TWI825404B - Use of signature species as biomarker of malignant transformation for oral submucous fibrosis - Google Patents

Use of signature species as biomarker of malignant transformation for oral submucous fibrosis Download PDF

Info

Publication number
TWI825404B
TWI825404B TW110111701A TW110111701A TWI825404B TW I825404 B TWI825404 B TW I825404B TW 110111701 A TW110111701 A TW 110111701A TW 110111701 A TW110111701 A TW 110111701A TW I825404 B TWI825404 B TW I825404B
Authority
TW
Taiwan
Prior art keywords
osf
hmt
oscc
patients
bacterial species
Prior art date
Application number
TW110111701A
Other languages
Chinese (zh)
Other versions
TW202138567A (en
Inventor
陳玉玲
吳哲宏
陳孟延
陳炯文
蔡昆男
何宇軒
Original Assignee
台達電子工業股份有限公司
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司, 國立成功大學 filed Critical 台達電子工業股份有限公司
Publication of TW202138567A publication Critical patent/TW202138567A/en
Application granted granted Critical
Publication of TWI825404B publication Critical patent/TWI825404B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7023(Hyper)proliferation
    • G01N2800/7028Cancer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A biomarker of malignant transformation for oral submucous fibrosis includes an alteration of salivary microbiome. A signature species in the altered salivary microbiome includes at least one selected from the group consisting of Porphyromonas catoniae, Prevotella multisaccharivorax, Prevotella sp. HMT-300, Mitsuokella sp. HMT-131, and Treponema sp. HMT-927, and the combination thereof.

Description

特徵菌種作為口腔粘膜下纖維化惡轉的生物標記的用途 Use of characteristic bacterial species as biomarkers for progression of oral submucosal fibrosis

本案係關於一種惡轉的生物標記,尤指一種口腔粘膜下纖維化惡轉的生物標記。 This case is about a biomarker for malignant progression, especially a biomarker for malignant progression of oral submucosal fibrosis.

口腔癌是發生在口腔部位之惡性腫瘤的總稱,且大部份屬於口腔鱗狀細胞癌(oral squamous ccll carcinoma,簡稱OSCC)。口腔癌已成為全球的負擔,特別是在東南亞。在台灣,由口腔癌引起的死亡也是一個社會經濟問題,因為與其他類型癌症的患者相比,口腔癌患者以年輕男性居多。口腔粘膜下纖維化(oral submucous fibrosis,簡稱OSF)是一種發展不明顯且慢性的口腔間質癌變前疾病(oral stromal premalignant disorder),可影響口腔的各個部分,有時會影響咽部,使得黏膜、上皮和間質的質地變得纖維化,細胞減少,以及血管不足。根據全球的證據,OSF病變伴隨非典型的高惡轉率。OSF患者通常有嚼食檳榔習慣,且相較於健康人,OSF患者的惡轉率高,危險對比值(odds ratio)為23.3-27.5,且口腔癌形成更快。根據印度和台灣的研究報導,具有OSF背景的口腔鱗狀細胞癌(OSCC-OSF)患者更年輕。因此,在OSF患者中辨識出OSCC高風險患者是相當重要的臨床挑戰。 Oral cancer is a general term for malignant tumors that occur in the oral cavity, and most of them are oral squamous cell carcinoma (OSCC). Oral cancer has become a global burden, especially in Southeast Asia. Deaths caused by oral cancer are also a socioeconomic problem in Taiwan because oral cancer patients are more likely to be younger men than patients with other types of cancer. Oral submucosal fibrosis (OSF) is an insignificant and chronic precancerous oral stromal disease (oral stromal premalignant disorder) that can affect all parts of the oral cavity and sometimes the pharynx, causing mucosal , the texture of the epithelium and stroma becomes fibrotic, hypocellular, and hypovascular. According to global evidence, OSF lesions are associated with an atypically high rate of malignant transformation. OSF patients usually have the habit of chewing betel nut. Compared with healthy people, OSF patients have a higher rate of malignant transformation, with an odds ratio of 23.3-27.5, and oral cancer forms faster. According to research reports from India and Taiwan, patients with oral squamous cell carcinoma (OSCC-OSF) with OSF background are younger. Therefore, identifying patients with high risk of OSCC among OSF patients is an important clinical challenge.

侵入性切片檢查是當前診斷口腔癌的標準方法。然而,OSF患者通常張口能力有限,通常難以進行口腔評估,目前仍缺乏用於有效篩查大量族群 (特別是那些患有OSF的族群)的非侵入性工具。雖然過去相關研究已報導可作為預測OSF致癌的生物標記,但是大多數生物標記是先依賴於侵入性檢體的收集,接著進行免疫化學染色或組織微陣列分析。研究已經證實唾液是檢測口腔癌生物標記的來源之一,但是對於高風險的OSF患者,則尚未發現有效的唾液生物標記。由於採集唾液屬於非侵入性檢體收集方法,若在OSF患者唾液中檢測出生物標記,並有效預測口腔癌的發生,則能促進對此高危險族群的早期干預。 Invasive biopsy is the current standard method for diagnosing oral cancer. However, patients with OSF often have limited mouth opening abilities and are often difficult to perform oral assessment. Currently, there is a lack of methods for effectively screening large populations. (especially those suffering from OSF). Although relevant studies in the past have reported that OSF can be used as biomarkers to predict carcinogenesis, most biomarkers first relied on the collection of invasive specimens, followed by immunochemical staining or tissue microarray analysis. Studies have confirmed that saliva is one of the sources for detecting oral cancer biomarkers, but for high-risk OSF patients, effective salivary biomarkers have not yet been found. Since saliva collection is a non-invasive specimen collection method, if biomarkers are detected in the saliva of OSF patients and can effectively predict the occurrence of oral cancer, it can promote early intervention for this high-risk group.

越來越多的證據表明,微生物相失調(microbiota dysbiosis)與人類疾病及其發展密切相關。口腔為多樣化細菌群的生長提供了複雜的棲所,例如頰區、舌頭和牙齦的黏膜表面以及牙齒表面。口腔中的細菌群落非常複雜,由超過700種的細菌菌種所組成,在特定的口腔微環境中呈現動態生長的樣貌,且口腔微生物體(oral microbiome)為人類宿主提供各種健康益處。雖然口腔微生物體的多樣性、組成和功能會隨著口腔癌的發展而改變,目前尚無高危險OSF族群中的OSCC唾液微生物體(salivary microbiome)特徵的檢測數據。因此,本案擬對有嚼食檳榔習慣的男性OSF患者和OSCC-OSF患者的唾液微生物體進行全面比較,以探討微生物體在OSF癌化發展進程中所扮演的角色。 Increasing evidence shows that microbiota dysbiosis is closely related to human diseases and their development. The oral cavity provides complex habitats for the growth of diverse bacterial populations, such as the buccal area, mucosal surfaces of the tongue and gums, and tooth surfaces. The bacterial community in the oral cavity is very complex, consisting of more than 700 bacterial species, showing dynamic growth in a specific oral microenvironment, and the oral microbiome provides various health benefits to the human host. Although the diversity, composition, and function of the oral microbiome change with the development of oral cancer, there are currently no data characterizing the OSCC salivary microbiome in high-risk OSF populations. Therefore, this case intends to conduct a comprehensive comparison of the salivary microorganisms of male OSF patients with betel nut chewing habits and OSCC-OSF patients to explore the role of microorganisms in the development of OSF cancer.

本案之一目的在於比較OSF患者和OSCC-OSF患者的唾液微生物體,觀察OSF惡轉成OSCC-OSF過程中唾液微生物體的改變。 One of the purposes of this case is to compare the salivary microorganisms of OSF patients and OSCC-OSF patients, and observe the changes in salivary microorganisms during the malignant transformation of OSF into OSCC-OSF.

本案之另一目的在於提供OSF惡轉的生物標記,以在OSF患者中辨識出OSCC高風險患者,進而對高危險患者進行檢測及治療。 Another purpose of this case is to provide biomarkers of malignant transformation of OSF to identify high-risk OSCC patients among OSF patients, and then detect and treat high-risk patients.

