CN109182522B - Microbiota for predicting oral cancer risk and application - Google Patents

Microbiota for predicting oral cancer risk and application Download PDF

Info

Publication number
CN109182522B
CN109182522B CN201811137118.3A CN201811137118A CN109182522B CN 109182522 B CN109182522 B CN 109182522B CN 201811137118 A CN201811137118 A CN 201811137118A CN 109182522 B CN109182522 B CN 109182522B
Authority
CN
China
Prior art keywords
oral cancer
microbiota
dna
oral
flora
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811137118.3A
Other languages
Chinese (zh)
Other versions
CN109182522A (en
Inventor
宋卓
卢秦
孙海鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genetalks Bio Tech Changsha Co ltd
Original Assignee
Genetalks Bio Tech Changsha Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genetalks Bio Tech Changsha Co ltd filed Critical Genetalks Bio Tech Changsha Co ltd
Priority to CN201811137118.3A priority Critical patent/CN109182522B/en
Publication of CN109182522A publication Critical patent/CN109182522A/en
Application granted granted Critical
Publication of CN109182522B publication Critical patent/CN109182522B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a microbiota for predicting oral cancer risk and application, and the inventors identify a microbiota classification marker in 127 health controls and 125 oral cancer saliva sample sequencing data. Based on the microbiota of the present invention, oral cancer risk can be effectively predicted. The diagnostic reagent developed based on the microbial community can effectively predict the oral cancer risk, and has noninvasive detection process and high safety. Meanwhile, as the flora sample can be transported at normal temperature, the convenience of detection is greatly improved.

