TWI825773B - Flyback power converter having emulated demagnetized signal and primary-side control circuit and control method thereof - Google Patents

Flyback power converter having emulated demagnetized signal and primary-side control circuit and control method thereof Download PDF

Info

Publication number
TWI825773B
TWI825773B TW111121176A TW111121176A TWI825773B TW I825773 B TWI825773 B TW I825773B TW 111121176 A TW111121176 A TW 111121176A TW 111121176 A TW111121176 A TW 111121176A TW I825773 B TWI825773 B TW I825773B
Authority
TW
Taiwan
Prior art keywords
transistor
signal
transformer
period
switching
Prior art date
Application number
TW111121176A
Other languages
Chinese (zh)
Other versions
TW202308283A (en
Inventor
楊大勇
蘇英傑
陳裕昌
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/673,158 external-priority patent/US20220271675A1/en
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Publication of TW202308283A publication Critical patent/TW202308283A/en
Application granted granted Critical
Publication of TWI825773B publication Critical patent/TWI825773B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A flyback power converter includes: a first transistor switching a transformer for generating a primary switching current and an output voltage; and a second transistor generating a circulated current to achieve ZVS (zero voltage switching) of the first transistor; wherein the flyback power converter actively forces at least one switching cycle to be operated in a DCM (discontinuous conduction mode) operation when the primary switching current is determined to have been operating in a non-DCM operation for a predetermined number of switching cycles. The flyback power converter generates a demagnetized signal which emulates the demagnetized time of the transformer for controlling the second transistor during the non-DCM operation. The flyback power converter calibrates the demagnetized signal according to the demagnetized time during the actively fored DCM operation.

Description

具仿去磁訊號的返馳式轉換器及一次側控制電路與控 制方法 Flyback converter with simulated demagnetization signal and primary side control circuit and control Preparation method

本發明係有關一種返馳式轉換器,特別是指一種具仿去磁訊號的返馳式轉換器。本發明也有關於用以控制具仿去磁訊號的返馳式轉換器的切換控制電路與控制方法。 The present invention relates to a flyback converter, and in particular to a flyback converter with a simulated demagnetization signal. The present invention also relates to a switching control circuit and a control method for controlling a flyback converter with a simulated demagnetization signal.

請參閱圖1,圖1顯示先前技術美國專利US 5,959,850的非對稱占空比返馳式轉換器(Asymmetrical Duty Cycle Flyback Converter),此先前技術揭露了具有零電壓切換(zero voltage switching,ZVS)的半橋返馳式轉換器,藉此達成較高的功率效率。零電壓切換可被定義為當電晶體的跨壓(例如:汲源極電壓)為零或接近於零時,將電晶體切換為導通。然而,本先前技術的缺點為,於輕負載狀態中,電源轉換器的功率轉換效率較低。 Please refer to Figure 1. Figure 1 shows an asymmetrical duty cycle flyback converter (Asymmetrical Duty Cycle Flyback Converter) in the prior art US Pat. No. 5,959,850. This prior art discloses an Asymmetrical Duty Cycle Flyback Converter with zero voltage switching (ZVS). Half-bridge flyback converter to achieve higher power efficiency. Zero-voltage switching can be defined as switching a transistor on when the voltage across the transistor (for example, the drain-to-source voltage) is zero or close to zero. However, a disadvantage of this prior art is that the power conversion efficiency of the power converter is low in light load conditions.

上述先前技術的另一個缺點在於,該電源轉換器的輸出電壓係不可變的,具體而言,上述先前技術若要改為具有可變輸出電壓的零電壓切換返馳式轉換器,必須藉由偵測其變壓器之去磁時段而控制變壓器的切換。 Another shortcoming of the above-mentioned prior art is that the output voltage of the power converter is non-variable. Specifically, if the above-mentioned prior art is to be changed to a zero-voltage switching flyback converter with a variable output voltage, it must be Detect the demagnetization period of its transformer and control the switching of the transformer.

另一先前技術美國專利US 7,151,681為測量變壓器的反射電壓與放電時段的多重取樣電路(Multiple-sampling circuit for measuring reflected voltage and discharge time of a transformer),此先前技術揭露一種偵測變壓器的輸出電壓與去磁時段的方法,然而,本先前技術無法達成電源轉換器的零電壓切換,其係用於不連續導通模式(discontinuous conduction mode,DCM)的操作。 Another prior art, US Patent No. 7,151,681, is a multiple-sampling circuit for measuring reflected voltage and discharge time of a transformer. This prior art discloses a method for detecting the output voltage and discharge time of a transformer. The method of degaussing period, however, this prior art cannot achieve zero-voltage switching of the power converter, which is used for discontinuous conduction mode (DCM) operation.

圖2顯示先前技術之半橋返馳式轉換器於輕負載狀態中操作於不連續導通模式之波形圖。驅動訊號SH用以驅動半橋返馳式轉換器的上橋開關,以激磁變壓器,驅動訊號SL用以驅動半橋返馳式轉換器的下橋開關,激磁電流IM的訊號波形顯示變壓器操作於不連續導通模式。當半橋返馳式轉換器的輸出功率下降時,驅動訊號SH的脈寬PW因半橋返馳式轉換器的回授控制而降低,驅動訊號SL的脈寬亦對應降低,因此,半橋返馳式轉換器的切換頻率增加,切換損失也因而增加。當驅動訊號SH轉為低位準(關斷)後,於變壓器的去磁時段中,驅動訊號SL的第一個脈波被致能。驅動訊號SL的第二脈波被致能以產生循環電流,藉此達成上橋開關的零電壓切換。 Figure 2 shows a waveform diagram of a prior art half-bridge flyback converter operating in discontinuous conduction mode in a light load state. The drive signal SH is used to drive the upper-bridge switch of the half-bridge flyback converter to excite the transformer. The drive signal SL is used to drive the lower-bridge switch of the half-bridge flyback converter. The signal waveform of the excitation current IM shows that the transformer operates in Discontinuous conduction mode. When the output power of the half-bridge flyback converter decreases, the pulse width PW of the drive signal SH decreases due to the feedback control of the half-bridge flyback converter, and the pulse width of the drive signal SL also decreases accordingly. Therefore, the half-bridge As the switching frequency of the flyback converter increases, the switching losses also increase. When the driving signal SH turns to a low level (off), the first pulse of the driving signal SL is enabled during the demagnetization period of the transformer. The second pulse wave of the driving signal SL is enabled to generate a circulating current, thereby achieving zero-voltage switching of the upper bridge switch.

上述先前技術的缺點在於,當操作於不連續導通模式時,驅動訊號SL於一個切換週期需切換導通/關斷兩次,因此大幅增加驅動訊號SL之平均切換頻率,造成大量的切換損失且導致下橋開關的能量耗損。 The disadvantage of the above-mentioned prior art is that when operating in the discontinuous conduction mode, the driving signal SL needs to be switched on/off twice in one switching cycle. Therefore, the average switching frequency of the driving signal SL is greatly increased, resulting in a large amount of switching losses and leading to Energy loss in the lower-side switch.

相較於先前技術美國專利US 7,151,681,本發明提供一種具有省略週期的諧振半橋返馳式轉換器,以改善中負載、輕負載之操作狀態中的功率效率。 Compared with the prior art US Patent No. 7,151,681, the present invention provides a resonant half-bridge flyback converter with omitted cycles to improve power efficiency in medium load and light load operating conditions.

相較於先前技術美國專利US 5,959,850,本發明提供一種產生去磁訊號的方法以及切換控制電路,其中去磁訊號的期間等於變壓器的 去磁時段,本發明可用於具有可程式化輸出電壓的零電壓切換返馳式轉換器,例如:USB PD電源轉換器。 Compared with the prior art US Patent No. 5,959,850, the present invention provides a method for generating a demagnetization signal and a switching control circuit, in which the period of the demagnetization signal is equal to the period of the transformer. During the demagnetization period, the present invention can be used in zero-voltage switching flyback converters with programmable output voltages, such as USB PD power converters.

相較於圖2的先前技術,本發明提供一種非對稱半橋(asymmetrical half-bridge,AHB)返馳式轉換器的控制電路,以三個電晶體改善中負載與輕負載之操作狀態的功率轉換效率。 Compared with the prior art in Figure 2, the present invention provides a control circuit for an asymmetrical half-bridge (AHB) flyback converter, using three transistors to improve the power in the operating states of medium load and light load. conversion efficiency.

就其中一個觀點言,本發明提供了一種返馳式轉換器,包含:一第一電晶體,用以切換一變壓器以產生一一次側開關電流及一輸出電壓;以及一第二電晶體,用以產生一循環電流以達成該第一電晶體的零電壓切換(zero voltage switching,ZVS);其中當該返馳式轉換器根據該一次側開關電流而判斷為已有一預設數量之切換週期係操作於一非不連續導通模式(non-discontinuous conduction mode,non-DCM)時,該返馳式轉換器主動強制至少一個切換週期操作於一不連續導通模式(discontinuous conduction mode,DCM)。 From one of the aspects, the present invention provides a flyback converter, including: a first transistor for switching a transformer to generate a primary-side switching current and an output voltage; and a second transistor, Used to generate a circulating current to achieve zero voltage switching (ZVS) of the first transistor; wherein the flyback converter determines that there has been a preset number of switching cycles based on the primary side switching current. When operating in a non-discontinuous conduction mode (non-DCM), the flyback converter actively forces at least one switching cycle to operate in a discontinuous conduction mode (DCM).

在一較佳實施例中,該返馳式轉換器用以產生一去磁訊號,其中該去磁訊號仿擬該變壓器的一去磁時段,以於該非不連續導通模式期間控制該第二電晶體,其中該返馳式轉換器根據該主動強制之不連續導通模式期間的該去磁時段而校正該去磁訊號。 In a preferred embodiment, the flyback converter is used to generate a demagnetization signal, wherein the demagnetization signal simulates a demagnetization period of the transformer to control the second transistor during the non-discontinuous conduction mode. , wherein the flyback converter corrects the degaussing signal according to the degaussing period during the actively forced discontinuous conduction mode.

在一較佳實施例中,於該主動強制之不連續導通模式中,該返馳式轉換器從該變壓器的一輔助繞組偵測一反射電壓,以於該第一電晶體關斷期間校正該去磁訊號,其中該反射電壓出現之時間長度相關於該變壓器的該去磁時段。 In a preferred embodiment, in the actively forced discontinuous conduction mode, the flyback converter detects a reflected voltage from an auxiliary winding of the transformer to correct the first transistor during the off period. A degaussing signal, in which the length of time the reflected voltage occurs is related to the degaussing period of the transformer.

在一較佳實施例中,該第一電晶體與該第二電晶體形成一半橋電路,其中於該主動強制之不連續導通模式中,在該第一電晶體關斷後,該第二電晶體被控制為關斷,使得該半橋電路操作於一非同步模式。 In a preferred embodiment, the first transistor and the second transistor form a half-bridge circuit, wherein in the actively forced discontinuous conduction mode, after the first transistor is turned off, the second transistor The crystal is controlled off, causing the half-bridge circuit to operate in an asynchronous mode.

在一較佳實施例中,該返馳式轉換器更包含一週期計數器,該週期計數器用以計算該返馳式轉換器操作於該非不連續導通模式的切換週期數量,使得當該一次側開關電流已有一預設數量之切換週期係操作於該非不連續導通模式時,致能該返馳式轉換器主動強制操作於不連續導通模式。 In a preferred embodiment, the flyback converter further includes a cycle counter, the cycle counter is used to count the number of switching cycles in which the flyback converter operates in the non-discontinuous conduction mode, so that when the primary side switch When the current has been operating in the non-discontinuous conduction mode for a preset number of switching cycles, the flyback converter is enabled to actively force operation in the discontinuous conduction mode.

在一較佳實施例中,該去磁訊號的一脈波期間用以控制該第二電晶體的最小導通時間,藉此於該第一電晶體關斷後,去磁該變壓器。 In a preferred embodiment, a pulse period of the demagnetization signal is used to control the minimum conduction time of the second transistor, thereby demagnetizing the transformer after the first transistor is turned off.

在一較佳實施例中,該去磁訊號的一脈波期間相關於該變壓器之一激磁時段中的一輸入電壓之一位準、該變壓器的該輸出電壓之一位準以及該第一電晶體的一導通期間。 In a preferred embodiment, a pulse period of the degaussing signal is related to a level of an input voltage in an excitation period of the transformer, a level of the output voltage of the transformer and the first voltage. A conduction period of the crystal.

在一較佳實施例中,該返馳式轉換器更包含一電阻,其中該去磁訊號的一脈波期間根據該電阻之電阻值而決定;其中該返馳式轉換器根據該變壓器於該主動強制之不連續導通模式期間的該去磁時段而調整該電阻之電阻值,以校正該去磁訊號。 In a preferred embodiment, the flyback converter further includes a resistor, wherein a pulse period of the degaussing signal is determined based on the resistance value of the resistor; wherein the flyback converter is based on the transformer in the transformer. The resistance value of the resistor is adjusted during the degaussing period during the active forced discontinuous conduction mode to correct the degaussing signal.

在一較佳實施例中,於該主動強制之不連續導通模式期間關斷該第一電晶體後,該變壓器的一去磁電流的一部分流經該第二電晶體的一本體二極體。 In a preferred embodiment, after turning off the first transistor during the actively forced discontinuous conduction mode, a portion of a demagnetization current of the transformer flows through a body diode of the second transistor.

在一較佳實施例中,該返馳式轉換器為一諧振返馳式轉換器,更包含一諧振電容,該諧振電容串聯耦接於該變壓器。 In a preferred embodiment, the flyback converter is a resonant flyback converter and further includes a resonant capacitor, and the resonant capacitor is coupled in series to the transformer.

在一較佳實施例中,一第二驅動訊號於該不連續導通模式後的第一個脈波用以導通該第二電晶體,以自該諧振電容提供一激磁電流至 該變壓器激磁該變壓器,進而產生一負循環電流以達成該第一電晶體的零電壓切換。 In a preferred embodiment, a first pulse wave of a second driving signal after the discontinuous conduction mode is used to turn on the second transistor to provide an exciting current from the resonant capacitor to The transformer energizes the transformer, thereby generating a negative circulating current to achieve zero-voltage switching of the first transistor.

就另一個觀點言,本發明也提供了一種切換控制電路,用以控制一返馳式轉換器,其中該返馳式轉換器包括:一第一電晶體,用以切換一變壓器以產生一一次側開關電流及一輸出電壓;以及一第二電晶體,用以產生一循環電流以達成該第一電晶體的零電壓切換(zero voltage switching,ZVS),該切換控制電路包含:一控制元件,用以產生一第一訊號及一第二訊號,該第一訊號及該第二訊號根據一回授訊號分別控制該第一電晶體及該第二電晶體,其中該回授訊號相關於該輸出電壓;以及一週期計數器,用以根據該一次側開關電流而計算該返馳式轉換器操作於一非不連續導通模式的切換週期數量;其中當該控制元件根據該一次側開關電流而判斷為已有一預設數量之切換週期係操作於該非不連續導通模式時,該控制元件主動強制至少一個切換週期操作於一不連續導通模式(discontinuous conduction mode,DCM)。 From another point of view, the present invention also provides a switching control circuit for controlling a flyback converter, wherein the flyback converter includes: a first transistor for switching a transformer to generate a The secondary side switching current and an output voltage; and a second transistor to generate a circulating current to achieve zero voltage switching (ZVS) of the first transistor, the switching control circuit includes: a control element , used to generate a first signal and a second signal, the first signal and the second signal respectively control the first transistor and the second transistor according to a feedback signal, wherein the feedback signal is related to the Output voltage; and a period counter for calculating the number of switching cycles in which the flyback converter operates in a non-discontinuous conduction mode based on the primary-side switching current; wherein when the control element determines based on the primary-side switching current When there has been a preset number of switching cycles operating in the non-discontinuous conduction mode, the control element actively forces at least one switching cycle to operate in a discontinuous conduction mode (DCM).

在一較佳實施例中,該切換控制電路更包含一去磁仿擬器,該去磁仿擬器用以產生一去磁訊號以仿擬該變壓器的一去磁時段,進而於該非不連續導通模式期間控制該第二電晶體,其中該去磁仿擬器根據該主動強制之不連續導通模式期間的該去磁時段而校正該去磁訊號。 In a preferred embodiment, the switching control circuit further includes a demagnetization simulator, which is used to generate a demagnetization signal to simulate a demagnetization period of the transformer, and then during the non-discontinuous conduction The second transistor is controlled during the mode, wherein the degaussing simulator corrects the degaussing signal according to the degaussing period during the actively forced discontinuous conduction mode.

在一較佳實施例中,於該主動強制之不連續導通模式中,該去磁仿擬器從該變壓器的一輔助繞組偵測一反射電壓,以於該第一電晶體關斷期間校正該去磁訊號,其中該反射電壓出現之時間長度相關於該變壓器的該去磁時段。 In a preferred embodiment, in the actively forced discontinuous conduction mode, the degaussing simulator detects a reflected voltage from an auxiliary winding of the transformer to correct the first transistor during the off period. A degaussing signal, in which the length of time the reflected voltage occurs is related to the degaussing period of the transformer.

在一較佳實施例中,該第一電晶體與該第二電晶體形成一半橋電路,其中於該主動強制之不連續導通模式中,在該第一電晶體關斷後,該第二電晶體被控制為關斷,使得該半橋電路操作於一非同步模式。 In a preferred embodiment, the first transistor and the second transistor form a half-bridge circuit, wherein in the actively forced discontinuous conduction mode, after the first transistor is turned off, the second transistor The crystal is controlled off, causing the half-bridge circuit to operate in an asynchronous mode.

在一較佳實施例中,該去磁訊號的一脈波期間用以控制該第二電晶體的最小導通時間,藉此於該第一電晶體關斷後,去磁該變壓器。 In a preferred embodiment, a pulse period of the demagnetization signal is used to control the minimum conduction time of the second transistor, thereby demagnetizing the transformer after the first transistor is turned off.

在一較佳實施例中,該去磁訊號的一脈波期間相關於該變壓器之一激磁時段中的一輸入電壓之一位準、該變壓器的該輸出電壓之一位準以及該第一電晶體的一導通期間。 In a preferred embodiment, a pulse period of the degaussing signal is related to a level of an input voltage in an excitation period of the transformer, a level of the output voltage of the transformer and the first voltage. A conduction period of the crystal.

在一較佳實施例中,該切換控制電路更調整一電阻之電阻值,以根據該變壓器於該主動強制之不連續導通模式期間的該去磁時段而校正該去磁訊號,其中該電阻耦接於該返馳式轉換器,其中該去磁訊號的一脈波期間根據該電阻之電阻值而決定。 In a preferred embodiment, the switching control circuit further adjusts the resistance value of a resistor to correct the degaussing signal according to the degaussing period of the transformer during the active forced discontinuous conduction mode, wherein the resistor couple Connected to the flyback converter, a pulse period of the demagnetization signal is determined according to the resistance value of the resistor.

在一較佳實施例中,於該主動強制之不連續導通模式期間,該控制元件控制該第二電晶體關斷,使得該第一電晶體關斷後,該變壓器的一去磁電流的一部分流經該第二電晶體的一本體二極體。 In a preferred embodiment, during the active forced discontinuous conduction mode, the control element controls the second transistor to turn off, so that after the first transistor turns off, a part of the demagnetization current of the transformer Flow through a body diode of the second transistor.

在一較佳實施例中,一第二驅動訊號於該不連續導通模式後的第一個脈波用以導通該第二電晶體,以自該返馳式轉換器的一諧振電容提供一激磁電流至該變壓器激磁該變壓器,進而產生一負循環電流以達成該第一電晶體的零電壓切換,其中該諧振電容串聯耦接於該變壓器。 In a preferred embodiment, a first pulse of a second drive signal after the discontinuous conduction mode is used to turn on the second transistor to provide an excitation from a resonant capacitor of the flyback converter. Current flows to the transformer to excite the transformer, thereby generating a negative circulating current to achieve zero-voltage switching of the first transistor, wherein the resonant capacitor is coupled in series to the transformer.

在一較佳實施例中,該去磁仿擬器包括:一積分電容及一開關,其中該開關耦接以取樣維持『sample and hold是一種專用動詞,有空可以解釋,也可以上網先查一下,蠻常用到』一電流感測訊號,其中該電流感測訊號相關於該一次側開關電流;以及一放電電路,用以產生一放電電流以將該積分電容放電,其中該放電電流相關於該輸出電壓;其中該去磁訊號根 據該積分電容的一跨壓而產生,其中該放電電流從激磁該變壓器的一端將該積分電容放電。 In a preferred embodiment, the degaussing simulator includes: an integrating capacitor and a switch, wherein the switch is coupled to sample and hold. "Sample and hold is a special verb. You can explain it when you have time, or you can check it online first." Now, it is quite common to use a current sensing signal, wherein the current sensing signal is related to the primary side switch current; and a discharge circuit to generate a discharge current to discharge the integrating capacitor, wherein the discharge current is related to The output voltage; where the demagnetization signal root It is generated according to a voltage across the integrating capacitor, wherein the discharge current discharges the integrating capacitor from one end of the energized transformer.