為達上述目的,本案提供一種口腔粘膜下纖維化惡轉的生物標記,包含一唾液微生物體的改變,其中改變的唾液微生物體中的一特徵菌種包含選自於由Porphyromonas catoniaePrevotella multisaccharivoraxPrevotella sp. HMT-300、Mitsuokella sp.HMT-131、及Treponema sp.HMT-927所組成的群組中的至少一個及其組合。 To achieve the above purpose, this case provides a biomarker for the progression of oral submucosal fibrosis, which includes a change in salivary microorganisms, wherein a characteristic bacterial species in the changed salivary microorganisms includes Porphyromonas catoniae , Prevotella multisaccharivorax , At least one of the group consisting of Prevotella sp. HMT-300, Mitsuokella sp. HMT-131, and Treponema sp. HMT-927, and combinations thereof.

在一實施例中,特徵菌種更包含Dialister micraerophilus及/或Mollicutes sp.HMT-504。 In one embodiment, the characteristic strains further include Dialister micraerophilus and/or Mollicutes sp. HMT-504.

在一實施例中,特徵菌種更包含選自於由Mycoplasma fauciumPrevotella denticolaPeptostreptococcaceae sp.HMT-369、Prevotella sp.HMT-315、Clostridiales sp.HMT-093、Eubacterium saphenusCatonella sp.HMT-451、Treponema sp.HMT-237、Selenomonas sputigenaHaemophilus pittmaniaePrevotella baroniaeActinomyces sp.HMT-169、Absconditabacteria(SR1)sp.HMT-874、Treponema sp.HMT-270、Mollicutes sp.HMT-906、Bacteroidetes sp.HMT-280、Treponema sp.HMT-238、及Treponema sp.HMT-258所組成的群組中的至少一個。 In one embodiment, the characteristic bacterial species further include Mycoplasma faucium , Prevotella denticola , Peptostreptococcaceae sp.HMT-369, Prevotella sp.HMT-315, Clostridiales sp.HMT-093, Eubacterium saphenus , Catonella sp.HMT- 451. Treponema sp.HMT-237, Selenomonas sputigena , Haemophilus pittmaniae , Prevotella baroniae , Actinomyces sp.HMT-169, Absconditabacteria(SR1)sp.HMT-874, Treponema sp.HMT-270, Mollicutes sp.HMT-906, Bacteroidetes At least one of the group consisting of sp.HMT-280, Treponema sp.HMT-238, and Treponema sp.HMT-258.

在一實施例中,特徵菌種更包含選自於由Clostridiales sp.HMT-876、Corynebacterium durumGracilibacteria sp.HMT-871、Megasphaera sp.HMT-123、Mobiluncus mulierisNegativicutesPeptostreptococcaceae、及Selenomonas sp.HMT-478所組成的群組中的至少一個及其組合。 In one embodiment, the characteristic bacterial species further include Clostridiales sp. HMT-876, Corynebacterium durum , Gracilibacteria sp. HMT-871, Megasphaera sp. HMT-123, Mobiluncus mulieris , Negativicutes , Peptostreptococcaceae , and Selenomonas sp. At least one of the groups composed of HMT-478 and combinations thereof.

在一實施例中,特徵菌種與口腔健康狀況有關。 In one embodiment, the characteristic bacterial species are related to oral health conditions.

在一實施例中,特徵菌種與吸煙狀況有關。 In one embodiment, the characteristic bacterial species are related to smoking status.

在一實施例中,唾液微生物體的改變包括相對豐富度的改變。 In one embodiment, changes in salivary microorganisms include changes in relative abundance.

在一實施例中,唾液微生物體的改變包括微生物量的改變。 In one embodiment, changes in salivary microorganisms include changes in microbial biomass.

為達上述目的,本案更提供一種口腔粘膜下纖維化惡轉的生物標記,包含一代謝途徑的改變,其中代謝途徑包含選自於由S-腺苷-L-甲硫氨酸的合成、去甲精胺的合成、L-鳥氨酸的合成、嘧啶去氧核糖核苷酸的合成、及甲醛代謝所組成的群組中的至少一個及其組合。 To achieve the above purpose, this case also provides a biomarker for the progression of oral submucosal fibrosis, which includes changes in a metabolic pathway. The metabolic pathway includes synthesis and removal of S-adenosyl-L-methionine. At least one of the group consisting of mesospermine synthesis, L-ornithine synthesis, pyrimidine deoxyribonucleotide synthesis, and formaldehyde metabolism, and combinations thereof.

在一實施例中,代謝途徑更包含選自於由L-組氨酸的合成、煙酰胺腺嘌呤二核苷酸的合成、及1,4-二羥基-6-萘甲酸的合成所組成的群組中的至少一個及其組合。 In one embodiment, the metabolic pathway further includes a pathway selected from the group consisting of synthesis of L-histidine, synthesis of nicotinamide adenine dinucleotide, and synthesis of 1,4-dihydroxy-6-naphthoic acid. At least one of the groups and their combinations.

第1圖顯示OSF及OSCC-OSF患者的微生物體組裝的空模型隨機率分布。 Figure 1 shows the null model random rate distribution of microbial assembly in OSF and OSCC-OSF patients.

第2A圖顯示OSF及OSCC-OSF患者唾液微生物體樣本的主坐標分析結果。 Figure 2A shows the principal coordinate analysis results of salivary microbiome samples from OSF and OSCC-OSF patients.

第2B圖顯示OSF及OSCC-OSF患者唾液微生物體樣本的Adonis分析結果。 Figure 2B shows the Adonis analysis results of salivary microbiome samples from OSF and OSCC-OSF patients.

第3圖顯示OSF及OSCC-OSF患者唾液樣本中的核心菌種比例及其文式圖。 Figure 3 shows the proportion of core bacterial species in saliva samples of OSF and OSCC-OSF patients and their text diagram.

第4圖顯示LEfSe分析所鑑別OSF及OSCC-OSF患者唾液樣本中相對豐富度有顯著差異的特徵菌種。 Figure 4 shows the characteristic bacterial species with significant differences in relative abundance in saliva samples from OSF and OSCC-OSF patients identified by LEfSe analysis.

第5圖顯示Kruskal-Wallis檢驗所鑑別OSF及OSCC-OSF患者每毫升唾液樣本中有顯著數量上差異的特徵菌種。 Figure 5 shows that the Kruskal-Wallis test identified significantly different numbers of characteristic bacterial species per milliliter of saliva samples from OSF and OSCC-OSF patients.

第6圖顯示與口腔健康狀況及吸煙狀況有關菌種的文式圖。 Figure 6 shows a text diagram of bacterial species associated with oral health status and smoking status.

第7圖顯示隨機森林演算法的ROC曲線。 Figure 7 shows the ROC curve of the random forest algorithm.

第8A圖顯示OSF患者的唾液菌群間的交互作用網絡結構。 Figure 8A shows the interaction network structure between salivary flora of OSF patients.

第8B圖顯示OSCC-OSF患者的唾液菌群間的交互作用網絡結構。 Figure 8B shows the interaction network structure between salivary flora of OSCC-OSF patients.

第9圖顯示OSF及OSCC-OSF患者唾液樣本中豐富度有顯著差異的代謝途徑。 Figure 9 shows metabolic pathways with significantly different abundances in saliva samples from OSF and OSCC-OSF patients.

體現本案特徵與優點的一些實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖式在本質上為說明之用,而非用以限制本案。 Some embodiments embodying the features and advantages of the present invention will be described in detail in the following description. It should be understood that this case can have various changes in different aspects without departing from the scope of this case, and the descriptions and drawings are essentially for illustrative purposes rather than limiting this case.

本案主要目的在於系統性分析口腔粘膜下纖維化伴隨口腔癌(OSCC-OSF)患者唾液的微生物相(microbiota)與口腔癌惡轉之相關性,了解唾液微生物體(salivary microbiome)在促進或緩解癌前病變惡轉的成員和關鍵菌種,藉以開發微生物相液體活檢的生物標記,作為判斷口腔癌癌前病變轉變為口腔癌精準醫療之策略。 The main purpose of this case is to systematically analyze the correlation between the salivary microbiota of patients with oral submucosal fibrosis and oral cancer (OSCC-OSF) and the malignant transformation of oral cancer, and to understand the role of salivary microbiome in promoting or alleviating cancer. Members and key bacterial species involved in the malignant transformation of precancerous lesions can be used to develop biomarkers in microbial-phase liquid biopsy as a strategy to determine the transformation of oral cancer precancerous lesions into oral cancer precision medicine.

