TWI825754B - Display driving circuit and related display device - Google Patents

Display driving circuit and related display device Download PDF

Info

Publication number
TWI825754B
TWI825754B TW111120123A TW111120123A TWI825754B TW I825754 B TWI825754 B TW I825754B TW 111120123 A TW111120123 A TW 111120123A TW 111120123 A TW111120123 A TW 111120123A TW I825754 B TWI825754 B TW I825754B
Authority
TW
Taiwan
Prior art keywords
circuit
switch
clock signal
display
coupled
Prior art date
Application number
TW111120123A
Other languages
Chinese (zh)
Other versions
TW202347291A (en
Inventor
Chung-Hsien Hsu
蔡政霖
鄭婉羚
杜明鴻
陳雅芳
楊智翔
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW111120123A priority Critical patent/TWI825754B/en
Priority to CN202211225182.3A priority patent/CN116434692A/en
Publication of TW202347291A publication Critical patent/TW202347291A/en
Application granted granted Critical
Publication of TWI825754B publication Critical patent/TWI825754B/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

The present disclosure provides a display driving circuit and a related display device. The display driving circuit includes a grayscale generating circuit, a pulse width modulation control circuit, and a plurality of channel driving circuits. The grayscale generating circuit is configured to generate an original clock signal according to the display data. The pulse width modulation control circuit is configured to generate at least one first clock signal according to the display data, wherein a pulse width of the first clock signal is less than or equal to a pulse width of the original clock signal. Each channel driving circuit includes a current source, at least one first switch circuit and a second switch circuit. The current source is configured to provide driving current. The first switch circuit is coupled to the current source for receiving the driving current and turns on selectively according to the first clock signal. The second switch circuit is coupled to the current source through the first switch circuit, and configured to turn on selectively according to the original clock signal.

Description

顯示驅動電路及相關顯示裝置Display drive circuits and related display devices

本揭示文件是關於一種顯示驅動電路以及相關的顯示裝置,特別是關於一種具有高灰階解析度與低接腳數量的顯示驅動電路以及相關顯示裝置。 This disclosure document relates to a display driving circuit and related display devices, in particular to a display driving circuit and related display devices with high grayscale resolution and low pin count.

發光二極體(light emitting diode,LED)顯示器的灰階解析度可使用位元表示,總位元數越高代表LED顯示器的灰階解析度越高,可以呈現的灰階越精細。相反地,總位元數越低代表LED顯示器的灰階解析度越低,進而影響LED顯示器的在灰階顯示上(尤其是低灰階)的鑑別度。 The grayscale resolution of a light emitting diode (LED) display can be expressed in bits. The higher the total number of bits, the higher the grayscale resolution of the LED display, and the finer the grayscale it can present. On the contrary, the lower the total number of bits, the lower the gray-scale resolution of the LED display, which in turn affects the discrimination of the LED display in gray-scale display (especially low gray-scale).

LED顯示器的多個參數:幀率(frame rate)、灰階解析度以及每個掃描晶片驅動的掃描線數量彼此之間是相關聯的。當幀率固定時,若增加每個掃描晶片驅動的掃描線數量,雖可減少晶片數量以節省製造成本,但會縮短掃描線時間(line time)而降低灰階解析度。另一方面,若減少每個掃描晶片驅動的掃描線數量,雖可增加掃描線時間而提升灰階解析度,但會增加製造成本。Multiple parameters of LED displays: frame rate, grayscale resolution, and the number of scan lines driven by each scanning chip are related to each other. When the frame rate is fixed, if the number of scan lines driven by each scanning chip is increased, although the number of chips can be reduced to save manufacturing costs, the scan line time (line time) will be shortened and the grayscale resolution will be reduced. On the other hand, if the number of scan lines driven by each scanning chip is reduced, although the scan line time can be increased and the grayscale resolution can be improved, the manufacturing cost will be increased.

因此,如何兼顧LED顯示器的製造成本與灰階解析度,為本領域之課題。Therefore, how to balance the manufacturing cost and grayscale resolution of LED displays is an issue in this field.

為了解決上述問題,本揭示文件提供一種顯示驅動電路,包含灰階產生電路、脈衝寬度調變(pulse width modulation,PWM)控制電路以及複數個通道驅動電路。灰階產生電路用以依據顯示資料產生原始時脈訊號。PWM控制電路用以依據顯示資料產生至少一第一時脈訊號,其中至少一第一時脈訊號的脈波寬度小於或等於原始時脈訊號的脈波寬度。每個通道驅動電路包含電流源、至少一第一開關電路以及一第二開關電路。電流源用以提供驅動電流。第一開關電路耦接於電流源,用以接收驅動電流,並用以依據至少一第一時脈訊號選擇性導通。第二開關電路透過至少一第一開關電路耦接於電流源,用以依據原始時脈訊號選擇性導通。In order to solve the above problems, this disclosure document provides a display driving circuit, which includes a grayscale generation circuit, a pulse width modulation (pulse width modulation, PWM) control circuit, and a plurality of channel driving circuits. The gray scale generation circuit is used to generate the original clock signal based on the display data. The PWM control circuit is used to generate at least one first clock signal according to the display data, wherein the pulse width of the at least one first clock signal is less than or equal to the pulse width of the original clock signal. Each channel driving circuit includes a current source, at least a first switch circuit and a second switch circuit. The current source is used to provide driving current. The first switch circuit is coupled to the current source for receiving the driving current and for selectively conducting according to at least one first clock signal. The second switch circuit is coupled to the current source through at least one first switch circuit for selectively conducting according to the original clock signal.

本揭示文件更提供一種顯示裝置,包含顯示驅動電路、多個資料線以及多個畫素。其中顯示驅動電路包含灰階產生電路、PWM控制電路以及複數個通道驅動電路。灰階產生電路用以依據顯示資料產生原始時脈訊號。PWM控制電路用以依據顯示資料產生至少一第一時脈訊號,其中至少一第一時脈訊號的脈波寬度小於或等於原始時脈訊號的脈波寬度。每個通道驅動電路包含電流源、至少一第一開關電路以及一第二開關電路。電流源用以提供驅動電流。第一開關電路耦接於電流源,用以接收驅動電流,並用以依據至少一第一時脈訊號選擇性導通。第二開關電路透過至少一第一開關電路耦接於電流源,用以依據原始時脈訊號選擇性導通。每個畫素透過多個資料線其中之一耦接至顯示驅動電路以接收驅動電流。This disclosure document further provides a display device, including a display driving circuit, a plurality of data lines, and a plurality of pixels. The display driving circuit includes a gray scale generation circuit, a PWM control circuit and a plurality of channel driving circuits. The gray scale generation circuit is used to generate the original clock signal based on the display data. The PWM control circuit is used to generate at least one first clock signal according to the display data, wherein the pulse width of the at least one first clock signal is less than or equal to the pulse width of the original clock signal. Each channel driving circuit includes a current source, at least a first switch circuit and a second switch circuit. The current source is used to provide driving current. The first switch circuit is coupled to the current source for receiving the driving current and for selectively conducting according to at least one first clock signal. The second switch circuit is coupled to the current source through at least one first switch circuit for selectively conducting according to the original clock signal. Each pixel is coupled to the display driving circuit through one of the plurality of data lines to receive driving current.