就另一個觀點言,本發明也提供了一種控制方法,用以控制一返馳式轉換器,其中該返馳式轉換器包括:一第一電晶體,用以切換一變壓器以產生一一次側開關電流及一輸出電壓;以及一第二電晶體,用以產生一循環電流以達成該第一電晶體的零電壓切換(zero voltage switching,ZVS),該控制方法包含:產生一第一訊號及一第二訊號,該第一訊號及該第二訊號根據一回授訊號分別控制該第一電晶體及該第二電晶體,其中該回授訊號相關於該輸出電壓;根據該一次側開關電流而計算該返馳式轉換器操作於一非不連續導通模式的切換週期數量;以及當根據該一次側開關電流而判斷為已有一預設數量之切換週期係操作於該非不連續導通模式時,主動強制至少一個切換週期操作於一不連續導通模式(discontinuous conduction mode,DCM)。 From another point of view, the present invention also provides a control method for controlling a flyback converter, wherein the flyback converter includes: a first transistor for switching a transformer to generate a primary side switch current and an output voltage; and a second transistor for generating a circulating current to achieve zero voltage switching (ZVS) of the first transistor. The control method includes: generating a first signal and a second signal, the first signal and the second signal respectively control the first transistor and the second transistor according to a feedback signal, wherein the feedback signal is related to the output voltage; according to the primary side switch current to calculate the number of switching cycles in which the flyback converter operates in a non-discontinuous conduction mode; and when it is determined based on the primary side switch current that a predetermined number of switching cycles have been operated in the non-discontinuous conduction mode. , actively forcing at least one switching cycle to operate in a discontinuous conduction mode (DCM).

在一較佳實施例中,該控制方法更包含:產生一去磁訊號以仿擬該變壓器的一去磁時段,進而於該非不連續導通模式期間控制該第二電晶體;以及根據該主動強制之不連續導通模式期間的該去磁時段而校正該去磁訊號。 In a preferred embodiment, the control method further includes: generating a demagnetization signal to simulate a demagnetization period of the transformer, thereby controlling the second transistor during the non-discontinuous conduction mode; and according to the active forcing The degaussing signal is corrected during the degaussing period during the discontinuous conduction mode.

在一較佳實施例中,校正該去磁訊號之步驟包括:於該主動強制之不連續導通模式中,從該變壓器的一輔助繞組偵測一反射電壓,以於該第一電晶體關斷期間校正該去磁訊號,其中該反射電壓出現之時間長度相關於該變壓器的該去磁時段。 In a preferred embodiment, the step of correcting the degaussing signal includes detecting a reflected voltage from an auxiliary winding of the transformer in the active forced discontinuous conduction mode to turn off the first transistor. The degaussing signal is corrected during a period, wherein the length of time during which the reflected voltage occurs is related to the degaussing period of the transformer.

在一較佳實施例中,該第一電晶體與該第二電晶體形成一半橋電路,其中校正該去磁訊號之步驟更包括:於該主動強制之不連續導通模 式中,在該第一電晶體關斷後,控制該第二電晶體為關斷,使得該半橋電路操作於一非同步模式。 In a preferred embodiment, the first transistor and the second transistor form a half-bridge circuit, wherein the step of correcting the demagnetization signal further includes: in the actively forced discontinuous conduction mode In the formula, after the first transistor is turned off, the second transistor is controlled to be turned off, so that the half-bridge circuit operates in an asynchronous mode.

在一較佳實施例中,產生該第一訊號及該第二訊號之步驟包括:根據該去磁訊號的一脈波期間而控制該第二電晶體的最小導通時間,藉此於該第一電晶體關斷後,去磁該變壓器。 In a preferred embodiment, the step of generating the first signal and the second signal includes: controlling the minimum conduction time of the second transistor according to a pulse period of the degaussing signal, thereby controlling the first After the transistor is turned off, the transformer is demagnetized.

在一較佳實施例中,該去磁訊號的一脈波期間相關於該變壓器之一激磁時段中的一輸入電壓之一位準、該變壓器的該輸出電壓之一位準以及該第一電晶體的一導通期間。 In a preferred embodiment, a pulse period of the degaussing signal is related to a level of an input voltage in an excitation period of the transformer, a level of the output voltage of the transformer and the first voltage. A conduction period of the crystal.

在一較佳實施例中,校正該去磁訊號之步驟包括:調整一電阻之電阻值,以根據該變壓器於該主動強制之不連續導通模式期間的該去磁時段而校正該去磁訊號,其中該電阻耦接於該返馳式轉換器,其中該去磁訊號的一脈波期間根據該電阻之電阻值而決定。 In a preferred embodiment, the step of correcting the degaussing signal includes: adjusting a resistance value of a resistor to correct the degaussing signal according to the degaussing period during the active forced discontinuous conduction mode of the transformer, The resistor is coupled to the flyback converter, and a pulse period of the demagnetization signal is determined according to the resistance value of the resistor.

在一較佳實施例中,該控制方法更包含:於該主動強制之不連續導通模式期間,控制該第二電晶體關斷,使得該第一電晶體關斷後,該變壓器的一去磁電流的一部分流經該第二電晶體的一本體二極體。 In a preferred embodiment, the control method further includes: controlling the second transistor to turn off during the active forced discontinuous conduction mode, so that after the first transistor turns off, a demagnetization of the transformer Part of the current flows through a body diode of the second transistor.

在一較佳實施例中,該控制方法更包含:藉由一第二驅動訊號於該不連續導通模式後的第一個脈波導通該第二電晶體,以自該返馳式轉換器的一諧振電容提供一激磁電流至該變壓器以激磁該變壓器,進而產生一負循環電流以達成該第一電晶體的零電壓切換,其中該諧振電容串聯耦接於該變壓器。 In a preferred embodiment, the control method further includes: using a second driving signal to conduct the second transistor in the first pulse wave after the discontinuous conduction mode to convert the flyback converter from A resonant capacitor provides an excitation current to the transformer to excite the transformer, thereby generating a negative circulating current to achieve zero-voltage switching of the first transistor, wherein the resonant capacitor is coupled in series to the transformer.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 It will be easier to understand the purpose, technical content, characteristics and achieved effects of the present invention through detailed description of specific embodiments below.

10:變壓器 10: Transformer

100:二次側控制器 100: Secondary side controller

20:諧振電容 20: Resonant capacitor

200:一次側控制器 200: Primary side controller

201:一次側控制器 201: Primary side controller

205:時脈產生器 205: Clock generator

208:一次側控制器 208: Primary side controller

22:計時器 22: timer

230:電容 230: Capacitor

231:開關 231: switch

240:控制元件 240:Control components

243:控制元件 243:Control components

248:控制元件 248:Control components

25:計時器 25: timer

250:去磁仿擬器 250:Degaussing simulator

255:電阻 255: Resistor

260:週期計數器 260: Period counter

271,272:電晶體 271,272: Transistor

280:比較器 280: Comparator

285:邏輯電路 285:Logic circuit

30:第一電晶體 30:The first transistor

300:諧振半橋返馳式轉換器 300: Resonant half-bridge flyback converter

35:本體二極體 35:Body diode

40:第二電晶體 40:Second transistor

45:本體二極體 45:Body diode

51,52,55,60:電阻 51,52,55,60: Resistor

70:二次側同步整流器 70: Secondary side synchronous rectifier

75:本體二極體 75:Body Diode

90:光耦合器 90: Optocoupler

900:諧振半橋返馳式轉換器 900: Resonant half-bridge flyback converter

C:電容值 C: capacitance value

CPO:比較器輸出 CPO: comparator output

DCM:不連續導通模式 DCM: discontinuous conduction mode

ID:放電電流 ID: discharge current

IM:激磁電流 IM: exciting current

IP:一次側開關電流 IP: primary side switching current

IS:二次側開關電流 IS: secondary side switching current

kn:膝點 kn: knee point

Lr:漏電感 Lr: leakage inductance

LX:切換節點 LX: switch node

M1:第一電晶體 M1: the first transistor

M2:第二電晶體 M2: Second transistor

M3:第三電晶體 M3: The third transistor

n,m:匝數比 n,m: turns ratio

NA:輔助繞組 NA: auxiliary winding

NC:正整數 NC: positive integer

NNP:耦接節點 NNP: coupling node

NP:一次側繞組 NP: primary winding

NS:二次側繞組 NS: secondary winding

PW:脈寬 PW: pulse width

PZV:零電壓切換脈波 PZV: zero voltage switching pulse

Rs:電阻值 Rs: resistance value

Rt:電阻值 Rt: resistance value

S1:第一驅動訊號 S1: first driving signal

S2:第二驅動訊號 S2: second drive signal

S3:第三驅動訊號 S3: The third driving signal

Sdmg:去磁訊號 Sdmg: degaussing signal

SG:驅動訊號 SG: drive signal

SH:驅動訊號 SH: drive signal

SL:驅動訊號 SL: drive signal

SMP:取樣訊號 SMP: sampling signal

t1-t9:時點 t1-t9: time point

t3’:時點 t3’: time point

ta-te:時點 ta-te: time point

TA:第一時段 TA: first period

ta’,tc’:時點 ta’,tc’: time point

TB:第二時段 TB: Second period

TC:第三時段 TC: The third period

Tcyc1:切換週期 Tcyc1: switching cycle

Tcyc2:切換週期 Tcyc2: switching cycle

Td1:第一不導通時段 Td1: first non-conduction period

Td2:第二不導通時段 Td2: The second non-conduction period

TDS:去磁時段 TDS: degaussing period

TDSX:導通期間 TDSX: conduction period

TDSX’:導通期間 TDSX’: conduction period

TRH:時段 TRH: time period

TRL:時段 TRL: time period

TSL:導通期間 TSL: conduction period

TW:激磁時段 TW: Excitation period

Tx:省略週期 Tx: Omit cycle

TZ:第三不導通時段 TZ: The third non-conduction period

VAUX:輔助訊號 VAUX: auxiliary signal

VC:跨壓 VC: voltage across

Vcr:跨壓 Vcr: cross voltage

VCS:電流感測訊號 VCS: current sensing signal

VCSp:電壓位準 VCSp: voltage level

VDP:電壓降 VDP: voltage drop

VFB:回授訊號 VFB: feedback signal

Vg:電壓位準 Vg: voltage level

VHB:切換節點電壓 VHB: switching node voltage

VIN:輸入電壓 VIN: input voltage

Vinx:電壓位準 Vinx: voltage level

VNA:輔助繞組訊號 VNA: auxiliary winding signal

VO:輸出電壓 VO: output voltage

VPK:電壓突波 VPK: voltage surge

Vref:參考電壓 Vref: reference voltage

Vth:電壓閾值 Vth: voltage threshold

VX:反射電壓 VX: reflected voltage

圖1顯示先前技術之非對稱占空比返馳式轉換器。 Figure 1 shows a prior art asymmetric duty cycle flyback converter.

圖2顯示先前技術之半橋返馳式轉換器於輕負載狀態中操作於不連續導通模式之波形圖。 Figure 2 shows a waveform diagram of a prior art half-bridge flyback converter operating in discontinuous conduction mode in a light load state.

圖3顯示本發明之諧振半橋返馳式轉換器之一實施例示意圖。 FIG. 3 shows a schematic diagram of an embodiment of the resonant half-bridge flyback converter of the present invention.

圖4顯示對應於圖3之實施例的操作波形圖。 FIG. 4 shows an operating waveform diagram corresponding to the embodiment of FIG. 3 .

圖5顯示降低驅動訊號SH與驅動訊號SL的切換頻率之操作波形圖。 FIG. 5 shows an operation waveform diagram for reducing the switching frequency of the driving signal SH and the driving signal SL.

圖6顯示本發明之具有省略週期的諧振半橋返馳式轉換器的一實施例之操作波形圖。 FIG. 6 shows an operating waveform diagram of an embodiment of the resonant half-bridge flyback converter with omitted periods of the present invention.

圖7顯示本發明之諧振半橋返馳式轉換器中一次側控制器之一實施例方塊圖。 FIG. 7 shows a block diagram of an embodiment of a primary-side controller in the resonant half-bridge flyback converter of the present invention.

圖8顯示本發明之諧振半橋返馳式轉換器中一次側控制器之一實施例方塊圖。 FIG. 8 shows a block diagram of an embodiment of a primary-side controller in the resonant half-bridge flyback converter of the present invention.

圖9顯示本發明之去磁仿擬器產生去磁訊號之操作波形圖。 FIG. 9 shows the operation waveform diagram of the degaussing signal generated by the degaussing simulator of the present invention.

圖10顯示本發明去磁仿擬器產生去磁訊號Sdmg之一具體實施例示意圖。 FIG. 10 shows a schematic diagram of a specific embodiment of the degaussing simulator generating the degaussing signal Sdmg according to the present invention.

圖11顯示本發明之諧振半橋返馳式轉換器之一較佳實施例示意圖。 FIG. 11 shows a schematic diagram of a preferred embodiment of the resonant half-bridge flyback converter of the present invention.

圖12顯示本發明之一次側控制器201操作於不連續導通模式之一較佳實施例操作波形圖。 FIG. 12 shows an operation waveform diagram of a preferred embodiment of the primary-side controller 201 operating in the discontinuous conduction mode of the present invention.

圖13顯示本發明一次側控制器之一較佳實施例方塊圖。 Figure 13 shows a block diagram of a preferred embodiment of the primary side controller of the present invention.

本發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。 The diagrams in the present invention are schematic and are mainly intended to represent the coupling relationship between circuits and the relationship between signal waveforms. The circuits, signal waveforms and frequencies are not drawn to scale.

圖3顯示本發明之諧振半橋返馳式轉換器之一實施例示意圖。諧振半橋返馳式轉換器300包含:第一電晶體30及第二電晶體40,用以構成半橋電路。變壓器10及諧振電容20彼此串聯並耦接於半橋電路的切換節點LX,變壓器10包括一次側繞組NP、二次側繞組NS以及輔助繞組NA,其中一次側繞組NP及二次側繞組NS具有匝數比n,二次側繞組NS及輔助繞組NA具有匝數比m。一次側控制器200產生驅動訊號SH及驅動訊號SL,驅動訊號SH及驅動訊號SL經由半橋電路切換變壓器10,以於變壓器10的二次側產生輸出電壓VO。驅動訊號SH驅動第一電晶體30,以激磁變壓器10。驅動訊號SL於變壓器10的去磁與諧振時段中導通第二電晶體40,驅動訊號SL亦用於導通第二電晶體40以產生流經變壓器10的循環電流,以達成第一電晶體30的零電壓切換。電阻60藉由偵測變壓器10的一次側開關電流IP而產生電流感測訊號VCS。 FIG. 3 shows a schematic diagram of an embodiment of the resonant half-bridge flyback converter of the present invention. The resonant half-bridge flyback converter 300 includes a first transistor 30 and a second transistor 40 to form a half-bridge circuit. The transformer 10 and the resonant capacitor 20 are connected in series with each other and coupled to the switching node LX of the half-bridge circuit. The transformer 10 includes a primary winding NP, a secondary winding NS and an auxiliary winding NA, wherein the primary winding NP and the secondary winding NS have The turns ratio n, the secondary winding NS and the auxiliary winding NA have a turns ratio m. The primary side controller 200 generates the driving signal SH and the driving signal SL, which switch the transformer 10 through the half-bridge circuit to generate the output voltage VO on the secondary side of the transformer 10 . The driving signal SH drives the first transistor 30 to excite the transformer 10 . The driving signal SL turns on the second transistor 40 during the demagnetization and resonance period of the transformer 10 . The driving signal SL is also used to turn on the second transistor 40 to generate a circulating current flowing through the transformer 10 to achieve the operation of the first transistor 30 . Zero voltage switching. The resistor 60 generates the current sensing signal VCS by detecting the primary side switching current IP of the transformer 10 .

驅動訊號SH及驅動訊號SL根據回授訊號VFB而產生,其中回授訊號VFB根據諧振半橋返馳式轉換器300的輸出功率而產生。二次側控制器100耦接於輸出電壓VO以產生回授訊號VFB,回授訊號VFB經由光耦合器90耦接於一次側控制器200。二次側控制器100亦用以產生驅動訊號SG,以於變壓器10的去磁時段TDS中驅動二次側同步整流器70。輔助繞組NA於變壓器10切換時產生輔助繞組訊號VNA,電阻51、電阻52用以將輔助繞組訊號VNA衰減以產生輔助訊號VAUX,輔助訊號VAUX耦接於一次側控制器200。在一實施例中,電阻55耦接於一次側控制器200,藉由電阻55以設定參數而產生去磁訊號Sdmg。 The driving signal SH and the driving signal SL are generated according to the feedback signal VFB, wherein the feedback signal VFB is generated according to the output power of the resonant half-bridge flyback converter 300 . The secondary side controller 100 is coupled to the output voltage VO to generate a feedback signal VFB. The feedback signal VFB is coupled to the primary side controller 200 through the optical coupler 90 . The secondary side controller 100 is also used to generate a driving signal SG to drive the secondary side synchronous rectifier 70 during the demagnetization period TDS of the transformer 10 . The auxiliary winding NA generates the auxiliary winding signal VNA when the transformer 10 switches. The resistors 51 and 52 are used to attenuate the auxiliary winding signal VNA to generate the auxiliary signal VAUX. The auxiliary signal VAUX is coupled to the primary side controller 200 . In one embodiment, the resistor 55 is coupled to the primary side controller 200 , and parameters are set through the resistor 55 to generate the demagnetization signal Sdmg.

圖4顯示對應於圖3之實施例的操作波形圖。當驅動訊號SH導通時,變壓器10被激磁並產生激磁電流IM,當驅動訊號SH不導通時,變壓器10被去磁。於去磁時段TDS中,變壓器10產生二次側開關電流IS,驅動訊號SL相關於變壓器10的去磁時段TDS。在一實施例中,驅動訊號SL之導通期間TSL(亦即脈寬)等於或長於變壓器10的去磁時段TDS,藉此避免變壓器10操作於連續導通模式(continuous conduction mode,CCM)。於變壓器10的去磁時段TDS中,諧振電容20上產生反射電壓VX,其中反射電壓VX與輸出電壓VO之關係為:VX=n*VO。 FIG. 4 shows an operating waveform diagram corresponding to the embodiment of FIG. 3 . When the driving signal SH is turned on, the transformer 10 is excited and generates an exciting current IM. When the driving signal SH is not turned on, the transformer 10 is demagnetized. During the demagnetization period TDS, the transformer 10 generates a secondary side switching current IS, and the driving signal SL is related to the demagnetization period TDS of the transformer 10 . In one embodiment, the conduction period TSL (ie, the pulse width) of the driving signal SL is equal to or longer than the demagnetization period TDS of the transformer 10, thereby preventing the transformer 10 from operating in a continuous conduction mode (CCM). During the demagnetization period TDS of the transformer 10 , a reflected voltage VX is generated on the resonant capacitor 20 , where the relationship between the reflected voltage VX and the output voltage VO is: VX=n*VO.

當驅動訊號SH不導通時,驅動訊號SL可被導通,而當驅動訊號SL不導通時,驅動訊號SH可被導通。驅動訊號SH與驅動訊號SL之間(即驅動訊號SH與驅動訊號SL皆不導通時)可包括空滯時間(例如時段TRH、時段TRL)。 When the driving signal SH is not conductive, the driving signal SL may be turned on, and when the driving signal SL is not conductive, the driving signal SH may be turned on. The period between the driving signal SH and the driving signal SL (that is, when neither the driving signal SH nor the driving signal SL is conductive) may include a dead time (such as a period TRH, a period TRL).

圖4之不同時段中的操作細節詳見下列說明。 Details of the operations in different time periods in Figure 4 are detailed in the following description.

時點t1至時點t2之時段為激磁變壓器週期,本時段中第一電晶體30導通且第二電晶體40關斷,流經變壓器10中的一次側開關電流IP增加且諧振電容20之電壓亦增加,此時變壓器10被激磁而諧振電容20進行充電,二次側同步整流器70關斷且其本體二極體75具有逆向偏壓,因此,此時並無能量被轉換至二次側。 The period from time point t1 to time point t2 is the excitation transformer period. During this period, the first transistor 30 is turned on and the second transistor 40 is turned off. The primary side switch current IP flowing through the transformer 10 increases and the voltage of the resonant capacitor 20 also increases. , at this time, the transformer 10 is excited and the resonant capacitor 20 is charged. The secondary side synchronous rectifier 70 is turned off and its body diode 75 has a reverse bias. Therefore, no energy is converted to the secondary side at this time.

時點t2至時點t3之時段為第一循環電流週期,本時段中第一電晶體30與第二電晶體40均關斷,變壓器10的循環電流強制半橋電路的切換節點電壓VHB下降,直到第二電晶體40的本體二極體45導通為止。時點t2至時點t3之時段相關於準諧振時段(quasi-resonant period),以達成第二電晶體40的零電壓切換,此時變壓器10的一次側電壓與諧振電容20於時點t3之電壓相同。 The period from time point t2 to time point t3 is the first circulating current period. During this period, the first transistor 30 and the second transistor 40 are both turned off. The circulating current of the transformer 10 forces the switching node voltage VHB of the half-bridge circuit to decrease until the first circulating current period. Until the body diode 45 of the two transistors 40 is turned on. The period from time point t2 to time point t3 is related to the quasi-resonant period to achieve zero-voltage switching of the second transistor 40. At this time, the primary side voltage of the transformer 10 is the same as the voltage of the resonant capacitor 20 at time point t3.