首先收集臨床樣本,其中探索組(exploratory cohorts)是來自成大醫院的52個臨床樣本,包括18個OSF患者及34個OSCC-OSF患者的唾液樣本,驗證組(validation cohorts)則是來自奇美醫院的臨床樣本,包括10個OSF患者及11個OSCC-OSF患者的唾液樣本。這些參與患者都是有嚼食檳榔的男性,且在進行唾液樣本收集前至少一個月未接受抗生素治療,並被要求在收集唾液前至少1小時不要進食、飲水或使用口腔衛生產品。之後藉由擴增子定序及定量聚合酶鏈鎖反應(簡稱qPCR,又稱real-time PCR)分析唾液中的微生物體,並進行有關組成和微生物量數據的統計分析,以及機器學習分析。 First, clinical samples were collected. The exploratory cohorts were 52 clinical samples from National Cheng Kung University Hospital, including saliva samples from 18 OSF patients and 34 OSCC-OSF patients. The validation cohorts were from Chi Mei Hospital. The clinical samples included saliva samples from 10 OSF patients and 11 OSCC-OSF patients. The participating patients were all male betel quid chewers who had not received antibiotics for at least one month before saliva sample collection and were asked not to eat, drink, or use oral hygiene products for at least 1 hour before saliva collection. Then, the microorganisms in the saliva were analyzed through amplicon sequencing and quantitative polymerase chain reaction (qPCR, also known as real-time PCR), and statistical analysis of composition and microbial load data, as well as machine learning analysis, were performed.

生態機制,包括確定性過程(例如宿主選擇、免疫反應等)和隨機性過程(例如環境因素、壓力、化學物質曝露等),會同時影響細菌群落結構。為了評估它們在控制唾液微生物體方面的相對優勢,本案使用Bray-Curtis和加權UniFrac(Weighted UniFrac)距離對空模型隨機率(null-model-based stochasticity)進行了量化。第1圖顯示分別根據Bray-Curtis與加權UniFrac距離函數計算的OSF及OSCC-OSF患者的微生物體組裝的空模型隨機率分布。如圖所示,在兩種距離量測法中,OSF及OSCC-OSF兩群組(cohorts)中的所有平均隨機率均超過50%,這表明隨機過程對於唾液微生物體組裝(salivary microbiome assembly)比宿主選擇有更大的貢獻度,也就是說,隨機過程在唾液微生物體的形成中占有主導地位。值得注意的是,OSCC-OSF組的平均隨機率較OSF組高,這也表示隨機優勢可能是由於口腔癌變而增強的。 Ecological mechanisms, including deterministic processes (such as host selection, immune response, etc.) and stochastic processes (such as environmental factors, stress, chemical exposure, etc.), will simultaneously affect bacterial community structure. To evaluate their relative advantages in controlling salivary microorganisms, null-model-based stochasticity was quantified using Bray-Curtis and Weighted UniFrac distances. Figure 1 shows the null model random rate distribution of microbial assembly in OSF and OSCC-OSF patients calculated according to Bray-Curtis and weighted UniFrac distance functions, respectively. As shown in the figure, in both distance measurement methods, all average random rates in the OSF and OSCC-OSF cohorts exceed 50%, indicating that random processes are important for salivary microbiome assembly. There is a greater contribution than host selection, that is, stochastic processes dominate the formation of salivary microorganisms. It is worth noting that the average randomization rate of the OSCC-OSF group was higher than that of the OSF group, which also means that the randomization advantage may be enhanced due to oral canceration.

進一步觀察口腔健康狀況和吸煙狀況是否會造成微生物體組成的變化(microbiome composition variation)。本案使用四種距離量測法比較了OSF及OSCC-OSF的微生物體結構,四種距離量測法分別為Jaccard距離、Bray-Curtis距離、未加權UniFrac(Unweighted UniFrac)距離、及加權UniFrac(Weighted UniFrac)距離,其中未加權及加權UniFrac距離屬於系統發育距離量測法(phylogenetic distance measures),且此處之加權是針對微生物的豐富度進行加權。第2A圖顯示分別根據Jaccard、Bray-Curtis、未加權UniFrac、及加權UniFrac距離函數計算的OSF及OSCC-OSF患者唾液微生物體樣本的主坐標分析結果,第2B圖則顯示分別根據Jaccard、Bray-Curtis、未加權UniFrac、及加權UniFrac距離函數計算的OSF及OSCC-OSF患者唾液微生物體樣本的Adonis分析結果。在主坐標分析中,如第2A圖所示,未加權及加權UniFrac距離比起Jaccard及Bray-Curti距離,更能在降維座標空間中區分OSF及OSCC-OSF。使用UniFrac距離時,前兩個主坐標的差異(44.8%)大於使用Jaccard及Bray-Curtis距離時的差異(<26.1%)。接著進行基於距離的Adnois分析,以測試微生物體組成的變化是否歸因於參與患者特徵的差異。由於本案中所有患者均有嚼食檳榔,因此將檳榔因素排除在分析之外。如第2B圖所示,使用Bray-Curtis及加權UniFrac距離進行的測試結果,顯示患者年齡(Age)、吸煙狀況(Smoking)、飲酒狀況(Alcohol)、或口腔健康狀況,例如牙周病(periodontal condition)及OSF癌化(OSF carcinogenesis),皆與微生物組成變化無顯著相關。然而,根據使用Jaccard及未加權UniFrac距離進行的測試結果,則顯示OSF癌化(OSF vs.OSCC-OSF)及吸煙狀況顯著影響了微生物體組成的變化(P<0.05)。也就是說,口腔健康狀況及吸煙狀況確實會造成微生物體組成的變化。 To further observe whether oral health status and smoking status will cause microbiome composition variation. This case uses four distance measurement methods to compare the microbial structures of OSF and OSCC-OSF. The four distance measurement methods are Jaccard distance, Bray-Curtis distance, unweighted UniFrac (Unweighted UniFrac) distance, and weighted UniFrac (Weighted UniFrac distance, where unweighted and weighted UniFrac distances belong to phylogenetic distance measures, and the weighting here is weighted according to the richness of microorganisms. Figure 2A shows the principal coordinate analysis results of salivary microbial samples from OSF and OSCC-OSF patients calculated according to Jaccard, Bray-Curtis, unweighted UniFrac, and weighted UniFrac distance functions, respectively. Figure 2B shows the results of principal coordinate analysis of salivary microbial samples from OSF and OSCC-OSF patients based on Jaccard, Bray-Curtis, and weighted UniFrac distance functions. Adonis analysis results of salivary microbiome samples from OSF and OSCC-OSF patients calculated by Curtis, unweighted UniFrac, and weighted UniFrac distance functions. In principal coordinate analysis, as shown in Figure 2A, unweighted and weighted UniFrac distances are better than Jaccard and Bray-Curti distances in distinguishing OSF and OSCC-OSF in the reduced-dimensional coordinate space. When using the UniFrac distance, the difference between the first two principal coordinates (44.8%) is greater than the difference when using the Jaccard and Bray-Curtis distances (<26.1%). A distance-based Adnois analysis was then performed to test whether changes in microbial composition were attributable to differences in participating patient characteristics. Since all patients in this case chewed betel nut, the betel nut factor was excluded from the analysis. As shown in Figure 2B, the test results using Bray-Curtis and weighted UniFrac distance show the patient's age (Age), smoking status (Smoking), drinking status (Alcohol), or oral health status, such as periodontal disease (periodontal). condition) and OSF carcinogenesis, are not significantly related to changes in microbial composition. However, according to the test results using Jaccard and unweighted UniFrac distance, it was shown that OSF canceration (OSF vs. OSCC-OSF) and smoking status significantly affected the changes in microbial composition (P<0.05). In other words, oral health and smoking status do cause changes in the composition of the microbiome.