Description

Microbiota for predicting oral cancer risk and application
Technical Field
The invention relates to the use of markers and related agents for predicting the risk prediction of oral cancer.
Background
Oral cancer is one of the most prevalent cancers, more than eighty percent of which are oral squamous cell carcinomas, and the incidence of oral cancer is influenced by many factors, including smoking, drinking, viral infection and the like, and about 30 million people suffer from oral cancer every year. The onset of oral cancer is a progressive process, the early stage is often easily ignored by people, the optimal treatment time is delayed, and the current gold standard for oral cancer diagnosis is still through pathological diagnosis, so that the development of a new specific diagnosis molecular target is necessary.
Some studies on the relationship between oral flora and oral cancer have been made, such as:
xuyunlong, change of microorganisms in the region of Jinhua oral cancer [ J ] oral biomedicine 2016(2): 108-.
LeboLei, Lilongjiang, Zhoudong, et al oral microorganisms and oral cancer [ J ] oral medicine research, 2015,31(6): 558-. It is expressed as follows: the microbial community on the surface of the tumor tissue of the oral cancer has found that: the bacteria amount of veillonella, clostridium, porphyromonas, actinomyces, clostridium, haemophilus, enterobacter and streptococcus on the surface of the squamous cell carcinoma tissue is obviously increased; the microorganisms in the tumor tissue of the oral cancer have been found: the adjacent granule chain bacteria, the porphyromonas gingivalis, the Sphingomonas PC5.28, the light streptococcus and the oral streptococcus in the tumor tissues are relatively more; the microbial community in the saliva of tumor patients has found that: the predominant flora structure in saliva is different between oral cancer patients and non-tumor patients.
There is increasing evidence that oral cancer occurs in close relation to changes in oral microorganisms. In the early stage of oral cancer occurrence, namely in the stage of precancerous lesion, oral microorganisms have changed to some extent, so that the change of oral flora can be used as a new diagnostic molecular target of oral cancer or oral precancerous lesion.
Currently, genomics and proteomics are commonly used to develop biomarkers for oral cancer diagnosis. The invention patent 'a marker for detecting oral cancer and a kit thereof' (publication No. CN106636343A) discloses a marker for detecting oral cancer, which consists of four DNA replication initiation proteins, and the use of the marker as a detection target in the kit. The invention patent application of miR-518a-3p in oral cancer diagnosis (publication number CN107604066A) discloses application of a gene miR-518a-3p and a precursor thereof in preparation of an oral cancer diagnosis preparation. While the development of flora markers by means of microbiology is mostly applied to diseases such as colorectal cancer, ankylosing spondylitis and the like at present, most of researches on the aspects of microbial flora and oral cancer are on descriptive researches and mechanism conjectures. The prior art does not specify how to predict oral cancer risk by the profile of the microbial flora.
Disclosure of Invention
The present invention aims to overcome the deficiencies of the prior art and to provide a set of microbiota that can efficiently predict the risk of oral cancer.
It is another object of the present invention to provide use of an agent for quantifying abundance of microbiota in the preparation of a predicting agent for oral cancer risk.
The technical scheme adopted by the invention is as follows:
microbiota for risk prediction of oral cancer including enriched flora in healthy people containing at least g __ Prevotella | s __ melanogenic ica, g __ Rothria | s __ mucogenosa, g __ Veillonella | s __ subvula, p __ TM7| c __ TM7-3, f __ Campylobacter | g __ Campylobacter, g 6 Rothia | s __ aesia, c __ TM 8-3 | o __ CW040, f __ Cardiobacter | __ Cardiobacter, g __ Propiobacter | s __ sobrinus, g __ Propionibacterium | __ bacillus __ bacteria, f __ Morella | __ moraceae | __ mycobacillus __ and String4 Vibrio; the enriched flora of the oral cancer patient comprises at least f Carnobacteria | g Granulicatella, f Prevotella | g Prevotella, g Porphyromonas | S endomantalis, g agregabacter | S segrenis, g Selenomonas | S noxia, f Veillonella | g Dialister, f Enterococaea | g Vagococcus, p GN | C BD-5, o Coriobacter | f Coriobacter | C Coriobactereae, c Bacteroides | o teroidases, Vef illicononella | g Acidococcus, f Bacteroides | G Serabius | G Bacteroides, f Porphyromonaceae | G Particidea, P-G, F-P-E, F-P-E, P-E, P-E, P-, f __ Synergisticaceae | g __ Cloacibacillus, f __ succinivirideaceae | g __ Succinivibrio, f __ Sphingomonadaceae | g __ Sphingobium, o __ Oceanospirilles | f __ Halomonadaceae, o __ Burkholderia | f __ Burkholderia.