上述顯示驅動電路以及顯示裝置的優點,在於可以提高灰階位元數較低的LED顯示器的解析度,進而改善在低灰階時辨識度偏低的問題。此外,也可以縮小或調整不同灰階之間的差異級距。The advantage of the above-mentioned display driving circuit and display device is that it can improve the resolution of LED displays with low grayscale bits, thereby improving the problem of low recognition at low grayscales. In addition, you can also reduce or adjust the difference between different gray levels.

於本揭示文件中,當一元件被稱為「連結」或「耦接」時,可指「電性連接」或「電性耦接」。「連結」或「耦接」亦可用以表示二或多個元件間相互搭配操作或互動。此外,雖然本揭示文件中使用「第一」、「第二」、…等用語描述不同元件,該用語僅是用以區別以相同技術用語描述的元件或操作。除非上下文清楚指明,否則該用語並非特別指稱或暗示次序或順位,亦非用以限定本揭示文件。In this disclosure document, when a component is referred to as "connected" or "coupled," it may mean "electrically connected" or "electrically coupled." "Connection" or "coupling" can also be used to indicate the coordinated operation or interaction between two or more elements. In addition, although terms such as “first”, “second”, etc. are used in this disclosure document to describe different components, these terms are only used to distinguish components or operations described by the same technical terms. Unless the context clearly indicates otherwise, such terms do not specifically refer to or imply a sequence or sequence, nor are they intended to limit this disclosure document.

第1圖為根據一些實施例所繪示的顯示裝置1簡化後的功能方塊圖。顯示裝置1包含顯示驅動電路10、掃描開關電路12、畫素單元P[11]~P[MN]、M條掃描線SL[1]~SL[M]以及N條資料線DL[1]~DL[N],其中M、N是大於1的整數。Figure 1 is a simplified functional block diagram of a display device 1 according to some embodiments. The display device 1 includes a display driving circuit 10, a scan switch circuit 12, pixel units P[11]˜P[MN], M scan lines SL[1]˜SL[M], and N data lines DL[1]˜ DL[N], where M and N are integers greater than 1.

在結構上,在一實施例中,每個畫素單元P[11]~P[MN]以一個發光二極體來實現,每一列(row)的N個二極體的陽極電性連接掃描線SL[1]~SL[M]的其中之一,每一行(column)的M個二極體的陰極電性連接資料線DL[1]~DL[N]的其中之一。畫素單元P[11]~P[MN]透過掃描線SL[1]~SL[M]耦接於掃描開關電路12,並透過資料線DL[1]~DL[N]耦接於顯示驅動電路10。顯示驅動電路10用於提供驅動電流至資料線DL[1]~DL[N]。掃描開關電路12用於選擇畫素單元P[11]~P[MN]中欲發光的列,其中畫素單元P[11]~P[MN]產生的亮度對應於接收到的驅動電流大小。Structurally, in one embodiment, each pixel unit P[11]~P[MN] is implemented with a light-emitting diode, and the anodes of the N diodes in each row are electrically connected and scanned. One of the lines SL[1]~SL[M], the cathodes of the M diodes in each row (column) are electrically connected to one of the data lines DL[1]~DL[N]. The pixel units P[11]~P[MN] are coupled to the scan switch circuit 12 through the scan lines SL[1]~SL[M], and coupled to the display driver through the data lines DL[1]~DL[N]. Circuit 10. The display driving circuit 10 is used to provide driving current to the data lines DL[1]~DL[N]. The scanning switch circuit 12 is used to select the column to be emitted in the pixel units P[11]˜P[MN], where the brightness generated by the pixel units P[11]˜P[MN] corresponds to the received driving current.

第2圖為根據一些實施例所繪示的顯示驅動電路20的示意圖,其中顯示驅動電路20可用於實現第1圖的顯示驅動電路10。顯示驅動電路20包含灰階產生電路200以及多個通道驅動電路210_1~210_N。灰階產生電路200根據顯示資料Data,產生並調整多個原始時脈訊號Gray0_1~Gray0_N,並將原始時脈訊號Gray0_1~Gray0_N分別傳送至通道驅動電路210_1~210_N。通道驅動電路210_1~210_N依據原始時脈訊號Gray0_1~Gray0_N,選擇性地提供驅動電流至資料線DL[1]~DL[N]。若顯示裝置1採用第2圖的顯示驅動電路20做為顯示驅動電路10,則顯示裝置1可能具有較低灰階解析度,或者可能較難點亮畫素單元P[11]~P[MN]。為說明這些問題,以下將配合第2、3A和3B圖說明顯示驅動電路20的運作。FIG. 2 is a schematic diagram of a display driving circuit 20 according to some embodiments, wherein the display driving circuit 20 can be used to implement the display driving circuit 10 of FIG. 1 . The display driving circuit 20 includes a gray scale generation circuit 200 and a plurality of channel driving circuits 210_1˜210_N. The grayscale generation circuit 200 generates and adjusts a plurality of original clock signals Gray0_1~Gray0_N according to the display data Data, and transmits the original clock signals Gray0_1~Gray0_N to the channel driving circuits 210_1~210_N respectively. The channel driving circuits 210_1~210_N selectively provide driving current to the data lines DL[1]~DL[N] according to the original clock signals Gray0_1~Gray0_N. If the display device 1 adopts the display driving circuit 20 of FIG. 2 as the display driving circuit 10, the display device 1 may have a lower grayscale resolution, or it may be difficult to light the pixel units P[11]˜P[MN ]. To illustrate these problems, the operation of the display driving circuit 20 will be described below with reference to Figures 2, 3A and 3B.

請先參考第2圖,通道驅動電路210_1~210_N彼此具有相似的元件、連接關係以及運作,為簡潔起見,以下僅說明通道驅動電路210_1。在一些實施例中,通道驅動電路210_1包含電流源106以及第二開關電路SW2。電流源106的一端耦接至接地電源GND,另一端耦接至第二開關電路SW2的一端。第二開關電路SW2的一端耦接至電流源106,另一端耦接至資料線DL[1],且控制端耦接至灰階產生電路200,用以從灰階產生電路200接收原始時脈訊號Gray0_1,藉此選擇性導通。 Please refer to Figure 2 first. The channel driving circuits 210_1~210_N have similar components, connection relationships and operations. For the sake of simplicity, only the channel driving circuit 210_1 will be described below. In some embodiments, the channel driving circuit 210_1 includes the current source 106 and the second switch circuit SW2. One end of the current source 106 is coupled to the ground power supply GND, and the other end is coupled to one end of the second switch circuit SW2. One end of the second switch circuit SW2 is coupled to the current source 106, the other end is coupled to the data line DL[1], and the control end is coupled to the gray scale generation circuit 200 for receiving the original clock pulse from the gray scale generation circuit 200. Signal Gray0_1 is selectively turned on.