本案更使用16S rRNA基因擴增子V3-V4區域的標籤編碼高通量測序(high-throughput sequencing,簡稱HTS)來分析18個OSF患者及34個OSCC-OSF患者的唾液樣本中的細菌群,並取得擴增子序列變異體(amplicon sequence variant,簡稱ASV)來研究微生物多樣性。在HTS中,從52個樣本中總共檢測到6160個獨特的ASV,且從ASV分佈的分析可看出,唾液微生物體中的ASV在個體之間有明顯的不同。這些佔約99.9%總讀數的ASV可分為12個細菌門,包括以下主要分類群(>1%):Firmicutes(35.8±12.8%)、Bacteroidetes(21.9±10.6%)、Proteobacteria(21.0±14.0%),Saccharibacteria(TM7)(7.3±9.5%)、Actinobacteria(6.0±5.5%)、Fusobacteria(5.5±4.3%)、以及Spirochaetes(1.6±2.6%)。關於菌種身分鑑定(species annotation),在OSF和OSCC-OSF樣本中分別檢測到408個和470個分類群(taxa),其中,在OSF和OSCC-OSF樣本中分別有51個(12.5%)和28個(約6%)分類群在患者身上的盛行率(prevalence)大於75%,因此這些分類群即被認為是每個群組的核心唾液微生物體的成員。這些核心菌種佔唾液微生物體的大多數,且在OSF和OSCC-OSF中分別佔平均讀數豐富度的64.5%和52.7%。第3圖顯示OSF及OSCC-OSF患者唾液樣本中的核心菌種比例及其文式(Venn)圖。在核心菌種中,有25個菌種在兩個群組都存在,另有26個和3個菌種則分別存在OSF和OSCC-OSF組中,各菌種名稱列於文式圖下方。此外,核心菌種佔總分類群的比例在OSF和OSCC-OSF樣本分別為12.5%及6%,也顯示OSF癌化會使核心菌種的比例降低。因此,相較於OSF,OSCC-OSF的核心菌種數量及豐富度皆減少,表示OSF癌化對微生物體組成有分散效果。 In this case, tag-encoded high-throughput sequencing (HTS) of the V3-V4 region of the 16S rRNA gene amplicon was used to analyze the bacterial groups in the saliva samples of 18 OSF patients and 34 OSCC-OSF patients. And obtain amplicon sequence variants (ASV) to study microbial diversity. In HTS, a total of 6160 unique ASVs were detected from 52 samples, and analysis of ASV distribution revealed that ASVs in salivary microbiota differ significantly between individuals. These ASVs, which accounted for approximately 99.9% of the total reads, could be divided into 12 bacterial phyla, including the following major taxa (>1%): Firmicutes (35.8±12.8%), Bacteroidetes (21.9±10.6%), Proteobacteria (21.0±14.0% ), Saccharibacteria (TM7) (7.3±9.5%), Actinobacteria (6.0±5.5%), Fusobacteria (5.5±4.3%), and Spirochaetes (1.6±2.6%). Regarding species annotation, 408 and 470 taxa were detected in OSF and OSCC-OSF samples respectively, of which 51 (12.5%) were detected in OSF and OSCC-OSF samples respectively. and 28 (approximately 6%) taxa had a prevalence greater than 75% in patients and were therefore considered members of the core salivary microbiota for each group. These core species accounted for the majority of salivary microbiota and accounted for 64.5% and 52.7% of the average read richness in OSF and OSCC-OSF, respectively. Figure 3 shows the proportion of core bacterial species in saliva samples of OSF and OSCC-OSF patients and their Venn diagram. Among the core strains, 25 strains exist in both groups, and another 26 and 3 strains exist in the OSF and OSCC-OSF groups respectively. The names of each strain are listed below the text diagram. In addition, the proportion of core bacterial species in the total taxa in OSF and OSCC-OSF samples was 12.5% and 6% respectively, which also shows that canceration of OSF will reduce the proportion of core bacterial species. Therefore, compared with OSF, the number and richness of core bacterial species in OSCC-OSF are reduced, indicating that OSF canceration has a dispersing effect on the microbial composition.

本案接著使用不同統計分析方法來鑑別在OSF和OSCC-OSF群組中與口腔健康狀況相關的獨特微生物。首先,以線性判別分析效應量(linear discriminant analysis(LDA)effect size(LEfSe))進行分析,第4圖即顯示LEfSe分析所鑑別OSF及OSCC-OSF患者唾液樣本中相對豐富度(relative abundance)有顯著差異的特徵菌種,共鑑別出42個菌種在OSF及OSCC-OSF之間具有差異豐富度(LDA分數>2)。當中有3個菌種,即Haemophilus pittmaniaePrevotella sp.HMT-309、及Treponema sp.HMT-270在OSCC-OSF患者中明顯更豐富(P<0.05)。H. pittmaniaePrevotella sp.HMT-309在OSCC-OSF樣本的盛行率(屬Q2盛行率(25~50%))顯著高於在OSF樣本的盛行率(屬Q1盛行率(<25%))。另外39個菌種,分屬於Prevotella(9種)、Treponema(6種)、Selenomonas(3種)和其他21屬(每個屬一種),則在OSF患者中明顯更豐富(P<0.05),且這些菌群的盛行率在OSCC-OSF樣本中顯著降低。只有6個菌種,即Mycoplasma fauciumPrevotella denticolaClostridiales sp.HMT-093、Prevotella baroniaePrevotella oulorum、及Selenomonas sputigena是核心菌種(屬Q4盛行率(>75%)),且相較於過渡菌群(盛行率<75%),其在OSCC-OSF樣本中的盛行率下降幅度最大(達41.0%±6.4%)。 We then used different statistical analysis methods to identify unique microorganisms associated with oral health status in the OSF and OSCC-OSF cohorts. First, linear discriminant analysis (LDA) effect size (LEfSe) was used to analyze. Figure 4 shows the relative abundance in saliva samples of OSF and OSCC-OSF patients identified by LEfSe analysis. Significantly different characteristic bacterial species, a total of 42 bacterial species were identified with differential abundance (LDA score > 2) between OSF and OSCC-OSF. Among them, three bacterial species, namely Haemophilus pittmaniae , Prevotella sp.HMT-309, and Treponema sp.HMT-270, were significantly more abundant in OSCC-OSF patients (P<0.05). The prevalence of H. pittmaniae and Prevotella sp. HMT-309 in OSCC-OSF samples (genus Q2 prevalence (25~50%)) is significantly higher than that in OSF samples (genus Q1 prevalence (<25%)) . Another 39 bacterial species, belonging to Prevotella (9 species), Treponema (6 species), Selenomonas (3 species) and 21 other genera (one species for each genus), were significantly more abundant in OSF patients (P<0.05). And the prevalence of these bacterial groups was significantly reduced in OSCC-OSF samples. Only 6 species, namely Mycoplasma faucium , Prevotella denticola , Clostridiales sp.HMT-093, Prevotella baroniae , Prevotella oulorum , and Selenomonas sputigena , are core species (genus Q4 prevalence (>75%)), and compared with transition Bacterial flora (prevalence rate <75%), its prevalence rate decreased the most in OSCC-OSF samples (up to 41.0%±6.4%).

本案藉由將16S rRNA套數校正後的相對豐富度乘上16S rRNA套數校正的qPCR定量細胞數,以將成分相對豐富度轉換為微生物量(microbial load),亦即每毫升唾液細菌個數,再以絕對微生物量鑑別OSF及OSCC-OSF的特徵菌種。第5圖顯示Kruskal-Wallis檢驗所鑑別OSF及OSCC-OSF患者每毫升唾液樣本中有顯著數量上差異的特徵菌種。根據絕對微生物量的數據顯示,兩組之間有15個菌屬與23個菌種的數量在統計學上有差異(P<0.05,效應量

Figure 110111701-A0305-02-0009-3
>0.06,在至少一組的個別菌種盛行率>33%)。又,這23個菌種可對應到第4圖的LEfSe鑑別結果,亦即LEfSe分析及Kruskal-Wallis檢驗這兩種統計分析方法都一致地鑑別出這23個菌種為OSF及OSCC-OSF的特徵菌種。 In this case, the relative abundance of components corrected for 16S rRNA sets was multiplied by the qPCR quantitative cell number corrected for 16S rRNA sets to convert the relative abundance of components into microbial load, that is, the number of bacteria per milliliter of saliva. The characteristic bacterial species of OSF and OSCC-OSF were identified based on the absolute microbial count. Figure 5 shows that the Kruskal-Wallis test identified significantly different numbers of characteristic bacterial species per milliliter of saliva samples from OSF and OSCC-OSF patients. According to the absolute microbial biomass data, the numbers of 15 bacterial genera and 23 bacterial species were statistically different between the two groups (P<0.05, effect size
Figure 110111701-A0305-02-0009-3
>0.06, prevalence of individual strains in at least one group >33%). In addition, these 23 bacterial species can correspond to the LEfSe identification results in Figure 4, that is, both statistical analysis methods, LEfSe analysis and Kruskal-Wallis test, consistently identify these 23 bacterial species as OSF and OSCC-OSF. Characteristic strains.