時點t3至時點t4之時段為諧振週期(正電流),本時段中,在零電壓切換的狀態下,第一電晶體30關斷且第二電晶體40導通,此時輸出電壓VO等於諧振電容20的跨壓Vcr除以匝數比n,電流開始流經二次側同步整流器70,儲存於變壓器10的能量被轉換至輸出端而產生輸出電壓VO。由於變壓器10的漏電感Lr與諧振電容20(Cr)形成電感電容槽(LC tank),因此二次側電流於諧振頻率Lr及Cr所決定的時段中為正弦波的形式。變壓器10的一次側電流為激磁電流IM與二次側開關電流IS之和。流經諧振槽(Lr,Cr)的電流仍為正電流,其主要由變壓器10的激磁電感驅動,並且流經諧振電容20。 The period from time point t3 to time point t4 is the resonance period (positive current). During this period, in the zero-voltage switching state, the first transistor 30 is turned off and the second transistor 40 is turned on. At this time, the output voltage VO is equal to the resonant capacitance. The cross voltage Vcr of 20 is divided by the turns ratio n, the current starts to flow through the secondary side synchronous rectifier 70, and the energy stored in the transformer 10 is converted to the output terminal to generate the output voltage VO. Since the leakage inductance Lr of the transformer 10 and the resonant capacitor 20 (Cr) form an inductance-capacitance tank (LC tank), the secondary side current is in the form of a sinusoidal wave during the period determined by the resonant frequencies Lr and Cr. The primary side current of the transformer 10 is the sum of the exciting current IM and the secondary side switching current IS. The current flowing through the resonant tank (Lr, Cr) is still a positive current, which is mainly driven by the magnetizing inductance of the transformer 10 and flows through the resonant capacitor 20 .

時點t4至時點t5之時段為諧振週期(負電流),本時段中第一電晶體30繼續關斷且第二電晶體40繼續導通,能量持續轉換至二次側,但諧振槽電流被諧振電容20的電壓反向驅動,諧振電容20的能量不僅被轉換至二次側,更於第二電晶體40持續導通(例如時點t4至時點t5)時,用以將變壓器10的激磁電流位準拉至負值。 The period from time point t4 to time point t5 is the resonance period (negative current). During this period, the first transistor 30 continues to be turned off and the second transistor 40 continues to be turned on. Energy continues to be converted to the secondary side, but the resonant tank current is blocked by the resonant capacitor. The voltage of 20 is reversely driven, and the energy of the resonant capacitor 20 is not only converted to the secondary side, but also used to pull the excitation current level of the transformer 10 when the second transistor 40 continues to conduct (for example, from time t4 to time t5). to negative values.

時點t5至時點t6之時段為反向激磁變壓器週期(負電流),本時段自變壓器10的去磁時段TDS結束時至第二電晶體40關斷時,諧振電容20反向激磁變壓器10,並產生負電流。 The period from time point t5 to time point t6 is the reverse excitation transformer period (negative current). In this period from the end of the demagnetization period TDS of the transformer 10 to when the second transistor 40 is turned off, the resonant capacitor 20 reversely excites the transformer 10, and generate negative current.

時點t6至時點t7之時段為第二循環電流週期,本時段中第一電晶體30與第二電晶體40均關斷,變壓器10的負電流於時點t5至時點t6被感應而產生,以強制半橋電路中切換節點LX上的切換節點電壓VHB增加,直到其導通第一電晶體30的本體二極體35為止。 The period from time point t6 to time point t7 is the second circulating current period. During this period, the first transistor 30 and the second transistor 40 are both turned off. The negative current of the transformer 10 is induced from time point t5 to time point t6 to force The switching node voltage VHB on the switching node LX in the half-bridge circuit increases until it turns on the body diode 35 of the first transistor 30 .

時點t7之後,開始另一個與時點t1至時點t2之時段相似的週期,第一電晶體30在零電壓切換狀態下導通且第二電晶體40關斷,若變壓器諧振槽中的循環電流仍為負電流,則諧振槽中多餘的能量將被送回輸入端(供應輸入電壓VIN的節點)。 After time point t7, another period similar to the period from time point t1 to time point t2 begins. The first transistor 30 is turned on and the second transistor 40 is turned off in a zero-voltage switching state. If the circulating current in the resonant tank of the transformer is still negative current, the excess energy in the resonant tank will be sent back to the input terminal (the node supplying the input voltage VIN).

在輕負載的狀態下,當輸出功率降低時,驅動訊號SH與驅動訊號SL的脈寬將對應減少,故驅動訊號SH與驅動訊號SL的切換頻率於輕負載狀態下增加,由於鐵芯損失(core loss)、開關損耗(switching loss)等功率損耗增加,因此導致功率轉換器的功率轉換效率變差。 In the light load state, when the output power decreases, the pulse widths of the drive signal SH and the drive signal SL will decrease accordingly. Therefore, the switching frequency of the drive signal SH and the drive signal SL increases in the light load state. Due to the core loss ( Power losses such as core loss and switching loss increase, thus causing the power conversion efficiency of the power converter to deteriorate.

圖5顯示降低驅動訊號SH與驅動訊號SL的切換頻率之操作波形圖。一種改善功率效率的方式是,藉由延長驅動訊號SL關斷(例如時點t3)至驅動訊號SH導通(例如時點t5)之間的時間,可降低切換頻率,然而,驅動訊號SL的關斷將產生循環電流,進而導致切換節點電壓VHB的電壓突波VPK以及輔助訊號VAUX的電壓降VDP,電壓突波VPK與電壓降VDP將造成功率損耗與雜訊。 FIG. 5 shows an operation waveform diagram for reducing the switching frequency of the driving signal SH and the driving signal SL. One way to improve power efficiency is to reduce the switching frequency by extending the time between the turning off of the driving signal SL (for example, time point t3) and the turning on of the driving signal SH (for example, time point t5). However, the turning off of the driving signal SL will A circulating current is generated, which in turn causes a voltage surge VPK of the switching node voltage VHB and a voltage drop VDP of the auxiliary signal VAUX. The voltage surge VPK and voltage drop VDP will cause power loss and noise.

需注意的是,前述驅動訊號SH與驅動訊號SL的導通或關斷皆各自對應於第一電晶體30與第二電晶體40的導通或關斷。 It should be noted that the aforementioned turning on or off of the driving signal SH and the driving signal SL respectively corresponds to the turning on or off of the first transistor 30 and the second transistor 40 .

圖6顯示本發明之具有省略週期的諧振半橋返馳式轉換器的一實施例之操作波形圖。 FIG. 6 shows an operating waveform diagram of an embodiment of the resonant half-bridge flyback converter with omitted periods of the present invention.

請參閱圖6,在一實施例中,驅動訊號SH於激磁變壓器10的激磁週期中(例如時點t1至時點t2)導通,以激磁變壓器10。驅動訊號SH關斷後,驅動訊號SL於諧振週期中(例如時點t2至時點t3)導通,且具有諧振脈波(例如時點t2至時點t3),一個激磁週期與一個諧振週期形成一個切換週期(例如時點t1至時點t3)。 Referring to FIG. 6 , in one embodiment, the driving signal SH is turned on during the excitation period of the excitation transformer 10 (for example, from time point t1 to time point t2 ) to excite the transformer 10 . After the driving signal SH is turned off, the driving signal SL is turned on during the resonance period (for example, from time point t2 to time point t3) and has a resonance pulse wave (for example, from time point t2 to time point t3). An excitation period and a resonance period form a switching period ( For example, time point t1 to time point t3).

如圖6所示,在一實施例中,省略週期Tx起始於驅動訊號SH轉為不導通的不導通時點(例如時點t4),且當省略週期Tx終止時(例如時點t6),驅動訊號SL轉為導通。在一實施例中,當輸出功率因省電而降低時,省略週期Tx將對應增加(即切換頻率減少)。 As shown in FIG. 6 , in one embodiment, the omitting period Tx starts from the non-conducting time point when the driving signal SH turns non-conductive (for example, time point t4), and when the omitting period Tx ends (for example, time point t6), the driving signal SH SL turns conductive. In one embodiment, when the output power is reduced due to power saving, the omission period Tx will be correspondingly increased (ie, the switching frequency is reduced).

請繼續參閱圖6,相較於無省略週期之時段,例如時點t1至時點t3,驅動訊號SL於省略週期中(例如Tx)不導通而無諧振脈波,舉例而言,在先前技術中,驅動訊號SL於時點t4至時點t5所存在的一個脈波,即驅動訊號SL之諧振脈波,在本實施例中已被省略,如圖6所示,因此,於省略週期中(時點t4至時點t6),並無負循環電流產生。先前技術中,切換節點電壓VHB產生的電壓突波VPK以及輔助訊號VAUX產生的電壓降VDP,在本實施例中亦已被避免。在一實施例中,如圖6所示,驅動訊號SH於省略週期中(例如Tx)亦為不導通狀態。 Please continue to refer to Figure 6. Compared with the period without omitted periods, such as time point t1 to time point t3, the driving signal SL is not conductive and has no resonant pulse in the omitted period (such as Tx). For example, in the prior art, A pulse wave of the driving signal SL from time point t4 to time point t5, that is, the resonance pulse wave of the driving signal SL, has been omitted in this embodiment, as shown in Figure 6. Therefore, in the omitted period (time point t4 to time point t5), At time t6), no negative circulating current is generated. In the prior art, the voltage surge VPK generated by the switching node voltage VHB and the voltage drop VDP generated by the auxiliary signal VAUX have also been avoided in this embodiment. In one embodiment, as shown in FIG. 6 , the driving signal SH is also in a non-conducting state during the omitted period (eg, Tx).

在一實施例中,當驅動訊號SH關斷後,於省略週期的部分時間中(例如於時點t4至時點t5之間的一部份時間),變壓器10的去磁電流的一部分流經第二電晶體40的本體二極體45。換言之,在一實施例中,驅動訊號SL中並無雙脈波(double pulses)。在一實施例中,驅動訊號SH中亦無雙脈波。就一觀點而言,於驅動訊號SH的單一脈波之後,接著產生驅動訊號SL的單一脈波,於驅動訊號SL的單一脈波之後,接著產生驅動訊號SH的單一脈波,即便諧振半橋返馳式轉換器操作於具有省略週期的狀態亦同。就另一觀點而言,於驅動訊號SH的兩個連續脈波之間,驅動訊號SL包括最多一個脈波,於驅動訊號SL的兩個連續脈波之間,驅動訊號SH包括最多一個脈波。 In one embodiment, after the driving signal SH is turned off, part of the demagnetization current of the transformer 10 flows through the second part of the omitted cycle (for example, part of the time between time t4 and time t5). Body diode 45 of transistor 40 . In other words, in one embodiment, there are no double pulses in the driving signal SL. In one embodiment, there is no double pulse wave in the driving signal SH. From one point of view, after a single pulse wave of the driving signal SH, a single pulse wave of the driving signal SL is then generated, and after a single pulse wave of the driving signal SL, a single pulse wave of the driving signal SH is generated, even if the resonant half bridge The same goes for flyback converters operating with omitted periods. From another point of view, between two consecutive pulse waves of the driving signal SH, the driving signal SL includes at most one pulse wave. Between two consecutive pulse waves of the driving signal SL, the driving signal SH includes at most one pulse wave. .

在一實施例中,於輸出功率低於預設閾值時,產生省略週期Tx。在一實施例中,省略週期Tx隨著輸出功率的降低而對應增加。在一實施例中,即使在驅動訊號SL無法達成第一電晶體30的零電壓切換的情況下,第二驅動訊號於第一驅動訊號的兩個連續脈波之間不包括第二個脈波,因而不以第二個脈波達成第一電晶體30的零電壓切換。 In one embodiment, when the output power is lower than the preset threshold, the omitted period Tx is generated. In one embodiment, the omission period Tx increases correspondingly as the output power decreases. In one embodiment, even when the driving signal SL cannot achieve zero-voltage switching of the first transistor 30, the second driving signal does not include a second pulse wave between two consecutive pulse waves of the first driving signal. , so the second pulse wave is not used to achieve zero-voltage switching of the first transistor 30 .

請繼續參閱圖6,在一實施例中,驅動訊號SL之零電壓切換脈波(例如PZV)於省略週期經過後導通第二電晶體40,以達成零電壓切換週期(例如時點t6至時點t7)。 Please continue to refer to FIG. 6 . In one embodiment, the zero-voltage switching pulse wave (for example, PZV) of the driving signal SL turns on the second transistor 40 after the omitted period passes, so as to achieve a zero-voltage switching period (for example, from time point t6 to time point t7 ).

如圖6所示,在一實施例中,於省略週期後的零電壓切換脈波PZV之後,接著產生至少一個切換週期(例如時點t7至時點t9)。 As shown in FIG. 6 , in one embodiment, after the zero-voltage switching pulse wave PZV after the omitted period, at least one switching period (for example, time point t7 to time point t9 ) is generated.

請繼續參閱圖6,在一實施例中,諧振週期可包括延續零電壓切換期間(例如時點t3’至時點t3),延續零電壓切換期間用以達成第一電晶體30的零電壓切換。換言之,本實施例中,諧振脈波的第一部分(例如時點t2至時點t3’)用以達成變壓器10與諧振電容20之諧振,而諧振脈波的第二部分(例如時點t3’至時點t3)用以產生循環電流以達成第一電晶體30的零電壓切換。 Please continue to refer to FIG. 6 . In one embodiment, the resonance period may include a continuous zero-voltage switching period (for example, from time point t3′ to time point t3 ). The continuous zero-voltage switching period is used to achieve zero-voltage switching of the first transistor 30 . In other words, in this embodiment, the first part of the resonant pulse wave (for example, from time point t2 to time point t3') is used to achieve resonance between the transformer 10 and the resonant capacitor 20, and the second part of the resonant pulse wave (for example, from time point t3' to time point t3 ) is used to generate circulating current to achieve zero-voltage switching of the first transistor 30 .

圖7顯示本發明之諧振半橋返馳式轉換器中一次側控制器之一實施例方塊圖。在一實施例中,一次側控制器200包括計時器25以及控制元件240。在一實施例中,控制元件240用以根據輸入電壓VIN(經由輔助訊號VAUX)與回授訊號VFB而產生驅動訊號SH與驅動訊號SL,計時器25用以產生前述省略週期Tx。 FIG. 7 shows a block diagram of an embodiment of a primary-side controller in the resonant half-bridge flyback converter of the present invention. In one embodiment, the primary side controller 200 includes a timer 25 and a control component 240 . In one embodiment, the control element 240 is used to generate the driving signal SH and the driving signal SL according to the input voltage VIN (via the auxiliary signal VAUX) and the feedback signal VFB, and the timer 25 is used to generate the aforementioned omitted period Tx.

如圖7所示,在一實施例中,計時器25根據相關於輸出功率之資訊,判斷輸出功率是否低於預設閾值,當輸出功率被判斷為低於預設閾值時,計時器25開始計算省略週期Tx,並控制控制元件240於省略週期Tx中省略驅動訊號SH與驅動訊號SL之脈波。 As shown in FIG. 7 , in one embodiment, the timer 25 determines whether the output power is lower than a preset threshold based on information related to the output power. When the output power is determined to be lower than the preset threshold, the timer 25 starts The omission period Tx is calculated, and the control element 240 is controlled to omit the pulse waves of the driving signal SH and the driving signal SL in the omission period Tx.

請再次參閱圖4,當諧振半橋返馳式轉換器處於中負載及輕負載的狀態時,時點t4至時點t5之諧振週期較短,無法產生足夠的負電流(能量)以達成零電壓切換,因此,負電流的主要部分係來自時點t5至時點t6所產生之電流。 Please refer to Figure 4 again. When the resonant half-bridge flyback converter is in a medium load or light load state, the resonance period from time point t4 to time point t5 is short and cannot generate enough negative current (energy) to achieve zero-voltage switching. , therefore, the main part of the negative current is the current generated from time point t5 to time point t6.

然而,較高的負電流將導致較高的功率損耗,為了將達成零電壓切換的負電流控制在適當位準,去磁時段的控制必須準確,因此需產生去磁訊號Sdmg對應於變壓器10的去磁時段TDS。 However, a higher negative current will lead to a higher power loss. In order to control the negative current to achieve zero-voltage switching at an appropriate level, the demagnetization period must be accurately controlled. Therefore, a demagnetization signal Sdmg corresponding to the transformer 10 needs to be generated. Degaussing period TDS.

圖8顯示本發明之諧振半橋返馳式轉換器中一次側控制器之一實施例方塊圖。在一實施例中,一次側控制器208包括去磁仿擬器250以及控制元件248。在一實施例中,控制元件248用以根據輸入電壓VIN(經由輔助訊號VAUX)與回授訊號VFB而產生驅動訊號SH與驅動訊號SL,去磁仿擬器250用以根據去磁相關訊號而產生去磁訊號Sdmg,以仿擬去磁時段TDS,其中去磁相關訊號例如變壓器10的反射電壓(經由輔助訊號VAUX)。 FIG. 8 shows a block diagram of an embodiment of a primary-side controller in the resonant half-bridge flyback converter of the present invention. In one embodiment, the primary side controller 208 includes a demagnetization simulator 250 and a control component 248 . In one embodiment, the control element 248 is used to generate the driving signal SH and the driving signal SL according to the input voltage VIN (via the auxiliary signal VAUX) and the feedback signal VFB, and the demagnetization simulator 250 is used to generate the driving signal SH according to the demagnetization related signal. The demagnetization signal Sdmg is generated to simulate the demagnetization period TDS, where the demagnetization related signal is such as the reflected voltage of the transformer 10 (via the auxiliary signal VAUX).

請同時參閱圖9,圖9顯示本發明之去磁仿擬器產生去磁訊號之操作波形圖。 Please also refer to FIG. 9 , which shows an operation waveform diagram of the degaussing simulator of the present invention generating a degaussing signal.

於切換週期中,諧振半橋返馳式轉換器週期性地操作於非不連續導通模式(例如時點ta至時點tc’),驅動訊號SH首先導通第一電晶體30,以激磁變壓器10進而產生一次側開關電流IP(例如時點ta’至時點tb),於第一電晶體30關斷後,驅動訊號SL用以於諧振週期中(時點tb至時點tc)導通(例如時點tb至時點tc’)第二電晶體40,並用以產生循環電流(例如時點tc至時點tc’)以達成第一電晶體30的零電壓切換。於非不連續導通模式的切換週期中,驅動訊號SL的導通期間TSL(例如時點tb至時點tc’)由去磁訊號Sdmg的脈寬(例如TDSX’)決定,其中去磁訊號Sdmg係由去磁仿擬器250根據先前強制插入的不連續導通模式中的校正而產生。在一實施例中,去磁訊號Sdmg的導通期間TDSX’於先前主動強制之不連續導通模式期間中被校正,並用以使得控制元件248控制第二電晶體40的最小導通時間,藉此於第一電晶體30關斷後的非不連續導通模式期間,去磁變壓器10。在一實施例中,如圖9所示,驅動訊號SL的導通期間TSL(例如時點tb至時點tc’)可為去磁訊號Sdmg的導 通期間TDSX’加上一延遲時間(例如時點tc至時點tc’),以於去磁時段後,在一次側開關電流IP上建立負循環電流,以達成第一電晶體30的零電壓切換。 During the switching cycle, the resonant half-bridge flyback converter periodically operates in the non-discontinuous conduction mode (for example, from time point ta to time point tc'), and the driving signal SH first turns on the first transistor 30 to excite the transformer 10 to generate The primary side switching current IP (for example, time point ta' to time point tb), after the first transistor 30 is turned off, the driving signal SL is used to conduct during the resonance period (time point tb to time point tc) (for example, time point tb to time point tc' ) the second transistor 40, and is used to generate a circulating current (for example, from time point tc to time point tc′) to achieve zero-voltage switching of the first transistor 30. In the switching cycle of the non-discontinuous conduction mode, the conduction period TSL of the driving signal SL (for example, time point tb to time point tc') is determined by the pulse width (for example, TDSX') of the demagnetization signal Sdmg, in which the demagnetization signal Sdmg is determined by the demagnetization signal Sdmg. The magnetic simulator 250 is generated based on the correction in the previously forced-in discontinuous conduction mode. In one embodiment, the conduction period TDSX′ of the demagnetization signal Sdmg is corrected in the previous actively forced discontinuous conduction mode period, and is used to cause the control element 248 to control the minimum conduction time of the second transistor 40, thereby in The transformer 10 is demagnetized during a non-discontinuous conduction mode after the transistor 30 is turned off. In one embodiment, as shown in FIG. 9 , the conduction period TSL of the driving signal SL (for example, time point tb to time point tc’) may be the conduction period of the demagnetization signal Sdmg. A delay time (such as time point tc to time point tc') is added to the pass-on period TDSX' to establish a negative circulating current on the primary side switch current IP after the demagnetization period to achieve zero-voltage switching of the first transistor 30 .

需注意的是,非不連續導通模式係指不是不連續導通模式的操作模式,例如:連續導通模式(continuous conduction mode,CCM),或準諧振模式(quasi-resonant mode,QRM)之操作,準諧振模式又稱為邊界導通模式(boundary conduction mode,BCM)。 It should be noted that non-discontinuous conduction mode refers to an operation mode that is not a discontinuous conduction mode, such as continuous conduction mode (CCM) or quasi-resonant mode (QRM) operation. The resonant mode is also called the boundary conduction mode (BCM).

在一實施例中,當一次側開關電流IP已有預設數量(例如一正整數NC)之切換週期(例如時點ta至時點t1)係操作於非不連續導通模式(例如準諧振模式)時,至少一個切換週期被主動強制操作於不連續導通模式(例如時點t1至時點t3)。因此,去磁仿擬器250用以於強制插入的不連續導通模式中,根據變壓器10的去磁時段TDS而校正去磁訊號Sdmg的導通期間TDSX。 In one embodiment, when the primary side switch current IP has a preset number (for example, a positive integer NC) of switching periods (for example, time point ta to time point t1), the operation is in a non-discontinuous conduction mode (for example, quasi-resonant mode). , at least one switching cycle is actively forced to operate in the discontinuous conduction mode (for example, from time point t1 to time point t3). Therefore, the degaussing simulator 250 is used in the forced insertion discontinuous conduction mode to correct the conduction period TDSX of the degaussing signal Sdmg according to the degaussing period TDS of the transformer 10 .

