TWI829380B - Serialization system and clock generating circuit - Google Patents

Serialization system and clock generating circuit Download PDF

Info

Publication number
TWI829380B
TWI829380B TW111138054A TW111138054A TWI829380B TW I829380 B TWI829380 B TW I829380B TW 111138054 A TW111138054 A TW 111138054A TW 111138054 A TW111138054 A TW 111138054A TW I829380 B TWI829380 B TW I829380B
Authority
TW
Taiwan
Prior art keywords
clock
signal
output
output signal
reverse
Prior art date
Application number
TW111138054A
Other languages
Chinese (zh)
Other versions
TW202416675A (en
Inventor
洪嘉明
張雅森
黃柏蒼
黃政智
洪陳政宏
Original Assignee
恆景科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恆景科技股份有限公司 filed Critical 恆景科技股份有限公司
Priority to TW111138054A priority Critical patent/TWI829380B/en
Application granted granted Critical
Publication of TWI829380B publication Critical patent/TWI829380B/en
Publication of TW202416675A publication Critical patent/TW202416675A/en

Links

Images

Landscapes

  • Manipulation Of Pulses (AREA)

Abstract

A serialization system includes a clock channel for generating clock outputs, and a data channel for generating data outputs. The clock channel includes a first serializer configured to convert parallel clocks to serial clocks, and a first flip-flop configured to store the serial clocks to provide the clock outputs. The data channel includes a second serializer configured to convert parallel data to serial data, and a second flip-flop configured to store the serial data to provide the data outputs. A clock generating circuit receives phase-locked clocks, according to which a serialization clock is generated and provided to the first serializer and the second serializer, a lagging clock is generated and provided to the first flip-flop, and a leading clock is generated and provided to the second flip-flop. Sum of a lagging amount of the lagging clock with respect to the serialization clock and a leading amount of the leading clock with respect to the serialization clock is equal to half of a unit interval.

Description

串列化系統及時脈產生電路Serialization system and pulse generation circuit

本發明係有關一種通信系統,特別是關於一種串列化系統及其時脈產生器。The present invention relates to a communication system, and in particular to a serialization system and a clock generator thereof.

電子裝置之間的資料傳送通常採用串列通信(serial communication)方式,每一時間僅傳送一個位元,藉以達到較高的傳輸速率且能節省成本。然而,電子裝置內部通常係採用並列通信(parallel communication)方式,每一時間同時傳送多個位元。因此,資料從一個電子裝置傳送至另一個電子裝置之前,必須進行串列化(serialization)處理,將資料從並列格式轉換為串列格式。Data transmission between electronic devices usually uses serial communication, which only transmits one bit at a time, thereby achieving a higher transmission rate and saving costs. However, electronic devices usually use parallel communication to transmit multiple bits at the same time. Therefore, before data is transmitted from one electronic device to another, serialization processing must be performed to convert the data from parallel format to serial format.

時脈(clock)信號是串列通信系統當中很重要的控制信號,由時脈信號產生器所產生,用以有效且正確控制協調位元在通信通道當中的傳輸。當串列通信系統的資料傳輸速率提高時,資料通道與時脈通道之間會發生偏移(skew)。如果資料在尚未穩定之前,時脈即進行取樣,則會造成資料傳送錯誤。此外,傳統時脈信號產生器的電路複雜,佔用電路面積且消耗相當多的功率。The clock signal is a very important control signal in the serial communication system. It is generated by the clock signal generator and is used to effectively and correctly control and coordinate the transmission of bits in the communication channel. When the data transfer rate of the serial communication system increases, a skew will occur between the data channel and the clock channel. If the clock is sampled before the data is stable, data transmission errors will occur. In addition, the circuit of the traditional clock signal generator is complex, takes up circuit area and consumes considerable power.

因此亟需提出一種新穎機制,以解決傳統通信系統對於高頻與功耗的諸多缺失。Therefore, there is an urgent need to propose a novel mechanism to solve the many shortcomings of traditional communication systems in terms of high frequency and power consumption.

鑑於上述,本發明實施例的目的之一在於提出一種串列化系統及其時脈產生器,可有效降低功耗與成本,且能適用於高頻的串列通信。In view of the above, one purpose of embodiments of the present invention is to provide a serialization system and its clock generator, which can effectively reduce power consumption and cost, and can be suitable for high-frequency serial communication.

根據本發明實施例,串列化系統包含時脈通道,用以產生時脈輸出;及資料通道,用以輸出資料輸出。時脈通道包含第一串化器及第一正反器。第一串化器用以將並列時脈轉換為串列時脈,且第一正反器用以依序儲存串列時脈,以提供時脈輸出。資料通道包含第二串化器及第二正反器。第二串化器用以將並列資料轉換為串列資料,且第二正反器用以依序儲存串列資料,以提供資料輸出。時脈產生電路接收鎖相時脈,據以產生串化時脈給第一串化器與第二串化器,產生落後時脈給第一正反器,且產生超前時脈給第二正反器。其中落後時脈相對於串化時脈的落後量與超前時脈相對於串化時脈的超前量,兩者之和為二分之一單位間隔。According to an embodiment of the present invention, the serialization system includes a clock channel for generating a clock output; and a data channel for outputting a data output. The clock channel includes a first serializer and a first flip-flop. The first serializer is used to convert the parallel clock into a serial clock, and the first flip-flop is used to store the serial clock in sequence to provide a clock output. The data channel includes a second serializer and a second flip-flop. The second serializer is used to convert parallel data into serial data, and the second flip-flop is used to store serial data in sequence to provide data output. The clock generation circuit receives the phase-locked clock, generates a serialization clock to the first serializer and the second serializer, generates a lagging clock to the first flip-flop, and generates a leading clock to the second flip-flop. Countermeasures. The sum of the lag amount of the lagging clock relative to the serialization clock and the lead amount of the leading clock relative to the serialization clock is one-half unit interval.

第一A圖顯示本發明實施例之串列化(serialization)系統100的方塊圖。在本實施例中,串列化系統100可包含時脈(clock)通道100A與資料通道100B。其中,時脈通道100A產生差動(differential)的時脈輸出CLKp/CLKn,資料通道100B產生差動的資料輸出Datap/Datan。第一B圖顯示時脈輸出CLKp/CLKn與資料輸出Datap/Datan的時序圖。時脈輸出CLKp/CLKn與資料輸出Datap/Datan之間具有二分之一單位間隔(unit interval, UI)T/2,以確保時脈輸出CLKp/CLKn進行觸發之前,資料輸出Datap/Datan已達到穩定,藉以避免製程誤差所造成的影響。在本實施例中,單位間隔(UI)T可指一個位元的傳送時間,其可為系統時脈週期的一半。Figure A shows a block diagram of a serialization system 100 according to an embodiment of the present invention. In this embodiment, the serialization system 100 may include a clock channel 100A and a data channel 100B. Among them, the clock channel 100A generates a differential clock output CLKp/CLKn, and the data channel 100B generates a differential data output Datap/Datan. Figure B shows the timing diagram of clock output CLKp/CLKn and data output Datap/Datan. There is a half unit interval (UI) T/2 between the clock output CLKp/CLKn and the data output Datap/Datan to ensure that before the clock output CLKp/CLKn is triggered, the data output Datap/Datan has reached Stable to avoid the impact of process errors. In this embodiment, the unit interval (UI) T may refer to the transmission time of one bit, which may be half of the system clock cycle.

在本實施例中,時脈通道100A可包含第一串化器(serializer)11A,用以將並列時脈D_CLK轉換為串列時脈。第一串化器11A可使用傳統技術來實施,例如Tomas Geurts等人所提出之“A 2.5 Gbps - 3.125 Gbps multi-core serial-link transceiver in 0.13 μm CMOS”的圖2架構。In this embodiment, the clock channel 100A may include a first serializer 11A for converting the parallel clock D_CLK into a serial clock. The first serializer 11A can be implemented using traditional technology, such as the Figure 2 architecture of "A 2.5 Gbps - 3.125 Gbps multi-core serial-link transceiver in 0.13 μm CMOS" proposed by Tomas Geurts et al.