根據前述第2B圖,除了口腔健康狀況之外,吸煙狀況也顯著影響微生物體組成的變化。根據絕對微生物量數據的Kruskal-Wallis檢驗,也可進一步分析與口腔健康狀況及吸煙狀況有關的菌種。第6圖顯示與OSF癌化及吸煙狀況有關菌種的文氏圖,各相關菌種名稱列於文氏圖下方。由第6圖可看出,有28個菌種與患者的吸煙習慣有特殊關連,其中8個菌屬中的12個菌種也與OSF癌化有關。此外,有11個菌種與OSF癌化特別相關。其中,單星號標註者為OSF的核心菌種,雙星號標註者為前述統計分析方法所鑑別的特徵菌種,其中雙星號標註者 共有5個,分別為Mitsuokella sp.HMT-131、Porphyromonos catoniaePrevotella multisaccharivoraxPrevotella sp.HMT-300、及Treponema sp.HMT-927,都屬於與吸煙習慣及OSF癌化皆有關的特徵菌種。 According to the aforementioned Figure 2B, in addition to oral health status, smoking status also significantly affects changes in microbial composition. Based on the Kruskal-Wallis test of absolute microbial load data, bacterial species related to oral health status and smoking status can also be further analyzed. Figure 6 shows a Venn diagram of bacterial species related to OSF canceration and smoking status. The names of relevant bacterial species are listed below the Venn diagram. As can be seen from Figure 6, 28 bacterial species are specifically related to the patient's smoking habits, and 12 species from 8 bacterial genera are also related to OSF canceration. In addition, 11 bacterial species are specifically related to OSF canceration. Among them, those marked with a single asterisk are the core strains of OSF, and those marked with a double asterisk are the characteristic strains identified by the aforementioned statistical analysis method. Among them, there are 5 marked with double asterisks, namely Mitsuokella sp.HMT-131, Porphyromonos catoniae , Prevotella multisaccharivorax , Prevotella sp.HMT-300, and Treponema sp.HMT-927 are all characteristic bacterial species related to smoking habits and OSF canceration.

本案更進一步用機器學習法(machine learning)來鑑別OSF及OSCC-OSF的特徵菌種,且所採用的機器學習特徵選擇演算法(machine-learning feature-selection algorithm)檢測到15個菌種影響判別效率,其中5個菌種,包括Porphyromonas catoniaePrevotella multisaccharivoraxPrevotella sp.HMT-300、Mitsuokella sp.HMT-131、及Treponema sp.HMT-927,可對應到使用LEfSe及Kruskal-Wallis統計分析所鑑別的特徵菌種(第4圖及第5圖),也對應到與吸煙習慣及OSF癌化皆有關的特徵菌種(第6圖)。另有2個菌種,即Dialister micraerophilusMollicutes sp.HMT-504,也在LEfSe分析中檢測到(第4圖)。其餘的8個菌種是使用機器學習特徵選擇演算法檢測到但未被統計分析方法檢測到,包括Clostridiales sp.HMT-876、Corynebacterium durumGracilibacteria sp.HMT-871、Megasphaera sp.HMT-123、Mobiluncus mulierisNegativicutes(未分類)、Peptostreptococcaceae(未分類)、及Selenomonas sp.HMT-478。 This case further used machine learning to identify the characteristic strains of OSF and OSCC-OSF, and the machine-learning feature-selection algorithm used detected 15 strains that affected the discrimination. Efficiency, among which 5 strains, including Porphyromonas catoniae , Prevotella multisaccharivorax , Prevotella sp.HMT-300, Mitsuokella sp.HMT-131, and Treponema sp.HMT-927, can correspond to the identification using LEfSe and Kruskal-Wallis statistical analysis The characteristic bacterial species (Figures 4 and 5) also correspond to the characteristic bacterial species related to both smoking habits and OSF canceration (Figure 6). Two other bacterial species, namely Dialister micraerophilus and Mollicutes sp. HMT-504, were also detected in the LEfSe analysis (Figure 4). The remaining 8 bacterial species were detected using the machine learning feature selection algorithm but were not detected by the statistical analysis method, including Clostridiales sp.HMT-876, Corynebacterium durum , Gracilibacteria sp.HMT-871, Megasphaera sp.HMT-123, Mobiluncus mulieris , Negativicutes (unclassified), Peptostreptococcaceae (unclassified), and Selenomonas sp. HMT-478.

換言之,多種統計分析和機器學習法一致地鑑別出5個菌種,包括Porphyromonas catoniaePrevotella multisaccharivoraxPrevotella sp.HMT-300、Mitsuokella sp.HMT-131、及Treponema sp.HMT-927,且這5個菌種都與嚼食檳榔的OSF患者之口腔健康狀況與吸煙狀況有關,可作為OSF惡轉的生物標記。因此,本案提供了OSF惡轉的生物標記,包含唾液微生物體的改變,其中改變的唾液微生物體中的特徵菌種包含選自於由Porphyromonas catoniaePrevotella multisaccharivoraxPrevotella sp.HMT-300、Mitsuokella sp.HMT-131、及Treponema sp.HMT-927所組成的群組中的至少一個及其組合。 In other words, multiple statistical analyzes and machine learning methods consistently identified 5 bacterial species, including Porphyromonas catoniae , Prevotella multisaccharivorax , Prevotella sp.HMT-300, Mitsuokella sp.HMT-131, and Treponema sp.HMT-927, and these 5 species were Each bacterial species is related to the oral health status and smoking status of OSF patients who chew betel nut, and can be used as a biomarker for the progression of OSF. Therefore, this case provides biomarkers for the malignant transformation of OSF, including changes in salivary microorganisms, wherein the characteristic bacterial species in the changed salivary microorganisms include selected from the group consisting of Porphyromonas catoniae , Prevotella multisaccharivorax , Prevotella sp.HMT-300, Mitsuokella sp. At least one of the group consisting of HMT-131 and Treponema sp.HMT-927 and combinations thereof.

在一實施例中,該特徵菌種可更包含Dialister micraerophilus及/或Mollicutes sp.HMT-504,亦即LEfSe統計分析及機器學習法一致地鑑別出的菌種。 In one embodiment, the characteristic bacterial species may further include Dialister micraerophilus and/or Mollicutes sp. HMT-504, that is, the bacterial species consistently identified by LEfSe statistical analysis and machine learning methods.

在一實施例中,該特徵菌種可更包含選自於由Mycoplasma fauciumPrevotella denticolaPeptostreptococcaceae sp.HMT-369、Prevotella sp.HMT-315、Clostridiales sp.HMT-093、Eubacterium saphenusCatonella sp.HMT-451、Treponema sp.HMT-237、Selenomonas sputigenaHaemophilus pittmaniaePrevotella baroniaeActinomyces sp.HMT-169、Absconditabacteria(SR1)sp.HMT-874、Treponema sp.HMT-270、Mollicutes sp.HMT-906、Bacteroidetes sp.HMT-280、Treponema sp.HMT-238、及Treponema sp.HMT-258所組成的群組中的至少一個及其組合,亦即LEfSe及Kruskal-Wallis統計分析一致地鑑別出的菌種。 In one embodiment, the characteristic bacterial species may further include Mycoplasma faucium , Prevotella denticola , Peptostreptococcaceae sp.HMT-369, Prevotella sp.HMT-315, Clostridiales sp.HMT-093, Eubacterium saphenus , Catonella sp. HMT-451, Treponema sp.HMT-237, Selenomonas sputigena , Haemophilus pittmaniae , Prevotella baroniae , Actinomyces sp.HMT-169, Absconditabacteria (SR1)sp.HMT-874, Treponema sp.HMT-270, Mollicutes sp.HMT-906 , Bacteroidetes sp.HMT-280, Treponema sp.HMT-238, and Treponema sp.HMT-258, and at least one of the groups and their combinations, that is, bacteria consistently identified by LEfSe and Kruskal-Wallis statistical analysis species.