電流源106用以透過第二開關電路SW2提供驅動電流至資料線DL[1],例如從資料線DL[1]抽取驅動電流。在一實施例中,當SL[1]上有掃描電壓,且電流源106從資料線DL[1]抽取驅動電流時,畫素單元P[11]會產生特定灰階的亮度。在一實施例中,當SL[2]上有掃描電壓,且電流源106從資料線DL[1]抽取驅動電流時,畫素單元P[21]會產生特定灰階的亮度。 The current source 106 is used to provide a driving current to the data line DL[1] through the second switch circuit SW2, for example, to extract the driving current from the data line DL[1]. In one embodiment, when there is a scanning voltage on SL[1] and the current source 106 draws the driving current from the data line DL[1], the pixel unit P[11] will generate a brightness of a specific gray level. In one embodiment, when there is a scanning voltage on SL[2] and the current source 106 draws the driving current from the data line DL[1], the pixel unit P[21] will generate a brightness of a specific gray level.

請參照第3A和3B圖。第3A圖為根據第2圖的實施例所繪製的顯示裝置1的子幀(subframe)示意圖。第3B圖為根據第2圖的實施例所繪製的顯示驅動電路20的時序圖。舉例而言,當顯示裝置1的幀率(frame rate)為60Hz,一幀具有64個子幀,掃描線群組數量為53時,可以推算顯示裝置1的掃描線時間(line time)為1/(60×64×53)秒,即約為4.91微秒。在一實施例中,第1圖的掃描開關電路12包含多個掃描晶片,每個掃描晶片用於驅動預定數量的掃描線,而掃描線群組數量指的是前述預定數量的掃描線。假設LED點亮前與熄滅後的空滯時間(即dead time與dummy time)總和為2.4微秒,則可以推算LED的致能時間為4.91-2.4=2.51微秒。當顯示裝置1的灰階位元(bit)數為13位元(以下稱作為「13位元/53掃」),代表在一幀對應於2的13次方(即8192)個全域時脈訊號的週期,代表一個子幀當中具有8192/64=128個全域時脈訊號的週期。因此,可以計算出全域時脈訊號的頻率須至少為1/(2.51×10 -6/128)Hz,即為約50MHz。在一實施例中,全域時脈訊號指的是整個積體電路之中,所有時脈訊號所參考的時脈訊號。舉例而言,若要使第2圖中的通道驅動電路210_1提供對應於灰階值為1的驅動電流至資料線DL[1],則原始時脈訊號Gray0_1的致能時間等於一個全域時脈訊號的週期。若要使第2圖中的通道驅動電路210_1提供對應於灰階值為2的驅動電流至資料線DL[1],則原始時脈訊號Gray0_1的致能時間等於兩個全域時脈訊號的週期,以此類推。 Please refer to Figures 3A and 3B. FIG. 3A is a schematic diagram of a subframe of the display device 1 drawn according to the embodiment of FIG. 2 . FIG. 3B is a timing diagram of the display driving circuit 20 drawn according to the embodiment of FIG. 2 . For example, when the frame rate of the display device 1 is 60Hz, one frame has 64 subframes, and the number of scan line groups is 53, it can be estimated that the scan line time of the display device 1 is 1/ (60×64×53) seconds, which is approximately 4.91 microseconds. In one embodiment, the scan switch circuit 12 in FIG. 1 includes a plurality of scan chips, each scan chip is used to drive a predetermined number of scan lines, and the number of scan line groups refers to the aforementioned predetermined number of scan lines. Assuming that the sum of the dead time (ie, dead time and dummy time) before the LED lights up and after it goes out is 2.4 microseconds, it can be calculated that the LED enable time is 4.91-2.4=2.51 microseconds. When the number of grayscale bits of the display device 1 is 13 bits (hereinafter referred to as "13 bits/53 scans"), it means that one frame corresponds to 2 to the 13th power (i.e. 8192) global clocks The signal period represents the period of 8192/64=128 global clock signals in a subframe. Therefore, it can be calculated that the frequency of the global clock signal must be at least 1/(2.51×10 -6 /128)Hz, which is approximately 50MHz. In one embodiment, the global clock signal refers to the clock signal to which all clock signals in the entire integrated circuit are referenced. For example, if the channel driving circuit 210_1 in Figure 2 is to provide a driving current corresponding to a gray scale value of 1 to the data line DL[1], then the enable time of the original clock signal Gray0_1 is equal to a global clock The period of the signal. If the channel driving circuit 210_1 in Figure 2 provides a driving current corresponding to a gray scale value of 2 to the data line DL[1], then the enable time of the original clock signal Gray0_1 is equal to the periods of the two global clock signals. , and so on.

同理,當顯示裝置1的其他參數維持不變,灰階位元數改變為16位元時,可以計算出全域時脈訊號的頻率須至少為407MHz。在現今技術中,為了給予LED充足的導通時間以完全點亮LED,適當的全域時脈訊號的頻率為100MHz以下,因此407MHz的全域時脈訊號對於LED來說過快。若欲保持灰階位元數為16位元,則在全域時脈訊號的頻率不超過100MHz之情況下,需將掃描線群組數量變更為20(以下稱作為「16位元/20掃」)。然而,16位元/20掃之設置將導致需要使用較多顆晶片來製造掃描開關電路12,不利於製造成本。Similarly, when other parameters of the display device 1 remain unchanged and the number of grayscale bits is changed to 16 bits, it can be calculated that the frequency of the global clock signal must be at least 407MHz. In today's technology, in order to give the LED sufficient on-time to fully light up the LED, the frequency of the appropriate global clock signal is below 100MHz, so the 407MHz global clock signal is too fast for the LED. If you want to keep the number of grayscale bits at 16 bits, and the frequency of the global clock signal does not exceed 100MHz, you need to change the number of scan line groups to 20 (hereinafter referred to as "16 bits/20 scans" ). However, the 16-bit/20-scan setting will require the use of more wafers to manufacture the scan switch circuit 12, which is detrimental to the manufacturing cost.

第4圖的顯示驅動電路40能使顯示裝置1使用較低頻率的全域時脈訊號與較少的晶片數量(例如與13位元/53掃相同頻率之全域時脈訊號與相同數量的掃描開關電路12的晶片),實現16位元之解析度。The display driving circuit 40 in FIG. 4 enables the display device 1 to use a lower frequency global clock signal and a smaller number of chips (for example, a global clock signal with the same frequency and the same number of scan switches as 13-bit/53 scan). chip of circuit 12), achieving 16-bit resolution.