As a further improvement of the above microbiota, the oral cancer risk is calculated by the abundance of the microbiota, and the calculation formula is as follows:
Figure BDA0001814936800000031
in the formula IjIs an index of oral health, AijIs the relative abundance of strain i in sample j, N is the site selectionEnriching a subset of the flora in healthy human flora; m is a subset of an enriched flora associated with oral cancer; and | N | and | M | are the number of the strains in the first subset and the second subset respectively.
A kit for oral cancer risk prediction comprising a reagent for quantifying the microbiota.
As a further improvement of the kit, the oral cancer risk is obtained by calculating the abundance of the flora, and the calculation formula is as follows:
Figure BDA0001814936800000032
in the formula IjIs an index of oral health, AijIs the relative abundance of the strain i in the sample j, and N is the subset of the enriched flora in the healthy people flora; m is a subset of an enriched flora associated with oral cancer; and | N | and | M | are the number of the strains in the first subset and the second subset respectively.
As a further improvement of the above kit, | N | is 12.
As a further improvement of the above kit, | M | is 29.
As a further improvement of the above kit, IjThe threshold value range of (2) is 2.396290-2.218559.
As a further improvement of the kit, the kit is a PCR kit, and the amplified OTU sequence is shown as SEQ ID NO: 1 to SEQ ID NO: shown at 41.
Use of a reagent for quantifying abundance of a microbiota in the preparation of a pre-test agent for oral cancer risk, the microbiota being as defined above.
As a further improvement of the application, the reagent is a PCR reagent, and the amplified OTU sequence is shown as SEQ ID NO: 1 to SEQ ID NO: shown at 41.
The invention has the beneficial effects that:
based on the microbiota of the present invention, oral cancer risk can be effectively predicted.
The diagnostic reagent developed based on the microbial community can effectively predict the oral cancer risk, and has noninvasive detection process and high safety. Meanwhile, as the flora sample can be transported at normal temperature, the convenience of detection is greatly improved.
Drawings
FIG. 1 is a graph of microbial distribution in a population;
FIG. 2 is a Receiver Operating Characteristic (ROC) curve of a health index;
FIG. 3 is a graph of health index distribution between oral cancer and healthy persons;
FIG. 4 is a ROC curve for a training set;
FIG. 5 is a ROC curve for the test set.
Detailed Description
The inventors identified the flora classification markers in the sequencing data of 127 healthy controls and 125 oral cancer saliva samples based on the analysis; the distribution of microorganisms in the human population is shown in FIG. 1. The method comprises the following specific steps: enriching floras of healthy people: g __ Prevotella | s __ melanogenin, g __ Rothia | s __ mucogina, g __ Veillonella | s __ parvula, p __ TM7| c __ TM7-3, f __ Camphorobacteria | g __ Campybacter, g __ Rothia | s __ aeria, c __ TM7-3| o __ CW040, f __ Carbobacter | g __ Carbobacterium, g __ Streptococcus | s __ sobrinus, g __ Propionibacterium | s __ acnes, f __ Moraxella | g __ En, g __ Vibrio | __ metvii; oral cancer patients enrich the flora: f Carnobacteria | g Granulicatella, f Prevotella | g Prevotella, g Porphyromonas | S endodentalis, g agregabacter | S seggnis, g Selenomonas | S noxia, f Vellonellaceae | g dialster, f Enterococcaceae | g Vagococcus, p GN | C BD-5, o Coriobacteria | f Coriobacteriaceae, c Bacteroides | o bacterioidales, F Lactobacillus | g Acidococci, f Bacillus cereus | g Acidococci | g, f Bacillus cereus | g B, f phyromonaceae | g Parabacteriaceae | g Parabacterias, g Neisella | g septicemia | g Paracoccus | g, Sphaectococcus | f, Sphacelactonia | g, Sphacelaceae | g-strain, Sphacelaceae | g, Sphacelandis, Sphace | g, Sphacelactonia | g-strain | g, Sphacelactonia | G, f __ succininivibrionaceae | g __ succininivibrio, f __ Sphingomonadaceae | g __ Sphingobium, o __ Oceanospiriella | f __ Halomonadaceae, o __ Burkholderiales | f __ Burkholderiaceae.