根據本實施例的特徵之一,時脈通道100A可包含第一正反器12A(例如D型正反器),用以依序儲存串列時脈。第一正反器12A所輸出的串列時脈可經過第一預驅動器(pre-driver)13A與第一後驅動器(post-driver)14A的處理,以產生時脈輸出CLKp/CLKn。其中,第一預驅動器13A(例如多個緩衝器)可用以增加驅動能力(例如增加電流),第一後驅動器14A可用以將單端的(single-ended)串列時脈轉換為差動的時脈輸出CLKp/CLKn或/且提升靜電放電(electrostatic discharge, ESD)保護能力。According to one of the features of this embodiment, the clock channel 100A may include a first flip-flop 12A (such as a D-type flip-flop) for sequentially storing the serial clock. The serial clock output by the first flip-flop 12A can be processed by a first pre-driver (pre-driver) 13A and a first post-driver (post-driver) 14A to generate clock output CLKp/CLKn. Among them, the first pre-driver 13A (for example, multiple buffers) can be used to increase the driving capability (for example, increase the current), and the first post-driver 14A can be used to convert a single-ended serial clock into a differential clock. Pulse output CLKp/CLKn or/and improve electrostatic discharge (ESD) protection capability.

根據本實施例的另一特徵,時脈通道100A可包含第一時脈產生器15A,其(自鎖相迴路)接收鎖相時脈,例如同相鎖相時脈CLKI與正交鎖相時脈CLKQ(兩者相差90度),據以產生串化時脈CLK_S給第一串化器11A且產生落後時脈CLK_lag給第一正反器12A,該落後時脈CLK_lag落後於串化時脈CLK_S。在一實施例中,落後時脈CLK_lag相對於串化時脈CLK_S具有四分之一單位間隔T/4的落後量,但不限定於此。According to another feature of this embodiment, the clock channel 100A may include a first clock generator 15A, which (self-phase locked loop) receives a phase-locked clock, such as an in-phase phase-locked clock CLKI and a quadrature phase-locked clock. CLKQ (the two are 90 degrees different), thereby generating the serialization clock CLK_S to the first serializer 11A and generating the lagging clock CLK_lag to the first flip-flop 12A. The lagging clock CLK_lag lags behind the serialization clock CLK_S. . In one embodiment, the lagging clock CLK_lag has a lag amount of one quarter unit interval T/4 relative to the serialization clock CLK_S, but is not limited thereto.

在本實施例中,資料通道100B可包含第二串化器11B(其類似或相同於時脈通道100A的第一串化器11A),用以將並列資料D_Data轉換為串列資料。資料通道100B可包含第二正反器12B(其類似或相同於時脈通道100A的第一正反器12A),用以依序儲存串列資料。第二正反器12B所輸出的串列資料可經過第二預驅動器13B與第二後驅動器14B的處理(其類似或相同於時脈通道100A的第一預驅動器13A與第一後驅動器14A),以產生資料輸出Datap/Datan。In this embodiment, the data channel 100B may include a second serializer 11B (which is similar or identical to the first serializer 11A of the clock channel 100A) for converting the parallel data D_Data into serial data. The data channel 100B may include a second flip-flop 12B (which is similar or identical to the first flip-flop 12A of the clock channel 100A) for sequentially storing serial data. The serial data output by the second flip-flop 12B can be processed by the second pre-driver 13B and the second post-driver 14B (which are similar or identical to the first pre-driver 13A and the first post-driver 14A of the clock channel 100A). , to generate data output Datap/Datan.

資料通道100B可包含第二時脈產生器15B,其(自鎖相迴路)接收鎖相時脈,例如同相鎖相時脈CLKI與正交鎖相時脈CLKQ,據以產生串化時脈CLK_S給串化器11且產生超前時脈CLK_lead給第二正反器12B,該超前時脈CLK_lead超前於串化時脈CLK_S。在一實施例中,超前時脈CLK_lead相對於串化時脈CLK_S具有四分之一單位間隔T/4的超前量,但不限定於此。在本實施例中,落後時脈CLK_lag相對於串化時脈CLK_S的落後量與超前時脈CLK_lead相對於串化時脈CLK_S的超前量,兩者之和為二分之一單位間隔T/2。藉此,時脈輸出CLKp/CLKn與資料輸出Datap/Datan之間具有二分之一單位間隔T/2,以確保時脈輸出CLKp/CLKn進行觸發之前,資料輸出Datap/Datan已達到穩定,藉以避免製程誤差所造成的影響。舉例而言,落後時脈CLK_lag具有八分之三單位間隔3T/8的落後量,且超前時脈CLK_lead具有八分之一單位間隔T/8的超前量,兩者之和為二分之一單位間隔T/2。值得注意的是,本實施例的時脈產生電路包含互為獨立的第一時脈產生器15A與第二時脈產生器15B,分別產生落後時脈CLK_lag給第一正反器12A及產生超前時脈CLK_lead給第二正反器12B。The data channel 100B may include a second clock generator 15B, which (self-phase locked loop) receives a phase-locked clock, such as an in-phase locked clock CLKI and a quadrature phase-locked clock CLKQ, thereby generating a serialization clock CLK_S To the serializer 11 and generate a leading clock CLK_lead to the second flip-flop 12B, the leading clock CLK_lead is ahead of the serialization clock CLK_S. In one embodiment, the leading clock CLK_lead has a leading amount of one quarter unit interval T/4 relative to the serialization clock CLK_S, but is not limited thereto. In this embodiment, the sum of the lag amount of the lagging clock CLK_lag relative to the serialization clock CLK_S and the lead amount of the leading clock CLK_lead relative to the serialization clock CLK_S is one-half unit interval T/2 . Thereby, there is a half unit interval T/2 between the clock output CLKp/CLKn and the data output Datap/Datan to ensure that the data output Datap/Datan has reached stability before the clock output CLKp/CLKn is triggered. Avoid the impact caused by process errors. For example, the lagging clock CLK_lag has a lag amount of three-eighths of the unit interval 3T/8, and the leading clock CLK_lead has a lead amount of one-eighth of the unit interval T/8, and the sum of the two is one-half The unit interval is T/2. It is worth noting that the clock generation circuit of this embodiment includes a first clock generator 15A and a second clock generator 15B that are independent of each other and generate a lagging clock CLK_lag to the first flip-flop 12A and a leading clock respectively. The clock CLK_lead is given to the second flip-flop 12B.

第二A圖顯示第一A圖之第一時脈產生器15A的細部方塊圖,第二B圖顯示第二A圖之第一時脈產生器15A的相應信號的時序圖。在本實施例中,第一時脈產生器15A可包含緩衝(放大)器151A,其提供阻抗匹配且接收同相鎖相時脈CLKI。第一時脈產生器15A可包含正反器152A(例如D型正反器),接收緩衝器151A所輸出的同相鎖相時脈CLKI,以產生串化時脈CLK_S。第一時脈產生器15A可包含互斥或(XOR)閘153A,其根據同相鎖相時脈CLKI與正交鎖相時脈CLKQ以產生第一中間(intermediate)時脈CLK_AA給正反器152A。第一時脈產生器15A可包含延遲器154A,用以延遲第一中間時脈CLK_AA,以產生第二中間時脈CLK_BB,使得該第二中間時脈CLK_BB同步於串化時脈CLK_S。第一時脈產生器15A可包含落後時脈產生器155A,以產生落後時脈CLK_lag。The second diagram A shows a detailed block diagram of the first clock generator 15A of the first diagram A, and the second diagram B shows the timing diagram of the corresponding signals of the first clock generator 15A of the second diagram A. In this embodiment, the first clock generator 15A may include a buffer (amplifier) 151A that provides impedance matching and receives the in-phase locked clock CLKI. The first clock generator 15A may include a flip-flop 152A (eg, a D-type flip-flop) that receives the in-phase locked clock CLKI output from the buffer 151A to generate the serialization clock CLK_S. The first clock generator 15A may include an exclusive OR (XOR) gate 153A, which generates a first intermediate clock CLK_AA to the flip-flop 152A according to the in-phase locked clock CLKI and the quadrature phase-locked clock CLKQ. . The first clock generator 15A may include a delayer 154A for delaying the first intermediate clock CLK_AA to generate a second intermediate clock CLK_BB such that the second intermediate clock CLK_BB is synchronized with the serialization clock CLK_S. The first clock generator 15A may include a lagging clock generator 155A to generate a lagging clock CLK_lag.

第三A圖顯示第一A圖之第二時脈產生器15B的細部方塊圖,第三B圖顯示第三A圖之第二時脈產生器15B的相應信號的時序圖。在本實施例中,第二時脈產生器15B可包含緩衝(放大)器151B、正反器152B、互斥或(XOR)閘153B、延遲器154B,其功能類似於第一時脈產生器15A,不再贅述。第二時脈產生器15B可包含超前時脈產生器155B,以產生超前時脈CLK_lead。The third figure A shows a detailed block diagram of the second clock generator 15B of the first figure A, and the third figure B shows the timing diagram of the corresponding signals of the second clock generator 15B of the third figure A. In this embodiment, the second clock generator 15B may include a buffer (amplifier) 151B, a flip-flop 152B, an exclusive OR (XOR) gate 153B, and a delay 154B, whose functions are similar to those of the first clock generator. 15A, no further details will be given. The second clock generator 15B may include a lead clock generator 155B to generate the lead clock CLK_lead.