如圖9所示,於強制插入的不連續導通模式中,變壓器10的去磁時段TDS從輔助訊號VAUX之上升緣(rising edge)開始,並於輔助訊號VAUX(例如時點t2至時點t3)之下降緣(falling edge,即膝點kn)結束。具體而言,本實施例中,可藉由感測輔助訊號VAUX而偵測反射電壓,輔助訊號VAUX來自第一電晶體30的關斷期間中,變壓器10的輔助繞組NA。反射電壓出現之時間長度,即輔助訊號VAUX自上升緣至膝點kn的脈寬,相關於變壓器10的去磁時段TDS。 As shown in FIG. 9 , in the forced insertion discontinuous conduction mode, the degaussing period TDS of the transformer 10 starts from the rising edge of the auxiliary signal VAUX, and ends between the auxiliary signal VAUX (for example, from time t2 to time t3). The falling edge (i.e. knee point kn) ends. Specifically, in this embodiment, the reflected voltage can be detected by sensing the auxiliary signal VAUX, which comes from the auxiliary winding NA of the transformer 10 during the off period of the first transistor 30 . The length of time during which the reflected voltage appears, that is, the pulse width of the auxiliary signal VAUX from the rising edge to the knee point kn, is related to the demagnetization period TDS of the transformer 10 .

在一實施例中,一次側控制器208更包括週期計數器260,週期計數器260用以根據一次側開關電流IP而計算切換週期操作於非不連續導通模式的數量,且當一次側開關電流IP被判斷為已有預設數量之切換週期非操作於不連續導通模式時,週期計數器260用以控制控制元件248主動強制操作於不連續導通模式。在一實施例中,週期計數器260可經由電流感測訊號VCS而感測一次側開關電流IP,藉此判斷操作於非不連續導通模式。 In one embodiment, the primary side controller 208 further includes a cycle counter 260. The cycle counter 260 is used to calculate the number of switching cycles operating in the non-discontinuous conduction mode according to the primary side switch current IP, and when the primary side switch current IP is When it is determined that the preset number of switching cycles have not been operated in the discontinuous conduction mode, the period counter 260 is used to control the control element 248 to actively force the operation in the discontinuous conduction mode. In one embodiment, the period counter 260 can sense the primary-side switch current IP through the current sensing signal VCS, thereby determining that the operation is in the non-discontinuous conduction mode.

在一實施例中,如圖9所示,於強制不連續導通模式切換週期中,驅動訊號SL持續控制第二電晶體40為不導通,使得半橋電路不僅操作於不連續導通模式,亦操作於非同步切換模式,其中於強制不連續導通模式切換週期中,變壓器10的去磁電流(例如時點t2至時點t2’之IP)的一部分流經第二電晶體40的本體二極體45。 In one embodiment, as shown in FIG. 9 , during the forced discontinuous conduction mode switching period, the driving signal SL continuously controls the second transistor 40 to be non-conductive, so that the half-bridge circuit not only operates in the discontinuous conduction mode, but also operates in the discontinuous conduction mode. In the asynchronous switching mode, in which during the forced discontinuous conduction mode switching period, a portion of the demagnetization current of the transformer 10 (eg, IP from time point t2 to time point t2 ′) flows through the body diode 45 of the second transistor 40 .

請繼續參閱圖9,在不連續導通模式DCM之後(例如時點t4至時點t5),驅動訊號SL的第一脈波導通第二電晶體40,以自諧振電容20至變壓器10激磁變壓器10,進而產生負循環電流(時點t4至時點t5之IP)以達成第一電晶體30的零電壓切換。 Please continue to refer to FIG. 9. After the discontinuous conduction mode DCM (for example, from time point t4 to time point t5), the first pulse wave of the driving signal SL conducts the second transistor 40 to excite the transformer 10 from the resonant capacitor 20 to the transformer 10, and then A negative circulating current (IP from time point t4 to time point t5) is generated to achieve zero-voltage switching of the first transistor 30 .

圖10顯示本發明產生去磁訊號Sdmg之去磁仿擬器的一具體實施例示意圖。在一實施例中,去磁仿擬器250包括計時產生器205、比較器280以及邏輯電路285。 FIG. 10 shows a schematic diagram of a specific embodiment of a demagnetization simulator for generating a demagnetization signal Sdmg according to the present invention. In one embodiment, the degaussing simulator 250 includes a timing generator 205, a comparator 280, and a logic circuit 285.

在一實施例中,計時產生器205包括積分器,積分器由開關231及電容230組成,開關231由取樣訊號SMP所控制,取樣訊號SMP相關於驅動訊號SH以對電流感測訊號VCS取樣。放電電流ID相關於n*VO,用以將電容230的跨壓VC放電。跨壓VC藉由比較器280而與參考電壓Vref進行比較。邏輯電路285根據比較器輸出CPO與相關於驅動訊號SH的取樣訊號SMP而產生去磁訊號Sdmg。在一實施例中,參考電壓Vref為0伏特,當一次側開關電流IP為0時,電流感測電壓VCS為0。 In one embodiment, the timing generator 205 includes an integrator, which is composed of a switch 231 and a capacitor 230. The switch 231 is controlled by the sampling signal SMP, and the sampling signal SMP is related to the driving signal SH to sample the current sensing signal VCS. The discharge current ID is related to n*VO and is used to discharge the cross-voltage VC of the capacitor 230 . The cross voltage VC is compared with the reference voltage Vref by the comparator 280 . The logic circuit 285 generates the degaussing signal Sdmg according to the comparator output CPO and the sampling signal SMP related to the driving signal SH. In one embodiment, the reference voltage Vref is 0 volts, and when the primary side switch current IP is 0, the current sensing voltage VCS is 0.

在一實施例中,去磁訊號Sdmg的時間長度相關於變壓器10的輸入電壓之電壓位準(Vinx),亦即如圖3所示,一次側繞組NP與諧振電容20之耦接節點NNP上的電壓,去磁訊號Sdmg的時間長度也相關於變壓器10的輸出電壓之電壓位準(例如n*VO)及變壓器10於第一電晶體30導通時的激磁 時段(TW)。需注意的是,變壓器10的輸入電壓之電壓位準Vinx等於輸入電壓VIN減去諧振電容20的跨壓Vcr。 In one embodiment, the time length of the demagnetization signal Sdmg is related to the voltage level (Vinx) of the input voltage of the transformer 10 , that is, as shown in FIG. 3 , the coupling node NNP of the primary winding NP and the resonant capacitor 20 The voltage and the time length of the demagnetization signal Sdmg are also related to the voltage level of the output voltage of the transformer 10 (for example, n*VO) and the excitation of the transformer 10 when the first transistor 30 is turned on. Time period (TW). It should be noted that the voltage level Vinx of the input voltage of the transformer 10 is equal to the input voltage VIN minus the voltage Vcr across the resonant capacitor 20 .

根據變壓器10被去磁的磁通量等於變壓器10被激磁的磁通量,可列出以下式1:Vinx*TW=n*VO*TDS (式1) According to the fact that the magnetic flux demagnetized by the transformer 10 is equal to the magnetic flux excited by the transformer 10, the following equation 1 can be listed: Vinx*TW=n*VO*TDS (Equation 1)

其中TW為在變壓器10的激磁時段中,變壓器10的輸入電壓之電壓位準Vinx之出現時間;n*VO為在變壓器10的去磁時段TDS中,變壓器10的電壓。n為一次側繞組NP及二次側繞組NS之匝數比,VO為二次側繞組NS之電壓(即輸出電壓)。 TW is the occurrence time of the voltage level Vinx of the input voltage of the transformer 10 during the excitation period of the transformer 10 ; n*VO is the voltage of the transformer 10 during the demagnetization period TDS of the transformer 10 . n is the turns ratio of the primary winding NP and the secondary winding NS, and VO is the voltage of the secondary winding NS (ie, the output voltage).

在變壓器10被激磁後,電流感測訊號VCS之位準VCSp相關於一次側開關電流IP於激磁過程結束之峰值,且於圖3所示之電阻60上產生,其可以下列式2表示:VCSp=(Vinx/L)*TW*Rs (式2) After the transformer 10 is excited, the level VCSp of the current sensing signal VCS is related to the peak value of the primary-side switching current IP at the end of the exciting process, and is generated on the resistor 60 shown in Figure 3, which can be expressed by the following equation 2: VCSp =(Vinx/L)*TW*Rs (Formula 2)

其中L為變壓器10之一次側繞組NP之電感,Rs為電阻60之電阻值,VCSp為變壓器10於激磁過程結束之電壓位準。 Wherein, L is the inductance of the primary winding NP of the transformer 10, Rs is the resistance value of the resistor 60, and VCSp is the voltage level of the transformer 10 at the end of the excitation process.

設ID=n*VO/Rt,其中Rt為電阻55之電阻值。 Assume ID=n*VO/Rt, where Rt is the resistance value of resistor 55.

去磁訊號Sdmg之脈寬TDSX可被表示為:TDSX=(C*VCSp)/ID,其中C為電容230之電容值。 The pulse width TDSX of the demagnetization signal Sdmg can be expressed as: TDSX=(C*VCSp)/ID, where C is the capacitance value of the capacitor 230.

TDSX=(Rt*C*VCSp)/(n*VO) TDSX=(Rt*C*VCSp)/(n*VO)

TDSX=(Rt*C/(n*VO))*(Rs/L)*Vinx*TW TDSX=(Rt*C/(n*VO))*(Rs/L)*Vinx*TW

設Rt=L/(Rs*C) (式3) Let Rt=L/(Rs*C) (Formula 3)

TDSX=(Vinx*TW)/(n*VO) (式4) TDSX=(Vinx*TW)/(n*VO) (Formula 4)

當式3之條件滿足時,式4所示之去磁訊號Sdmg之導通期間TDSX等於變壓器10之去磁時段TDS。 When the condition of Equation 3 is satisfied, the conduction period TDSX of the demagnetization signal Sdmg shown in Equation 4 is equal to the demagnetization period TDS of the transformer 10 .

請繼續參閱圖10,開關231導通以對電流感測訊號VCS取樣至電容230,且於開關231關斷時(即激磁結束時),電流感測訊號VCS之位準VCSp被保持在電容230,開關231由取樣訊號SMP控制。當開關231關斷時,去磁訊號Sdmg被致能(例如藉由邏輯電路285),換言之,當去磁訊號Sdmg開始致能時,電容230之跨壓VC為電流感測訊號VCS的峰值。在開關231關斷之後,放電電流ID開始將電容230放電,當電容230經由放電電流ID(ID=n*VO/Rt)完全放電完成時(VC=0V),去磁訊號Sdmg禁能。圖10及圖3所示之電阻55用以設定去磁訊號Sdmg的預設脈寬。 Please continue to refer to Figure 10. The switch 231 is turned on to sample the current sensing signal VCS to the capacitor 230, and when the switch 231 is turned off (that is, when the excitation ends), the level VCSp of the current sensing signal VCS is maintained at the capacitor 230. The switch 231 is controlled by the sampling signal SMP. When the switch 231 is turned off, the demagnetization signal Sdmg is enabled (for example, through the logic circuit 285). In other words, when the demagnetization signal Sdmg starts to be enabled, the voltage VC across the capacitor 230 is the peak value of the current sensing signal VCS. After the switch 231 is turned off, the discharge current ID begins to discharge the capacitor 230. When the capacitor 230 is completely discharged through the discharge current ID (ID=n*VO/Rt) (VC=0V), the demagnetization signal Sdmg is disabled. The resistor 55 shown in FIG. 10 and FIG. 3 is used to set the preset pulse width of the demagnetization signal Sdmg.

在一實施例中,於強制插入的不連續導通模式切換週期中,去磁訊號Sdmg的脈寬TDSX可藉由去磁仿擬器250而與輔助訊號VAUX的脈寬所示意的去磁時段TDS做比較,因此去磁訊號Sdmg的脈寬TDSX可被校正而用於接下來的非不連續導通模式切換週期。在一實施例中,去磁仿擬器250更用以根據不連續導通模式中所偵測到的去磁時段TDS而調整電阻255之電阻值,以校正去磁訊號Sdmg的脈波期間TDSX。 In one embodiment, in the discontinuous conduction mode switching period of forced insertion, the pulse width TDSX of the degaussing signal Sdmg can be compared with the degaussing period TDS represented by the pulse width of the auxiliary signal VAUX by the degaussing simulator 250 Comparison is made, so the pulse width TDSX of the demagnetization signal Sdmg can be corrected and used for the next non-discontinuous conduction mode switching cycle. In one embodiment, the degaussing simulator 250 is further used to adjust the resistance value of the resistor 255 according to the degaussing period TDS detected in the discontinuous conduction mode to correct the pulse period TDSX of the degaussing signal Sdmg.

在其他實施例中,除了調整電阻255之電阻值外,去磁仿擬器250亦可藉由以下方式校正去磁訊號Sdmg的脈波期間TDSX:調整電壓閾值Vth以決定去磁訊號Sdmg之結束,或調整電容230的電容值,或調整例如圖10中電晶體271與電晶體272所組成的電流鏡之比值。 In other embodiments, in addition to adjusting the resistance value of the resistor 255, the degaussing simulator 250 can also correct the pulse period TDSX of the degaussing signal Sdmg in the following manner: adjusting the voltage threshold Vth to determine the end of the degaussing signal Sdmg. , or adjust the capacitance value of the capacitor 230, or adjust, for example, the ratio of the current mirror composed of the transistor 271 and the transistor 272 in FIG. 10 .

圖11顯示本發明之諧振半橋返馳式轉換器之一較佳實施例示意圖。諧振半橋返馳式轉換器900相似於圖3之諧振半橋返馳式轉換器300。在本實施例中,諧振半橋返馳式轉換器900包括第一電晶體M1、第二電晶體M2及第三電晶體M3,第一電晶體M1、第二電晶體M2及第三電晶體M3用以構成半橋電路。就一觀點而言,第一電晶體M1與第三電晶體M3配 置為諧振半橋返馳式轉換器900之下橋電晶體,且第二電晶體M2配置為諧振半橋返馳式轉換器900之上橋電晶體。 FIG. 11 shows a schematic diagram of a preferred embodiment of the resonant half-bridge flyback converter of the present invention. The resonant half-bridge flyback converter 900 is similar to the resonant half-bridge flyback converter 300 of FIG. 3 . In this embodiment, the resonant half-bridge flyback converter 900 includes a first transistor M1, a second transistor M2, and a third transistor M3. The first transistor M1, the second transistor M2, and the third transistor are M3 is used to form a half-bridge circuit. From one point of view, the first transistor M1 and the third transistor M3 are matched The second transistor M2 is configured as a lower bridge transistor of the resonant half-bridge flyback converter 900 , and the second transistor M2 is configured as an upper bridge transistor of the resonant half-bridge flyback converter 900 .

根據回授訊號VFB及輸入電壓VIN,一次側控制器201用以產生第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3,第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3耦接以經由半橋電路而切換變壓器10,藉此於變壓器10之二次側產生輸出電壓VO。第二驅動訊號S2驅動第二電晶體M2以激磁變壓器10,第三驅動訊號S3於變壓器10之去磁與諧振時段中導通第三電晶體M3,第三驅動訊號S3也用於導通第三電晶體M3以產生流經變壓器10的循環電流,並於重負載狀態中達成第二電晶體M2的零電壓切換。換言之,第二電晶體M2為諧振半橋返馳式轉換器900之一次側上橋開關且可對應於圖3之第一電晶體30,第三電晶體M3為諧振半橋返馳式轉換器900之一次側下橋開關且可對應於圖3之第二電晶體40。就一觀點而言,第一電晶體M1用以並聯於第三電晶體M3且作為輔助一次側下橋開關,具有獨立的控制訊號S1。 According to the feedback signal VFB and the input voltage VIN, the primary side controller 201 is used to generate the first driving signal S1, the second driving signal S2 and the third driving signal S3. The first driving signal S1, the second driving signal S2 and the third driving signal S3 are generated. The drive signal S3 is coupled to switch the transformer 10 through the half-bridge circuit, thereby generating an output voltage VO on the secondary side of the transformer 10 . The second driving signal S2 drives the second transistor M2 to excite the transformer 10. The third driving signal S3 turns on the third transistor M3 during the demagnetization and resonance period of the transformer 10. The third driving signal S3 is also used to turn on the third transistor M3. The transistor M3 generates a circulating current flowing through the transformer 10 and achieves zero-voltage switching of the second transistor M2 in a heavy load state. In other words, the second transistor M2 is a primary-side high-bridge switch of the resonant half-bridge flyback converter 900 and can correspond to the first transistor 30 of FIG. 3 , and the third transistor M3 is a resonant half-bridge flyback converter. The primary side lower bridge switch 900 may correspond to the second transistor 40 of FIG. 3 . From one point of view, the first transistor M1 is connected in parallel to the third transistor M3 and serves as an auxiliary primary-side low-bridge switch and has an independent control signal S1.

在一實施例中,在輕負載狀態且操作於不連續導通模式時,藉由導通第二電晶體M2而激磁變壓器10之後,第三電晶體M3於變壓器10之去磁與諧振時段中被控制為導通。於去磁之後,當第三電晶體M3持續關斷,第一驅動訊號S1用以導通第一電晶體M1,以產生流經變壓器10的循環電流而達成第二電晶體M2的零電壓切換時,。因此,第三電晶體M3在不連續導通模式之一個切換週期中可避免切換兩次。 In one embodiment, after the transformer 10 is excited by turning on the second transistor M2 at a light load state and operating in the discontinuous conduction mode, the third transistor M3 is controlled during the demagnetization and resonance period of the transformer 10 for conduction. After demagnetization, when the third transistor M3 continues to be turned off, the first driving signal S1 is used to turn on the first transistor M1 to generate a circulating current flowing through the transformer 10 to achieve zero-voltage switching of the second transistor M2 ,. Therefore, the third transistor M3 can avoid switching twice in one switching period of the discontinuous conduction mode.

由於第一電晶體M1只用以產生循環電流以達成零電壓切換,在一實施例中,第一電晶體M1之實際尺寸(例如長寬比)可配置為遠小於第三電晶體M3之實際尺寸。因此,第一電晶體M1的驅動能力及寄生電容(例 如閘極電容)低於第三電晶體M3的寄生電容,第一電晶體M1的切換損耗也因此低於第三電晶體M3的切換損耗。 Since the first transistor M1 is only used to generate circulating current to achieve zero voltage switching, in one embodiment, the actual size (such as aspect ratio) of the first transistor M1 can be configured to be much smaller than the actual size of the third transistor M3 size. Therefore, the driving capability of the first transistor M1 and the parasitic capacitance (eg For example, the gate capacitance) is lower than the parasitic capacitance of the third transistor M3, so the switching loss of the first transistor M1 is also lower than the switching loss of the third transistor M3.

舉例而言,電晶體的閘極切換損耗Pg可被表示為:Pg=0.5*Ciss*Vg*Vg*Freq For example, the gate switching loss Pg of the transistor can be expressed as: Pg=0.5*Ciss*Vg*Vg*Freq

其中Ciss為電晶體之輸入電容,Vg為閘極驅動訊號之電壓位準,Freq為閘極驅動訊號之切換頻率。 Where Ciss is the input capacitance of the transistor, Vg is the voltage level of the gate drive signal, and Freq is the switching frequency of the gate drive signal.

如上述開關功率損耗方程式,實際尺寸較小的第一電晶體M1用以專用於不連續導通模式中達成第二電晶體M2的零電壓切換,因此第一電晶體M1的閘極切換損耗低於實際尺寸較大的第三電晶體M3。 As shown in the above switching power loss equation, the first transistor M1 with a smaller actual size is used exclusively to achieve zero-voltage switching of the second transistor M2 in the discontinuous conduction mode. Therefore, the gate switching loss of the first transistor M1 is lower than The third transistor M3 is actually larger in size.

此外,在一實施例中,第一驅動訊號S1的電壓位準(即Vg)之振幅低於第三驅動訊號S3的電壓位準之振幅,因此更可降低第一電晶體M1之切換損耗,且在一實施例中,第一電晶體M1之閘極最大額定值(例如閘源極電壓)也可低於第三電晶體M3之閘極最大額定值。 In addition, in one embodiment, the amplitude of the voltage level (ie, Vg) of the first driving signal S1 is lower than the amplitude of the voltage level of the third driving signal S3, so the switching loss of the first transistor M1 can be further reduced. And in one embodiment, the gate maximum rating (eg gate-source voltage) of the first transistor M1 may also be lower than the gate maximum rating of the third transistor M3.

電阻60藉由偵測變壓器10的一次側開關電流IP而產生電流感測訊號VCS,一次側控制器201用以根據輸入電壓VIN而產生第一驅動訊號S1,並根據輸入電壓VIN及/或輸出電壓VO而產生第三驅動訊號S3。一次側控制器201更用以根據回授訊號VFB而產生第二驅動訊號S2。 The resistor 60 generates the current sensing signal VCS by detecting the primary-side switching current IP of the transformer 10. The primary-side controller 201 is used to generate the first driving signal S1 according to the input voltage VIN, and to output the first driving signal S1 according to the input voltage VIN. voltage VO to generate the third driving signal S3. The primary side controller 201 is further used to generate the second driving signal S2 according to the feedback signal VFB.