Table 1 shows the enrichment of various species of microorganisms in the population:
TABLE 1 enrichment of different microorganisms in the human population
Figure BDA0001814936800000041
Figure BDA0001814936800000051
Table 2 shows the OTU sequence for each species of microorganism:
TABLE 2 OTU sequence cases for different microorganisms
Figure BDA0001814936800000052
Figure BDA0001814936800000061
Figure BDA0001814936800000071
Figure BDA0001814936800000081
Figure BDA0001814936800000091
Figure BDA0001814936800000101
Index of oral health
To exploit the potential of using microbiota for disease identification, the inventors developed a disease classification system based on defined genetic markers. In order to intuitively assess the risk of disease using these oral microbial gene markers, the inventors calculated an oral health index.
Index of oral health IjThe calculation formula of (2) is as follows:
Figure BDA0001814936800000111
wherein A isijIs the relative abundance of species i in sample j, N is the subset of the population selected to be enriched in healthy human populations, and M is the subset of the population enriched for oral cancer. And | N | and | M | are the number of the strains in the first subset and the second subset respectively. Where | N | is 12 and | M | is 29.
The Receiver Operating Characteristic (ROC) curve analysis of the oral health index is shown in fig. 2. It can be seen that the classification is better when the threshold range is 2.396290-2.218559.
Table 3 is the oral health index for the specific sample.
TABLE 3 oral health index for specific samples
Figure BDA0001814936800000112
Figure BDA0001814936800000121
Figure BDA0001814936800000131
Figure BDA0001814936800000141
The distribution of health index between oral cancer population and healthy population is shown in fig. 3. As can be seen from the figure, the distribution of the health indexes in oral cancer people and healthy people is obviously different, and the oral cancer health index distinguishing method has good distinguishing capability.
To validate the potential of using the microbial flora for oral cancer classifiers, a disease classification system based on 41 genetic markers selected as the best gene set by the Lasso regression method was developed based on public database data.
And (3) verifying the effect of the classifier:
the data source is as follows: data were obtained by sequencing from 16S V3-V4 on saliva samples from the mouth of healthy persons and oral cancer patients collected in the early stage, and pre-processing of data by Usearch including removal of primers, removal of low quality reads, OTU clustering, etc., and OTU alignment using QIIME.
Analysis of factors affecting microbial distribution
The inventors used a permutation-multivariate analysis of variance (PERMANOVA) method to assess the effect of different characteristics on the oral flora, including age, gender, and disease state. The inventors performed analyses using the "Vegan" kit in R, and obtained a displacement p-value after 10000 displacements. The inventors also corrected the multiple tests using the "p.adjust" kit in R, using the FDR method to obtain p-values for each species. The results of the displacement multivariate analysis of variance are shown in table 4, and show that the effect of age and sex on oral flora is not significant, while the effect of disease state on oral flora is significant.
TABLE 4 Effect of different characteristics on the oral flora
Degree of freedom SumOfSqs R2 F Pr(>F) p.adjust
Disease(s) 1 0.529753 0.026058 6.713206 1.00E-04 0.0003
Sex 1 0.050275 0.002473 0.637101 0.813019 0.813019
Age(s) 52 4.204167 0.206798 1.024551 0.357964 0.536946
The Lasso model (R glmnet 2.0-16) was trained using the abundance spectra of the training cohort, species markers were selected and tested in a test set, and prediction errors were calculated.
The Lasso model (R glmnet 2.0-16) is adopted for prediction, and the input is disease state and species abundance, and the disease state and the species abundance are divided into a training set and a testing set. The inventors constructed a classification using the glmnet package in the R software and predicted the test set using the prediction function, outputting a prediction result (probability of disease: default cutoff 0.5, greater than 0.5 then the subject is considered oral cancer). The training set and the test set are divided according to a 7:3 ratio, wherein 177 training sets and 75 test sets are used.