第四圖顯示本發明另一實施例之串列化系統200的方塊圖。串列化系統200(第四圖)與串列化系統100(第一A圖)類似,兩者間的差異說明如下。The fourth figure shows a block diagram of a serialization system 200 according to another embodiment of the present invention. The serialization system 200 (the fourth figure) is similar to the serialization system 100 (the first figure A), and the differences between the two are explained as follows.

在本實施例中,串列化系統200的時脈產生電路可包含單一的(或整合的)時脈產生器16,其(自鎖相迴路)接收鎖相時脈,例如同相鎖相時脈CLKI與正交鎖相時脈CLKQ,據以產生串化時脈CLK_S給第一串化器11A、第二串化器11B,產生落後時脈CLK_lag給第一正反器12A,產生超前時脈CLK_lead給第二正反器12B。其中,該落後時脈CLK_lag(相對於串化時脈CLK_S)之落後量與該超前時脈CLK_lead(相對於串化時脈CLK_S)之超前量兩者的和為二分之一單位間隔T/2。藉此,時脈輸出CLKp/CLKn與資料輸出Datap/Datan之間具有二分之一單位間隔T/2,以確保時脈輸出CLKp/CLKn進行觸發之前,資料輸出Datap/Datan已達到穩定,藉以避免製程誤差所造成的影響。In this embodiment, the clock generation circuit of the serialization system 200 may include a single (or integrated) clock generator 16 that (self-phase locked loop) receives a phase-locked clock, such as an in-phase phase-locked clock. CLKI and the quadrature phase-locked clock CLKQ generate the serialization clock CLK_S to the first serializer 11A and the second serializer 11B, generate the lagging clock CLK_lag to the first flip-flop 12A, and generate the leading clock. CLK_lead is given to the second flip-flop 12B. Wherein, the sum of the lag amount of the lagging clock CLK_lag (relative to the serialization clock CLK_S) and the lead amount of the leading clock CLK_lead (relative to the serialization clock CLK_S) is one-half unit interval T/ 2. Thereby, there is a half unit interval T/2 between the clock output CLKp/CLKn and the data output Datap/Datan to ensure that the data output Datap/Datan has reached stability before the clock output CLKp/CLKn is triggered. Avoid the impact caused by process errors.

第五A圖顯示第四圖之時脈產生器16的細部方塊圖,第五B圖顯示第五A圖之時脈產生器16之相應信號的時序圖。在本實施例中,時脈產生器16可包含緩衝(放大)器161、正反器162、互斥或(XOR)閘163、延遲器164,其功能類似於第一時脈產生器15A或第二時脈產生器15B,不再贅述。本實施例之時脈產生器16可包含落後時脈產生器165,以產生落後時脈CLK_lag,且包含超前時脈產生器166,以產生超前時脈CLK_lead。Figure 5A shows a detailed block diagram of the clock generator 16 of Figure 4, and Figure 5B shows the timing diagram of the corresponding signals of the clock generator 16 of Figure 5A. In this embodiment, the clock generator 16 may include a buffer (amplifier) 161, a flip-flop 162, an exclusive OR (XOR) gate 163, and a delay 164, the functions of which are similar to the first clock generator 15A or The second clock generator 15B will not be described again. The clock generator 16 of this embodiment may include a lagging clock generator 165 to generate a lagging clock CLK_lag, and a leading clock generator 166 to generate a leading clock CLK_lead.

第六A圖顯示本發明第一實施例之落後時脈產生器300A的電路圖及相應信號的時序圖,可適用於前述實施例之落後時脈產生器155A(第二A圖)、落後時脈產生器165(第五A圖)。Figure 6A shows the circuit diagram of the lagging clock generator 300A and the timing diagram of the corresponding signals in the first embodiment of the present invention, which can be applied to the lagging clock generator 155A (Figure 2A) and the lagging clock of the previous embodiments. Generator 165 (fifth A).

在本實施例中,落後時脈產生器300A可包含第一反向選擇電路301A,根據反向時脈信號CLKB以輸出第一輸出信號“1”。藉此,當反向時脈信號CLKB為高電位時,輸出第一輸出信號“1”。該第一反向選擇電路301A包含P型第一電晶體P1、P型第二電晶體P2、N型第一電晶體N1、N型第二電晶體N2,依序串接於電源與地之間。其中,P型第二電晶體P2與N型第一電晶體N1形成反向電路,P型第一電晶體P1與N型第二電晶體N2形成選擇電路。詳而言之,P型第一電晶體P1的閘極連接時脈信號CLK,N型第二電晶體N2的閘極連接反向時脈信號CLKB,P型第二電晶體P2與N型第一電晶體N1的閘極連接至信號“0”,P型第二電晶體P2與N型第一電晶體N1之汲極提供第一輸出信號“1”。In this embodiment, the lagging clock generator 300A may include a first reverse selection circuit 301A to output a first output signal “1” according to the reverse clock signal CLKB. Thereby, when the reverse clock signal CLKB is at a high level, the first output signal "1" is output. The first reverse selection circuit 301A includes a P-type first transistor P1, a P-type second transistor P2, an N-type first transistor N1, and an N-type second transistor N2, which are connected in series between the power supply and the ground. between. Among them, the P-type second transistor P2 and the N-type first transistor N1 form a reverse circuit, and the P-type first transistor P1 and the N-type second transistor N2 form a selection circuit. Specifically, the gate of the P-type first transistor P1 is connected to the clock signal CLK, the gate of the N-type second transistor N2 is connected to the reverse clock signal CLKB, and the P-type second transistor P2 and the N-type second transistor N2 are connected to the reverse clock signal CLKB. The gate of a transistor N1 is connected to the signal "0", and the drains of the P-type second transistor P2 and the N-type first transistor N1 provide the first output signal "1".

落後時脈產生器300A可包含第二反向選擇電路302A,根據時脈信號CLK以輸出第二輸出信號“0”。藉此,當時脈信號CLK為高電位時,輸出第一輸出信號“0”。該第二反向選擇電路302A包含P型第三電晶體P3、P型第四電晶體P4、N型第三電晶體N3、N型第四電晶體N4,依序串接於電源與地之間。其中,P型第四電晶體P4與N型第三電晶體N3形成反向電路,P型第三電晶體P3與N型第四電晶體N4形成選擇電路。詳而言之,P型第三電晶體P3的閘極連接反向時脈信號CLKB,N型第四電晶體N4的閘極連接時脈信號CLK,P型第四電晶體P4與N型第三電晶體N3的閘極連接至信號“1”,P型第四電晶體P4與N型第三電晶體N3之汲極提供第二輸出信號“0”。The lagging clock generator 300A may include a second reverse selection circuit 302A to output a second output signal “0” according to the clock signal CLK. Thereby, when the clock signal CLK is at a high level, the first output signal "0" is output. The second reverse selection circuit 302A includes a P-type third transistor P3, a P-type fourth transistor P4, an N-type third transistor N3, and an N-type fourth transistor N4, which are connected in series between the power supply and the ground. between. Among them, the P-type fourth transistor P4 and the N-type third transistor N3 form a reverse circuit, and the P-type third transistor P3 and the N-type fourth transistor N4 form a selection circuit. Specifically, the gate of the P-type third transistor P3 is connected to the reverse clock signal CLKB, the gate of the N-type fourth transistor N4 is connected to the clock signal CLK, and the P-type fourth transistor P4 and the N-type third transistor N4 are connected to the reverse clock signal CLKB. The gate of the three transistors N3 is connected to the signal "1", and the drains of the P-type fourth transistor P4 and the N-type third transistor N3 provide the second output signal "0".

