and apparatus for inspection wafer, and inspection wafer | |
TWI848757B (en) | Multi-color strobe imaging detection system and method thereof | |
KR20050117710A (en) | Method of detecting defect of a wafer | |
US20230134909A1 (en) | Defect inspection system and semiconductor fabrication apparatus including a defect inspection apparatus using the same | |
KR20070049745A (en) | Wafer for inspecting defects and method of inspecting defects using the same | |
KR101874388B1 (en) | Apparatus for obtaining image of fluorescent substance | |
TWI656322B (en) | Fluorescence microscope and substrate inspection device with fluorescent microscope | |
TW202316103A (en) | Optical system and fluorescence detection system |