Following the Lasso regression calculations based on the microbiota of the present invention, ROC curves were plotted against the training set (177 cases) (fig. 4), with an area under the training set AUC curve of 0.971. The ROC curve for the test set (75 cases) is shown in fig. 5, and the test set has an area of 0.839 under the total AUC.
It can be known from the figure that the discrimination of the model built by using the variables selected by the Lasso regression is good no matter the model is a training set or a test set.
SEQUENCE LISTING
<110> people and future Biotechnology (Changsha) Limited
<120> microbiota for predicting oral cancer risk and application thereof
<130>
<160> 41
<170> PatentIn version 3.5
<210> 1
<211> 253
<212> DNA
<213> melaninogenica
<400> 1
gaaggtccgg gcgttatccg gatttattgg gtttaaaggg agcgtaggcc ggagattaag 60
tgtgttgtga aatgtagacg ctcaacgtct gacttgcagc gcatactggt ttccttgagt 120
acgcacaacg ttggcggaat tcgtcgtgta gcggtgaaat gcttagatat gacgaagaac 180
tccgattgcg aaggcagctg aagggagagc aactgacgct taagatcgaa ggtgcgggta 240
gcgacaagga tta 253
<210> 2
<211> 204
<212> DNA
<213> mucilaginosa
<400> 2
tacgtagggc gcgagcgttg tccggaatta ttgggcgtaa agagcttgta ggcggtttgt 60
cgcgtctgct gtgaaaggcc ggggcttaac tccgtgtatt gcagtgggta cgggcagact 120
agagtgcagt aggggagact ggaattcctg gtgtagcggt ggaatgcgca gatatcagga 180
ggaacaccga tggcgaaggc aacc 204
<210> 3
<211> 254
<212> DNA
<213> parvula
<400> 3
tcccgttcgc tcccctggct ttcgcgcctc agcgtcagtt ttcgtccaga aagtcgcctt 60
cgccactggt gttcttccta atatctacgc atttcaccgc tacactagga attccacttt 120
cctctccgat actctagatc agcagtttcc atcccatcac ggggttaagc cccgaacttt 180
taagacagac tgactgatcc gactgcgagc gcttttcgcc caatacttcc ggacaccgct 240
tgccacctac gtat 254
<210> 4
<211> 253
<212> DNA
<213> TM7-3
<400> 4
tccggttcgc tccccacgct ttcgtgcctt agcgtcagaa atggcccagt aacctgccta 60
cgccatcggt gttccttcta atatctacgg atttcactcc tacactagaa attccagtta 120
cctctaccat tctcgagttt aacagtttga ataatagtct gtatggttga gccaccaggt 180
ttcactattc acttattaaa cagactacgc aactctttac gcccagtcac tccggataat 240
gcttgcaaca tac 253
<210> 5
<211> 204
<212> DNA
<213> Granulicatella
<400> 5
tacgtaggtg gcaagcgttg tccggattta ttgggcgtaa agcgagcgca ggcggttcct 60
taagtctgat gtgaaagccc ccggctcaac cggggagggt cattggaaac tggggaactt 120
gagtgcagaa gaggagagtg gaattccatg tgtagcggtg aaatgcgtag atatatggag 180
gaacaccagt ggcgaaggcg aacc 204
<210> 6
<211> 254
<212> DNA
<213> Prevotella
<400> 6
tcctgtttga tacccgcacc ttcgagcttc agcgtcagtt gtgctcccgt aagctgcctt 60
cgcaatcgga gttcttcgtc atatctaagc atttcaccgc tacacgacga attccgccta 120
cgttgtgcat actcaagtga accagttcgc gctgcaattc agacgttgag cgtctacatt 180
tcacaacacg cttaatccac gacctacgct ccctttaaac ccaataaatc cggataacgc 240
ctggaccttc cgta 254
<210> 7
<211> 254
<212> DNA
<213> endodontalis
<400> 7
tacggaggat acgagcgtta tccggaatta ttgggtttaa agggtgcgta ggtggcgtat 60
taagtcagtg gtgaaaagct gcagctcaac tgtagtcttg ccgttgaaac tgatatgcta 120
gagaggagac gaggtatgcg gaatgtgtgg tgtagcggtg aaatgcatag atatcacaca 180
gaacgccgat tgcgaaggca gagtaccagg ctccgtctga cactgaagca cgaaaccgtg 240
gggatcaaaa cgga 254
<210> 8
<211> 254
<212> DNA
<213> segnis
<400> 8
tacggagggt gcgagcgtta atcggaataa ctgggcgtaa agggcacgca ggcggctatt 60
taagtgaggt gtgaaatccc cgggcttaac ctgggaattg catttcagac tgggtagcta 120
gagtacttta gggaggggta gaattccacg tgtagcggtg aaatgcgtag agatgtggag 180
gaataccgaa ggcgaaggca gacccttggg aatgtactga cgctcatgtg cgaaagcgtg 240
gggagcaaac agga 254
<210> 9
<211> 254
<212> DNA
<213> Campylobacter
<400> 9
tacggagggt gcaagcgtta ctcggaatca ctgggcgtaa aggacgcgta ggcggattat 60
caagtctctt gtgaaatcct atggcttaac catagaactg cttgggaaac tgataatcta 120
gagtgaggga gaggcagatg gaattggtgg tgtaggggta aaatccgtag agatcaccag 180
gaatacccat tgcgaaggcg aactgctgga actcaactga cgctaatgcg tgaaagcgtg 240
gggagcaaac agga 254
<210> 10
<211> 254
<212> DNA
<213> noxia
<400> 10
tcccgttcgc tcccctggct ttcgagcctc agcgtcagtt gcagtccaga aagccgcctt 60
cgccactggt gttcctccca atatctacgc atttcaccgc tacactggga attccgcttt 120
cctctcctgt actcaagaca catagtttct ttcccatcac ggggttgagc cccgcacttt 180
taagaaagac ttacatgccc gcctgccctc cctttacgcc caataattcc ggccaacgct 240
cgccccatac gtat 254
<210> 11
<211> 254
<212> DNA
<213> aeria
<400> 11
tacgtagggc gcgagcgttg tccggaatta ttgggcgtaa agagcttgta ggcggttggt 60
cgcgtctgct gtgaaaggcc ggggcttaac tccggttttg cagtgggtac gggctaacta 120
gagtgcagta ggggagactg gaattcctgg tgtagcggtg gaatgcacag atatcaggag 180
gaacaccgat ggcgaaggca ggtcgcgggg ctgtaacgga cgctgagaag cgaaggcatg 240
gggggcgaaa agga 254
<210> 12
<211> 254
<212> DNA
<213> CW040
<400> 12
tccggttcgc tccccacgct ttcgtgcctc agtgtcagaa acagcccagt agcctgccta 60
cgccatcggt gttccttcta atatctacgg atttcactcc tacactagaa attccagcta 120
cctcttctgc tctcgagttc aacagttcga ataatagtct gaatggttga gccaccagat 180