落後時脈產生器300A可包含第一閂鎖器(latch),用以鎖住落後時脈產生器300A所產生的落後時脈信號Q。該第一閂鎖器可包含第三反向選擇電路303A,根據重置信號RST以輸出第三輸出信號。藉此,當重置信號RST為高電位時,輸出反向的落後時脈信號Q作為第三輸出信號。該第三反向選擇電路303A包含P型第五電晶體P5、P型第六電晶體P6、N型第五電晶體N5、N型第六電晶體N6,依序串接於電源與地之間。詳而言之,P型第五電晶體P5的閘極連接反向重置信號RSTB,N型第六電晶體N6的閘極連接重置信號RST,P型第六電晶體P6與N型第五電晶體N5之汲極提供第三輸出信號,且該落後時脈信號Q回授至P型第六電晶體P6與N型第五電晶體N5的閘極。落後時脈產生器300A可包含第一多工器(MUX)304A,其根據反向時脈信號CLKB以通過第三輸出信號。藉此,當反向時脈信號CLKB為高電位時,通過第三輸出信號作為第一閂鎖器的輸出信號。The lagging clock generator 300A may include a first latch for latching the lagging clock signal Q generated by the lagging clock generator 300A. The first latch may include a third reverse selection circuit 303A to output a third output signal according to the reset signal RST. Thereby, when the reset signal RST is at a high level, the reverse backward clock signal Q is output as the third output signal. The third reverse selection circuit 303A includes a P-type fifth transistor P5, a P-type sixth transistor P6, an N-type fifth transistor N5, and an N-type sixth transistor N6, which are connected in series between the power supply and the ground. between. Specifically, the gate of the P-type fifth transistor P5 is connected to the reverse reset signal RSTB, the gate of the N-type sixth transistor N6 is connected to the reset signal RST, and the P-type sixth transistor P6 is connected to the N-type sixth transistor N6. The drain of the fifth transistor N5 provides the third output signal, and the lagging clock signal Q is fed back to the gates of the P-type sixth transistor P6 and the N-type fifth transistor N5. The lagging clock generator 300A may include a first multiplexer (MUX) 304A that passes the third output signal according to the reverse clock signal CLKB. Thereby, when the reverse clock signal CLKB is at a high level, the third output signal is used as the output signal of the first latch.

落後時脈產生器300A可包含第一反(NOT)閘305A,其接收第一輸出信號、第二輸出信號及第一閂鎖器(亦即第三反向選擇電路303A與第一多工器304A)的輸出信號,據以產生落後時脈信號Q。The lagging clock generator 300A may include a first NOT gate 305A, which receives the first output signal, the second output signal and the first latch (ie, the third NOT select circuit 303A and the first multiplexer The output signal of 304A) is used to generate the lagging clock signal Q.

第六B圖顯示本發明第一實施例之超前時脈產生器400A的電路圖及相應信號的時序圖,可搭配第六A圖之落後時脈產生器300A,適用於前述實施例之超前時脈產生器155B(第三A圖)、超前時脈產生器166(第五A圖)。超前時脈產生器400A(第六B圖)類似於落後時脈產生器300A(第六A圖),兩者間的差異說明如下。Figure 6B shows the circuit diagram and the timing diagram of the corresponding signals of the leading clock generator 400A of the first embodiment of the present invention. It can be used with the lagging clock generator 300A of Figure 6A and is suitable for the leading clock of the previous embodiment. Generator 155B (third diagram A), leading clock generator 166 (fifth diagram A). The leading clock generator 400A (sixth figure B) is similar to the lagging clock generator 300A (sixth figure A), and the differences between the two are explained as follows.

在本實施例中,超前時脈產生器400A可包含第四反向選擇電路301B,根據反向時脈信號CLKB以輸出第四輸出信號“0”。藉此,當反向時脈信號CLKB為高電位時,輸出第四輸出信號“0”。In this embodiment, the leading clock generator 400A may include a fourth reverse selection circuit 301B to output a fourth output signal “0” according to the reverse clock signal CLKB. Thereby, when the reverse clock signal CLKB is at a high level, the fourth output signal "0" is output.

超前時脈產生器400A可包含第五反向選擇電路302B,根據時脈信號CLK以輸出第五輸出信號“1”。藉此,當時脈信號CLK為高電位時,輸出第五輸出信號“1”。The leading clock generator 400A may include a fifth reverse selection circuit 302B to output a fifth output signal “1” according to the clock signal CLK. Thereby, when the clock signal CLK is at a high level, the fifth output signal "1" is output.

超前時脈產生器400A可包含第二閂鎖器,用以鎖住超前時脈產生器400A所產生的超前時脈信號R。該第二閂鎖器可包含第六反向選擇電路303B,根據重置信號RST以輸出第六輸出信號。藉此,當重置信號RST為高電位時,輸出反向的超前時脈信號R作為第六輸出信號。超前時脈產生器400A可包含第二多工器(MUX)304B,其根據反向時脈信號CLKB以通過第六輸出信號。藉此,當反向時脈信號CLKB為高電位時,通過第六輸出信號作為第二閂鎖器的輸出信號。The leading clock generator 400A may include a second latch for latching the leading clock signal R generated by the leading clock generator 400A. The second latch may include a sixth reverse selection circuit 303B to output a sixth output signal according to the reset signal RST. Thereby, when the reset signal RST is at a high level, the reverse leading clock signal R is output as the sixth output signal. The leading clock generator 400A may include a second multiplexer (MUX) 304B that passes the sixth output signal according to the reverse clock signal CLKB. Thereby, when the reverse clock signal CLKB is at a high level, the sixth output signal is used as the output signal of the second latch.

超前時脈產生器400A可包含第二反(NOT)閘305B,其接收第四輸出信號、第五輸出信號及第二閂鎖器(亦即第六反向選擇電路303B與第二多工器304B)的輸出信號,據以產生超前時脈信號R。The lead clock generator 400A may include a second NOT gate 305B that receives the fourth output signal, the fifth output signal and the second latch (ie, the sixth NOT select circuit 303B and the second multiplexer The output signal of 304B) is used to generate the leading clock signal R.

第七A圖顯示本發明第二實施例之落後時脈產生器300B的電路圖,可適用於前述實施例之落後時脈產生器155A(第二A圖)、落後時脈產生器165(第五A圖)。Figure 7A shows a circuit diagram of the lagging clock generator 300B of the second embodiment of the present invention, which can be applied to the lagging clock generator 155A (second Figure A) and the lagging clock generator 165 (fifth figure) of the previous embodiments. Figure A).

在本實施例中,落後時脈產生器300B可包含第一多工器306A,其根據反向時脈信號CLKB以產生第一輸出信號“0”。藉此,當反向時脈信號CLKB為高電位時,產生第一輸出信號“0”。落後時脈產生器300B可包含第二多工器307A,其根據時脈信號CLKB以產生第二輸出信號“1”。藉此,當時脈信號CLK為高電位時,產生第二輸出信號“1”。In this embodiment, the lagging clock generator 300B may include a first multiplexer 306A that generates a first output signal “0” according to the reverse clock signal CLKB. Thereby, when the reverse clock signal CLKB is at a high level, the first output signal "0" is generated. The lagging clock generator 300B may include a second multiplexer 307A that generates a second output signal “1” according to the clock signal CLKB. Thereby, when the clock signal CLK is at a high level, the second output signal "1" is generated.

落後時脈產生器300B可包含第一閂鎖器(latch),用以鎖住第一節點信號M。該第一閂鎖器可包含第一反向選擇電路308A,根據重置信號RST以輸出第三輸出信號。藉此,當重置信號RST為高電位時,輸出反向的第一節點信號M作為第三輸出信號。該第一反向選擇電路308A包含P型第五電晶體P5、P型第六電晶體P6、N型第五電晶體N5、N型第六電晶體N6,依序串接於電源與地之間。詳而言之,P型第五電晶體P5的閘極連接反向重置信號RSTB,N型第六電晶體N6的閘極連接重置信號RST,P型第六電晶體P6與N型第五電晶體N5之汲極提供第三輸出信號,且該第一節點信號M回授至P型第六電晶體P6與N型第五電晶體N5的閘極。落後時脈產生器300B可包含第三多工器(MUX)309A,其根據反向時脈信號CLKB以通過第三輸出信號。藉此,當反向時脈信號CLKB為高電位時,通過第三輸出信號作為第一閂鎖器的輸出信號。The lagging clock generator 300B may include a first latch for latching the first node signal M. The first latch may include a first reverse selection circuit 308A to output a third output signal according to the reset signal RST. Thereby, when the reset signal RST is at a high level, the inverted first node signal M is output as the third output signal. The first reverse selection circuit 308A includes a P-type fifth transistor P5, a P-type sixth transistor P6, an N-type fifth transistor N5, and an N-type sixth transistor N6, which are connected in series between the power supply and the ground. between. Specifically, the gate of the P-type fifth transistor P5 is connected to the reverse reset signal RSTB, the gate of the N-type sixth transistor N6 is connected to the reset signal RST, and the P-type sixth transistor P6 is connected to the N-type sixth transistor N6. The drain of the five-type transistor N5 provides the third output signal, and the first node signal M is fed back to the gates of the P-type sixth transistor P6 and the N-type fifth transistor N5. The lagging clock generator 300B may include a third multiplexer (MUX) 309A that passes the third output signal according to the reverse clock signal CLKB. Thereby, when the reverse clock signal CLKB is at a high level, the third output signal is used as the output signal of the first latch.