第4圖為根據一些實施例所繪示的顯示驅動電路40的示意圖。顯示驅動電路40可用於實現第1圖的顯示驅動電路10。顯示驅動電路40包含灰階產生電路400、PWM控制電路402以及多個通道驅動電路410_1~410_N。PWM控制電路402根據顯示資料Data,產生並調整多個第一時脈訊號PWM1_1~PWM1_N,並將第一時脈訊號PWM1_1~PWM1_N分別傳送至通道驅動電路410_1~410_N。在一些實施例中,第一時脈訊號PWM1_1~PWM1_N的脈波寬度等於或小於原始時脈訊號Gray0_1~Gray0_N的脈波寬度。通道驅動電路410_1~410_N依據原始時脈訊號Gray0_1~Gray0_N以及第一時脈訊號PWM1_1~PWM1_N後,選擇性地提供驅動電流至資料線DL[1]~DL[N]。本揭示文件以下的多個實施例將以通道驅動電路410_1為例進行說明,其餘通道驅動電路410_2~410_N的元件、連接關係以及運作皆相似於通道驅動電路410_1,為簡潔起見,相關內容將不重複贅述。FIG. 4 is a schematic diagram of a display driving circuit 40 according to some embodiments. The display driving circuit 40 can be used to implement the display driving circuit 10 of FIG. 1 . The display driving circuit 40 includes a gray scale generation circuit 400, a PWM control circuit 402, and a plurality of channel driving circuits 410_1˜410_N. The PWM control circuit 402 generates and adjusts a plurality of first clock signals PWM1_1 to PWM1_N according to the display data Data, and transmits the first clock signals PWM1_1 to PWM1_N to the channel driving circuits 410_1 to 410_N respectively. In some embodiments, the pulse widths of the first clock signals PWM1_1 to PWM1_N are equal to or smaller than the pulse widths of the original clock signals Gray0_1 to Gray0_N. The channel driving circuits 410_1~410_N selectively provide driving currents to the data lines DL[1]~DL[N] according to the original clock signals Gray0_1~Gray0_N and the first clock signals PWM1_1~PWM1_N. The following embodiments of this disclosure document will take the channel driving circuit 410_1 as an example for description. The components, connection relationships and operations of the other channel driving circuits 410_2 ~ 410_N are similar to the channel driving circuit 410_1. For the sake of simplicity, the relevant content will be Not repeated.

在一些實施例中,通道驅動電路410_1包含電流源106、第一開關電路SW1以及第二開關電路SW2。第一開關電路SW1的一端耦接至電流源106,另一端耦接至第二開關電路SW2,且控制端耦接至PWM控制電路402,用以從PWM控制電路402接收第一時脈訊號PWM1_1,藉此選擇性導通。In some embodiments, the channel driving circuit 410_1 includes a current source 106, a first switch circuit SW1 and a second switch circuit SW2. One end of the first switch circuit SW1 is coupled to the current source 106, the other end is coupled to the second switch circuit SW2, and the control end is coupled to the PWM control circuit 402 for receiving the first clock signal PWM1_1 from the PWM control circuit 402. , thereby selectively conducting.

第二開關電路SW2的一端耦接至第一開關電路SW1,另一端耦接至資料線DL[1],且控制端耦接至灰階產生電路400,用以從灰階產生電路400接收原始時脈訊號Gray0_1,藉此選擇性導通。One end of the second switch circuit SW2 is coupled to the first switch circuit SW1, the other end is coupled to the data line DL[1], and the control end is coupled to the gray scale generation circuit 400 for receiving the original signal from the gray scale generation circuit 400. The clock signal Gray0_1 is selectively turned on.

電流源106用以透過第一開關電路SW1以及第二開關電路SW2提供驅動電流至資料線DL[1],例如從資料線DL[1]抽取驅動電流。在一實施例中,當SL[1]上有掃描電壓,且電流源106從資料線DL[1]抽取驅動電流時,畫素單元P[11]會產生特定灰階的亮度。在一實施例中,當SL[2]上有掃描電壓,且電流源106從資料線DL[1]抽取驅動電流時,畫素單元P[21]會產生特定灰階的亮度。The current source 106 is used to provide a driving current to the data line DL[1] through the first switch circuit SW1 and the second switch circuit SW2, for example, extract the driving current from the data line DL[1]. In one embodiment, when there is a scanning voltage on SL[1] and the current source 106 draws the driving current from the data line DL[1], the pixel unit P[11] will generate a brightness of a specific gray level. In one embodiment, when there is a scanning voltage on SL[2] and the current source 106 draws the driving current from the data line DL[1], the pixel unit P[21] will generate a brightness of a specific gray level.

第5A、5B圖為根據第4圖的實施例所繪示的顯示驅動電路40的時序圖。週期T 16為16位元/20掃的LED顯示器輸出灰階值為1的原始時脈訊號Gray0_1之週期,週期T 13為13位元/53掃的LED顯示器輸出灰階值為1的原始時脈訊號Gray0_1之週期,根據前文可以得知,週期T 13大約為週期T 16的兩倍。 5A and 5B are timing diagrams of the display driving circuit 40 according to the embodiment of FIG. 4 . The period T 16 is the period of the 16-bit/20-scan LED display that outputs the original clock signal Gray0_1 with a gray-scale value of 1. The period T 13 is the original time period of the 13-bit/53-scan LED display that outputs the gray-scale value of 1. As for the period of the pulse signal Gray0_1, it can be known from the above that the period T 13 is approximately twice the period T 16 .

在灰階產生電路400將原始時脈訊號Gray0_1傳送至第二開關電路SW2時,PWM控制電路402同時將第一時脈訊號PWM1_1傳送至第一開關電路SW1。電流源106僅能在第一開關電路SW1以及第二開關電路SW2同時致能時傳送驅動電流。因此,藉由調整第一時脈訊號PWM1_1的脈波寬度,可以控制通道驅動電路410_1所輸出的驅動電流的脈波寬度。在第5A圖的實施例中,若將第一時脈訊號PWM1_1的負載比設定至50%,則驅動電流的脈波寬度可以縮短至與週期T 16(亦即0.5倍週期T 13)相同,達到本揭示文件所述之優勢。 When the gray scale generation circuit 400 transmits the original clock signal Gray0_1 to the second switch circuit SW2, the PWM control circuit 402 simultaneously transmits the first clock signal PWM1_1 to the first switch circuit SW1. The current source 106 can only deliver the driving current when the first switch circuit SW1 and the second switch circuit SW2 are enabled at the same time. Therefore, by adjusting the pulse width of the first clock signal PWM1_1, the pulse width of the driving current output by the channel driving circuit 410_1 can be controlled. In the embodiment of Figure 5A, if the duty ratio of the first clock signal PWM1_1 is set to 50%, the pulse width of the driving current can be shortened to the same as the period T 16 (that is, 0.5 times the period T 13 ), Achieve the advantages described in this disclosure document.

相似地,針對輸出灰階值為2的時脈,可以在第一個全域時脈訊號(GCLK)時將第一時脈訊號PWM1_1的負載比設定至50%,在第二個全域時脈訊號時將第一時脈訊號PWM1_1的負載比設定至50%,則灰階值2的驅動電流具有兩個0.5倍週期T 13­的脈波。 Similarly, for a clock with an output grayscale value of 2, the duty ratio of the first clock signal PWM1_1 can be set to 50% at the first global clock signal (GCLK), and at the second global clock signal When the duty ratio of the first clock signal PWM1_1 is set to 50%, the driving current of gray scale value 2 has two pulse waves of 0.5 times the period T 13 .