圖12顯示本發明之一次側控制器201操作於不連續導通模式之一較佳實施例操作波形圖。於不連續導通模式之操作中,一次側控制器201操作於第一切換週期Tcyc1並控制第一驅動訊號S1於第一時段TA中導通第一電晶體M1,藉此產生循環電流以達成第二電晶體M2導通時的零電壓切換。經過第一時段TA後,第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3用以於第一不導通時段Td1(即空滯時段)中,關斷第一電晶體M1、第二電晶體M2及第三電晶體M3。在一實施例中,第一不導通時段Td1相關於用 以達成第二電晶體M2之零電壓切換的準諧振時段。經過第一不導通時段Td1後,第二驅動訊號S2於第二時段TB中,導通第二電晶體M2,第二電晶體M2之導通用以激磁變壓器10。經過第二時段TB後,第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3用以於(即空滯時段)中,關斷第一電晶體M1、第二電晶體M2及第三電晶體M3。在一實施例中,第二不導通時段Td2相關於用以達成第三電晶體M3之零電壓切換的另一準諧振時段。經過第二不導通時段Td2後,第三驅動訊號S3於第三時段TC中,導通第三電晶體M3,第三電晶體M3於變壓器10之去磁時段中導通。經過第三時段TC後,第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3用以於第三不導通時段TZ中,關斷第一電晶體M1、第二電晶體M2及第三電晶體M3,其中激磁電流IM於第三不導通時段TZ中(即不連續導通模式)維持在零。經過第三不導通時段TZ後,開始另一切換週期Tcyc2。 FIG. 12 shows an operation waveform diagram of a preferred embodiment of the primary-side controller 201 operating in the discontinuous conduction mode of the present invention. In the discontinuous conduction mode operation, the primary side controller 201 operates in the first switching period Tcyc1 and controls the first driving signal S1 to conduct the first transistor M1 in the first period TA, thereby generating a circulating current to achieve the second Zero voltage switching when transistor M2 is on. After the first period TA, the first driving signal S1, the second driving signal S2 and the third driving signal S3 are used to turn off the first transistor M1 and the first non-conducting period Td1 (ie, the dead period). The second transistor M2 and the third transistor M3. In one embodiment, the first non-conduction period Td1 is related to To achieve a quasi-resonant period of zero-voltage switching of the second transistor M2. After the first non-conduction period Td1, the second driving signal S2 turns on the second transistor M2 in the second period TB, and the conduction of the second transistor M2 is used to excite the transformer 10. After the second period TB, the first driving signal S1, the second driving signal S2 and the third driving signal S3 are used to turn off the first transistor M1, the second transistor M2 and the third transistor M1 during the dead period. Tritransistor M3. In one embodiment, the second non-conduction period Td2 is related to another quasi-resonant period for achieving zero-voltage switching of the third transistor M3. After the second non-conduction period Td2, the third driving signal S3 turns on the third transistor M3 during the third period TC, and the third transistor M3 turns on during the demagnetization period of the transformer 10. After the third period TC, the first driving signal S1, the second driving signal S2 and the third driving signal S3 are used to turn off the first transistor M1, the second transistor M2 and the third non-conduction period TZ. In the three-transistor M3, the exciting current IM is maintained at zero in the third non-conduction period TZ (ie, the discontinuous conduction mode). After the third non-conduction period TZ, another switching period Tcyc2 starts.

圖13顯示本發明一次側控制器之一較佳實施例方塊圖。在一實施例中,一次側控制器213包括計時器22及控制元件243。控制元件243用以根據輸入電壓VIN(經由VAUX)及回授訊號VFB而產生第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3。 Figure 13 shows a block diagram of a preferred embodiment of the primary side controller of the present invention. In one embodiment, the primary side controller 213 includes a timer 22 and a control component 243 . The control element 243 is used to generate the first driving signal S1, the second driving signal S2 and the third driving signal S3 according to the input voltage VIN (via VAUX) and the feedback signal VFB.

計時器22用以計時而產生第三不導通時段TZ,第三不導通時段TZ起始於第三驅動訊號S3脈波結束時(例如下降緣)。在一實施例中,當諧振半橋返馳式轉換器的輸出功率減少時,第三不導通時段TZ對應增加,因此,諧振半橋返馳式轉換器的切換頻率亦能因諧振半橋返馳式轉換器的輸出功率減少而對應減少,藉此改善輕負載操作狀態中的效能。 The timer 22 is used for timing to generate the third non-conduction period TZ. The third non-conduction period TZ starts from the end of the pulse wave of the third driving signal S3 (for example, the falling edge). In one embodiment, when the output power of the resonant half-bridge flyback converter decreases, the third non-conduction period TZ increases correspondingly. Therefore, the switching frequency of the resonant half-bridge flyback converter can also be affected by the resonant half-bridge flyback converter. The output power of the Chi converter is reduced accordingly, thereby improving performance in light load operating conditions.

圖3顯示本發明之諧振半橋返馳式轉換器之一實施例示意圖。諧振半橋返馳式轉換器300包含:第一電晶體30及第二電晶體40,用以 構成半橋電路。變壓器10及諧振電容20彼此串聯並耦接於半橋電路的切換節點LX,變壓器10包括一次側繞組NP、二次側繞組NS以及輔助繞組NA,其中一次側繞組NP及二次側繞組NS具有匝數比n,二次側繞組NS及輔助繞組NA具有匝數比m。一次側控制器200產生驅動訊號SH及驅動訊號SL,驅動訊號SH及驅動訊號SL經由半橋電路切換變壓器10,以於變壓器10的二次側產生輸出電壓VO。驅動訊號SH驅動第一電晶體30,以激磁變壓器10。驅動訊號SL於變壓器10的去磁與諧振時段中導通第二電晶體40,驅動訊號SL亦用於導通第二電晶體40以產生流經變壓器10的循環電流,以達成第一電晶體30的零電壓切換。電阻60藉由偵測變壓器10的一次側開關電流IP而產生電流感測訊號VCS。 FIG. 3 shows a schematic diagram of an embodiment of the resonant half-bridge flyback converter of the present invention. The resonant half-bridge flyback converter 300 includes: a first transistor 30 and a second transistor 40 for Constitute a half-bridge circuit. The transformer 10 and the resonant capacitor 20 are connected in series with each other and coupled to the switching node LX of the half-bridge circuit. The transformer 10 includes a primary winding NP, a secondary winding NS and an auxiliary winding NA, wherein the primary winding NP and the secondary winding NS have The turns ratio n, the secondary winding NS and the auxiliary winding NA have a turns ratio m. The primary side controller 200 generates the driving signal SH and the driving signal SL, which switch the transformer 10 through the half-bridge circuit to generate the output voltage VO on the secondary side of the transformer 10 . The driving signal SH drives the first transistor 30 to excite the transformer 10 . The driving signal SL turns on the second transistor 40 during the demagnetization and resonance period of the transformer 10 . The driving signal SL is also used to turn on the second transistor 40 to generate a circulating current flowing through the transformer 10 to achieve the operation of the first transistor 30 . Zero voltage switching. The resistor 60 generates the current sensing signal VCS by detecting the primary side switching current IP of the transformer 10 .

驅動訊號SH及驅動訊號SL根據回授訊號VFB而產生,其中回授訊號VFB根據諧振半橋返馳式轉換器300的輸出功率而產生。二次側控制器100耦接於輸出電壓VO以產生回授訊號VFB,回授訊號VFB經由光耦合器90耦接於一次側控制器200。二次側控制器100亦用以產生驅動訊號SG,以於變壓器10的去磁時段TDS中驅動二次側同步整流器70。輔助繞組NA於變壓器10切換時產生輔助繞組訊號VNA,電阻51、電阻52用以將輔助繞組訊號VNA衰減以產生輔助訊號VAUX,輔助訊號VAUX耦接於一次側控制器200。在一實施例中,電阻55耦接於一次側控制器200,藉由電阻55以設定參數而產生去磁訊號Sdmg。 The driving signal SH and the driving signal SL are generated according to the feedback signal VFB, wherein the feedback signal VFB is generated according to the output power of the resonant half-bridge flyback converter 300 . The secondary side controller 100 is coupled to the output voltage VO to generate a feedback signal VFB. The feedback signal VFB is coupled to the primary side controller 200 through the optical coupler 90 . The secondary side controller 100 is also used to generate a driving signal SG to drive the secondary side synchronous rectifier 70 during the demagnetization period TDS of the transformer 10 . The auxiliary winding NA generates the auxiliary winding signal VNA when the transformer 10 switches. The resistors 51 and 52 are used to attenuate the auxiliary winding signal VNA to generate the auxiliary signal VAUX. The auxiliary signal VAUX is coupled to the primary side controller 200 . In one embodiment, the resistor 55 is coupled to the primary side controller 200 , and parameters are set through the resistor 55 to generate the demagnetization signal Sdmg.

圖4顯示對應於圖3之實施例的操作波形圖。當驅動訊號SH導通時,變壓器10被激磁並產生激磁電流IM,當驅動訊號SH不導通時,變壓器10被去磁。於去磁時段TDS中,變壓器10產生二次側開關電流IS,驅動訊號SL相關於變壓器10的去磁時段TDS。在一實施例中,驅動訊號SL之導通期間TSL(亦即脈寬)等於或長於變壓器10的去磁時段TDS,藉此避免變壓器 10操作於連續導通模式(continuous conduction mode,CCM)。於變壓器10的去磁時段TDS中,諧振電容20上產生反射電壓VX,其中反射電壓VX與輸出電壓VO之關係為:VX=n*VO。 FIG. 4 shows an operating waveform diagram corresponding to the embodiment of FIG. 3 . When the driving signal SH is turned on, the transformer 10 is excited and generates an exciting current IM. When the driving signal SH is not turned on, the transformer 10 is demagnetized. During the demagnetization period TDS, the transformer 10 generates a secondary side switching current IS, and the driving signal SL is related to the demagnetization period TDS of the transformer 10 . In one embodiment, the conduction period TSL (ie, the pulse width) of the driving signal SL is equal to or longer than the demagnetization period TDS of the transformer 10, thereby preventing the transformer from 10Operates in continuous conduction mode (CCM). During the demagnetization period TDS of the transformer 10 , a reflected voltage VX is generated on the resonant capacitor 20 , where the relationship between the reflected voltage VX and the output voltage VO is: VX=n*VO.

當驅動訊號SH不導通時,驅動訊號SL可被導通,而當驅動訊號SL不導通時,驅動訊號SH可被導通。驅動訊號SH與驅動訊號SL之間(即驅動訊號SH與驅動訊號SL皆不導通時)可包括空滯時間(例如時段TRH、時段TRL)。 When the driving signal SH is not conductive, the driving signal SL may be turned on, and when the driving signal SL is not conductive, the driving signal SH may be turned on. The period between the driving signal SH and the driving signal SL (that is, when neither the driving signal SH nor the driving signal SL is conductive) may include a dead time (such as a period TRH, a period TRL).

圖4之不同時段中的操作細節詳見下列說明。 Details of the operations in different time periods in Figure 4 are detailed in the following description.

時點t1至時點t2之時段為激磁變壓器週期,本時段中第一電晶體30導通且第二電晶體40關斷,流經變壓器10中的一次側開關電流IP增加且諧振電容20之電壓亦增加,此時變壓器10被激磁而諧振電容20進行充電,二次側同步整流器70關斷且其本體二極體75具有逆向偏壓,因此,此時並無能量被轉換至二次側。 The period from time point t1 to time point t2 is the excitation transformer period. During this period, the first transistor 30 is turned on and the second transistor 40 is turned off. The primary side switch current IP flowing through the transformer 10 increases and the voltage of the resonant capacitor 20 also increases. , at this time, the transformer 10 is excited and the resonant capacitor 20 is charged. The secondary side synchronous rectifier 70 is turned off and its body diode 75 has a reverse bias. Therefore, no energy is converted to the secondary side at this time.

時點t2至時點t3之時段為第一循環電流週期,本時段中第一電晶體30與第二電晶體40均關斷,變壓器10的循環電流強制半橋電路的切換節點電壓VHB下降,直到第二電晶體40的本體二極體45導通為止。時點t2至時點t3之時段相關於準諧振時段(quasi-resonant period),以達成第二電晶體40的零電壓切換,此時變壓器10的一次側電壓與諧振電容20於時點t3之電壓相同。 The period from time point t2 to time point t3 is the first circulating current period. During this period, the first transistor 30 and the second transistor 40 are both turned off. The circulating current of the transformer 10 forces the switching node voltage VHB of the half-bridge circuit to decrease until the first circulating current period. Until the body diode 45 of the two transistors 40 is turned on. The period from time point t2 to time point t3 is related to the quasi-resonant period to achieve zero-voltage switching of the second transistor 40. At this time, the primary side voltage of the transformer 10 is the same as the voltage of the resonant capacitor 20 at time point t3.

時點t3至時點t4之時段為諧振週期(正電流),本時段中,在零電壓切換的狀態下,第一電晶體30關斷且第二電晶體40導通,此時輸出電壓VO等於諧振電容20的跨壓Vcr除以匝數比n,電流開始流經二次側同步整流器70,儲存於變壓器10的能量被轉換至輸出端而產生輸出電壓VO。由於變壓器10的漏電感Lr與諧振電容20(Cr)形成電感電容槽(LC tank),因此二次側 電流於諧振頻率Lr及Cr所決定的時段中為正弦波的形式。變壓器10的一次側電流為激磁電流IM與二次側開關電流IS之和。流經諧振槽(Lr,Cr)的電流仍為正電流,其主要由變壓器10的激磁電感驅動,並且流經諧振電容20。 The period from time point t3 to time point t4 is the resonance period (positive current). During this period, in the zero-voltage switching state, the first transistor 30 is turned off and the second transistor 40 is turned on. At this time, the output voltage VO is equal to the resonant capacitance. The cross voltage Vcr of 20 is divided by the turns ratio n, the current starts to flow through the secondary side synchronous rectifier 70, and the energy stored in the transformer 10 is converted to the output terminal to generate the output voltage VO. Since the leakage inductance Lr of the transformer 10 and the resonant capacitance 20 (Cr) form an inductance-capacitance tank (LC tank), the secondary side The current is in the form of a sine wave during the period determined by the resonant frequencies Lr and Cr. The primary side current of the transformer 10 is the sum of the exciting current IM and the secondary side switching current IS. The current flowing through the resonant tank (Lr, Cr) is still a positive current, which is mainly driven by the magnetizing inductance of the transformer 10 and flows through the resonant capacitor 20 .

時點t4至時點t5之時段為諧振週期(負電流),本時段中第一電晶體30繼續關斷且第二電晶體40繼續導通,能量持續轉換至二次側,但諧振槽電流被諧振電容20的電壓反向驅動,諧振電容20的能量不僅被轉換至二次側,更於第二電晶體40持續導通(例如時點t4至時點t5)時,用以將變壓器10的激磁電流位準拉至負值。 The period from time point t4 to time point t5 is the resonance period (negative current). During this period, the first transistor 30 continues to be turned off and the second transistor 40 continues to be turned on. Energy continues to be converted to the secondary side, but the resonant tank current is blocked by the resonant capacitor. The voltage of 20 is reversely driven, and the energy of the resonant capacitor 20 is not only converted to the secondary side, but also used to pull the excitation current level of the transformer 10 when the second transistor 40 continues to conduct (for example, from time t4 to time t5). to negative values.

時點t5至時點t6之時段為反向激磁變壓器週期(負電流),本時段自變壓器10的去磁時段TDS結束時至第二電晶體40關斷時,諧振電容20反向激磁變壓器10,並產生負電流。 The period from time point t5 to time point t6 is the reverse excitation transformer period (negative current). In this period from the end of the demagnetization period TDS of the transformer 10 to when the second transistor 40 is turned off, the resonant capacitor 20 reversely excites the transformer 10, and generate negative current.

時點t6至時點t7之時段為第二循環電流週期,本時段中第一電晶體30與第二電晶體40均關斷,變壓器10的負電流於時點t5至時點t6被感應而產生,以強制半橋電路中切換節點LX上的切換節點電壓VHB增加,直到其導通第一電晶體30的本體二極體35為止。 The period from time point t6 to time point t7 is the second circulating current period. During this period, the first transistor 30 and the second transistor 40 are both turned off. The negative current of the transformer 10 is induced from time point t5 to time point t6 to force The switching node voltage VHB on the switching node LX in the half-bridge circuit increases until it turns on the body diode 35 of the first transistor 30 .

時點t7之後,開始另一個與時點t1至時點t2之時段相似的週期,第一電晶體30在零電壓切換狀態下導通且第二電晶體40關斷,若變壓器諧振槽中的循環電流仍為負電流,則諧振槽中多餘的能量將被送回輸入端(供應輸入電壓VIN的節點)。 After time point t7, another period similar to the period from time point t1 to time point t2 begins. The first transistor 30 is turned on and the second transistor 40 is turned off in a zero-voltage switching state. If the circulating current in the resonant tank of the transformer is still negative current, the excess energy in the resonant tank will be sent back to the input terminal (the node supplying the input voltage VIN).

在輕負載的狀態下,當輸出功率降低時,驅動訊號SH與驅動訊號SL的脈寬將對應減少,故驅動訊號SH與驅動訊號SL的切換頻率於輕負載狀態下增加,由於鐵芯損失(core loss)、開關損耗(switching loss)等功率損耗增加,因此導致功率轉換器的功率轉換效率變差。 In the light load state, when the output power decreases, the pulse widths of the drive signal SH and the drive signal SL will decrease accordingly. Therefore, the switching frequency of the drive signal SH and the drive signal SL increases in the light load state. Due to the core loss ( Power losses such as core loss and switching loss increase, thus causing the power conversion efficiency of the power converter to deteriorate.

圖5顯示降低驅動訊號SH與驅動訊號SL的切換頻率之操作波形圖。一種改善功率效率的方式是,藉由延長驅動訊號SL關斷(例如時點t3)至驅動訊號SH導通(例如時點t5)之間的時間,可降低切換頻率,然而,驅動訊號SL的關斷將產生循環電流,進而導致切換節點電壓VHB的電壓突波VPK以及輔助訊號VAUX的電壓降VDP,電壓突波VPK與電壓降VDP將造成功率損耗與雜訊。 FIG. 5 shows an operation waveform diagram for reducing the switching frequency of the driving signal SH and the driving signal SL. One way to improve power efficiency is to reduce the switching frequency by extending the time between the turning off of the driving signal SL (for example, time point t3) and the turning on of the driving signal SH (for example, time point t5). However, the turning off of the driving signal SL will A circulating current is generated, which in turn causes a voltage surge VPK of the switching node voltage VHB and a voltage drop VDP of the auxiliary signal VAUX. The voltage surge VPK and voltage drop VDP will cause power loss and noise.

需注意的是,前述驅動訊號SH與驅動訊號SL的導通或關斷皆各自對應於第一電晶體30與第二電晶體40的導通或關斷。 It should be noted that the aforementioned turning on or off of the driving signal SH and the driving signal SL respectively corresponds to the turning on or off of the first transistor 30 and the second transistor 40 .

圖6顯示本發明之具有省略週期的諧振半橋返馳式轉換器的一實施例之操作波形圖。 FIG. 6 shows an operating waveform diagram of an embodiment of the resonant half-bridge flyback converter with omitted periods of the present invention.

請參閱圖6,在一實施例中,驅動訊號SH於激磁變壓器10的激磁週期中(例如時點t1至時點t2)導通,以激磁變壓器10。驅動訊號SH關斷後,驅動訊號SL於諧振週期中(例如時點t2至時點t3)導通,且具有諧振脈波(例如時點t2至時點t3),一個激磁週期與一個諧振週期形成一個切換週期(例如時點t1至時點t3)。 Referring to FIG. 6 , in one embodiment, the driving signal SH is turned on during the excitation period of the excitation transformer 10 (for example, from time point t1 to time point t2 ) to excite the transformer 10 . After the driving signal SH is turned off, the driving signal SL is turned on during the resonance period (for example, from time point t2 to time point t3) and has a resonance pulse wave (for example, from time point t2 to time point t3). An excitation period and a resonance period form a switching period ( For example, time point t1 to time point t3).

如圖6所示,在一實施例中,省略週期Tx起始於驅動訊號SH轉為不導通的不導通時點(例如時點t4),且當省略週期Tx終止時(例如時點t6),驅動訊號SL轉為導通。在一實施例中,當輸出功率因省電而降低時,省略週期Tx將對應增加(即切換頻率減少)。 As shown in FIG. 6 , in one embodiment, the omitting period Tx starts from the non-conducting time point when the driving signal SH turns non-conductive (for example, time point t4), and when the omitting period Tx ends (for example, time point t6), the driving signal SH SL turns conductive. In one embodiment, when the output power is reduced due to power saving, the omission period Tx will be correspondingly increased (ie, the switching frequency is reduced).