落後時脈產生器300B可包含第一反(NOT)閘310A,其接收第一輸出信號、第二輸出信號及第一閂鎖器(亦即第一反向選擇電路308A與第三多工器309A)的輸出信號,據以產生第一節點信號M。落後時脈產生器300B可包含第四多工器311A,用以通過第一節點信號M,以產生第四輸出信號。落後時脈產生器300B可包含第二反閘312A,其接收第四多工器311A的第四輸出信號,據以產生落後時脈信號Q。The lagging clock generator 300B may include a first NOT gate 310A that receives the first output signal, the second output signal, and the first latch (ie, the first NOT select circuit 308A and the third multiplexer The output signal of 309A) is used to generate the first node signal M. The lagging clock generator 300B may include a fourth multiplexer 311A for passing the first node signal M to generate a fourth output signal. The lagging clock generator 300B may include a second anti-gate 312A, which receives the fourth output signal of the fourth multiplexer 311A and generates the lagging clock signal Q accordingly.

第七B圖顯示本發明第二實施例之超前時脈產生器400B的電路圖,可搭配第七A圖之落後時脈產生器300B,適用於前述實施例之超前時脈產生器155B(第三A圖)、超前時脈產生器166(第五A圖)。超前時脈產生器400B(第七B圖)類似於落後時脈產生器300A(第七A圖),兩者間的差異說明如下。Figure 7B shows a circuit diagram of the leading clock generator 400B of the second embodiment of the present invention, which can be used with the lagging clock generator 300B of Figure 7A and is suitable for the leading clock generator 155B (third) of the previous embodiment. A), the leading clock generator 166 (fifth A). The leading clock generator 400B (seventh figure B) is similar to the lagging clock generator 300A (seventh figure A), and the differences between the two are explained as follows.

在本實施例中,超前時脈產生器400B可包含第五多工器306B,其根據反向時脈信號CLKB以產生第五輸出信號“1”。藉此,當反向時脈信號CLKB為高電位時,產生第五輸出信號“1”。超前時脈產生器400B可包含第六多工器307B,其根據時脈信號CLKB以產生第六輸出信號“0”。藉此,當時脈信號CLK為高電位時,產生第六輸出信號“0”。In this embodiment, the leading clock generator 400B may include a fifth multiplexer 306B that generates a fifth output signal “1” according to the reverse clock signal CLKB. Thereby, when the reverse clock signal CLKB is at a high level, the fifth output signal "1" is generated. The leading clock generator 400B may include a sixth multiplexer 307B that generates a sixth output signal “0” according to the clock signal CLKB. Thereby, when the clock signal CLK is at a high level, the sixth output signal "0" is generated.

超前時脈產生器400B可包含第二閂鎖器(latch),用以鎖住第二節點信號N。該第二閂鎖器可包含第二反向選擇電路308B,根據重置信號RST以輸出第七輸出信號。藉此,當重置信號RST為高電位時,輸出反向的第二節點信號N作為第七輸出信號。超前時脈產生器400B可包含第三多工器(MUX)309B,其根據反向時脈信號CLKB以通過第七輸出信號。藉此,當反向時脈信號CLKB為高電位時,通過第七輸出信號作為第二閂鎖器的輸出信號。The leading clock generator 400B may include a second latch for latching the second node signal N. The second latch may include a second reverse selection circuit 308B to output a seventh output signal according to the reset signal RST. Thereby, when the reset signal RST is at a high level, the inverted second node signal N is output as the seventh output signal. The leading clock generator 400B may include a third multiplexer (MUX) 309B that passes the seventh output signal according to the reverse clock signal CLKB. Thereby, when the reverse clock signal CLKB is at a high level, the seventh output signal is used as the output signal of the second latch.

超前時脈產生器400B可包含第三反(NOT)閘310B,其接收第五輸出信號、第六輸出信號及第二閂鎖器(亦即第二反向選擇電路308B與第七多工器309B)的輸出信號,據以產生第二節點信號N。落後時脈產生器300B可包含第八多工器311B,用以通過第二節點信號N。超前時脈產生器400B可包含第四反閘312B,其接收第八多工器311B的輸出信號,據以產生超前時脈信號R。The lead clock generator 400B may include a third NOT gate 310B that receives the fifth output signal, the sixth output signal and the second latch (ie, the second NOT select circuit 308B and the seventh multiplexer 309B), thereby generating the second node signal N. The lagging clock generator 300B may include an eighth multiplexer 311B for passing the second node signal N. The leading clock generator 400B may include a fourth reverse gate 312B, which receives the output signal of the eighth multiplexer 311B and generates the leading clock signal R accordingly.

第八A圖顯示本發明第三實施例之落後時脈產生器300C的電路圖,可適用於前述實施例之落後時脈產生器155A(第二A圖)、落後時脈產生器165(第五A圖)。落後時脈產生器300C(第八A圖)類似於落後時脈產生器300B(第七A圖),兩者間的差異說明如下。Figure 8A shows a circuit diagram of the lagging clock generator 300C of the third embodiment of the present invention, which can be applied to the lagging clock generator 155A (second Figure A) and the lagging clock generator 165 (fifth) of the previous embodiments. Figure A). The lagging clock generator 300C (the eighth figure A) is similar to the lagging clock generator 300B (the seventh figure A), and the differences between the two are explained as follows.

在本實施例中,使用第五反閘313A以取代第一反向選擇電路308A,接收第一節點信號M,據以產生反向的第一節點信號M,作為第三輸出信號。In this embodiment, the fifth reverse gate 313A is used instead of the first reverse selection circuit 308A to receive the first node signal M and thereby generate the reversed first node signal M as the third output signal.

第八B圖顯示本發明第三實施例之超前時脈產生器400C的電路圖,可搭配第八A圖之落後時脈產生器300C,適用於前述實施例之超前時脈產生器155B(第三A圖)、超前時脈產生器166(第五A圖)。超前時脈產生器400C(第八B圖)類似於落後時脈產生器300C(第七A圖),兩者間的差異說明如下。Figure 8B shows a circuit diagram of the leading clock generator 400C of the third embodiment of the present invention, which can be used with the lagging clock generator 300C of Figure 8A and is suitable for the leading clock generator 155B (third embodiment) of the previous embodiment. A), the leading clock generator 166 (fifth A). The leading clock generator 400C (the eighth figure B) is similar to the lagging clock generator 300C (the seventh figure A), and the differences between the two are explained as follows.

在本實施例中,使用第六反閘313B以取代第二反向選擇電路308B,接收第二節點信號N,據以產生反向的第二節點信號N,作為第三輸出信號。In this embodiment, the sixth reverse gate 313B is used to replace the second reverse selection circuit 308B to receive the second node signal N and thereby generate the reverse second node signal N as the third output signal.

以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其它未脫離發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍內。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the patentable scope of the present invention; all other equivalent changes or modifications made without departing from the spirit of the invention shall be included in the following. Within the scope of patent application.