在一些實施例中,透過本揭示文件的顯示驅動電路40,也可以縮小或調整不同灰階之間的差異級距。請一併參照第5B圖,針對輸出灰階值為2的時脈,若在第一個全域時脈訊號(GCLK)時將第一時脈訊號PWM1_1的負載比設定至30%,在第二個全域時脈訊號時將第一時脈訊號PWM1_1的負載比設定至50%,則灰階值2的驅動電流之脈波寬度總和為前一實施例的80%(0.3倍週期T 13和0.5倍週期T 13),進一步減小灰階值1以及灰階值2之間的亮度差異。 In some embodiments, through the display driving circuit 40 of the present disclosure, the difference between different gray levels can also be reduced or adjusted. Please refer to Figure 5B. For a clock with an output grayscale value of 2, if the duty ratio of the first clock signal PWM1_1 is set to 30% at the first global clock signal (GCLK), at the second When a global clock signal is used, the duty ratio of the first clock signal PWM1_1 is set to 50%, then the total pulse width of the driving current with grayscale value 2 is 80% of the previous embodiment (0.3 times the period T 13 and 0.5 Doubling the period T 13 ) further reduces the brightness difference between gray scale value 1 and gray scale value 2.

第6圖為根據一些實施例所繪示的顯示驅動電路60的電路示意圖。在一些實施例中,顯示驅動電路60包含灰階產生電路600、PWM控制電路602、通道驅動電路610_1~610_N以及開關訊號控制電路608。第6圖中的灰階產生電路600、PWM控制電路602以及通道驅動電路610_1~610_N之間的連接關係與第4圖中的灰階產生電路400、PWM控制電路402以及通道驅動電路410_1~410_N之間的連接關係相似,故以下謹說明差異之處。另外,本揭示文件以下的多個實施例將以通道驅動電路610_1為例進行說明,其餘通道驅動電路610_2~610_N的元件、連接關係以及運作皆相似於通道驅動電路610_1,為簡潔起見,相關內容將不重複贅述。FIG. 6 is a circuit schematic diagram of a display driving circuit 60 according to some embodiments. In some embodiments, the display driving circuit 60 includes a gray scale generation circuit 600, a PWM control circuit 602, channel driving circuits 610_1˜610_N, and a switching signal control circuit 608. The connection relationship between the gray scale generation circuit 600, PWM control circuit 602 and channel driving circuits 610_1~610_N in Figure 6 is the same as the gray scale generation circuit 400, PWM control circuit 402 and channel driving circuits 410_1~410_N in Figure 4 The connection relationships between them are similar, so the differences will be explained below. In addition, the following embodiments of this disclosure document will take the channel driving circuit 610_1 as an example for description. The components, connection relationships and operations of the other channel driving circuits 610_2 ~ 610_N are similar to the channel driving circuit 610_1. For the sake of simplicity, the relevant The content will not be repeated.

在一些實施例中,PWM控制電路602包含複數個子PWM控制電路602_1以及602_2,用以產生對應的複數個第一時脈訊號PWM1_11以及PWM1_12。在一些實施例中,通道驅動電路610_1包含電流源106、第一開關電路SW1_1、SW1_2以及第二開關電路SW2。In some embodiments, the PWM control circuit 602 includes a plurality of sub-PWM control circuits 602_1 and 602_2 for generating corresponding plurality of first clock signals PWM1_11 and PWM1_12. In some embodiments, the channel driving circuit 610_1 includes a current source 106, first switch circuits SW1_1, SW1_2, and a second switch circuit SW2.

開關訊號控制電路608耦接於第一開關電路SW1_1以及SW1_2,用以依據顯示資料Data產生第一控制訊號SS1_11以及SS1_12,以導通第一開關電路SW1_1以及SW1_2所對應的啟動開關OS1、OS2。The switch signal control circuit 608 is coupled to the first switch circuits SW1_1 and SW1_2, and is used to generate the first control signals SS1_11 and SS1_12 according to the display data Data to turn on the activation switches OS1 and OS2 corresponding to the first switch circuits SW1_1 and SW1_2.

在操作上,第一開關電路SW1_1以及SW1_2以並聯的方式耦接於電流源106以及第二開關電路SW2之間,用以分別依據對應的第一時脈訊號PWM1_11以及PWM1_12以及對應的第一控制訊號SS1_11、SS1_12選擇性導通,其中第一時脈訊號PWM1_11以及PWM1_12分別具有不同的負載比(例如分別為30%和50%)。In operation, the first switch circuits SW1_1 and SW1_2 are coupled in parallel between the current source 106 and the second switch circuit SW2 for controlling the corresponding first clock signals PWM1_11 and PWM1_12 and the corresponding first control respectively. The signals SS1_11 and SS1_12 are selectively turned on, and the first clock signals PWM1_11 and PWM1_12 respectively have different duty ratios (for example, 30% and 50% respectively).

在一些實施例中,每個第一開關電路SW1_1以及SW1_2各自包含對應的啟動開關ES1、ES2以及輸出開關OS1、OS2。其中啟動開關ES1以及ES2耦接於子PWM控制電路602_1、602_2其中之一以及對應的輸出開關OS1、OS2的控制端之間,用以依據對應的第一控制訊號SS1_11以及SS1_12選擇性導通。其中輸出開關OS1、OS2耦接於電流源106以及第二開關電路SW2之間,用以依據第一時脈訊號PWM1_11、PWM1_12之相應者以及第一控制訊號SS1_11、SS1_12選擇性導通。In some embodiments, each of the first switch circuits SW1_1 and SW1_2 includes corresponding enable switches ES1 and ES2 and output switches OS1 and OS2 respectively. The enable switches ES1 and ES2 are coupled between one of the sub-PWM control circuits 602_1 and 602_2 and the control terminals of the corresponding output switches OS1 and OS2 for selectively conducting according to the corresponding first control signals SS1_11 and SS1_12. The output switches OS1 and OS2 are coupled between the current source 106 and the second switch circuit SW2 for selectively turning on according to corresponding ones of the first clock signals PWM1_11 and PWM1_12 and the first control signals SS1_11 and SS1_12.

在一些實施例中,PWM控制電路602還包含子PWM控制電路602_3。子PWM控制電路602_3用以產生第二時脈訊號PWM2_1,第二時脈訊號PWM2_1具有100%之負載比。其中通道驅動電路還包含第三開關電路SW3,第三開關電路SW3耦接於電流源106以及第二開關電路SW2之間,且第三開關電路SW3包含啟動開關ES3以及輸出開關OS3,其中開關訊號控制電路608耦接於第三開關電路SW3,用以依據顯示資料Data產生第二控制訊號SS2_1以導通第三開關電路SW3的啟動開關ES3。In some embodiments, the PWM control circuit 602 also includes a sub-PWM control circuit 602_3. The sub-PWM control circuit 602_3 is used to generate the second clock signal PWM2_1, and the second clock signal PWM2_1 has a duty ratio of 100%. The channel driving circuit further includes a third switch circuit SW3, the third switch circuit SW3 is coupled between the current source 106 and the second switch circuit SW2, and the third switch circuit SW3 includes a start switch ES3 and an output switch OS3, where the switch signal The control circuit 608 is coupled to the third switch circuit SW3 and used to generate the second control signal SS2_1 according to the display data Data to turn on the activation switch ES3 of the third switch circuit SW3.