在一實施例中,該特徵菌種可更包含選自於由Clostridiales sp.HMT-876、Corynebacterium durum,Gracilibacteria sp.HMT-871、Megasphaera sp.HMT-123、Mobiluncus mulierisNegativicutesPeptostreptococcaceae、及Selenomonas sp.HMT-478所組成的群組中的至少一個及其組合,亦即機器學習法另外鑑別出的菌種。 In one embodiment, the characteristic bacterial species may further include Clostridiales sp. HMT-876, Corynebacterium durum , Gracilibacteria sp. HMT-871, Megasphaera sp. HMT-123, Mobiluncus mulieris , Negativicutes , Peptostreptococcaceae , and Selenomonas. At least one of the groups composed of sp.HMT-478 and their combinations, that is, the bacterial species additionally identified by the machine learning method.

針對使用LEfSe及Kruskal-Wallis統計分析所一致鑑別出的23個特徵菌種,可藉由計算根據相對豐富度和絕對微生物量的受試者工作特徵(receiver operating characteristic,簡稱ROC)曲線下的面積(area under the curve,簡稱AUC)所得到的相對AUC(AUCrelative)及絕對AUC(AUCabsolute)數值,來評估23個特徵菌種區分OSF及OSCC-OSF的有效性。除了對探索組數據集進行交叉驗證外,也利用驗證組的獨立唾液微生物體數據集進行評估,其結果如下表1所示。探索組和驗證組數據集的平均AUC分別為0.68和0.56。當中,與口腔健康狀況及吸煙狀況皆有關的特徵菌種Treponema sp.HMT-927在探索組數據集中表現出最 高的可分辨性(相對AUC=0.748、絕對AUC=0.758),且在驗證組數據集中具有高的預測性能(相對AUC=0.709、絕對AUC=0.682)。而在驗證組數據集中性能最佳的菌種是Absconditabacteria(SR1)sp.HMT-874(相對AUC=0.755、絕對AUC=0.809),它是候選門類輻射組(candidate phyla radiation group)中的一個分類群,也是被鑑別為與口腔健康狀況有關的特徵菌種(第6圖)。然而,不論是對於探索組數據集(H=0.008、P=0.923)或驗證組數據集(H=0.088、P=0.767),從相對豐富度和絕對微生物量得出的AUC之間都沒有統計顯著性(statistical significance)。此觀察也顯示,無論研究中採用何種定量方法(相對豐富度或絕對微生物量),特徵菌種的可分辨性均得到相似的結果。 For the 23 characteristic bacterial species consistently identified using LEfSe and Kruskal-Wallis statistical analysis, the area under the receiver operating characteristic (ROC) curve based on relative abundance and absolute microbial load can be calculated. ( area under the curve, referred to as AUC) to evaluate the effectiveness of 23 characteristic strains in distinguishing OSF and OSCC-OSF. In addition to cross-validation on the exploration group data set, the independent saliva microbiome data set of the validation group was also used for evaluation. The results are shown in Table 1 below. The average AUCs of the exploration and validation group data sets were 0.68 and 0.56 respectively. Among them, the characteristic strain Treponema sp.HMT-927, which is related to both oral health status and smoking status, showed the highest discriminability in the exploration group data set (relative AUC=0.748, absolute AUC=0.758), and in the validation group data The concentration has high prediction performance (relative AUC=0.709, absolute AUC=0.682). The best performing strain in the validation group data set is Absconditabacteria (SR1)sp.HMT-874 (relative AUC=0.755, absolute AUC=0.809), which is a classification in the candidate phyla radiation group group, are also identified as characteristic bacterial species related to oral health conditions (Figure 6). However, there was no statistical difference between the AUCs derived from relative richness and absolute microbial biomass, either for the exploration group data set ( H =0.008, P =0.923) or the validation group data set ( H =0.088, P =0.767). Statistical significance. This observation also shows that regardless of the quantitative method used in the study (relative richness or absolute microbial biomass), similar results were obtained for the resolvability of characteristic bacterial species.

Figure 110111701-A0305-02-0012-1
Figure 110111701-A0305-02-0012-1
Figure 110111701-A0305-02-0013-2
Figure 110111701-A0305-02-0013-2

通過將特徵菌種與宿主臨床和生活方式特徵相結合,機器學習分析更實現了高分辨效率。以特徵選擇檢測到的菌種、Faith系統發育多樣性(Faith’s PD)及生活方式(當前的吸煙習慣)的數據訓練隨機森林演算法(random-forest algorithm),可以最有效地分辨OSF和OSCC-OSF兩群組。第7圖顯示隨機森林演算法的ROC曲線(5倍交叉驗證),其係以靈敏度為縱坐標,以假陽性率(1-特異度)為橫坐標,ROC曲線越偏離對角線(又稱機會線),ROC曲線下面積就越大,也代表準確度越高。如第7圖所示,對訓練後的隨機森林演算法進行交叉驗證所得的ROC曲線,其平均5倍交叉驗證準確度(mean 5-fold cross-validation accuracy)為85.1%,且其AUC為0.88,顯示訓練後的隨機森林演算法有相當高的準確度。 By combining characteristic bacterial species with host clinical and lifestyle characteristics, machine learning analysis achieves high resolution efficiency. Training a random forest algorithm (random-forest algorithm) with data on bacterial species, Faith's phylogenetic diversity (Faith's PD) and lifestyle (current smoking habits) detected by feature selection can most effectively distinguish OSF and OSCC- OSF two groups. Figure 7 shows the ROC curve (5-fold cross-validation) of the random forest algorithm. It takes the sensitivity as the ordinate and the false positive rate (1-specificity) as the abscissa. The more the ROC curve deviates from the diagonal (also known as Opportunity line), the larger the area under the ROC curve, which also means the higher the accuracy. As shown in Figure 7, the ROC curve obtained by cross-validating the trained random forest algorithm has an average 5-fold cross-validation accuracy of 85.1% and an AUC of 0.88 , showing that the trained random forest algorithm has quite high accuracy.

為了評估唾液中的菌種間相互作用,本案進一步使用OSF及OSCC-OSF組的微生物體數據集進行了SparCC分析。第8A圖顯示OSF患者的唾液菌群間的交互作用網絡結構,第8B圖顯示OSCC-OSF患者的唾液菌群間的交互作用網絡結構。由圖中可看出,OSF患者的微生物相互作用(7173條線連接362個節點)比OSCC-OSF患者(2695條線連接351個節點)複雜得多,且複雜度接近3倍。關於以特徵菌種作為節點並與其高度相關鄰居(SparCC相關係數>0.6)所形成的網絡,第8A圖及第8B圖顯示出兩個唾液菌群生態系統組之間完全不同的網絡結構。如第8A圖所示,OSF組具有較高的連結性,且正關係線(實線,SparCC相關係數>0.6)多於負關係線(虛線,SparCC相關係數<-0.6),表示存在獨特的菌群共生模式。除了Eubacterium saphenusMycoplasma fauciumCatonella sp.HMT451、及Clostridiales sp.HMT-093之外,有數個特徵菌種,包括Treponema(HMT-927、HMT-258、HMT-237、及HMT-238)與Prevotella(P.denticola及HMT- 315),是在網絡中與正關係線(實線)高度相連的中央樞紐。另有兩個中樞菌種,即Neisseria sp.(未分類)及Oribacterium sp.(未分類),與其他菌種大多以負關係線(虛線)相連。這些觀察結果凸顯了調節OSF患者唾液微生物體中細菌間相互作用的重要性。相反地,如第8B圖所示,在OSCC-OSF患者中不存在相應的菌群共生模式,表示菌群間網絡結構發生了實質性變化,癌化過程使得OSF原本菌群間互動緊密的結構消失,證實唾液微生物體確實會隨著惡轉而改變。 In order to evaluate the interaction between bacterial species in saliva, this case further conducted SparCC analysis using the microbial data sets of the OSF and OSCC-OSF groups. Figure 8A shows the interaction network structure between the salivary flora of OSF patients, and Figure 8B shows the interaction network structure between the salivary flora of OSCC-OSF patients. As can be seen from the figure, the microbial interactions of OSF patients (7173 lines connecting 362 nodes) are much more complex than those of OSCC-OSF patients (2695 lines connecting 351 nodes), and the complexity is nearly 3 times greater. Regarding the network formed with characteristic bacterial species as nodes and their highly correlated neighbors (SparCC correlation coefficient >0.6), Figures 8A and 8B show completely different network structures between the two salivary microbiota ecosystem groups. As shown in Figure 8A, the OSF group has higher connectivity, and there are more positive relationship lines (solid line, SparCC correlation coefficient >0.6) than negative relationship lines (dashed line, SparCC correlation coefficient <-0.6), indicating the existence of unique Microbiota symbiosis model. In addition to Eubacterium saphenus , Mycoplasma faucium , Catonella sp.HMT451, and Clostridiales sp.HMT-093, there are several characteristic strains, including Treponema (HMT-927, HMT-258, HMT-237, and HMT-238) and Prevotella ( P.denticola and HMT-315), is a central hub in the network that is highly connected to the positive relationship line (solid line). There are two other central bacterial species, namely Neisseria sp. (unclassified) and Oribacterium sp. (unclassified), which are mostly connected to other bacterial species by negative relationship lines (dashed lines). These observations highlight the importance of modulating bacterial-bacterial interactions in the salivary microbiota of patients with OSF. On the contrary, as shown in Figure 8B, there is no corresponding bacterial symbiosis pattern in OSCC-OSF patients, indicating that the network structure between bacterial groups has undergone substantial changes, and the cancerization process has made OSF originally have a structure of close interaction between bacterial groups. disappeared, confirming that salivary microorganisms do change with malignancy.

為了比較OSF及OSCC-OSF唾液微生物體的生化功能,本案進一步使用LEfSe來判別PICRUSt2從MetaCyc資料庫預測的代謝途徑的量化差異。總共有85.77%的去噪序列具有高到中等的品質(最接近定序分類群指標(nearest sequenced taxon indicator(NSTI))分數<0.15)。為了確保適當的預測品質,將PICRUSt2分析中排除了NSTI分數>2(總去噪序列的0.37%)的去噪序列。雖然在OSF和OSCC-OSF群組中檢測到許多特徵菌種,但只有9種代謝途徑在數量上是可區分的。第9圖顯示OSF及OSCC-OSF患者唾液樣本中豐富度有顯著差異的代謝途徑,其中6個代謝途徑與OSF較緊密相關,包括L-鳥氨酸(L-ornithine)、L-組氨酸(L-histidine)、嘧啶去氧核糖核苷酸(pyrimidine deoxyribonucleotide)、及煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide(NAD))的合成,以及甲醛氧化和同化(formaldehyde oxidation and assimilation)。而在OSCC-OSF中,有3個較緊密相關的代謝途徑,即1,4-二羥基-6-萘甲酸(1,4-dihydroxy-6-naphthoate,為維生素K2合成的中間產物)、S-腺苷-L-甲硫氨酸(S-adenosyl-L-methionine(SAM))、及去甲精胺(norspermidine)的合成。其中,OSCC-OSF具有較高的S-腺苷-L-甲硫氨酸及去甲精胺合成潛能,但具有較低的L-鳥氨酸及嘧啶去氧核糖核苷酸合成和甲醛代謝潛能。這些發現指出唾液微生物體在口腔癌變過程中對調節微生物代謝扮演重要的角色。 In order to compare the biochemical functions of OSF and OSCC-OSF salivary microorganisms, this case further used LEfSe to identify the quantitative differences in metabolic pathways predicted by PICRUSt2 from the MetaCyc database. A total of 85.77% of the denoised sequences were of high to moderate quality (nearest sequenced taxon indicator (NSTI) score <0.15). To ensure appropriate prediction quality, denoised sequences with NSTI scores >2 (0.37% of total denoised sequences) were excluded from the PICRUSt2 analysis. Although many characteristic bacterial species were detected in the OSF and OSCC-OSF cohorts, only nine metabolic pathways were quantitatively distinguishable. Figure 9 shows metabolic pathways with significantly different abundances in saliva samples of OSF and OSCC-OSF patients. Six of the metabolic pathways are closely related to OSF, including L-ornithine and L-histidine. (L-histidine), pyrimidine deoxyribonucleotide (pyrimidine deoxyribonucleotide), and nicotinamide adenine dinucleotide (NAD) synthesis, as well as formaldehyde oxidation and assimilation (formaldehyde oxidation and assimilation). In OSCC-OSF, there are three closely related metabolic pathways, namely 1,4-dihydroxy-6-naphthoate (1,4-dihydroxy-6-naphthoate, an intermediate product of vitamin K2 synthesis), S -Synthesis of S-adenosyl-L-methionine (SAM) and norspermidine. Among them, OSCC-OSF has higher S-adenosyl-L-methionine and norspermine synthesis potential, but lower L-ornithine and pyrimidine deoxyribonucleotide synthesis and formaldehyde metabolism. potential. These findings indicate that salivary microbiota play an important role in regulating microbial metabolism during oral carcinogenesis.

這9種代謝途徑也可歸類為5類代謝。S-腺苷-L-甲硫氨酸的合成、L-鳥氨酸的合成及L-組氨酸的合成屬於胺基酸的合成(amino acid biosynthesis)。嘧啶去氧核糖核苷酸的合成屬於核苷及核苷酸的合成(nucleoside and nucleotide biosynthesis)。甲醛氧化和同化屬於C1化合物的利用及同化(C1 compound utilization and assimilation)。1,4-二羥基-6-萘甲酸的合成及NAD的合成屬於輔因子、輔基電子載體及維生素合成(cofactor,prosthetic group electron carrier and vitamin biosynthesis)。去甲精胺的合成則屬於胺及多胺的合成(amine and polyamine biosynthesis)。而唾液微生物對代謝途徑的調控機轉則有待進一步的研究。 These 9 metabolic pathways can also be classified into 5 categories of metabolism. The synthesis of S-adenosyl-L-methionine, the synthesis of L-ornithine and the synthesis of L-histidine belong to amino acid biosynthesis. The synthesis of pyrimidine deoxyribonucleotides belongs to nucleoside and nucleotide biosynthesis. Formaldehyde oxidation and assimilation belong to C1 compound utilization and assimilation (C1 compound utilization and assimilation). The synthesis of 1,4-dihydroxy-6-naphthoic acid and the synthesis of NAD belong to cofactor, prosthetic group electron carrier and vitamin biosynthesis. The synthesis of norspermine belongs to the synthesis of amine and polyamine (amine and polyamine biosynthesis). The regulation mechanism of metabolic pathways by salivary microorganisms needs further study.

綜上所述,由於唾液微生物體的變化與口腔鱗狀細胞癌(OSCC)有關,而大多數OSCC是由癌前病變引起的,其中口腔粘膜下纖維化(OSF)患者的惡轉率高,但是唾液微生物體如何隨著惡轉而改變尚不清楚。因此,本案比較了口腔粘膜下纖維化伴隨口腔癌(OSCC-OSF)患者和OSF患者的唾液微生物體,觀察OSF惡轉成OSCC-OSF過程中唾液微生物體的改變。根據對細菌16S rRNA基因的V3-V4區進行高通量測序的結果可知,口腔健康狀況和吸煙狀況顯著影響唾液微生物體系統組成的變化,從而導致菌種豐富度和系統發生多樣性顯著降低(P<0.05)。OSF惡轉增加了隨機性對唾液微生物體組成變化的影響,且完全改變了菌種共生網絡模式。多種統計分析和機器學習法一致地鑑別出5個菌種在OSF及OSCC-OSF之間有明顯變化,包括Porphyromonas catoniaePrevotella multisaccharivoraxPrevotella sp.HMT-300、Mitsuokella sp.HMT-131、及Treponema sp.HMT-927,且這5個菌種都與口腔健康狀況和吸煙狀況有關。因此,這5個菌種可作為OSF惡轉的生物標記,且不論是在探索組數據集或驗證組數據集,這些生物標記對於預測口腔癌發生的準確率都相當高。此外,OSCC-OSF具有較高的S-腺苷-L-甲硫氨酸及去甲精胺合成潛能,但具有較低的L-鳥氨酸和嘧 啶脫氧核糖核苷酸合成和甲醛代謝潛能,這也表明唾液微生物體在口腔癌變過程中對調節微生物代謝扮演重要的角色。因此,本案提供了OSF惡轉的生物標記,有助於癌症形成和治療的研究,且可在OSF患者中辨識出OSCC高風險患者,進而對高危險患者進行檢測及治療。 In summary, since changes in salivary microbiota are related to oral squamous cell carcinoma (OSCC), and most OSCC are caused by precancerous lesions, among which patients with oral submucosal fibrosis (OSF) have a high rate of malignant transformation. But how the salivary microbiome changes with malignancy is unclear. Therefore, this case compared the salivary microbiota of patients with oral submucosal fibrosis accompanied by oral cancer (OSCC-OSF) and OSF patients, and observed the changes in salivary microbiome during the malignant transformation of OSF into OSCC-OSF. According to the results of high-throughput sequencing of the V3-V4 region of bacterial 16S rRNA genes, it can be seen that oral health status and smoking status significantly affect changes in the composition of salivary microbial systems, resulting in a significant reduction in bacterial species richness and phylogenetic diversity ( P<0.05). The malignant transformation of OSF increases the impact of stochasticity on changes in the composition of salivary microorganisms and completely changes the bacterial symbiosis network pattern. Various statistical analyzes and machine learning methods consistently identified 5 bacterial species with significant changes between OSF and OSCC-OSF, including Porphyromonas catoniae , Prevotella multisaccharivorax , Prevotella sp.HMT-300, Mitsuokella sp.HMT-131, and Treponema sp.HMT-927, and these five bacterial species are all related to oral health and smoking status. Therefore, these five bacterial species can be used as biomarkers for the malignant transformation of OSF, and the accuracy of these biomarkers in predicting the occurrence of oral cancer is quite high whether in the exploratory group data set or the validation group data set. In addition, OSCC-OSF has high S-adenosyl-L-methionine and norspermine synthesis potential, but low L-ornithine and pyrimidine deoxyribonucleotide synthesis and formaldehyde metabolism potential. , which also indicates that salivary microorganisms play an important role in regulating microbial metabolism during oral carcinogenesis. Therefore, this case provides a biomarker for the malignant transformation of OSF, which is helpful for research on cancer formation and treatment, and can identify high-risk OSCC patients among OSF patients, and then detect and treat high-risk patients.

縱使本發明已由上述實施例詳細敘述而可由熟悉本技藝人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。 Even though the present invention has been described in detail through the above embodiments, it can be modified in various ways as desired by those skilled in the art, without departing from the intended protection within the scope of the appended patent application.

Claims (3)

一種特徵菌種的用途,係作為口腔粘膜下纖維化惡轉的生物標記,其中該特徵菌種在口腔粘膜下纖維化惡轉前後的豐富度或微生物量有顯著差異(P<0.05),且該特徵菌種係為選自於由Porphyromonas catoniaePrevotella multisaccharivoraxPrevotella sp.HMT-300、Mitsuokella sp.HMT-131、Treponema sp.HMT-927、Mycoplasma fauciumPrevotella sp.HMT-315、Absconditabacteria(SR1)sp.HMT-874、及Treponema sp.HMT-258所組成的群組中的其中之一。 The use of a characteristic bacterial strain as a biomarker for the progression of oral submucosal fibrosis, wherein the abundance or microbial load of the characteristic strain before and after the progression of oral submucosal fibrosis is significantly different (P<0.05), and The characteristic bacterial strain is selected from Porphyromonas catoniae , Prevotella multisaccharivorax , Prevotella sp.HMT-300, Mitsuokella sp.HMT-131, Treponema sp.HMT-927, Mycoplasma faucium , Prevotella sp.HMT-315, Absconditabacteria (SR1 )sp.HMT-874, and Treponema sp.HMT-258. 如請求項1所述之用途,其中該特徵菌種與口腔健康狀況有關。 The use as described in claim 1, wherein the characteristic bacterial species is related to oral health conditions. 如請求項1所述之用途,其中該特徵菌種與吸煙狀況有關。 The use as described in claim 1, wherein the characteristic bacterial species is related to smoking status.
TW110111701A 2020-04-13 2021-03-31 Use of signature species as biomarker of malignant transformation for oral submucous fibrosis TWI825404B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063009203P 2020-04-13 2020-04-13
US63/009,203 2020-04-13

Publications (2)

Publication Number Publication Date
TW202138567A TW202138567A (en) 2021-10-16
TWI825404B true TWI825404B (en) 2023-12-11

Family

ID=78161171

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110111701A TWI825404B (en) 2020-04-13 2021-03-31 Use of signature species as biomarker of malignant transformation for oral submucous fibrosis

Country Status (2)

Country Link
CN (1) CN113564224A (en)
TW (1) TWI825404B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106446599A (en) * 2015-08-11 2017-02-22 中国科学院青岛生物能源与过程研究所 Method for screening oral pathogenic biomarkers of infant caries
CN111164706B (en) * 2017-08-14 2024-01-16 普梭梅根公司 Disease-related microbiome characterization process
CN109182522B (en) * 2018-09-28 2022-06-28 人和未来生物科技(长沙)有限公司 Microbiota for predicting oral cancer risk and application
CN109266765B (en) * 2018-09-28 2022-06-28 人和未来生物科技(长沙)有限公司 Microbial flora for predicting precancerous lesion risk of oral cavity and application
CN109925335A (en) * 2019-04-11 2019-06-25 上海华芝堂科技发展有限公司 The composition of prevention carcinoma of mouth for oral-cavity article

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
網路文獻 Gopinath D, "Oral microbiome in oral cancers and oral potentially malignant disorders", The University of Hong Kong, Postgraduate Thesis ,2020.

Also Published As

Publication number Publication date
CN113564224A (en) 2021-10-29
TW202138567A (en) 2021-10-16

Similar Documents

Publication Publication Date Title
JP5763919B2 (en) Methods for analyzing microbial populations
CN105209918B (en) Biomarker authentication method and system
Giacaman et al. Correlation of Streptococcus mutans and Streptococcus sanguinis colonization and ex vivo hydrogen peroxide production in carious lesion-free and high caries adults
Yang et al. Dual detection of Legionella pneumophila and Legionella species by real-time PCR targeting the 23S-5S rRNA gene spacer region
Baraniya et al. Supragingival mycobiome and inter-kingdom interactions in dental caries
Relvas et al. Relationship between dental and periodontal health status and the salivary microbiome: bacterial diversity, co-occurrence networks and predictive models
US20140155283A1 (en) Microarray for detecting viable organisms
CN105593372A (en) Customized skin care products and personal care products based on the analysis of skin flora
US20190136287A1 (en) Microbial Ecology Shift Assay
Abu Fanas et al. The prevalence of novel periodontal pathogens and bacterial complexes in Stage II generalized periodontitis based on 16S rRNA next generation sequencing
Hong et al. Molecular markers reveal epidemiological patterns and evolutionary histories of the human pathogenic Cryptococcus
Parolin et al. Design and validation of a DNA-microarray for phylogenetic analysis of bacterial communities in different oral samples and dental implants
CN115927681A (en) Method for quantifying the effect of a product on the human microbiome
CN106446599A (en) Method for screening oral pathogenic biomarkers of infant caries
Retchless et al. Oropharyngeal microbiome of a college population following a meningococcal disease outbreak
TWI825404B (en) Use of signature species as biomarker of malignant transformation for oral submucous fibrosis
Sharma et al. Exploring the Genetic Basis of Tuberculosis Susceptibility in Human Populations
CN114369673B (en) Colorectal adenoma biomarker, kit and screening method of biomarker
US20240175067A1 (en) A method of diagnosing depression in a subject
CN111261222B (en) Construction method of oral microbial community detection model
CN113789396A (en) Genome composition for detecting specific intestinal flora proportion of esophageal cancer patient and application thereof
WO2021211620A1 (en) Method and system for detecting and treating exposure to an infectious pathogen
Saifullah et al. Estimation of genetic diversity of okra (Abelmoschus esculentus L. Moench) using RAPD markers.
Asiimwe et al. DNA restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolates from HIV-seropositive and HIV-seronegative patients in Kampala, Uganda
CN113614250A (en) Monitoring and diagnostic method for changes in the microbiome of felines