請繼續參閱圖6,相較於無省略週期之時段,例如時點t1至時點t3,驅動訊號SL於省略週期中(例如Tx)不導通而無諧振脈波,舉例而言,在先前技術中,驅動訊號SL於時點t4至時點t5所存在的一個脈波,即驅動訊號SL之諧振脈波,在本實施例中已被省略,如圖6所示,因此,於省略週期中(時點t4至時點t6),並無負循環電流產生。先前技術中,切換節點電壓VHB 產生的電壓突波VPK以及輔助訊號VAUX產生的電壓降VDP,在本實施例中亦已被避免。在一實施例中,如圖6所示,驅動訊號SH於省略週期中(例如Tx)亦為不導通狀態。 Please continue to refer to Figure 6. Compared with the period without omitted periods, such as time point t1 to time point t3, the driving signal SL is not conductive and has no resonant pulse in the omitted period (such as Tx). For example, in the prior art, A pulse wave of the driving signal SL from time point t4 to time point t5, that is, the resonance pulse wave of the driving signal SL, has been omitted in this embodiment, as shown in Figure 6. Therefore, in the omitted period (time point t4 to time point t5), At time t6), no negative circulating current is generated. In the prior art, the switching node voltage VHB The voltage surge VPK generated and the voltage drop VDP generated by the auxiliary signal VAUX have also been avoided in this embodiment. In one embodiment, as shown in FIG. 6 , the driving signal SH is also in a non-conducting state during the omitted period (eg, Tx).

在一實施例中,當驅動訊號SH關斷後,於省略週期的部分時間中(例如於時點t4至時點t5之間的一部份時間),變壓器10的去磁電流的一部分流經第二電晶體40的本體二極體45。換言之,在一實施例中,驅動訊號SL中並無雙脈波(double pulses)。在一實施例中,驅動訊號SH中亦無雙脈波。就一觀點而言,於驅動訊號SH的單一脈波之後,接著產生驅動訊號SL的單一脈波,於驅動訊號SL的單一脈波之後,接著產生驅動訊號SH的單一脈波,即便諧振半橋返馳式轉換器操作於具有省略週期的狀態亦同。就另一觀點而言,於驅動訊號SH的兩個連續脈波之間,驅動訊號SL包括最多一個脈波,於驅動訊號SL的兩個連續脈波之間,驅動訊號SH包括最多一個脈波。 In one embodiment, after the driving signal SH is turned off, part of the demagnetization current of the transformer 10 flows through the second part of the omitted cycle (for example, part of the time between time t4 and time t5). Body diode 45 of transistor 40 . In other words, in one embodiment, there are no double pulses in the driving signal SL. In one embodiment, there is no double pulse wave in the driving signal SH. From one point of view, after a single pulse wave of the driving signal SH, a single pulse wave of the driving signal SL is then generated, and after a single pulse wave of the driving signal SL, a single pulse wave of the driving signal SH is generated, even if the resonant half bridge The same goes for flyback converters operating with omitted periods. From another point of view, between two consecutive pulse waves of the driving signal SH, the driving signal SL includes at most one pulse wave. Between two consecutive pulse waves of the driving signal SL, the driving signal SH includes at most one pulse wave. .

在一實施例中,於輸出功率低於預設閾值時,產生省略週期Tx。在一實施例中,省略週期Tx隨著輸出功率的降低而對應增加。在一實施例中,即使在驅動訊號SL無法達成第一電晶體30的零電壓切換的情況下,第二驅動訊號於第一驅動訊號的兩個連續脈波之間不包括第二個脈波,因而不以第二個脈波達成第一電晶體30的零電壓切換。 In one embodiment, when the output power is lower than the preset threshold, the omitted period Tx is generated. In one embodiment, the omission period Tx increases correspondingly as the output power decreases. In one embodiment, even when the driving signal SL cannot achieve zero-voltage switching of the first transistor 30, the second driving signal does not include a second pulse wave between two consecutive pulse waves of the first driving signal. , so the second pulse wave is not used to achieve zero-voltage switching of the first transistor 30 .

請繼續參閱圖6,在一實施例中,驅動訊號SL之零電壓切換脈波(例如PZV)於省略週期經過後導通第二電晶體40,以達成零電壓切換週期(例如時點t6至時點t7)。 Please continue to refer to FIG. 6 . In one embodiment, the zero-voltage switching pulse wave (for example, PZV) of the driving signal SL turns on the second transistor 40 after the omitted period passes, so as to achieve a zero-voltage switching period (for example, from time point t6 to time point t7 ).

如圖6所示,在一實施例中,於省略週期後的零電壓切換脈波PZV之後,接著產生至少一個切換週期(例如時點t7至時點t9)。 As shown in FIG. 6 , in one embodiment, after the zero-voltage switching pulse wave PZV after the omitted period, at least one switching period (for example, time point t7 to time point t9 ) is generated.

請繼續參閱圖6,在一實施例中,諧振週期可包括延續零電壓切換期間(例如時點t3’至時點t3),延續零電壓切換期間用以達成第一電晶 體30的零電壓切換。換言之,本實施例中,諧振脈波的第一部分(例如時點t2至時點t3’)用以達成變壓器10與諧振電容20之諧振,而諧振脈波的第二部分(例如時點t3’至時點t3)用以產生循環電流以達成第一電晶體30的零電壓切換。 Please continue to refer to FIG. 6. In one embodiment, the resonance period may include a continuation of a zero-voltage switching period (for example, from time point t3' to time point t3). The continuation of the zero-voltage switching period is used to achieve the first transistor Zero voltage switching of body 30. In other words, in this embodiment, the first part of the resonant pulse wave (for example, from time point t2 to time point t3') is used to achieve resonance between the transformer 10 and the resonant capacitor 20, and the second part of the resonant pulse wave (for example, from time point t3' to time point t3 ) is used to generate circulating current to achieve zero-voltage switching of the first transistor 30 .

圖7顯示本發明之諧振半橋返馳式轉換器中一次側控制器之一實施例方塊圖。在一實施例中,一次側控制器200包括計時器25以及控制元件240。在一實施例中,控制元件240用以根據輸入電壓VIN(經由輔助訊號VAUX)與回授訊號VFB而產生驅動訊號SH與驅動訊號SL,計時器25用以產生前述省略週期Tx。 FIG. 7 shows a block diagram of an embodiment of a primary-side controller in the resonant half-bridge flyback converter of the present invention. In one embodiment, the primary side controller 200 includes a timer 25 and a control component 240 . In one embodiment, the control element 240 is used to generate the driving signal SH and the driving signal SL according to the input voltage VIN (via the auxiliary signal VAUX) and the feedback signal VFB, and the timer 25 is used to generate the aforementioned omitted period Tx.

如圖7所示,在一實施例中,計時器25根據相關於輸出功率之資訊,判斷輸出功率是否低於預設閾值,當輸出功率被判斷為低於預設閾值時,計時器25開始計算省略週期Tx,並控制控制元件240於省略週期Tx中省略驅動訊號SH與驅動訊號SL之脈波。 As shown in FIG. 7 , in one embodiment, the timer 25 determines whether the output power is lower than a preset threshold based on information related to the output power. When the output power is determined to be lower than the preset threshold, the timer 25 starts The omission period Tx is calculated, and the control element 240 is controlled to omit the pulse waves of the driving signal SH and the driving signal SL in the omission period Tx.

請再次參閱圖4,當諧振半橋返馳式轉換器處於中負載及輕負載的狀態時,時點t4至時點t5之諧振週期較短,無法產生足夠的負電流(能量)以達成零電壓切換,因此,負電流的主要部分係來自時點t5至時點t6所產生之電流。 Please refer to Figure 4 again. When the resonant half-bridge flyback converter is in a medium load or light load state, the resonance period from time point t4 to time point t5 is short and cannot generate enough negative current (energy) to achieve zero-voltage switching. , therefore, the main part of the negative current is the current generated from time point t5 to time point t6.

然而,較高的負電流將導致較高的功率損耗,為了將達成零電壓切換的負電流控制在適當位準,去磁時段的控制必須準確,因此需產生去磁訊號Sdmg對應於變壓器10的去磁時段TDS。 However, a higher negative current will lead to a higher power loss. In order to control the negative current to achieve zero-voltage switching at an appropriate level, the demagnetization period must be accurately controlled. Therefore, a demagnetization signal Sdmg corresponding to the transformer 10 needs to be generated. Degaussing period TDS.

圖8顯示本發明之諧振半橋返馳式轉換器中一次側控制器之一實施例方塊圖。在一實施例中,一次側控制器208包括去磁仿擬器250以及控制元件248。在一實施例中,控制元件248用以根據輸入電壓VIN(經由輔助訊號VAUX)與回授訊號VFB而產生驅動訊號SH與驅動訊號SL,去磁仿擬 器250用以根據去磁相關訊號而產生去磁訊號Sdmg,以仿擬去磁時段TDS,其中去磁相關訊號例如變壓器10的反射電壓(經由輔助訊號VAUX)。 FIG. 8 shows a block diagram of an embodiment of a primary-side controller in the resonant half-bridge flyback converter of the present invention. In one embodiment, the primary side controller 208 includes a demagnetization simulator 250 and a control component 248 . In one embodiment, the control element 248 is used to generate the driving signal SH and the driving signal SL according to the input voltage VIN (via the auxiliary signal VAUX) and the feedback signal VFB, to simulate demagnetization. The device 250 is used to generate the demagnetization signal Sdmg according to the demagnetization related signal, such as the reflected voltage of the transformer 10 (via the auxiliary signal VAUX), to simulate the demagnetization period TDS.

請同時參閱圖9,圖9顯示本發明之去磁仿擬器產生去磁訊號之操作波形圖。 Please also refer to FIG. 9 , which shows an operation waveform diagram of the degaussing simulator of the present invention generating a degaussing signal.

於切換週期中,諧振半橋返馳式轉換器週期性地操作於非不連續導通模式(例如時點ta至時點tc’),驅動訊號SH首先導通第一電晶體30,以激磁變壓器10進而產生一次側開關電流IP(例如時點ta’至時點tb),於第一電晶體30關斷後,驅動訊號SL用以於諧振週期中(時點tb至時點tc)導通(例如時點tb至時點tc’)第二電晶體40,並用以產生循環電流(例如時點tc至時點tc’)以達成第一電晶體30的零電壓切換。於非不連續導通模式的切換週期中,驅動訊號SL的導通期間TSL(例如時點tb至時點tc’)由去磁訊號Sdmg的脈寬(例如TDSX’)決定,其中去磁訊號Sdmg係由去磁仿擬器250根據先前強制插入的不連續導通模式中的校正而產生。在一實施例中,去磁訊號Sdmg的導通期間TDSX’於先前主動強制之不連續導通模式期間中被校正,並用以使得控制元件248控制第二電晶體40的最小導通時間,藉此於第一電晶體30關斷後的非不連續導通模式期間,去磁變壓器10。在一實施例中,如圖9所示,驅動訊號SL的導通期間TSL(例如時點tb至時點tc’)可為去磁訊號Sdmg的導通期間TDSX’加上一延遲時間(例如時點tc至時點tc’),以於去磁時段後,在一次側開關電流IP上建立負循環電流,以達成第一電晶體30的零電壓切換。 During the switching cycle, the resonant half-bridge flyback converter periodically operates in the non-discontinuous conduction mode (for example, from time point ta to time point tc'), and the driving signal SH first turns on the first transistor 30 to excite the transformer 10 to generate The primary side switching current IP (for example, time point ta' to time point tb), after the first transistor 30 is turned off, the driving signal SL is used to conduct during the resonance period (time point tb to time point tc) (for example, time point tb to time point tc' ) the second transistor 40, and is used to generate a circulating current (for example, from time point tc to time point tc′) to achieve zero-voltage switching of the first transistor 30. In the switching cycle of the non-discontinuous conduction mode, the conduction period TSL of the driving signal SL (for example, time point tb to time point tc') is determined by the pulse width (for example, TDSX') of the demagnetization signal Sdmg, in which the demagnetization signal Sdmg is determined by the demagnetization signal Sdmg. The magnetic simulator 250 is generated based on the correction in the previously forced-in discontinuous conduction mode. In one embodiment, the conduction period TDSX′ of the demagnetization signal Sdmg is corrected in the previous actively forced discontinuous conduction mode period, and is used to cause the control element 248 to control the minimum conduction time of the second transistor 40, thereby in The transformer 10 is demagnetized during a non-discontinuous conduction mode after the transistor 30 is turned off. In one embodiment, as shown in FIG. 9 , the conduction period TSL of the driving signal SL (for example, from time point tb to time point tc') may be the conduction period TDSX' of the demagnetization signal Sdmg plus a delay time (for example, from time point tc to time point). tc'), so as to establish a negative circulating current on the primary side switch current IP after the demagnetization period, so as to achieve zero-voltage switching of the first transistor 30 .

需注意的是,非不連續導通模式係指不是不連續導通模式的操作模式,例如:連續導通模式(continuous conduction mode,CCM),或準諧振模式(quasi-resonant mode,QRM)之操作,準諧振模式又稱為邊界導通模式(boundary conduction mode,BCM)。 It should be noted that non-discontinuous conduction mode refers to an operation mode that is not a discontinuous conduction mode, such as continuous conduction mode (CCM) or quasi-resonant mode (QRM) operation. The resonant mode is also called the boundary conduction mode (BCM).

在一實施例中,當一次側開關電流IP已有預設數量(例如一正整數NC)之切換週期(例如時點ta至時點t1)係操作於非不連續導通模式(例如準諧振模式)時,至少一個切換週期被主動強制操作於不連續導通模式(例如時點t1至時點t3)。因此,去磁仿擬器250用以於強制插入的不連續導通模式中,根據變壓器10的去磁時段TDS而校正去磁訊號Sdmg的導通期間TDSX。 In one embodiment, when the primary side switch current IP has a preset number (for example, a positive integer NC) of switching periods (for example, time point ta to time point t1), the operation is in a non-discontinuous conduction mode (for example, quasi-resonant mode). , at least one switching cycle is actively forced to operate in the discontinuous conduction mode (for example, from time point t1 to time point t3). Therefore, the degaussing simulator 250 is used in the forced insertion discontinuous conduction mode to correct the conduction period TDSX of the degaussing signal Sdmg according to the degaussing period TDS of the transformer 10 .

如圖9所示,於強制插入的不連續導通模式中,變壓器10的去磁時段TDS從輔助訊號VAUX之上升緣(rising edge)開始,並於輔助訊號VAUX(例如時點t2至時點t3)之下降緣(falling edge,即膝點kn)結束。具體而言,本實施例中,可藉由感測輔助訊號VAUX而偵測反射電壓,輔助訊號VAUX來自第一電晶體30的關斷期間中,變壓器10的輔助繞組NA。反射電壓出現之時間長度,即輔助訊號VAUX自上升緣至膝點kn的脈寬,相關於變壓器10的去磁時段TDS。 As shown in FIG. 9 , in the forced insertion discontinuous conduction mode, the degaussing period TDS of the transformer 10 starts from the rising edge of the auxiliary signal VAUX, and ends between the auxiliary signal VAUX (for example, from time t2 to time t3). The falling edge (i.e. knee point kn) ends. Specifically, in this embodiment, the reflected voltage can be detected by sensing the auxiliary signal VAUX, which comes from the auxiliary winding NA of the transformer 10 during the off period of the first transistor 30 . The length of time during which the reflected voltage appears, that is, the pulse width of the auxiliary signal VAUX from the rising edge to the knee point kn, is related to the demagnetization period TDS of the transformer 10 .

在一實施例中,一次側控制器208更包括週期計數器260,週期計數器260用以根據一次側開關電流IP而計算切換週期操作於非不連續導通模式的數量,且當一次側開關電流IP被判斷為已有預設數量之切換週期非操作於不連續導通模式時,週期計數器260用以控制控制元件248主動強制操作於不連續導通模式。在一實施例中,週期計數器260可經由電流感測訊號VCS而感測一次側開關電流IP,藉此判斷操作於非不連續導通模式。 In one embodiment, the primary side controller 208 further includes a cycle counter 260. The cycle counter 260 is used to calculate the number of switching cycles operating in the non-discontinuous conduction mode according to the primary side switch current IP, and when the primary side switch current IP is When it is determined that the preset number of switching cycles have not been operated in the discontinuous conduction mode, the period counter 260 is used to control the control element 248 to actively force the operation in the discontinuous conduction mode. In one embodiment, the period counter 260 can sense the primary-side switch current IP through the current sensing signal VCS, thereby determining that the operation is in the non-discontinuous conduction mode.

在一實施例中,如圖9所示,於強制不連續導通模式切換週期中,驅動訊號SL持續控制第二電晶體40為不導通,使得半橋電路不僅操作於不連續導通模式,亦操作於非同步切換模式,其中於強制不連續導通模式切換週期中,變壓器10的去磁電流(例如時點t2至時點t2’之IP)的一部分流經第二電晶體40的本體二極體45。 In one embodiment, as shown in FIG. 9 , during the forced discontinuous conduction mode switching period, the driving signal SL continuously controls the second transistor 40 to be non-conductive, so that the half-bridge circuit not only operates in the discontinuous conduction mode, but also operates in the discontinuous conduction mode. In the asynchronous switching mode, in which during the forced discontinuous conduction mode switching period, a portion of the demagnetization current of the transformer 10 (eg, IP from time point t2 to time point t2 ′) flows through the body diode 45 of the second transistor 40 .

請繼續參閱圖9,在不連續導通模式DCM之後(例如時點t4至時點t5),驅動訊號SL的第一脈波導通第二電晶體40,以自諧振電容20至變壓器10激磁變壓器10,進而產生負循環電流(時點t4至時點t5之IP)以達成第一電晶體30的零電壓切換。 Please continue to refer to FIG. 9. After the discontinuous conduction mode DCM (for example, from time point t4 to time point t5), the first pulse wave of the driving signal SL conducts the second transistor 40 to excite the transformer 10 from the resonant capacitor 20 to the transformer 10, and then A negative circulating current (IP from time point t4 to time point t5) is generated to achieve zero-voltage switching of the first transistor 30 .

圖10顯示本發明產生去磁訊號Sdmg之去磁仿擬器的一具體實施例示意圖。在一實施例中,去磁仿擬器250包括計時產生器205、比較器280以及邏輯電路285。 FIG. 10 shows a schematic diagram of a specific embodiment of a demagnetization simulator for generating a demagnetization signal Sdmg according to the present invention. In one embodiment, the degaussing simulator 250 includes a timing generator 205, a comparator 280, and a logic circuit 285.

在一實施例中,計時產生器205包括積分器,積分器由開關231及電容230組成,開關231由取樣訊號SMP所控制,取樣訊號SMP相關於驅動訊號SH以對電流感測訊號VCS取樣。放電電流ID相關於n*VO,用以將電容230的跨壓VC放電。跨壓VC藉由比較器280而與參考電壓Vref進行比較。邏輯電路285根據比較器輸出CPO與相關於驅動訊號SH的取樣訊號SMP而產生去磁訊號Sdmg。在一實施例中,參考電壓Vref為0伏特,當一次側開關電流IP為0時,電流感測電壓VCS為0。 In one embodiment, the timing generator 205 includes an integrator, which is composed of a switch 231 and a capacitor 230. The switch 231 is controlled by the sampling signal SMP, and the sampling signal SMP is related to the driving signal SH to sample the current sensing signal VCS. The discharge current ID is related to n*VO and is used to discharge the cross-voltage VC of the capacitor 230 . The cross voltage VC is compared with the reference voltage Vref by the comparator 280 . The logic circuit 285 generates the degaussing signal Sdmg according to the comparator output CPO and the sampling signal SMP related to the driving signal SH. In one embodiment, the reference voltage Vref is 0 volts, and when the primary side switch current IP is 0, the current sensing voltage VCS is 0.

在一實施例中,去磁訊號Sdmg的時間長度相關於變壓器10的輸入電壓之電壓位準(Vinx),亦即如圖3所示,一次側繞組NP與諧振電容20之耦接節點NNP上的電壓,去磁訊號Sdmg的時間長度也相關於變壓器10的輸出電壓之電壓位準(例如n*VO)及變壓器10於第一電晶體30導通時的激磁時段(TW)。需注意的是,變壓器10的輸入電壓之電壓位準Vinx等於輸入電壓VIN減去諧振電容20的跨壓Vcr。 In one embodiment, the time length of the demagnetization signal Sdmg is related to the voltage level (Vinx) of the input voltage of the transformer 10 , that is, as shown in FIG. 3 , the coupling node NNP of the primary winding NP and the resonant capacitor 20 The voltage and the time length of the demagnetization signal Sdmg are also related to the voltage level of the output voltage of the transformer 10 (for example, n*VO) and the excitation period (TW) of the transformer 10 when the first transistor 30 is turned on. It should be noted that the voltage level Vinx of the input voltage of the transformer 10 is equal to the input voltage VIN minus the voltage Vcr across the resonant capacitor 20 .

根據變壓器10被去磁的磁通量等於變壓器10被激磁的磁通量,可列出以下式1:Vinx*TW=n*VO*TDS (式1) According to the fact that the magnetic flux demagnetized by the transformer 10 is equal to the magnetic flux excited by the transformer 10, the following equation 1 can be listed: Vinx*TW=n*VO*TDS (Equation 1)

其中TW為在變壓器10的激磁時段中,變壓器10的輸入電壓之電壓位準Vinx之出現時間;n*VO為在變壓器10的去磁時段TDS中,變壓器10的電壓。n為一次側繞組NP及二次側繞組NS之匝數比,VO為二次側繞組NS之電壓(即輸出電壓)。 TW is the occurrence time of the voltage level Vinx of the input voltage of the transformer 10 during the excitation period of the transformer 10 ; n*VO is the voltage of the transformer 10 during the demagnetization period TDS of the transformer 10 . n is the turns ratio of the primary winding NP and the secondary winding NS, and VO is the voltage of the secondary winding NS (ie, the output voltage).

在變壓器10被激磁後,電流感測訊號VCS之位準VCSp相關於一次側開關電流IP於激磁過程結束之峰值,且於圖3所示之電阻60上產生,其可以下列式2表示:VCSp=(Vinx/L)*TW*Rs (式2) After the transformer 10 is excited, the level VCSp of the current sensing signal VCS is related to the peak value of the primary-side switching current IP at the end of the exciting process, and is generated on the resistor 60 shown in Figure 3, which can be expressed by the following equation 2: VCSp =(Vinx/L)*TW*Rs (Formula 2)

其中L為變壓器10之一次側繞組NP之電感,Rs為電阻60之電阻值,VCSp為變壓器10於激磁過程結束之電壓位準。 Wherein, L is the inductance of the primary winding NP of the transformer 10, Rs is the resistance value of the resistor 60, and VCSp is the voltage level of the transformer 10 at the end of the excitation process.

設ID=n*VO/Rt,其中Rt為電阻55之電阻值。 Assume ID=n*VO/Rt, where Rt is the resistance value of resistor 55.

去磁訊號Sdmg之脈寬TDSX可被表示為:TDSX=(C*VCSp)/ID,其中C為電容230之電容值。 The pulse width TDSX of the demagnetization signal Sdmg can be expressed as: TDSX=(C*VCSp)/ID, where C is the capacitance value of the capacitor 230.

TDSX=(Rt*C*VCSp)/(n*VO) TDSX=(Rt*C*VCSp)/(n*VO)

TDSX=(Rt*C/(n*VO))*(Rs/L)*Vinx*TW TDSX=(Rt*C/(n*VO))*(Rs/L)*Vinx*TW

設Rt=L/(Rs*C) (式3) Let Rt=L/(Rs*C) (Formula 3)

TDSX=(Vinx*TW)/(n*VO) (式4) TDSX=(Vinx*TW)/(n*VO) (Formula 4)

當式3之條件滿足時,式4所示之去磁訊號Sdmg之導通期間TDSX等於變壓器10之去磁時段TDS。 When the condition of Equation 3 is satisfied, the conduction period TDSX of the demagnetization signal Sdmg shown in Equation 4 is equal to the demagnetization period TDS of the transformer 10 .

請繼續參閱圖10,開關231導通以對電流感測訊號VCS取樣至電容230,且於開關231關斷時(即激磁結束時),電流感測訊號VCS之位準VCSp被保持在電容230,開關231由取樣訊號SMP控制。當開關231關斷時,去磁訊號Sdmg被致能(例如藉由邏輯電路285),換言之,當去磁訊號Sdmg開始致能時,電容230之跨壓VC為電流感測訊號VCS的峰值。在開關231關斷 之後,放電電流ID開始將電容230放電,當電容230經由放電電流ID(ID=n*VO/Rt)完全放電完成時(VC=0V),去磁訊號Sdmg禁能。圖10及圖3所示之電阻55用以設定去磁訊號Sdmg的預設脈寬。 Please continue to refer to Figure 10. The switch 231 is turned on to sample the current sensing signal VCS to the capacitor 230, and when the switch 231 is turned off (that is, when the excitation ends), the level VCSp of the current sensing signal VCS is maintained at the capacitor 230. The switch 231 is controlled by the sampling signal SMP. When the switch 231 is turned off, the demagnetization signal Sdmg is enabled (for example, through the logic circuit 285). In other words, when the demagnetization signal Sdmg starts to be enabled, the voltage VC across the capacitor 230 is the peak value of the current sensing signal VCS. Turn off switch 231 Afterwards, the discharge current ID begins to discharge the capacitor 230. When the capacitor 230 is completely discharged through the discharge current ID (ID=n*VO/Rt) (VC=0V), the demagnetization signal Sdmg is disabled. The resistor 55 shown in FIG. 10 and FIG. 3 is used to set the preset pulse width of the demagnetization signal Sdmg.

在一實施例中,於強制插入的不連續導通模式切換週期中,去磁訊號Sdmg的脈寬TDSX可藉由去磁仿擬器250而與輔助訊號VAUX的脈寬所示意的去磁時段TDS做比較,因此去磁訊號Sdmg的脈寬TDSX可被校正而用於接下來的非不連續導通模式切換週期。在一實施例中,去磁仿擬器250更用以根據不連續導通模式中所偵測到的去磁時段TDS而調整電阻255之電阻值,以校正去磁訊號Sdmg的脈波期間TDSX。 In one embodiment, in the discontinuous conduction mode switching period of forced insertion, the pulse width TDSX of the degaussing signal Sdmg can be compared with the degaussing period TDS represented by the pulse width of the auxiliary signal VAUX by the degaussing simulator 250 Comparison is made, so the pulse width TDSX of the demagnetization signal Sdmg can be corrected and used for the next non-discontinuous conduction mode switching cycle. In one embodiment, the degaussing simulator 250 is further used to adjust the resistance value of the resistor 255 according to the degaussing period TDS detected in the discontinuous conduction mode to correct the pulse period TDSX of the degaussing signal Sdmg.

在其他實施例中,除了調整電阻255之電阻值外,去磁仿擬器250亦可藉由以下方式校正去磁訊號Sdmg的脈波期間TDSX:調整電壓閾值Vth以決定去磁訊號Sdmg之結束,或調整電容230的電容值,或調整例如圖10中電晶體271與電晶體272所組成的電流鏡之比值。 In other embodiments, in addition to adjusting the resistance value of the resistor 255, the degaussing simulator 250 can also correct the pulse period TDSX of the degaussing signal Sdmg in the following manner: adjusting the voltage threshold Vth to determine the end of the degaussing signal Sdmg. , or adjust the capacitance value of the capacitor 230, or adjust, for example, the ratio of the current mirror composed of the transistor 271 and the transistor 272 in FIG. 10 .

圖11顯示本發明之諧振半橋返馳式轉換器之一較佳實施例示意圖。諧振半橋返馳式轉換器900相似於圖3之諧振半橋返馳式轉換器300。在本實施例中,諧振半橋返馳式轉換器900包括第一電晶體M1、第二電晶體M2及第三電晶體M3,第一電晶體M1、第二電晶體M2及第三電晶體M3用以構成半橋電路。就一觀點而言,第一電晶體M1與第三電晶體M3配置為諧振半橋返馳式轉換器900之下橋電晶體,且第二電晶體M2配置為諧振半橋返馳式轉換器900之上橋電晶體。 FIG. 11 shows a schematic diagram of a preferred embodiment of the resonant half-bridge flyback converter of the present invention. The resonant half-bridge flyback converter 900 is similar to the resonant half-bridge flyback converter 300 of FIG. 3 . In this embodiment, the resonant half-bridge flyback converter 900 includes a first transistor M1, a second transistor M2, and a third transistor M3. The first transistor M1, the second transistor M2, and the third transistor are M3 is used to form a half-bridge circuit. From one perspective, the first transistor M1 and the third transistor M3 are configured as lower bridge transistors of the resonant half-bridge flyback converter 900 , and the second transistor M2 is configured as a resonant half-bridge flyback converter. 900 upper bridge transistor.

根據回授訊號VFB及輸入電壓VIN,一次側控制器201用以產生第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3,第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3耦接以經由半橋電路而切換變壓器10,藉此於變壓器10之二次側產生輸出電壓VO。第二驅動訊號S2驅動第二電晶 體M2以激磁變壓器10,第三驅動訊號S3於變壓器10之去磁與諧振時段中導通第三電晶體M3,第三驅動訊號S3也用於導通第三電晶體M3以產生流經變壓器10的循環電流,並於重負載狀態中達成第二電晶體M2的零電壓切換。換言之,第二電晶體M2為諧振半橋返馳式轉換器900之一次側上橋開關且可對應於圖3之第一電晶體30,第三電晶體M3為諧振半橋返馳式轉換器900之一次側下橋開關且可對應於圖3之第二電晶體40。就一觀點而言,第一電晶體M1用以並聯於第三電晶體M3且作為輔助一次側下橋開關,具有獨立的控制訊號S1。 According to the feedback signal VFB and the input voltage VIN, the primary side controller 201 is used to generate the first driving signal S1, the second driving signal S2 and the third driving signal S3. The first driving signal S1, the second driving signal S2 and the third driving signal S3 are generated. The drive signal S3 is coupled to switch the transformer 10 through the half-bridge circuit, thereby generating an output voltage VO on the secondary side of the transformer 10 . The second driving signal S2 drives the second transistor The body M2 excites the transformer 10, and the third driving signal S3 turns on the third transistor M3 during the demagnetization and resonance period of the transformer 10. The third driving signal S3 is also used to turn on the third transistor M3 to generate a voltage flowing through the transformer 10. Circulating current enables zero-voltage switching of the second transistor M2 in a heavy load state. In other words, the second transistor M2 is a primary-side high-bridge switch of the resonant half-bridge flyback converter 900 and can correspond to the first transistor 30 of FIG. 3 , and the third transistor M3 is a resonant half-bridge flyback converter. The primary side lower bridge switch 900 may correspond to the second transistor 40 of FIG. 3 . From one point of view, the first transistor M1 is connected in parallel to the third transistor M3 and serves as an auxiliary primary-side low-bridge switch and has an independent control signal S1.

在一實施例中,在輕負載狀態且操作於不連續導通模式時,藉由導通第二電晶體M2而激磁變壓器10之後,第三電晶體M3於變壓器10之去磁與諧振時段中被控制為導通。於去磁之後,當第三電晶體M3持續關斷,第一驅動訊號S1用以導通第一電晶體M1,以產生流經變壓器10的循環電流而達成第二電晶體M2的零電壓切換時,。因此,第三電晶體M3在不連續導通模式之一個切換週期中可避免切換兩次。 In one embodiment, after the transformer 10 is excited by turning on the second transistor M2 at a light load state and operating in the discontinuous conduction mode, the third transistor M3 is controlled during the demagnetization and resonance period of the transformer 10 for conduction. After demagnetization, when the third transistor M3 continues to be turned off, the first driving signal S1 is used to turn on the first transistor M1 to generate a circulating current flowing through the transformer 10 to achieve zero-voltage switching of the second transistor M2 ,. Therefore, the third transistor M3 can avoid switching twice in one switching period of the discontinuous conduction mode.

由於第一電晶體M1只用以產生循環電流以達成零電壓切換,在一實施例中,第一電晶體M1之實際尺寸(例如長寬比)可配置為遠小於第三電晶體M3之實際尺寸。因此,第一電晶體M1的驅動能力及寄生電容(例如閘極電容)低於第三電晶體M3的寄生電容,第一電晶體M1的切換損耗也因此低於第三電晶體M3的切換損耗。 Since the first transistor M1 is only used to generate circulating current to achieve zero voltage switching, in one embodiment, the actual size (such as aspect ratio) of the first transistor M1 can be configured to be much smaller than the actual size of the third transistor M3 size. Therefore, the driving capability and parasitic capacitance (such as gate capacitance) of the first transistor M1 are lower than the parasitic capacitance of the third transistor M3, and the switching loss of the first transistor M1 is also lower than the switching loss of the third transistor M3. .

舉例而言,電晶體的閘極切換損耗Pg可被表示為:Pg=0.5*Ciss*Vg*Vg*Freq For example, the gate switching loss Pg of the transistor can be expressed as: Pg=0.5*Ciss*Vg*Vg*Freq

其中Ciss為電晶體之輸入電容,Vg為閘極驅動訊號之電壓位準,Freq為閘極驅動訊號之切換頻率。 Where Ciss is the input capacitance of the transistor, Vg is the voltage level of the gate drive signal, and Freq is the switching frequency of the gate drive signal.

如上述開關功率損耗方程式,實際尺寸較小的第一電晶體M1用以專用於不連續導通模式中達成第二電晶體M2的零電壓切換,因此第一電晶體M1的閘極切換損耗低於實際尺寸較大的第三電晶體M3。 As shown in the above switching power loss equation, the first transistor M1 with a smaller actual size is used exclusively to achieve zero-voltage switching of the second transistor M2 in the discontinuous conduction mode. Therefore, the gate switching loss of the first transistor M1 is lower than The third transistor M3 is actually larger in size.

此外,在一實施例中,第一驅動訊號S1的電壓位準(即Vg)之振幅低於第三驅動訊號S3的電壓位準之振幅,因此更可降低第一電晶體M1之切換損耗,且在一實施例中,第一電晶體M1之閘極最大額定值(例如閘源極電壓)也可低於第三電晶體M3之閘極最大額定值。 In addition, in one embodiment, the amplitude of the voltage level (ie, Vg) of the first driving signal S1 is lower than the amplitude of the voltage level of the third driving signal S3, so the switching loss of the first transistor M1 can be further reduced. And in one embodiment, the gate maximum rating (eg gate-source voltage) of the first transistor M1 may also be lower than the gate maximum rating of the third transistor M3.

電阻60藉由偵測變壓器10的一次側開關電流IP而產生電流感測訊號VCS,一次側控制器201用以根據輸入電壓VIN而產生第一驅動訊號S1,並根據輸入電壓VIN及/或輸出電壓VO而產生第三驅動訊號S3。一次側控制器201更用以根據回授訊號VFB而產生第二驅動訊號S2。 The resistor 60 generates the current sensing signal VCS by detecting the primary-side switching current IP of the transformer 10. The primary-side controller 201 is used to generate the first driving signal S1 according to the input voltage VIN, and to output the first driving signal S1 according to the input voltage VIN. voltage VO to generate the third driving signal S3. The primary side controller 201 is further used to generate the second driving signal S2 according to the feedback signal VFB.

圖12顯示本發明之一次側控制器201操作於不連續導通模式之一較佳實施例操作波形圖。於不連續導通模式之操作中,一次側控制器201操作於第一切換週期Tcyc1並控制第一驅動訊號S1於第一時段TA中導通第一電晶體M1,藉此產生循環電流以達成第二電晶體M2導通時的零電壓切換。經過第一時段TA後,第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3用以於第一不導通時段Td1(即空滯時段)中,關斷第一電晶體M1、第二電晶體M2及第三電晶體M3。在一實施例中,第一不導通時段Td1相關於用以達成第二電晶體M2之零電壓切換的準諧振時段。經過第一不導通時段Td1後,第二驅動訊號S2於第二時段TB中,導通第二電晶體M2,第二電晶體M2之導通用以激磁變壓器10。經過第二時段TB後,第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3用以於(即空滯時段)中,關斷第一電晶體M1、第二電晶體M2及第三電晶體M3。在一實施例中,第二不導通時段Td2相關於用以達成第三電晶體M3之零電壓切換的另一準諧振時段。經過第二 不導通時段Td2後,第三驅動訊號S3於第三時段TC中,導通第三電晶體M3,第三電晶體M3於變壓器10之去磁時段中導通。經過第三時段TC後,第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3用以於第三不導通時段TZ中,關斷第一電晶體M1、第二電晶體M2及第三電晶體M3,其中激磁電流IM於第三不導通時段TZ中(即不連續導通模式)維持在零。經過第三不導通時段TZ後,開始另一切換週期Tcyc2。 FIG. 12 shows an operation waveform diagram of a preferred embodiment of the primary-side controller 201 operating in the discontinuous conduction mode of the present invention. In the discontinuous conduction mode operation, the primary side controller 201 operates in the first switching period Tcyc1 and controls the first driving signal S1 to conduct the first transistor M1 in the first period TA, thereby generating a circulating current to achieve the second Zero voltage switching when transistor M2 is on. After the first period TA, the first driving signal S1, the second driving signal S2 and the third driving signal S3 are used to turn off the first transistor M1 and the first non-conducting period Td1 (ie, the dead period). The second transistor M2 and the third transistor M3. In one embodiment, the first non-conduction period Td1 is related to the quasi-resonant period used to achieve zero-voltage switching of the second transistor M2. After the first non-conduction period Td1, the second driving signal S2 turns on the second transistor M2 in the second period TB, and the conduction of the second transistor M2 is used to excite the transformer 10. After the second period TB, the first driving signal S1, the second driving signal S2 and the third driving signal S3 are used to turn off the first transistor M1, the second transistor M2 and the third transistor M1 during the dead period. Tritransistor M3. In one embodiment, the second non-conduction period Td2 is related to another quasi-resonant period for achieving zero-voltage switching of the third transistor M3. After the second After the non-conduction period Td2, the third driving signal S3 turns on the third transistor M3 during the third period TC, and the third transistor M3 turns on during the demagnetization period of the transformer 10. After the third period TC, the first driving signal S1, the second driving signal S2 and the third driving signal S3 are used to turn off the first transistor M1, the second transistor M2 and the third non-conduction period TZ. In the three-transistor M3, the exciting current IM is maintained at zero in the third non-conduction period TZ (ie, the discontinuous conduction mode). After the third non-conduction period TZ, another switching period Tcyc2 starts.

圖13顯示本發明一次側控制器之一較佳實施例方塊圖。在一實施例中,一次側控制器213包括計時器22及控制元件243。控制元件243用以根據輸入電壓VIN(經由VAUX)及回授訊號VFB而產生第一驅動訊號S1、第二驅動訊號S2及第三驅動訊號S3。 Figure 13 shows a block diagram of a preferred embodiment of the primary side controller of the present invention. In one embodiment, the primary side controller 213 includes a timer 22 and a control component 243 . The control element 243 is used to generate the first driving signal S1, the second driving signal S2 and the third driving signal S3 according to the input voltage VIN (via VAUX) and the feedback signal VFB.

計時器22用以計時而產生第三不導通時段TZ,第三不導通時段TZ起始於第三驅動訊號S3脈波結束時(例如下降緣)。在一實施例中,當諧振半橋返馳式轉換器的輸出功率減少時,第三不導通時段TZ對應增加,因此,諧振半橋返馳式轉換器的切換頻率亦能因諧振半橋返馳式轉換器的輸出功率減少而對應減少,藉此改善輕負載操作狀態中的效能。 The timer 22 is used for timing to generate the third non-conduction period TZ. The third non-conduction period TZ starts from the end of the pulse wave of the third driving signal S3 (for example, the falling edge). In one embodiment, when the output power of the resonant half-bridge flyback converter decreases, the third non-conduction period TZ increases correspondingly. Therefore, the switching frequency of the resonant half-bridge flyback converter can also be affected by the resonant half-bridge flyback converter. The output power of the Chi converter is reduced accordingly, thereby improving performance in light load operating conditions.

以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。所說明之各個實施例,並不限於單獨應用,亦可以組合應用,舉例而言,兩個或以上之實施例可以組合運用,而一實施例中之部分組成亦可用以取代另一實施例中對應之組成部件。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,舉例而言,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可 知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。 The present invention has been described above with reference to the preferred embodiments. However, the above description is only to make it easy for those familiar with the art to understand the content of the present invention, and is not intended to limit the scope of rights of the present invention. The various embodiments described are not limited to single application, but can also be used in combination. For example, two or more embodiments can be used in combination, and part of the components in one embodiment can also be used to replace those in another embodiment. Corresponding components. In addition, under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations. For example, the present invention refers to "processing or computing according to a certain signal or generating a certain output result", which is not limited to Depending on the signal itself, it also includes performing voltage-to-current conversion, current-to-voltage conversion, and/or ratio conversion on the signal when necessary, and then processing or calculating the converted signal to produce an output result. From this it can be It is understood that under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations. There are many combinations, and they are not listed here. Accordingly, the scope of the present invention is intended to cover the above and all other equivalent changes.