100:串列化系統 200:串列化系統 100A:時脈通道 100B:資料通道 11A:第一串化器 11B:第二串化器 12A:第一正反器 12B:第二正反器 13A:第一預驅動器 13B:第二預驅動器 14A:第一後驅動器 14B:第二後驅動器 15A:第一時脈產生器 151A:緩衝器 152A:正反器 153A:互斥或閘 154A:延遲器 155A:落後時脈產生器 15B:第二時脈產生器 151B:緩衝器 152B:正反器 153B:互斥或閘 154B:延遲器 155B:超前時脈產生器 16:時脈產生器 161:緩衝器 162:正反器 163:互斥或閘 164:延遲器 165:落後時脈產生器 166:超前時脈產生器 300A:落後時脈產生器 300B:落後時脈產生器 300C:落後時脈產生器 400A:超前時脈產生器 400B:超前時脈產生器 400C:超前時脈產生器 301A:第一反向選擇電路 301B:第四反向選擇電路 302A:第二反向選擇電路 302B:第五反向選擇電路 303A:第三反向選擇電路 303B:第六反向選擇電路 304A:第一多工器 304B:第二多工器 305A:第一反閘 305B:第二反閘 306A:第一多工器 306B:第五多工器 307A:第二多工器 307B:第六多工器 308A:第一反向選擇電路 308B:第二反向選擇電路 309A:第三多工器 309B:第三多工器 310A:第一反閘 310B:第三反閘 311A:第四多工器 311B:第八多工器 312A:第二反閘 312B:第四反閘 313A:第五反閘 313B:第六反閘 T:單位間隔 D_CLK:並列時脈 D_Data:並列資料 CLKI:同相鎖相時脈 CLKQ:正交鎖相時脈 CLK_S:串化時脈 CLK_lag:落後時脈 CLK_lead:超前時脈 CLKp,CLKn:時脈輸出 Datap,Datan:資料輸出 CLK_AA:第一中間時脈 CLK_BB:第二中間時脈 CLK:時脈信號 CLKB:反向時脈信號 RST:重置信號 RSTB:反向重置信號 Q:落後時脈信號 R:超前時脈信號 M:第一節點信號 N:第二節點信號 P1:P型第一電晶體 P2:P型第二電晶體 P3:P型第三電晶體 P4:P型第四電晶體 P5:P型第五電晶體 P6:P型第六電晶體 N1:N型第一電晶體 N2:N型第二電晶體 N3:N型第三電晶體 N4:N型第四電晶體 N5:N型第五電晶體 N6:N型第六電晶體 VDD:電源 GND:地 100: Serialization system 200: Serialization system 100A: Clock channel 100B: Data channel 11A: First serializer 11B: Second serializer 12A: The first flip-flop 12B: Second flip-flop 13A: First pre-driver 13B: Second pre-driver 14A: First rear driver 14B: Second rear drive 15A: First clock generator 151A:Buffer 152A: flip-flop 153A: Mutual exclusion or gate 154A: Delay 155A: Lagging clock generator 15B: Second clock generator 151B:Buffer 152B: Flip-flop 153B: Mutual exclusion or gate 154B: Delay 155B: Leading clock generator 16: Clock generator 161:Buffer 162: flip-flop 163: Mutual exclusion or gate 164:Delayer 165: Lagging clock generator 166:Advanced clock generator 300A: Lagging clock generator 300B: Lagging clock generator 300C: Lagging clock generator 400A: Leading clock generator 400B: Leading clock generator 400C: Leading clock generator 301A: First reverse selection circuit 301B: The fourth reverse selection circuit 302A: Second reverse selection circuit 302B: The fifth reverse selection circuit 303A: The third reverse selection circuit 303B: The sixth reverse selection circuit 304A: First multiplexer 304B: Second multiplexer 305A: First reverse gate 305B: Second reverse gate 306A: First multiplexer 306B: Fifth multiplexer 307A: Second multiplexer 307B: Sixth multiplexer 308A: First reverse selection circuit 308B: Second reverse selection circuit 309A: The third multiplexer 309B: The third multiplexer 310A: First reverse gate 310B: The third reverse gate 311A: The fourth multiplexer 311B: Eighth multiplexer 312A: Second reverse gate 312B: The fourth reverse gate 313A: The fifth reverse gate 313B: The sixth reverse gate T: unit interval D_CLK: parallel clock D_Data: parallel data CLKI: phase-locked clock CLKQ: quadrature phase locked clock CLK_S: Serialization clock CLK_lag: lagging clock CLK_lead: leading clock CLKp, CLKn: clock output Datap, Datan: data output CLK_AA: first intermediate clock CLK_BB: second intermediate clock CLK: clock signal CLKB: reverse clock signal RST: reset signal RSTB: reverse reset signal Q: Lagging clock signal R: leading clock signal M: first node signal N: second node signal P1: P-type first transistor P2: P-type second transistor P3: P-type third transistor P4: P-type fourth transistor P5: P-type fifth transistor P6: P-type sixth transistor N1: N-type first transistor N2: N-type second transistor N3: N-type third transistor N4: N-type fourth transistor N5: N-type fifth transistor N6: N-type sixth transistor VDD: power supply GND: ground

第一A圖顯示本發明實施例之串列化系統的方塊圖。 第一B圖顯示時脈輸出與資料輸出的時序圖。 第二A圖顯示第一A圖之第一時脈產生器的細部方塊圖。 第二B圖顯示第二A圖之第一時脈產生器的相應信號的時序圖。 第三A圖顯示第一A圖之第二時脈產生器的細部方塊圖。 第三B圖顯示第三A圖之第二時脈產生器的相應信號的時序圖。 第四圖顯示本發明另一實施例之串列化系統的方塊圖。 第五A圖顯示第四圖之時脈產生器的細部方塊圖。 第五B圖顯示第五A圖之時脈產生器之相應信號的時序圖。 第六A圖顯示本發明第一實施例之落後時脈產生器的電路圖及相應信號的時序圖。 第六B圖顯示本發明第一實施例之超前時脈產生器的電路圖及相應信號的時序圖。 第七A圖顯示本發明第二實施例之落後時脈產生器的電路圖。 第七B圖顯示本發明第二實施例之超前時脈產生器的電路圖。 第八A圖顯示本發明第三實施例之落後時脈產生器的電路圖。 第八B圖顯示本發明第三實施例之超前時脈產生器的電路圖。 Figure A shows a block diagram of a serialization system according to an embodiment of the present invention. Figure B shows the timing diagram of clock output and data output. Figure 2A shows a detailed block diagram of the first clock generator of Figure 1A. Figure 2B shows the timing diagram of the corresponding signals of the first clock generator of Figure 2A. Figure 3A shows a detailed block diagram of the second clock generator of Figure 1A. Figure 3B shows the timing diagram of the corresponding signals of the second clock generator of Figure 3A. The fourth figure shows a block diagram of a serialization system according to another embodiment of the present invention. Figure 5A shows a detailed block diagram of the clock generator of Figure 4. Figure 5B shows the timing diagram of the corresponding signals of the clock generator of Figure 5A. Figure 6A shows the circuit diagram of the lagging clock generator and the timing diagram of the corresponding signals according to the first embodiment of the present invention. Figure 6B shows the circuit diagram of the leading clock generator and the timing diagram of the corresponding signals according to the first embodiment of the present invention. Figure 7A shows a circuit diagram of a lagging clock generator according to the second embodiment of the present invention. Figure 7B shows a circuit diagram of the leading clock generator according to the second embodiment of the present invention. Figure 8A shows a circuit diagram of a lagging clock generator according to the third embodiment of the present invention. Figure 8B shows a circuit diagram of the leading clock generator according to the third embodiment of the present invention.

100:串列化系統 100: Serialization system

100A:時脈通道 100A: Clock channel

100B:資料通道 100B: Data channel

11A:第一串化器 11A: First serializer

11B:第二串化器 11B: Second serializer

12A:第一正反器 12A: The first flip-flop

12B:第二正反器 12B: Second flip-flop

13A:第一預驅動器 13A: First pre-driver

13B:第二預驅動器 13B: Second pre-driver

14A:第一後驅動器 14A: First rear driver

14B:第二後驅動器 14B: Second rear drive

15A:第一時脈產生器 15A: First clock generator

15B:第二時脈產生器 15B: Second clock generator

D_CLK:並列時脈 D_CLK: parallel clock

D_Data:並列資料 D_Data: parallel data

CLKI:同相鎖相時脈 CLKI: phase-locked clock

CLKQ:正交鎖相時脈 CLKQ: quadrature phase locked clock

CLK_S:串化時脈 CLK_S: Serialization clock

CLK_lag:落後時脈 CLK_lag: lagging clock

CLK_lead:超前時脈 CLK_lead: leading clock

CLKp,CLKn:時脈輸出 CLKp, CLKn: clock output

Datap,Datan:資料輸出 Datap, Datan: data output

Claims (19)