在操作上,根據開關訊號控制電路608產生的第一控制訊號SS1_11、SS1_12以及第二控制訊號SS2_1的時序,可以決定第一開關電路SW1_1、SW1_2以及第三開關電路SW3的致能順序以及時間。換句話說,根據第一時脈訊號PWM1_11、PWM1_12、第二時脈訊號PWM2_1、第一控制訊號SS1_11、SS1_12以及第二控制訊號SS2_1,可以控制電流源106提供驅動電流的時序,亦即可以控制通道驅動電路610_1所輸出的時脈訊號的負載比。In operation, the enabling sequence and time of the first switch circuits SW1_1, SW1_2 and the third switch circuit SW3 can be determined according to the timing of the first control signals SS1_11, SS1_12 and the second control signal SS2_1 generated by the switch signal control circuit 608. In other words, according to the first clock signals PWM1_11, PWM1_12, the second clock signal PWM2_1, the first control signals SS1_11, SS1_12 and the second control signal SS2_1, the timing of the current source 106 providing the driving current can be controlled, that is, the timing of the driving current can be controlled. The duty ratio of the clock signal output by the channel driving circuit 610_1.

第7圖為根據第6圖的實施例所繪示的顯示驅動電路60的時序圖。在第7圖中,相似於前述第5B圖的實施例,為了輸出灰階值2的驅動電流,可以利用負載比為30%的第一時脈訊號PWM1_11與負載比為50%的第一時脈訊號PWM1_12。在操作上,在第一控制訊號SS1_11為邏輯高時,第一開關電路SW1_1會被致能,使驅動電流的脈波為0.3個週期T 13;在第一控制訊號SS1_12為邏輯高時,第一開關電路SW1_2會被致能,使驅動電流的脈波為0.5個週期T 13;在第二控制訊號SS2_1為邏輯高時,第三開關電路SW3會被致能,但由於原始時脈訊號Gray0_1此時為邏輯低,因此通道驅動電路610_1不會輸出驅動電流。 FIG. 7 is a timing diagram of the display driving circuit 60 according to the embodiment of FIG. 6 . In Figure 7, similar to the embodiment of Figure 5B, in order to output the driving current of gray scale value 2, the first clock signal PWM1_11 with a duty ratio of 30% and the first clock signal PWM1_11 with a duty ratio of 50% can be used. Pulse signal PWM1_12. In operation, when the first control signal SS1_11 is logic high, the first switch circuit SW1_1 will be enabled, so that the pulse wave of the driving current is 0.3 periods T 13 ; when the first control signal SS1_12 is logic high, the first switch circuit SW1_1 will be enabled. A switch circuit SW1_2 will be enabled, so that the pulse wave of the driving current is 0.5 period T 13 ; when the second control signal SS2_1 is logic high, the third switch circuit SW3 will be enabled, but due to the original clock signal Gray0_1 At this time, the logic is low, so the channel driving circuit 610_1 will not output a driving current.

由前文得知,在第6~7圖的實施例中,可以透過控制不同第一開關電路開關時序的方式,達到縮小或調整不同灰階之間的差異級距。As learned from the above, in the embodiments shown in Figures 6 to 7, the difference between different gray levels can be reduced or adjusted by controlling the switching timing of different first switch circuits.

應注意,本揭示文件中的子PWM控制電路、第一開關電路、第一時脈訊號以及第一控制訊號的數量僅為示例,而非限制本揭示文件。其他數量的子PWM控制電路、第一開關電路、第一時脈訊號以及第一控制訊號均在本揭示文件的範圍內。It should be noted that the number of sub-PWM control circuits, first switch circuits, first clock signals and first control signals in this disclosure document are only examples and do not limit this disclosure document. Other numbers of sub-PWM control circuits, first switching circuits, first clock signals and first control signals are within the scope of this disclosure document.

綜上所述,本揭示文件所揭露的顯示驅動電路以及相關的顯示裝置,藉由控制通道驅動電路致能的時序,可以提高灰階位元數較低的LED顯示器的解析度,進而改善在低灰階時辨識度偏低的問題。此外,透過控制第一時脈訊號的負載比,也可以縮小或調整不同灰階之間的差異級距。In summary, the display driving circuit and related display devices disclosed in this disclosure document can improve the resolution of LED displays with lower grayscale bits by controlling the enabling timing of the channel driving circuit, thereby improving the performance of LED displays. The problem of low recognition at low gray levels. In addition, by controlling the load ratio of the first clock signal, the difference between different gray levels can also be reduced or adjusted.

1:顯示裝置 10:顯示驅動電路 12:掃描開關電路 106:電流源 20:顯示驅動電路 200:灰階產生電路 210_1~210_N:通道驅動電路 40:顯示驅動電路 400:灰階產生電路 402:PWM控制電路 410_1~410_N:通道驅動電路 60:顯示驅動電路 600:灰階產生電路 602_1~602_3:子PWM控制電路 602:PWM控制電路 608:開關訊號控制電路 610_1~610_N:通道驅動電路 Gray0_1~Gray0_N:原始時脈訊號 PWM1_1~PWM1_N:第一時脈訊號 PWM1_11~PWM1_N1:第一時脈訊號 PWM1_12~PWM1_N2:第一時脈訊號 PWM2_1~PWM2_N:第二時脈訊號 Data:顯示資料 DL[1]~DL[N]:資料線 ES1~ES3:啟動開關 GCLK:全域時脈訊號 GND:接地電源 OS1~OS3:輸出開關 P[11]~P[MN]:畫素單元 SL[1]~SL[M]:掃描線 SS1_11~SS1_N1:第一控制訊號 SS1_12~SS1_N2:第一控制訊號 SS2_1~SS2_N:第二控制訊號 SW1:第一開關電路 SW1_1,SW1_2:第一開關電路 SW2:第二開關電路 SW3:第三開關電路 T 13,T 16:週期 1: Display device 10: Display driving circuit 12: Scan switch circuit 106: Current source 20: Display driving circuit 200: Gray scale generation circuit 210_1~210_N: Channel driving circuit 40: Display driving circuit 400: Gray scale generation circuit 402: PWM Control circuit 410_1~410_N: Channel drive circuit 60: Display drive circuit 600: Gray scale generation circuit 602_1~602_3: Sub-PWM control circuit 602: PWM control circuit 608: Switch signal control circuit 610_1~610_N: Channel drive circuit Gray0_1~Gray0_N: Original clock signal PWM1_1~PWM1_N: first clock signal PWM1_11~PWM1_N1: first clock signal PWM1_12~PWM1_N2: first clock signal PWM2_1~PWM2_N: second clock signal Data: display data DL[1]~DL [N]: Data lines ES1~ES3: Start switch GCLK: Global clock signal GND: Ground power supply OS1~OS3: Output switch P[11]~P[MN]: Pixel unit SL[1]~SL[M] :Scan line SS1_11~SS1_N1: first control signal SS1_12~SS1_N2: first control signal SS2_1~SS2_N: second control signal SW1: first switch circuit SW1_1, SW1_2: first switch circuit SW2: second switch circuit SW3: Three-switch circuit T 13 , T 16 : period