ttcactattc gcttatcgaa caacctacgc aactctttac gcccagtcac tccggataac 240
gctcggatcc tacg 254
<210> 13
<211> 253
<212> DNA
<213> Dialister
<400> 13
tcctgtttgc tccccacgct ttcgcgcctc agcgtcagtt ttcgtccaga aagtcgcctt 60
cgccaccggt gttcttccta atctctacgc atttcaccgc tacactagga attccacttt 120
cctctccgat actccagctt cccagtttcc ttcccatcac ggggttaagc cccgcacttt 180
taagagggac ttgggaagcc gactgcgcgc gctttacgcc caataattcc ggacaaagct 240
tgccacctac gta 253
<210> 14
<211> 254
<212> DNA
<213> Vagococcus
<400> 14
tcctgtttgc tccccacgct ttcgcgcctc agtgtcagtt acaggccaaa aagccgcctt 60
cgccactggt gttcctccat atatctacgc atttcaccgc tacacatgga attccactct 120
cctcttctgc actcaagttc cccagtttcc aatgaccctc cccggttgag ccgggggctt 180
tcacatcaga cttaaggaac cgcctgcgct cgctttacga ccaataaatc cggacaacgc 240
tcgggaccta cgta 254
<210> 15
<211> 204
<212> DNA
<213> BD1-5
<400> 15
tacgagggcc ccaagcgtta tccggaatta ctgggcgtaa agcgtctgta ggtggttttt 60
taagtttcgt atgaaactcc agggctcaac cctggattgt gcgaaaaact ggagaacttg 120
agtgtgggag aggcaagcag aacggtatga gtaggggtgc aatccgttga tacataccag 180
aataccaaaa gcgaaggcag attg 204
<210> 16
<211> 202
<212> DNA
<213> Cardiobacterium
<400> 16
tcctgtttgc tccccacgct ttcgcacatg agcgtcagta tcgacccaga aagctgcctt 60
cgccatcggt gttccttcca atatctacgc atttcactgc tacactggaa attccgcttt 120
cctctttcat actctagtcg cccagtttca aatgcagttc ccaggttaag cccggggctt 180
tcacatctga cttgggcaac ca 202
<210> 17
<211> 204
<212> DNA
<213> Coriobacteriaceae
<400> 17
tcctgttcgc tcccccagct ttcgcgcctg agcgtcagtg tcggcccaga agtctgcctt 60
cgccatcggt gttcttcccg atatctgcgc atttcaccgc tacaccggga attccgactt 120
cctctaccgc actcgagcac accggttcgg gatccgcccg gaggttgagc ccccggtttc 180
gagatcccgc ctggtgcgcc gccc 204
<210> 18
<211> 254
<212> DNA
<213> Bacteroidales
<400> 18
tcctgtttgc tccccacgct ttcgtgcttg agcgtcgata aagacccaga cagctgcctt 60
cgcaattggt cttctacgta atatctaagc atttcaccgc tacactacgc attccgccgt 120
ccttatgctt atccaagact cccagtatca acggcaattc ctagggtaag cccagacatt 180
tcaccgctga cttaagagcc cgactgcgca ccctttaaac ccagtaaatc cggataacgc 240
tcgaatcctc cgta 254
<210> 19
<211> 204
<212> DNA
<213> sobrinus
<400> 19
tcccgttcgc tcccctggct ttcgcgcctc agcgtcagtt ttcgtccaga aagtcgcctt 60
cgccactggt gttcttccta atatctacgc atttcaccgc tacacatgga attccactct 120
ccccttctgc actcaagtct aacagtttcc aaagcataca ttggttgagc caatgccttt 180
aacttcagac ttactaaacc gcct 204
<210> 20
<211> 252
<212> DNA
<213> Acidaminococcus
<400> 20
taggtggcaa gcgttgtccg gaattattgg gcgtaaagag catgtaggcg ggcttttaag 60
tctgacgtga aaatgcgggg cttaaccccg tatggcgttg gatactggaa gtcttgagtg 120
caggagagga aaggggaatt cccagtgtag cggtgaaatg cgtagatatt gggaggaaca 180
ccagtggcga aggcgccttt ctggactgtg tctgacgctg agatgcgaaa gccagggtag 240
caaacgggat ta 252
<210> 21
<211> 201
<212> DNA
<213> Bacillus
<400> 21
tcctgttcgc tccccatgct ttcgcttctc agcgtcagtt acagcccaga gacctgcctt 60
cgccatcggt gttcttcctg atatctgcgc atttcaccgc tacacatgga attccactct 120
cccctcttgc actcaagttc cccagtttcc aatgaccctc cccggttgag ccgggggctt 180
tcacatcaga cttatctaac c 201
<210> 22
<211> 204
<212> DNA
<213> Parabacteroides
<400> 22
tacggaggat gcgagcgtta tccggattta ttgggtttaa agggtgcgta ggtggtgatt 60
taagtcagcg gtgaaagttt gtggctcaac cataaaattg ccgttgaaac tgggttactt 120
gagtgtgttt gaggtaggcg gaatgcgtgg tgtagcggtg aaatgcatag atatcacgca 180
gaactccgat tgcgaaggca gcac 204
<210> 23
<211> 204
<212> DNA
<213> cinerea
<400> 23
tacgtagggt gcgagcgtta atcggaatta ctgggcgtaa agcgagcgca gacggttact 60
taagcaggat gtgaaatccc cgggctcaac ctgggaactg cgttctgaac tgggtgacta 120
gagtgtgtca gagggaggta gaattcccgg tgtagcggtg gaatgcgtag atatcgggag 180
gaacaccagt ggcgaaggcg acct 204
<210> 24
<211> 201
<212> DNA
<213> anaerobius
<400> 24
tcccgttcgc tcccctggct ttcgcgcctc agcgtcagtt ttcgtccaga aagtcgcctt 60
cgccactggt gttcttccta atatctacgc atttcaccgc tacactggga attccacttt 120
cctctcctgc actcaagtct tccagtttcg gaggctaact acggttgagc cgtagccttt 180
aaccaccgac ttgaaagacc a 201
<210> 25
<211> 254
<212> DNA
<213> S24-7
<400> 25
tacggaggat gcgagcgtta tccggattta ttgggtttaa agggtgcgca ggctgtgcat 60
caagtcagcg gtaaaatctc ggggctcaac cccgtttagc cgttgaaact ggtgtgctgg 120
agtgtgcgcg aggaaggcgg aatgcgcggt gtagcggtga aatgcataga tattgcgcag 180
aactccgatt gcgaaggcag ccttccagtg catgactgac gctgaggcac gaaagcgtgg 240
gtaccgaaca ggat 254
<210> 26
<211> 254
<212> DNA
<213> Sphaerochaeta
<400> 26
cacgtagggg gcgagcgttg ttcggaatca ttgggcgtaa agggtgcgca ggcggcttag 60
caagtctggt gtgaaatggt tgtgctcaac acaatcaggc gccggaaact gagaagctag 120
agtcaacgag gggatgccgg aattccaggt gtaggggtga aatctgtaga tatctggaag 180
aacaccaatg gcgaaggcag gcatctggcg atggactgac gctgaggcac gaaggtgcgg 240
ggagcaaaca ggtt 254
<210> 27
<211> 201
<212> DNA