一種串列化系統,包含:一時脈通道,用以產生時脈輸出,該時脈通道包含:一第一串化器,用以將並列時脈轉換為串列時脈;一第一正反器,用以依序儲存該串列時脈,以提供該時脈輸出;一資料通道,用以輸出資料輸出,該資料通道包含:一第二串化器,用以將並列資料轉換為串列資料;一第二正反器,用以依序儲存該串列資料,以提供該資料輸出;一時脈產生電路,其接收鎖相時脈,據以產生串化時脈給該第一串化器與該第二串化器,產生落後時脈給該第一正反器,且產生超前時脈給該第二正反器;其中該落後時脈相對於該串化時脈的落後量與該超前時脈相對於該串化時脈的超前量,兩者之和為二分之一單位間隔。 A serialization system includes: a clock channel for generating a clock output, the clock channel includes: a first serializer for converting a parallel clock into a serial clock; a first forward and reverse A device for sequentially storing the serial clock to provide the clock output; a data channel for outputting data, the data channel including: a second serializer for converting parallel data into serial serial data; a second flip-flop for sequentially storing the serial data to provide the data output; a clock generation circuit that receives a phase-locked clock and generates a serialization clock to the first serial data converter and the second serializer, generate a lagging clock to the first flip-flop, and generate a leading clock to the second flip-flop; wherein the lagging clock is lagging relative to the serialization clock The sum of the lead amount of the lead clock relative to the serialized clock is one-half unit interval. 如請求項1之串列化系統,其中該時脈通道更包含:一第一預驅動器,自該第一正反器接收該串列時脈,以增加驅動能力;及一第一後驅動器,用以將單端的串列時脈轉換為差動的時脈輸出。 The serialization system of claim 1, wherein the clock channel further includes: a first pre-driver that receives the serial clock from the first flip-flop to increase driving capability; and a first post-driver, Used to convert single-ended serial clock to differential clock output. 如請求項1之串列化系統,其中該資料通道更包含:一第二預驅動器,自該第二正反器接收該串列資料,以增加驅動能力;及一第二後驅動器,用以將單端的串列資料轉換為差動的資料輸出。 As claimed in claim 1, the serialization system further includes: a second pre-driver for receiving the serial data from the second flip-flop to increase drive capability; and a second post-driver for Convert single-ended serial data to differential data output. 如請求項1之串列化系統,其中該時脈產生電路包含:一第一時脈產生器,產生該串化時脈給該第一串化器,且產生該落後時脈給該第一正反器;及一第二時脈產生器,產生該串化時脈給該第二串化器,且產生該超前時脈給該第二正反器; 其中該第一時脈產生器與該第二時脈產生器互為獨立。 The serialization system of claim 1, wherein the clock generation circuit includes: a first clock generator, generates the serialization clock to the first serializer, and generates the lagging clock to the first a flip-flop; and a second clock generator that generates the serialization clock to the second serializer and generates the leading clock to the second flip-flop; The first clock generator and the second clock generator are independent of each other. 如請求項4之串列化系統,其中該第一時脈產生器包含:一緩衝器,提供阻抗匹配且接收同相鎖相時脈;一正反器,接收該緩衝器所輸出的同相鎖相時脈,以產生該串化時脈;一互斥或閘,根據該同相鎖相時脈與正交鎖相時脈以產生第一中間時脈給該正反器;一延遲器,用以延遲該第一中間時脈,以產生第二中間時脈,使得該第二中間時脈同步於該串化時脈;及一落後時脈產生器,以產生該落後時脈。 Such as the serialization system of claim 4, wherein the first clock generator includes: a buffer that provides impedance matching and receives the in-phase locked clock; a flip-flop that receives the in-phase locked clock output by the buffer a clock to generate the serialized clock; a mutex or gate to generate a first intermediate clock to the flip-flop according to the in-phase locked clock and the quadrature phase-locked clock; a delay to Delaying the first intermediate clock to generate a second intermediate clock so that the second intermediate clock is synchronized with the serialization clock; and a lagging clock generator to generate the lagging clock. 如請求項4之串列化系統,其中該第二時脈產生器包含:一緩衝器,提供阻抗匹配且接收同相鎖相時脈;一正反器,接收該緩衝器所輸出的同相鎖相時脈,以產生該串化時脈;一互斥或閘,根據該同相鎖相時脈與正交鎖相時脈以產生第一中間時脈給該正反器;一延遲器,用以延遲該第一中間時脈,以產生第二中間時脈,使得該第二中間時脈同步於該串化時脈;及一超前時脈產生器,以產生該超前時脈。 Such as the serialization system of claim 4, wherein the second clock generator includes: a buffer that provides impedance matching and receives the in-phase locked clock; a flip-flop that receives the in-phase locked clock output by the buffer a clock to generate the serialized clock; a mutex or gate to generate a first intermediate clock to the flip-flop according to the in-phase locked clock and the quadrature phase-locked clock; a delay to Delaying the first intermediate clock to generate a second intermediate clock so that the second intermediate clock is synchronized with the serialization clock; and a leading clock generator to generate the leading clock. 如請求項1之串列化系統,其中該時脈產生電路包含:單一的時脈產生器,產生該串化時脈給該第一串化器與該第二串化器,產生該落後時脈給該第一正反器,且產生該超前時脈給該第二正反器。 The serialization system of claim 1, wherein the clock generation circuit includes: a single clock generator, which generates the serialization clock to the first serializer and the second serializer, and generates the lagging clock. The leading clock pulse is supplied to the first flip-flop, and the leading clock pulse is supplied to the second flip-flop. 如請求項7之串列化系統,其中該時脈產生器包含:一緩衝器,提供阻抗匹配且接收同相鎖相時脈; 一正反器,接收該緩衝器所輸出的同相鎖相時脈,以產生該串化時脈;一互斥或閘,根據該同相鎖相時脈與正交鎖相時脈以產生第一中間時脈給該正反器;一延遲器,用以延遲該第一中間時脈,以產生第二中間時脈,使得該第二中間時脈同步於該串化時脈;一落後時脈產生器,產生該落後時脈給該第一正反器;及一超前時脈產生器,產生該超前時脈給該第二正反器。 The serialization system of claim 7, wherein the clock generator includes: a buffer that provides impedance matching and receives the in-phase phase-locked clock; A flip-flop receives the in-phase locked clock pulse output from the buffer to generate the serialization clock; a mutual exclusive OR gate generates the first phase-locked clock pulse based on the in-phase locked clock pulse and the quadrature phase-locked clock pulse. An intermediate clock is supplied to the flip-flop; a delayer is used to delay the first intermediate clock to generate a second intermediate clock so that the second intermediate clock is synchronized with the serialization clock; a lagging clock a generator that generates the lagging clock to the first flip-flop; and a leading clock generator that generates the leading clock to the second flip-flop. 一種時脈產生電路,包含:一落後時脈產生器,根據時脈信號以產生落後時脈信號給時脈通道的第一正反器,其中該時脈通道包含第一串化器,用以將並列時脈轉換為串列時脈;及該第一正反器,用以依序儲存該串列時脈,以提供該時脈輸出;及一超前時脈產生器,根據該時脈信號以產生超前時脈信號給資料通道的第二正反器,其中該資料通道包含第二串化器,用以將並列資料轉換為串列資料;及該第二正反器,用以依序儲存該串列資料,以提供該資料輸出;其中該落後時脈信號的落後量與該超前時脈信號的超前量,兩者之和為二分之一單位間隔。 A clock generation circuit includes: a lagging clock generator, which generates a lagging clock signal to a first flip-flop of a clock channel according to the clock signal, wherein the clock channel includes a first serializer to Convert the parallel clock to the serial clock; and the first flip-flop is used to store the serial clock in sequence to provide the clock output; and a leading clock generator according to the clock signal A second flip-flop for generating an advanced clock signal to a data channel, wherein the data channel includes a second serializer for converting parallel data into serial data; and the second flip-flop for sequentially The serial data is stored to provide the data output, wherein the sum of the lagging amount of the lagging clock signal and the leading amount of the leading clock signal is one-half unit interval. 如請求項9之時脈產生電路,其中該落後時脈產生器包含:一第一反向選擇電路,根據反向時脈信號以輸出第一輸出信號“1”;一第二反向選擇電路,根據該時脈信號以輸出第二輸出信號“0”;一第一閂鎖器,用以鎖住該落後時脈信號;及一第一反閘,接收該第一輸出信號、該第二輸出信號及該第一閂鎖器的輸出信號,據以產生該落後時脈信號。 The clock generation circuit of claim 9, wherein the lagging clock generator includes: a first reverse selection circuit that outputs a first output signal “1” according to the reverse clock signal; a second reverse selection circuit , to output a second output signal "0" according to the clock signal; a first latch to lock the lagging clock signal; and a first reverse gate to receive the first output signal and the second The output signal and the output signal of the first latch are used to generate the lagging clock signal. 如請求項10之時脈產生電路,其中該第一閂鎖器包含: 一第三反向選擇電路,根據重置信號以輸出第三輸出信號;及一第一多工器,根據該反向時脈信號以通過該第三輸出信號。 For example, the clock generation circuit of claim 10, wherein the first latch includes: A third reverse selection circuit outputs a third output signal according to the reset signal; and a first multiplexer passes the third output signal according to the reverse clock signal. 如請求項10之時脈產生電路,其中該超前時脈產生器包含:一第四反向選擇電路,根據該反向時脈信號以輸出第四輸出信號“0”;一第五反向選擇電路,根據該時脈信號以輸出第五輸出信號“1”;一第二閂鎖器,用以鎖住該超前時脈信號;及一第二反閘,接收該第四輸出信號、該第五輸出信號及該第二閂鎖器的輸出信號,據以產生該超前時脈信號。 The clock generation circuit of claim 10, wherein the leading clock generator includes: a fourth reverse selection circuit that outputs a fourth output signal "0" according to the reverse clock signal; a fifth reverse selection circuit a circuit to output a fifth output signal "1" according to the clock signal; a second latch to latch the leading clock signal; and a second reverse gate to receive the fourth output signal and the third The five output signals and the output signal of the second latch are used to generate the leading clock signal. 如請求項12之時脈產生電路,其中該第二閂鎖器包含:一第六反向選擇電路,根據重置信號以輸出第六輸出信號;及一第二多工器,根據該反向時脈信號以通過該第六輸出信號。 The clock generation circuit of claim 12, wherein the second latch includes: a sixth reverse selection circuit to output a sixth output signal according to the reset signal; and a second multiplexer to output a sixth output signal according to the reverse selection circuit. The clock signal passes through the sixth output signal. 如請求項9之時脈產生電路,其中該落後時脈產生器包含:一第一多工器,根據反向時脈信號以產生第一輸出信號“0”;一第二多工器,根據該時脈信號以產生第二輸出信號“1”;一第一閂鎖器,用以鎖住第一節點信號;一第一反閘,接收該第一輸出信號、該第二輸出信號及該第一閂鎖器的輸出信號,據以產生該第一節點信號;一第四多工器,用以通過該第一節點信號,以產生第四輸出信號;及一第二反閘,接收該第四輸出信號,據以產生該落後時脈信號。 The clock generation circuit of claim 9, wherein the lagging clock generator includes: a first multiplexer to generate the first output signal "0" according to the reverse clock signal; a second multiplexer to generate the first output signal "0" according to the reverse clock signal; The clock signal is used to generate a second output signal "1"; a first latch is used to lock the first node signal; a first reverse gate is used to receive the first output signal, the second output signal and the The output signal of the first latch is used to generate the first node signal; a fourth multiplexer is used to pass the first node signal to generate the fourth output signal; and a second reverse gate is used to receive the A fourth output signal is used to generate the lagging clock signal. 如請求項14之時脈產生電路,其中該第一閂鎖器包含:一第一反向選擇電路,根據重置信號以輸出第三輸出信號;及一第三多工器,根據該反向時脈信號以通過該第三輸出信號。 The clock generation circuit of claim 14, wherein the first latch includes: a first reverse selection circuit to output a third output signal according to the reset signal; and a third multiplexer to output a third output signal according to the reverse selection circuit. The clock signal passes through the third output signal. 如請求項14之時脈產生電路,其中該第一閂鎖器包含:一第五反閘,接收該第一節點信號,據以產生反向的第一節點信號,作為第三輸出信號;及一第三多工器,根據該反向時脈信號以通過該第三輸出信號。 The clock generation circuit of claim 14, wherein the first latch includes: a fifth reverse gate that receives the first node signal and generates an inverse first node signal as a third output signal; and A third multiplexer passes the third output signal according to the reverse clock signal. 如請求項14之時脈產生電路,其中該超前時脈產生器包含:一第五多工器,根據反向時脈信號以產生第五輸出信號“1”;一第六多工器,根據該時脈信號以產生第六輸出信號“0”;一第二閂鎖器,用以鎖住第二節點信號;一第三反閘,接收該第五輸出信號、該第六輸出信號及該第二閂鎖器的輸出信號,據以產生該第二節點信號;一第八多工器,用以通過該第二節點信號;及一第四反閘,接收該第八多工器的輸出信號,據以產生該超前時脈信號。 The clock generation circuit of claim 14, wherein the leading clock generator includes: a fifth multiplexer to generate a fifth output signal "1" according to the reverse clock signal; a sixth multiplexer according to The clock signal is used to generate the sixth output signal "0"; a second latch is used to lock the second node signal; a third reverse gate is used to receive the fifth output signal, the sixth output signal and the The output signal of the second latch is used to generate the second node signal; an eighth multiplexer is used to pass the second node signal; and a fourth reverse gate is used to receive the output of the eighth multiplexer. signal, based on which the advanced clock signal is generated. 如請求項17之時脈產生電路,其中該第二閂鎖器包含:一第二反向選擇電路,根據重置信號以輸出第七輸出信號;及一第三多工器,根據反向時脈信號以通過該第七輸出信號。 The clock generation circuit of claim 17, wherein the second latch includes: a second reverse selection circuit to output the seventh output signal according to the reset signal; and a third multiplexer to output the seventh output signal according to the reverse clock signal. pulse signal to pass through the seventh output signal. 如請求項17之時脈產生電路,其中該第二閂鎖器包含:一第六反閘,接收該第二節點信號,據以產生反向的第二節點信號,作為第七輸出信號;及一第三多工器,根據反向時脈信號以通過該第七輸出信號。 The clock generation circuit of claim 17, wherein the second latch includes: a sixth reverse gate that receives the second node signal and generates an inverted second node signal as a seventh output signal; and A third multiplexer passes the seventh output signal according to the reverse clock signal.
TW111138054A 2022-10-06 2022-10-06 Serialization system and clock generating circuit TWI829380B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111138054A TWI829380B (en) 2022-10-06 2022-10-06 Serialization system and clock generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111138054A TWI829380B (en) 2022-10-06 2022-10-06 Serialization system and clock generating circuit

Publications (2)

Publication Number Publication Date
TWI829380B true TWI829380B (en) 2024-01-11
TW202416675A TW202416675A (en) 2024-04-16

Family

ID=90458995

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111138054A TWI829380B (en) 2022-10-06 2022-10-06 Serialization system and clock generating circuit

Country Status (1)

Country Link
TW (1) TWI829380B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666387A (en) * 1993-12-24 1997-09-09 Fujitsu Limited Signal processing device having PLL circuits
US7245240B1 (en) * 2006-03-07 2007-07-17 Altera Corporation Integrated circuit serializers with two-phase global master clocks
US20210051047A1 (en) * 2003-12-17 2021-02-18 Rambus Inc. High speed signaling system with adaptive transmit pre-emphasis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666387A (en) * 1993-12-24 1997-09-09 Fujitsu Limited Signal processing device having PLL circuits
US20210051047A1 (en) * 2003-12-17 2021-02-18 Rambus Inc. High speed signaling system with adaptive transmit pre-emphasis
US7245240B1 (en) * 2006-03-07 2007-07-17 Altera Corporation Integrated circuit serializers with two-phase global master clocks

Similar Documents

Publication Publication Date Title
KR100779435B1 (en) Preemphasis circuit
US7656984B2 (en) Circuits and methods for recovering a clock signal
US7368955B2 (en) Current-balanced logic circuit
US10419204B2 (en) Serializer-deserializer with frequency doubler
US8253466B2 (en) Clock generators for generation of in-phase and quadrature clock signals
US20130002300A1 (en) Serializing transmitter
TWI807305B (en) Inverting output dynamic D flip-flop
CN214154471U (en) Dynamic D trigger, register, chip and device for executing bit coin ore digging
JP2009188468A (en) Integrated circuit
US6696874B2 (en) Single-event upset immune flip-flop circuit
US20050116756A1 (en) Pulse-based flip-flop
TW201145835A (en) Flip-flop
TWI802964B (en) Dynamic D flip-flop, register, chip and data processing device
TWI829380B (en) Serialization system and clock generating circuit
JP6467878B2 (en) Multiplexer
TW202416675A (en) Serialization system and clock generating circuit
JP2004173168A (en) Multiplexer circuit
WO2023207586A1 (en) Circuit unit, logic circuit, processor, and computing device
US20230084175A1 (en) Flip-flop, master-slave flip-flop, and operating method thereof
CN110059041B (en) Transmission system
JP4412788B2 (en) Parallel-serial conversion circuit
CN106134084A (en) Current-mode clock distribution
CN106559061B (en) Duty ratio corrector
Roine A system for asynchronous high-speed chip to chip communication
TWI840149B (en) D trigger, and processor and computing device including the D trigger