為使本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1圖為根據一些實施例所繪示的顯示裝置的功能方塊圖; 第2圖為根據一些實施例所繪示的顯示驅動電路的部分電路示意圖; 第3A、3B圖為根據第2圖的實施例所繪製的顯示驅動電路10的時序圖; 第4圖為根據一些實施例所繪示的顯示驅動電路的部分電路示意圖; 第5A、5B圖為根據第4圖的實施例所繪示的顯示驅動電路的時序圖; 第6圖為根據一些實施例所繪示的顯示驅動電路的電路示意圖;以及 第7圖為根據第6圖的實施例所繪示的顯示驅動電路的時序圖。 In order to make the above and other objects, features, advantages and embodiments of the present disclosure more obvious and understandable, the accompanying drawings are described as follows: Figure 1 is a functional block diagram of a display device according to some embodiments; Figure 2 is a partial circuit schematic diagram of a display driving circuit according to some embodiments; Figures 3A and 3B are timing diagrams of the display driving circuit 10 drawn according to the embodiment of Figure 2; Figure 4 is a partial circuit schematic diagram of a display driving circuit according to some embodiments; Figures 5A and 5B are timing diagrams of the display driving circuit according to the embodiment of Figure 4; Figure 6 is a circuit schematic diagram of a display driving circuit according to some embodiments; and FIG. 7 is a timing diagram of a display driving circuit according to the embodiment of FIG. 6 .

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in order of storage institution, date and number) without Overseas storage information (please note in order of storage country, institution, date, and number) without

40:顯示驅動電路 400:灰階產生電路 402:PWM控制電路 410_1~410_N:通道驅動電路 106:電流源 Gray0_1~Gray0_N:原始時脈訊號 PWM1_1~PWM1_N:第一時脈訊號 DL[1]~DL[N]:資料線 GND:接地電源 SW1:第一開關電路 SW2:第二開關電路 40: Display drive circuit 400: Gray scale generation circuit 402:PWM control circuit 410_1~410_N: Channel drive circuit 106:Current source Gray0_1~Gray0_N: original clock signal PWM1_1~PWM1_N: first clock signal DL[1]~DL[N]: data line GND: Ground power supply SW1: first switch circuit SW2: Second switch circuit

Claims (10)

一種顯示驅動電路,包含:一灰階產生電路,用以依據一顯示資料產生一原始時脈訊號;一PWM控制電路,用以依據該顯示資料產生至少一第一時脈訊號,其中該至少一第一時脈訊號的脈波寬度小於或等於該原始時脈訊號的脈波寬度;以及複數個通道驅動電路,其中每個通道驅動電路包含:一電流源,用以提供一驅動電流;至少一第一開關電路,耦接於該電流源,用以接收該驅動電流,並用以依據該至少一第一時脈訊號選擇性導通;以及一第二開關電路,透過該至少一第一開關電路耦接於該電流源,用以依據該原始時脈訊號選擇性導通。 A display driving circuit includes: a gray scale generation circuit for generating an original clock signal based on a display data; a PWM control circuit for generating at least a first clock signal based on the display data, wherein the at least one The pulse width of the first clock signal is less than or equal to the pulse width of the original clock signal; and a plurality of channel driving circuits, wherein each channel driving circuit includes: a current source for providing a driving current; at least one A first switching circuit coupled to the current source for receiving the driving current and selectively conducting according to the at least one first clock signal; and a second switching circuit coupled through the at least one first switching circuit Connected to the current source for selective conduction based on the original clock signal. 如請求項1所述之顯示驅動電路,其中該PWM控制電路用以依據該顯示資料調節該至少一第一時脈訊號的負載比。 The display driving circuit of claim 1, wherein the PWM control circuit is used to adjust the duty ratio of the at least one first clock signal according to the display data. 如請求項1所述之顯示驅動電路,其中該至少一第一開關電路包含複數個第一開關電路,該至少一第一時脈訊號包含複數個第一時脈訊號,其中該些第一開關電路以並聯的方式耦接於該電流源以及該第二開關電路之間,用以分別依據該些第一時脈訊號 及複數個第一控制訊號選擇性導通,其中該些第一時脈訊號分別具有不同的複數個負載比。 The display driving circuit of claim 1, wherein the at least one first switch circuit includes a plurality of first switch circuits, and the at least one first clock signal includes a plurality of first clock signals, wherein the first switches The circuit is coupled in parallel between the current source and the second switch circuit to respectively respond to the first clock signals. And a plurality of first control signals are selectively turned on, wherein the first clock signals respectively have a plurality of different load ratios. 如請求項3所述之顯示驅動電路,其中該PWM控制電路更包含複數個子PWM控制電路,該些子PWM控制電路用以產生該些第一時脈訊號。 The display driving circuit of claim 3, wherein the PWM control circuit further includes a plurality of sub-PWM control circuits, and the sub-PWM control circuits are used to generate the first clock signals. 如請求項4所述之顯示驅動電路,其中每個第一開關電路更包含一啟動開關以及一輸出開關,其中該第一開關電路的該啟動開關耦接於該些子PWM控制電路其中之一以及該輸出開關的一控制端之間,用以依據該些第一控制訊號的其中一者選擇性導通以傳送該些第一時脈訊號之相應者;該第一開關電路的該輸出開關耦接於該電流源以及該第二開關電路之間,用以依據該些第一時脈訊號之該相應者選擇性導通。 The display driving circuit of claim 4, wherein each first switch circuit further includes a start switch and an output switch, wherein the start switch of the first switch circuit is coupled to one of the sub-PWM control circuits. and a control end of the output switch for selectively conducting according to one of the first control signals to transmit the corresponding one of the first clock signals; the output switch coupling of the first switch circuit Connected between the current source and the second switch circuit, for selectively conducting according to the corresponding one of the first clock signals. 如請求項5所述之顯示驅動電路,其中該顯示驅動電路更包含一開關訊號控制電路,該開關訊號控制電路耦接於該些第一開關電路,用以依據該顯示資料產生該些第一控制訊號以導通該些第一開關電路其中之一的該啟動開關。 The display driving circuit of claim 5, wherein the display driving circuit further includes a switching signal control circuit, the switching signal control circuit is coupled to the first switching circuits and is used to generate the first switching circuits based on the display data. The control signal is used to turn on the start switch of one of the first switch circuits. 如請求項6所述之顯示驅動電路,其中該些 子PWM控制電路還用以產生一第二時脈訊號,該第二時脈訊號具有100%之負載比,其中該每個通道驅動電路還包含一第三開關電路,該第三開關電路耦接於該電流源以及該第二開關電路之間,且該第三開關電路包含一啟動開關以及一輸出開關,其中該開關訊號控制電路耦接於該第三開關電路,用以依據該顯示資料產生一第二控制訊號以導通該第三開關電路的該啟動開關。 The display driving circuit as described in claim 6, wherein the The sub-PWM control circuit is also used to generate a second clock signal, the second clock signal has a duty ratio of 100%, wherein each channel drive circuit also includes a third switch circuit, the third switch circuit is coupled between the current source and the second switch circuit, and the third switch circuit includes a start switch and an output switch, wherein the switch signal control circuit is coupled to the third switch circuit for generating a signal based on the display data. A second control signal is used to turn on the start switch of the third switch circuit. 一種顯示裝置,包含一顯示驅動電路、多個資料線以及多個畫素,其中該顯示驅動電路包含:一灰階產生電路,用以依據一顯示資料產生一原始時脈訊號;一PWM控制電路,用以依據該顯示資料產生至少一第一時脈訊號,其中該至少一第一時脈訊號的負載比小於或等於該原始時脈訊號的負載比;以及複數個通道驅動電路,其中每個通道驅動電路包含:一電流源,用以提供一驅動電流;至少一第一開關電路,耦接於該電流源,用以接收該驅動電流,並用以依據該至少一第一時脈訊號選擇性導通;以及一第二開關電路,透過該至少一第一開關電路耦接於該電流源,用以依據該原始時脈訊號選擇性導通;其中每個畫素透過該多個資料線其中之一耦接至該顯示 驅動電路以接收該驅動電流。 A display device includes a display driving circuit, a plurality of data lines and a plurality of pixels, wherein the display driving circuit includes: a gray scale generation circuit for generating an original clock signal based on a display data; a PWM control circuit , used to generate at least one first clock signal based on the display data, wherein the duty ratio of the at least one first clock signal is less than or equal to the duty ratio of the original clock signal; and a plurality of channel drive circuits, each of which The channel driving circuit includes: a current source for providing a driving current; at least a first switch circuit coupled to the current source for receiving the driving current and for selectively controlling the at least one first clock signal. Turn on; and a second switch circuit, coupled to the current source through the at least one first switch circuit, for selectively turning on according to the original clock signal; wherein each pixel passes through one of the plurality of data lines. coupled to the display drive circuit to receive the drive current. 如請求項8所述之顯示裝置,其中該至少一第一開關電路包含複數個第一開關電路,該至少一第一時脈訊號包含複數個第一時脈訊號,其中該些第一開關電路以並聯的方式耦接於該電流源以及該第二開關電路之間,用以分別依據該些第一時脈訊號及複數個第一控制訊號選擇性導通,其中該些第一時脈訊號分別具有不同的複數個負載比。 The display device of claim 8, wherein the at least one first switch circuit includes a plurality of first switch circuits, and the at least one first clock signal includes a plurality of first clock signals, wherein the first switch circuits is coupled in parallel between the current source and the second switch circuit for selectively conducting according to the first clock signals and a plurality of first control signals respectively, wherein the first clock signals are respectively With different load ratios. 如請求項9所述之顯示裝置,其中該PWM控制電路更包含複數個子PWM控制電路,該些子PWM控制電路用以產生該些第一時脈訊號。 The display device of claim 9, wherein the PWM control circuit further includes a plurality of sub-PWM control circuits, and the sub-PWM control circuits are used to generate the first clock signals.
TW111120123A 2022-05-30 2022-05-30 Display driving circuit and related display device TWI825754B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111120123A TWI825754B (en) 2022-05-30 2022-05-30 Display driving circuit and related display device
CN202211225182.3A CN116434692A (en) 2022-05-30 2022-10-09 Display driving circuit and related display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111120123A TWI825754B (en) 2022-05-30 2022-05-30 Display driving circuit and related display device

Publications (2)

Publication Number Publication Date
TW202347291A TW202347291A (en) 2023-12-01
TWI825754B true TWI825754B (en) 2023-12-11

Family

ID=87080278

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111120123A TWI825754B (en) 2022-05-30 2022-05-30 Display driving circuit and related display device

Country Status (2)

Country Link
CN (1) CN116434692A (en)
TW (1) TWI825754B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI278819B (en) * 2003-05-14 2007-04-11 Sharp Kk Liquid-crystal driver and liquid-crystal display
TWI360090B (en) * 2005-09-30 2012-03-11 Epson Imaging Devices Corp Electro-optical device, drive method for electro-o
TW202145191A (en) * 2020-05-20 2021-12-01 曾世憲 Pixel circuit and display device using pulse width modulator generator
TWI758097B (en) * 2021-02-18 2022-03-11 友達光電股份有限公司 Driving circuit and related driving method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI278819B (en) * 2003-05-14 2007-04-11 Sharp Kk Liquid-crystal driver and liquid-crystal display
TWI360090B (en) * 2005-09-30 2012-03-11 Epson Imaging Devices Corp Electro-optical device, drive method for electro-o
TW202145191A (en) * 2020-05-20 2021-12-01 曾世憲 Pixel circuit and display device using pulse width modulator generator
TWI758097B (en) * 2021-02-18 2022-03-11 友達光電股份有限公司 Driving circuit and related driving method

Also Published As

Publication number Publication date
CN116434692A (en) 2023-07-14
TW202347291A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
CN108172170B (en) trigger driving circuit and organic light emitting display device
CN114241976B (en) Pixel circuit and display panel
CN100550110C (en) The pwm driver and the corresponding method thereof that are used for passive matrix display
US8773414B2 (en) Driving circuit of light emitting diode and ghost phenomenon elimination circuit thereof
JP2003043997A (en) Driving circuit for current drive type display and its driving method
US11495169B2 (en) Pixel circuit
TWI774332B (en) Display device and driver thereof
KR20200068556A (en) Electronic Device Capable of Reducing Color Shift
CN113487997A (en) Pixel circuit, driving method thereof and display device
CN114038398B (en) Gray scale compensation circuit, display device and gray scale compensation method
WO2024032340A1 (en) Display panel, display panel driving method, and display device
CN100530289C (en) Electron emission display (EED) with decreased signal distortion and method of driving EED
TWI825754B (en) Display driving circuit and related display device
CN118355426A (en) Driving circuit of display panel
US7042425B2 (en) Display device
WO2023151135A1 (en) Driving circuit and display panel
CN101025891B (en) Driver for display panel and method
CN112562579A (en) Pixel driving circuit of Micro LED display device and driving method thereof
US20240185761A1 (en) Pixel circuit and display panel
TWI814520B (en) Pixel unit
CN117456896B (en) Pixel driving circuit
TWI829391B (en) Pixel driving circuit
US11810512B2 (en) Pixel circuit and display panel
US20240355288A1 (en) Display panel and display device
TWI777447B (en) Driving circuit