DCM:不連續導通模式 DCM: discontinuous conduction mode

IP:一次側開關電流 IP: primary side switching current

kn:膝點 kn: knee point

NC:正整數 NC: positive integer

Sdmg:去磁訊號 Sdmg: degaussing signal

SH:驅動訊號 SH: drive signal

SL:驅動訊號 SL: drive signal

t1-t5:時點 t1-t5: time point

ta-te:時點 ta-te: time point

ta’,tc’,t2’:時點 ta’,tc’,t2’: time point

TDS:去磁時段 TDS: degaussing period

TDSX:導通期間 TDSX: conduction period

TDSX’:導通期間 TDSX’: conduction period

TSL:導通期間 TSL: conduction period

TW:激磁時段 TW: Excitation period

VAUX:輔助訊號 VAUX: auxiliary signal

Claims (30)

一種返馳式轉換器,包含:一第一電晶體,用以切換一變壓器以產生一一次側開關電流及一輸出電壓;以及一第二電晶體,用以產生一循環電流以達成該第一電晶體的零電壓切換(zero voltage switching,ZVS);其中當該返馳式轉換器根據該一次側開關電流而判斷為已有一預設數量之切換週期係操作於一非不連續導通模式(non-discontinuous conduction mode,non-DCM)時,該返馳式轉換器主動強制至少一個切換週期操作於一不連續導通模式(discontinuous conduction mode,DCM)。 A flyback converter includes: a first transistor for switching a transformer to generate a primary-side switching current and an output voltage; and a second transistor for generating a circulating current to achieve the first Zero voltage switching (ZVS) of a transistor; wherein the flyback converter is operating in a non-discontinuous conduction mode when it is determined based on the primary-side switch current that there has been a preset number of switching cycles ( non-discontinuous conduction mode (non-DCM), the flyback converter actively forces at least one switching cycle to operate in a discontinuous conduction mode (DCM). 如請求項1所述之返馳式轉換器,其中該返馳式轉換器用以產生一去磁訊號,其中該去磁訊號仿擬該變壓器的一去磁時段,以於該非不連續導通模式期間控制該第二電晶體,其中該返馳式轉換器根據該主動強制之不連續導通模式期間的該去磁時段而校正該去磁訊號。 The flyback converter of claim 1, wherein the flyback converter is used to generate a demagnetization signal, wherein the demagnetization signal simulates a demagnetization period of the transformer during the non-discontinuous conduction mode. The second transistor is controlled, wherein the flyback converter corrects the degaussing signal based on the degaussing period during the actively forced discontinuous conduction mode. 如請求項2所述之返馳式轉換器,其中於該主動強制之不連續導通模式中,該返馳式轉換器從該變壓器的一輔助繞組偵測一反射電壓,以於該第一電晶體關斷期間校正該去磁訊號,其中該反射電壓出現之時間長度相關於該變壓器的該去磁時段。 The flyback converter as claimed in claim 2, wherein in the actively forced discontinuous conduction mode, the flyback converter detects a reflected voltage from an auxiliary winding of the transformer to activate the first voltage The demagnetization signal is corrected during the crystal off period, wherein the length of time the reflected voltage occurs is related to the demagnetization period of the transformer. 如請求項3所述之返馳式轉換器,其中該第一電晶體與該第二電晶體形成一半橋電路,其中於該主動強制之不連續導通模式中,在該第一電晶體關斷後,該第二電晶體被控制為關斷,使得該半橋電路操作於一非同步模式。 The flyback converter of claim 3, wherein the first transistor and the second transistor form a half-bridge circuit, wherein in the actively forced discontinuous conduction mode, when the first transistor is turned off Finally, the second transistor is controlled to be turned off, so that the half-bridge circuit operates in an asynchronous mode. 如請求項1所述之返馳式轉換器,更包含一週期計數器,該週期計數器用以計算該返馳式轉換器操作於該非不連續導通模式的切換週期數量,使得當該一次側開關電流已有一預設數量之切換週期係操作於該非不連續導通模式時,致能該返馳式轉換器主動強制操作於不連續導通模式。 The flyback converter of claim 1 further includes a cycle counter, the cycle counter is used to calculate the number of switching cycles in which the flyback converter operates in the non-discontinuous conduction mode, so that when the primary side switching current The flyback converter is enabled to actively force the flyback converter to operate in the discontinuous conduction mode when a predetermined number of switching cycles have been operated in the non-discontinuous conduction mode. 如請求項2所述之返馳式轉換器,其中該去磁訊號的一脈波期間用以控制該第二電晶體的最小導通時間,藉此於該第一電晶體關斷後,去磁該變壓器。 The flyback converter of claim 2, wherein a pulse period of the demagnetization signal is used to control the minimum conduction time of the second transistor, thereby demagnetizing the first transistor after it is turned off. the transformer. 如請求項2所述之返馳式轉換器,其中該去磁訊號的一脈波期間相關於該變壓器之一激磁時段中的一輸入電壓之一位準、該變壓器的該輸出電壓之一位準以及該第一電晶體的一導通期間。 The flyback converter of claim 2, wherein a pulse period of the demagnetization signal is related to a level of an input voltage in an excitation period of the transformer and a level of the output voltage of the transformer. and a conduction period of the first transistor. 如請求項2所述之返馳式轉換器,更包含一電阻,其中該去磁訊號的一脈波期間根據該電阻之電阻值而決定;其中該返馳式轉換器根據該變壓器於該主動強制之不連續導通模式期間的該去磁時段而調整該電阻之電阻值,以校正該去磁訊號。 The flyback converter as described in claim 2 further includes a resistor, wherein a pulse period of the demagnetization signal is determined according to the resistance value of the resistor; wherein the flyback converter is based on the active voltage of the transformer. The resistance value of the resistor is adjusted during the degaussing period during the forced discontinuous conduction mode to correct the degaussing signal. 如請求項1所述之返馳式轉換器,其中於該主動強制之不連續導通模式期間關斷該第一電晶體後,該變壓器的一去磁電流的一部分流經該第二電晶體的一本體二極體。 The flyback converter of claim 1, wherein after turning off the first transistor during the active forced discontinuous conduction mode, a part of a demagnetization current of the transformer flows through the second transistor. A body diode. 如請求項1所述之返馳式轉換器,其中該返馳式轉換器為一諧振返馳式轉換器,更包含一諧振電容,該諧振電容串聯耦接於該變壓器。 The flyback converter of claim 1, wherein the flyback converter is a resonant flyback converter and further includes a resonant capacitor, and the resonant capacitor is coupled in series to the transformer. 如請求項10所述之返馳式轉換器,其中一第二驅動訊號於該不連續導通模式後的第一個脈波用以導通該第二電晶體,以自該諧振電 容提供一激磁電流至該變壓器激磁該變壓器,進而產生一負循環電流以達成該第一電晶體的零電壓切換。 The flyback converter of claim 10, wherein a second driving signal is used to conduct the second transistor in the first pulse wave after the discontinuous conduction mode to switch from the resonant circuit. An excitation current is provided to the transformer to excite the transformer, thereby generating a negative circulating current to achieve zero-voltage switching of the first transistor. 一種一次側控制電路,用以控制一返馳式轉換器,其中該返馳式轉換器包括:一第一電晶體,用以切換一變壓器以產生一一次側開關電流及一輸出電壓;以及一第二電晶體,用以產生一循環電流以達成該第一電晶體的零電壓切換(zero voltage switching,ZVS),該一次側控制電路包含:一控制元件,用以產生一第一訊號及一第二訊號,該第一訊號及該第二訊號根據一回授訊號分別控制該第一電晶體及該第二電晶體,其中該回授訊號相關於該輸出電壓;以及一週期計數器,用以根據該一次側開關電流而計算該返馳式轉換器操作於一非不連續導通模式的切換週期數量;其中當該控制元件根據該一次側開關電流而判斷為已有一預設數量之切換週期係操作於該非不連續導通模式時,該控制元件主動強制至少一個切換週期操作於一不連續導通模式(discontinuous conduction mode,DCM)。 A primary-side control circuit for controlling a flyback converter, wherein the flyback converter includes: a first transistor for switching a transformer to generate a primary-side switching current and an output voltage; and A second transistor is used to generate a circulating current to achieve zero voltage switching (ZVS) of the first transistor. The primary side control circuit includes: a control element used to generate a first signal and a second signal, the first signal and the second signal respectively control the first transistor and the second transistor according to a feedback signal, wherein the feedback signal is related to the output voltage; and a period counter for The number of switching cycles in which the flyback converter operates in a non-discontinuous conduction mode is calculated based on the primary-side switching current; wherein the control element determines that there has been a preset number of switching cycles based on the primary-side switching current. When operating in the non-discontinuous conduction mode, the control element actively forces at least one switching cycle to operate in a discontinuous conduction mode (DCM). 如請求項12所述之一次側控制電路,更包含一去磁仿擬器,該去磁仿擬器用以產生一去磁訊號以仿擬該變壓器的一去磁時段,進而於該非不連續導通模式期間控制該第二電晶體,其中該去磁仿擬器根據該主動強制之不連續導通模式期間的該去磁時段而校正該去磁訊號。 The primary side control circuit of claim 12 further includes a degaussing simulator, the degaussing simulator is used to generate a degaussing signal to simulate a degaussing period of the transformer, and then in the non-discontinuous conduction The second transistor is controlled during the mode, wherein the degaussing simulator corrects the degaussing signal according to the degaussing period during the actively forced discontinuous conduction mode. 如請求項13所述之一次側控制電路,其中於該主動強制之不連續導通模式中,該去磁仿擬器從該變壓器的一輔助繞組偵測一反射電壓,以於該第一電晶體關斷期間校正該去磁訊號,其中該反射電壓出現之時間長度相關於該變壓器的該去磁時段。 The primary side control circuit of claim 13, wherein in the actively forced discontinuous conduction mode, the degaussing simulator detects a reflected voltage from an auxiliary winding of the transformer to apply the voltage to the first transistor. The degaussing signal is corrected during the off period, wherein the length of time the reflected voltage occurs is related to the degaussing period of the transformer. 如請求項14所述之摘一控制電路,其中該第一電晶體與該第二電晶體形成一半橋電路,其中於該主動強制之不連續導通模式中,在該 第一電晶體關斷後,該第二電晶體被控制為關斷,使得該半橋電路操作於一非同步模式。 A control circuit as claimed in claim 14, wherein the first transistor and the second transistor form a half-bridge circuit, wherein in the actively forced discontinuous conduction mode, in the After the first transistor is turned off, the second transistor is controlled to be turned off, so that the half-bridge circuit operates in an asynchronous mode. 如請求項13所述之一次側控制電路,其中該去磁訊號的一脈波期間用以控制該第二電晶體的最小導通時間,藉此於該第一電晶體關斷後,去磁該變壓器。 The primary side control circuit as described in claim 13, wherein a pulse period of the demagnetization signal is used to control the minimum conduction time of the second transistor, thereby demagnetizing the first transistor after it is turned off. transformer. 如請求項13所述之一次側控制電路,其中該去磁訊號的一脈波期間相關於該變壓器之一激磁時段中的一輸入電壓之一位準、該變壓器的該輸出電壓之一位準以及該第一電晶體的一導通期間。 The primary side control circuit of claim 13, wherein a pulse period of the demagnetization signal is related to a level of an input voltage in an excitation period of the transformer and a level of the output voltage of the transformer and a conduction period of the first transistor. 如請求項13所述之一次側控制電路,其中該一次側控制電路更調整一電阻之電阻值,以根據該變壓器於該主動強制之不連續導通模式期間的該去磁時段而校正該去磁訊號,其中該電阻耦接於該返馳式轉換器,其中該去磁訊號的一脈波期間根據該電阻之電阻值而決定。 The primary side control circuit of claim 13, wherein the primary side control circuit further adjusts the resistance value of a resistor to correct the demagnetization according to the demagnetization period of the transformer during the active forced discontinuous conduction mode. A signal, wherein the resistor is coupled to the flyback converter, and wherein a pulse period of the demagnetization signal is determined according to the resistance value of the resistor. 如請求項12所述之一次側控制電路,其中於該主動強制之不連續導通模式期間,該控制元件控制該第二電晶體關斷,使得該第一電晶體關斷後,該變壓器的一去磁電流的一部分流經該第二電晶體的一本體二極體。 The primary side control circuit of claim 12, wherein during the active forced discontinuous conduction mode, the control element controls the second transistor to turn off, so that after the first transistor turns off, a portion of the transformer A portion of the demagnetizing current flows through a body diode of the second transistor. 如請求項12所述之一次側控制電路,其中一第二驅動訊號於該不連續導通模式後的第一個脈波用以導通該第二電晶體,以自該返馳式轉換器的一諧振電容提供一激磁電流至該變壓器激磁該變壓器,進而產生一負循環電流以達成該第一電晶體的零電壓切換,其中該諧振電容串聯耦接於該變壓器。 The primary side control circuit of claim 12, wherein a second driving signal is used to turn on the second transistor in the first pulse wave after the discontinuous conduction mode to convert from a The resonant capacitor provides an exciting current to the transformer to excite the transformer, thereby generating a negative circulating current to achieve zero-voltage switching of the first transistor, wherein the resonant capacitor is coupled in series to the transformer. 如請求項14所述之一次側控制電路,其中該去磁仿擬器包括: 一積分電容及一開關,其中該開關耦接以取樣維持一電流感測訊號,其中該電流感測訊號相關於該一次側開關電流;以及一放電電路,用以產生一放電電流以將該積分電容放電,其中該放電電流相關於該輸出電壓;其中該去磁訊號根據該積分電容的一跨壓而產生,其中該放電電流從激磁該變壓器的一端將該積分電容放電。 The primary side control circuit as claimed in claim 14, wherein the degaussing simulator includes: an integrating capacitor and a switch, wherein the switch is coupled to sample and maintain a current sensing signal, wherein the current sensing signal is related to the primary side switch current; and a discharge circuit for generating a discharge current to integrate the integrating The capacitor is discharged, wherein the discharge current is related to the output voltage; wherein the demagnetization signal is generated according to a voltage across the integrating capacitor, and wherein the discharge current discharges the integrating capacitor from one end of the energized transformer. 一種控制方法,用以控制一返馳式轉換器,其中該返馳式轉換器包括:一第一電晶體,用以切換一變壓器以產生一一次側開關電流及一輸出電壓;以及一第二電晶體,用以產生一循環電流以達成該第一電晶體的零電壓切換(zero voltage switching,ZVS),該控制方法包含:產生一第一訊號及一第二訊號,該第一訊號及該第二訊號根據一回授訊號分別控制該第一電晶體及該第二電晶體,其中該回授訊號相關於該輸出電壓;根據該一次側開關電流而計算該返馳式轉換器操作於一非不連續導通模式的切換週期數量;以及當根據該一次側開關電流而判斷為已有一預設數量之切換週期係操作於該非不連續導通模式時,主動強制至少一個切換週期操作於一不連續導通模式(discontinuous conduction mode,DCM)。 A control method for controlling a flyback converter, wherein the flyback converter includes: a first transistor for switching a transformer to generate a primary-side switching current and an output voltage; and a first transistor. Two transistors are used to generate a circulating current to achieve zero voltage switching (ZVS) of the first transistor. The control method includes: generating a first signal and a second signal, the first signal and The second signal controls the first transistor and the second transistor respectively according to a feedback signal, wherein the feedback signal is related to the output voltage; the flyback converter operation is calculated based on the primary side switch current. a number of switching cycles in a non-discontinuous conduction mode; and when it is determined based on the primary side switch current that a predetermined number of switching cycles have been operated in the non-discontinuous conduction mode, actively forcing at least one switching cycle to operate in a non-discontinuous conduction mode Continuous conduction mode (DCM). 如請求項22所述之控制方法,更包含:產生一去磁訊號以仿擬該變壓器的一去磁時段,進而於該非不連續導通模式期間控制該第二電晶體;以及根據該主動強制之不連續導通模式期間的該去磁時段而校正該去磁訊號。 The control method of claim 22, further comprising: generating a demagnetization signal to simulate a demagnetization period of the transformer, thereby controlling the second transistor during the non-discontinuous conduction mode; and according to the active forcing The degaussing signal is corrected during the degaussing period during the discontinuous conduction mode. 如請求項23所述之控制方法,其中校正該去磁訊號之步驟包括:於該主動強制之不連續導通模式中,從該變壓器的一輔助繞組偵測一反射電壓,以於該第一電晶體關斷期間校正該去磁訊號,其中該反射電壓出現之時間長度相關於該變壓器的該去磁時段。 The control method of claim 23, wherein the step of correcting the demagnetization signal includes: detecting a reflected voltage from an auxiliary winding of the transformer in the active forced discontinuous conduction mode to generate a signal in the first voltage. The demagnetization signal is corrected during the crystal off period, wherein the length of time the reflected voltage occurs is related to the demagnetization period of the transformer. 如請求項24所述之控制方法,其中該第一電晶體與該第二電晶體形成一半橋電路,其中校正該去磁訊號之步驟更包括:於該主動強制之不連續導通模式中,在該第一電晶體關斷後,控制該第二電晶體為關斷,使得該半橋電路操作於一非同步模式。 The control method of claim 24, wherein the first transistor and the second transistor form a half-bridge circuit, and the step of correcting the demagnetization signal further includes: in the actively forced discontinuous conduction mode, in After the first transistor is turned off, the second transistor is controlled to be turned off, so that the half-bridge circuit operates in an asynchronous mode. 如請求項23所述之控制方法,其中產生該第一訊號及該第二訊號之步驟包括:根據該去磁訊號的一脈波期間而控制該第二電晶體的最小導通時間,藉此於該第一電晶體關斷後,去磁該變壓器。 The control method as described in claim 23, wherein the step of generating the first signal and the second signal includes: controlling the minimum conduction time of the second transistor according to a pulse period of the demagnetization signal, thereby After the first transistor is turned off, the transformer is demagnetized. 如請求項23所述之控制方法,其中該去磁訊號的一脈波期間相關於該變壓器之一激磁時段中的一輸入電壓之一位準、該變壓器的該輸出電壓之一位準以及該第一電晶體的一導通期間。 The control method as claimed in claim 23, wherein a pulse period of the demagnetization signal is related to a level of an input voltage in an excitation period of the transformer, a level of the output voltage of the transformer and the level of the transformer. A conduction period of the first transistor. 如請求項23所述之控制方法,其中校正該去磁訊號之步驟包括:調整一電阻之電阻值,以根據該變壓器於該主動強制之不連續導通模式期間的該去磁時段而校正該去磁訊號,其中該電阻耦接於該返馳式轉換器,其中該去磁訊號的一脈波期間根據該電阻之電阻值而決定。 The control method of claim 23, wherein the step of correcting the demagnetization signal includes: adjusting a resistance value of a resistor to correct the demagnetization period according to the demagnetization period of the transformer during the active forced discontinuous conduction mode. Magnetic signal, wherein the resistor is coupled to the flyback converter, wherein a pulse period of the demagnetization signal is determined according to the resistance value of the resistor. 如請求項22所述之控制方法,更包含: 於該主動強制之不連續導通模式期間,控制該第二電晶體關斷,使得該第一電晶體關斷後,該變壓器的一去磁電流的一部分流經該第二電晶體的一本體二極體。 The control method as described in request 22 further includes: During the active forced discontinuous conduction mode, the second transistor is controlled to be turned off, so that after the first transistor is turned off, a part of a demagnetizing current of the transformer flows through a body 2 of the second transistor. polar body. 如請求項22所述之控制方法,更包含:藉由一第二驅動訊號於該不連續導通模式後的第一個脈波導通該第二電晶體,以自該返馳式轉換器的一諧振電容提供一激磁電流至該變壓器以激磁該變壓器,進而產生一負循環電流以達成該第一電晶體的零電壓切換,其中該諧振電容串聯耦接於該變壓器。 The control method as described in claim 22, further comprising: using a second driving signal to conduct the second transistor in the first pulse wave after the discontinuous conduction mode, so as to convert a pulse from the flyback converter to The resonant capacitor provides an exciting current to the transformer to excite the transformer, thereby generating a negative circulating current to achieve zero-voltage switching of the first transistor, wherein the resonant capacitor is coupled in series to the transformer.
TW111121176A 2021-08-11 2022-06-08 Flyback power converter having emulated demagnetized signal and primary-side control circuit and control method thereof TWI825773B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163231806P 2021-08-11 2021-08-11
US63/231806 2021-08-11
US17/673,158 US20220271675A1 (en) 2021-02-25 2022-02-16 Flyback power converter having emulated demagnetized signal and switching control circuit and control method thereof
US17/673158 2022-02-16

Publications (2)

Publication Number Publication Date
TW202308283A TW202308283A (en) 2023-02-16
TWI825773B true TWI825773B (en) 2023-12-11

Family

ID=86651200

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111121176A TWI825773B (en) 2021-08-11 2022-06-08 Flyback power converter having emulated demagnetized signal and primary-side control circuit and control method thereof

Country Status (2)

Country Link
CN (1) CN115940647A (en)
TW (1) TWI825773B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM312840U (en) * 2006-11-24 2007-05-21 Ching-Ming Lai Single level logic connection controlled power converter characterized by high power factor
TW201503558A (en) * 2013-07-01 2015-01-16 Univ Nat Formosa Self-oscillating and single stage high power factor driver circuit
CN110249516A (en) * 2017-02-03 2019-09-17 哈佛大学校长及研究员 Highly integrated high-pressure activated device driver
US20200112257A1 (en) * 2018-10-05 2020-04-09 Infineon Technologies Austria Ag Asymmetric power converter, power converters, and operating power converters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM312840U (en) * 2006-11-24 2007-05-21 Ching-Ming Lai Single level logic connection controlled power converter characterized by high power factor
TW201503558A (en) * 2013-07-01 2015-01-16 Univ Nat Formosa Self-oscillating and single stage high power factor driver circuit
CN110249516A (en) * 2017-02-03 2019-09-17 哈佛大学校长及研究员 Highly integrated high-pressure activated device driver
US20200112257A1 (en) * 2018-10-05 2020-04-09 Infineon Technologies Austria Ag Asymmetric power converter, power converters, and operating power converters

Also Published As

Publication number Publication date
CN115940647A (en) 2023-04-07
TW202308283A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
US10644604B2 (en) Flyback switching power supply
US10312817B2 (en) Systems and methods of active clamp flyback power converters
US7339799B2 (en) Switching power supply
US20180159437A1 (en) Control method and control apparatus for flyback circuit
WO2012153799A1 (en) Switching power supply device
US7522429B2 (en) DC-DC converter
US11165355B2 (en) Clamping switch abnormality detection method, clamping switch abnormality detection circuit and switch circuit
KR101727290B1 (en) Converter and the driving method thereof
TWI653810B (en) Control device and control method
JP2010124678A (en) Switching power supply apparatus and switching power supply control circuit
CN113937988B (en) Asymmetric half-bridge flyback converter and control method thereof
CN113572364B (en) Switching power supply system and synchronous rectification controller thereof
CN114123784B (en) Resonant half-bridge flyback power supply and primary side control circuit and control method thereof
TWI822091B (en) Half-bridge flyback power converter and control method thereof
US20220271676A1 (en) Half-bridge flyback power converter and control method thereof
TWI825773B (en) Flyback power converter having emulated demagnetized signal and primary-side control circuit and control method thereof
TW202110053A (en) Method For Driving An Electronic Switch In A Power Converter Circuit And Power Converter Circuit
TWI824551B (en) Resonant half-bridge flyback power converter with skipping cycles and control method thereof
US20240120844A1 (en) Resonant flyback power converter and switching control circuit and method thereof
US20240128876A1 (en) Resonant flyback power converter and switching control circuit and method thereof
CN117856609A (en) Resonant flyback power converter and switching control circuit and method thereof
KR101486962B1 (en) Converter and the driving method thereof
CN117914126A (en) Resonant flyback power converter and switching control circuit and method thereof
KR20160147689A (en) Converter and the driving method thereof
JP2003219639A (en) Switching power source