<213> Rothia
<400> 27
gtgtgctctt ccgatctatc aggcagaagg actacccggg tatctaatcc tgttcgctcc 60
ccatgctttc gcttctcagc gtcagttaca gcccagagac ctgccttcgc catcggtgtt 120
cttcctgata tctgcgcatt ccaccgctac accaggagtt ccagtctccc ctactgcact 180
ctagtctgcc cgtacccact g 201
<210> 28
<211> 254
<212> DNA
<213> acnes
<400> 28
tacgtagggt gcgagcgttg tccggattta ttgggcgtaa agggctcgta ggtggttgat 60
cgcgtcggaa gtgtaatctt ggggcttaac cctgagcgtg ctttcgatac gggttgactt 120
gaggaaggta ggggagaatg gaattcctgg tggagcggtg gaatgcgcag atatcaggag 180
gaacaccagt ggcgaaggcg gttctctggg cctttcctga cgctgaggag cgaaagcgtg 240
gggagcgaac aggc 254
<210> 29
<211> 201
<212> DNA
<213> lividum
<400> 29
tccggttcgc tccccacgct ttcgtgcctt agcgtcagaa atggcccagt aacctgccta 60
cgccatcggt gttccttcta atatctacgg atttcaccgc tacacctgga attctacccc 120
cctctacaag actctagcct gccagtttcg aatgcagttc ccaggttgag cccggggatt 180
tcacatccga cttgacagac c 201
<210> 30
<211> 202
<212> DNA
<213> satelles
<400> 30
tcctgttcgc tccccatgct ttcgcttctc agcgtcagtt acagcccaga gacctgcctt 60
cgccatcggt gttcctcctg atatctgcgc attccaccgc tacaccagga attccgctta 120
cccctccgac actcgagctg aacagtttcc aatgcactac cggggttgag ccccgggctt 180
tcacatcaga cttgctctgc cg 202
<210> 31
<211> 203
<212> DNA
<213> Serratia
<400> 31
tcctgtttgc tccccacgct ttcgcacctg agcgtcagtc ttcgtccagg gggccgcctt 60
cgccaccggt attcctccag atctctacgc atttcaccgc tacacctgga attctacccc 120
cctctgacat actctagctt accagttcaa aacgcagttc ccaagttaag ctcggggatt 180
tcacatcttg cttaataaac cgt 203
<210> 32
<211> 254
<212> DNA
<213> Enhydrobacter
<400> 32
tacagagggt gcgagcgtta atcggaatta ctgggcgtaa agcgagcgta ggtggctaat 60
taagtcacat gtgaaatccc tgggcttaac ctaggaactg catgtgatac tggttagcta 120
gagtatgtga gaggggtgta gaattccagg tgtagcggtg aaatgcgtag agatctggag 180
gaataccgat ggcgaaggca gcaccctggc ataatactga cactgaggtt cgaaagcgtg 240
ggtagcaaac agga 254
<210> 33
<211> 204
<212> DNA
<213> Azomonas
<400> 33
tacggagggt gcgagcgtta atcggaataa ctgggcgtaa agggcacgca ggcggtgact 60
taagtgaggt gtgaaagccc cgggcttaac ctgggaattg catccaaaac tactgagcta 120
gagtacggta gagggtggtg gaatttcctg tgtagcggtg aaatgcgtag atataggaag 180
gaacaccagt ggcgaaggcg acca 204
<210> 34
<211> 204
<212> DNA
<213> OPB56
<400> 34
tacgtaggat ccgagcgttg tccggaatta ctgggcgtaa agggtgcgta ggcggcaatg 60
tgcgtcagag gtgaaatcca cgggcttaac ttgtggggtg cctttgatac ggcatagctt 120
gagtacgaga gaggtcgatg gaattcctgg tgtagcagtg aaatgcgtag atatcaggag 180
gaacaccggt ggcgaaggcg gtcg 204
<210> 35
<211> 254
<212> DNA
<213> RFN20
<400> 35
tacgaagggt ccgagcgtta tccggaatta ttgggcgtaa agagtgagca ggcggccgtg 60
taagtccgag gtgaaagcgt ggggctcaac cccatacagc cccggaaact gcgcggctag 120
agtgcttgag aggtaaacgg aactccatgt gtagcggtga aatgcgtaga tatatggaag 180
aacaccggtg gcgaaggcgg tttaccagcg acgcactgac gctcagtcac gaaagcgtgg 240
ggagcaaata ggat 254
<210> 36
<211> 204
<212> DNA
<213> Cloacibacillus
<400> 36
tacgtagggg gcgagcgttg ttcggaatta ctgggcgtaa agcgcacgca ggcggaccag 60
taagtctgtc gtcaaaggcg gaggctcaac cttcgttcca cgatagatac tgcgggtcta 120
gagtatgtga gagggaagtg gaattcccgg tgtagcggtg aaatgcgtag agatgtggag 180
gaataccgaa ggcgaaggca gccc 204
<210> 37
<211> 254
<212> DNA
<213> metschnikovii
<400> 37
tacggagggt gcgagcgtta atcggaatta ctgggcgtaa agcgcatgca ggtggtttgt 60
taagtcagat gtgaaagccc ggggctcaac ctcggagttg catttgaaac tggcaggcta 120
gagtactgta gaggggggta gaatttcagg tgtagcggtg aaatgcgtag agatctgaag 180
gaataccggt ggcgaaggcg gccacctgga cagatactga cactcagatg ctaaagcgtg 240
gggagcaaac cgga 254
<210> 38
<211> 202
<212> DNA
<213> Succinivibrio
<400> 38
tacggagggt gcaagcgtta atcggaataa ctgggcgtaa agggcatgca ggcgggacgt 60
caagcagggt gtgaaatccc cgggctcaac ccgggaactg cactctgaac tgacgttctg 120
gagtatcgca gggggaggcg gaattccagg tgtagcggtg gaatgcgtag atatctggaa 180
gaacaccaaa ggcgaaggca gc 202
<210> 39
<211> 204
<212> DNA
<213> Sphingobium
<400> 39
gagggagcta gcgttgttcg gaattactgg gcgtaaagcg cacgtaggcg gcgatttaag 60
tcagaggtga aagcccgggg ctcaaccccg gaactgcctt tgagactgga ttgctagaat 120
cttggagagg cgagtggaat tccgagtgta gaggtgaaat tcgtagatat tcggaagaac 180
accagtggcg aaggcggctc gctg 204
<210> 40
<211> 201
<212> DNA
<213> Halomonadaceae
<400> 40
tcctgtttgc tacccacgct ttcgcacctc agtgtcagtg tcagtccaga aggccgcctt 60
cgccactggt attcctcccg atctctacgc atttcaccgc tacaccggga attctacctt 120
cctctcctgc actctagcca agcagttcca gatgccgttc ccaggttgag cccggggctt 180
tcacacctgg ctgacttagc c 201
<210> 41
<211> 201
<212> DNA
<213> Burkholderiaceae
<400> 41
tcctgtttgc tccccacgct ttcgtgcatg agcgtcagtg ttatcccagg aggctgcctt 60
cgccatcggt gttcctacgc atatcaacgc atttcactgc aacatgcgga attccacctc 120
cctctgacac actctagcct tgcagacacc aatgcagttc ccaggataag cccgcggatt 180
tcacatcggt attgcaaaac c 201

Claims (1)

1. The application of the reagent for quantifying the abundance of the microbiota in preparing the oral cancer risk prediction reagent is characterized in that: the reagent for quantifying the abundance of the microbial population is a PCR reagent, and the amplified OTU sequence is shown as SEQ ID NO: 1 to SEQ ID NO: 41 is shown; the oral cancer risk is obtained by calculating the abundance of the flora, and the calculation formula is as follows:
Figure 690533DEST_PATH_IMAGE001
wherein Ij is an oral health index, Aij is the relative abundance of the strain i in the sample j, N is a subset of the enriched flora selected in the healthy people, and M is a subset of the enriched flora associated with oral cancer; the | N | and the | M | are the number of the strains in the first subset and the second subset respectively; n | = 12; i M | = 29; the threshold range of Ij is: 2.396290-2.218559.
CN201811137118.3A 2018-09-28 2018-09-28 Microbiota for predicting oral cancer risk and application Active CN109182522B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811137118.3A CN109182522B (en) 2018-09-28 2018-09-28 Microbiota for predicting oral cancer risk and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811137118.3A CN109182522B (en) 2018-09-28 2018-09-28 Microbiota for predicting oral cancer risk and application

Publications (2)

Publication Number Publication Date
CN109182522A CN109182522A (en) 2019-01-11
CN109182522B true CN109182522B (en) 2022-06-28

Family

ID=64907592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811137118.3A Active CN109182522B (en) 2018-09-28 2018-09-28 Microbiota for predicting oral cancer risk and application

Country Status (1)

Country Link
CN (1) CN109182522B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113012810A (en) * 2019-12-18 2021-06-22 中国科学院昆明动物研究所 FBA oral flora functional group obtained based on microbial functional group mining method
CN113564224A (en) * 2020-04-13 2021-10-29 台达电子工业股份有限公司 Biomarkers for malignant transformation of submucosal fibrosis in oral cavity
CN112501322A (en) * 2020-11-23 2021-03-16 山西医科大学 Saliva microbial marker and application thereof in drug detection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833613A (en) * 2010-06-04 2010-09-15 中国科学院青岛生物能源与过程研究所 Oral microbial community database and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015018307A1 (en) * 2013-08-06 2015-02-12 Bgi Shenzhen Co., Limited Biomarkers for colorectal cancer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833613A (en) * 2010-06-04 2010-09-15 中国科学院青岛生物能源与过程研究所 Oral microbial community database and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Microbial Diversity in Saliva of Oral Squamous Cell Carcinoma;Smruti Pushalkar等;《FEMS Immunol Med Microbiol》;20110430;第61卷(第3期);第2-7页"Materials and methods"和"Results and Discussion" *
Variations in oral microbiota associated with oral cancer;Zhao Hongsen等;《SCIENTIFIC REPORTS》;20170918;第7卷;文献号11773 *

Also Published As

Publication number Publication date
CN109182522A (en) 2019-01-11

Similar Documents

Publication Publication Date Title
CN109182522B (en) Microbiota for predicting oral cancer risk and application
KR20190140925A (en) Leveraging Sequence-Based Fecal Microbial Community Survey Data to Identify Complex Biomarkers for Colorectal Cancer
CN114717316A (en) Kit and method for diagnosing gastric cancer by bacterial metagenomic analysis
WO2014019271A1 (en) Biomarkers for diabetes and usages thereof
CN111269956B (en) Application of reagent for detecting flora in preparation of reagent or kit for prognosis prediction marker of esophageal squamous cell carcinoma patient
CN112538545B (en) Application of fungus microbiome as marker in preparation of treatment screening and lung cancer diagnosis
CN111727263B (en) Methods for diagnosing stroke by bacterial metagenomic analysis
CN110512015A (en) A kind of intestinal cancer biomarker combinations object and its application
CN109182527B (en) Interferon related kit for prognosis evaluation and chemotherapy effect prediction in glioma
Kern et al. Heterogeneity of Borrelia burgdorferi sensu stricto population and its involvement in Borrelia pathogenicity: study on murine model with specific emphasis on the skin interface
CN110669818B (en) Multiple myeloma intestinal tract microbial marker, application and detection preparation
WO2020096024A1 (en) Use of vaginal microflora as ovarian cancer biomarker
CN109072306A (en) Isolated nucleic acid and application
Agergaard et al. Species identification of Streptococcus bovis group isolates causing bacteremia: a comparison of two MALDI-TOF MS systems
CN110218784A (en) Flora abundance detectable substance is preparing the application in nasal polyp and its prognosis detection agent
WO2017167034A1 (en) Bladder cancer detection method and kit
CN110781915B (en) Method for improving colorectal cancer indicator bacteria detection sensitivity by using support vector machine algorithm
CN109266765B (en) Microbial flora for predicting precancerous lesion risk of oral cavity and application
EP3998355A1 (en) Method for diagnosing brain tumor through bacterial metagenomic analysis
CN111304322B (en) Preparation method of kit for joint detection of esophageal cancer by four novel circRNAs
CN114410730B (en) Salivary microorganism-based thyroid cancer molecular marker and application thereof
CN113025730A (en) Intrahepatic flora marker related to liver cirrhosis and application thereof
KR101940950B1 (en) Method for diagnosis of bile duct cancer using analysis of bacteria metagenome
CN107029238B (en) Applications of the LINC01094 in diagnosis and treatment cerebral arterial thrombosis
CN110527721A (en) A kind of oldness tuberculosis marker and its application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant