TWI825198B - Extreme ultraviolet (euv) light source and apparatus for the same, apparatus for forming optical pulse, and method of adjusting property of optical pulse - Google Patents

Extreme ultraviolet (euv) light source and apparatus for the same, apparatus for forming optical pulse, and method of adjusting property of optical pulse Download PDF

Info

Publication number
TWI825198B
TWI825198B TW108137177A TW108137177A TWI825198B TW I825198 B TWI825198 B TW I825198B TW 108137177 A TW108137177 A TW 108137177A TW 108137177 A TW108137177 A TW 108137177A TW I825198 B TWI825198 B TW I825198B
Authority
TW
Taiwan
Prior art keywords
pulse
optical
electro
voltage pulse
light
Prior art date
Application number
TW108137177A
Other languages
Chinese (zh)
Other versions
TW202034092A (en
Inventor
萊恩 麥可 斯壯
洛斯提斯拉夫 洛基司基
辛然
克里斯托福 約翰尼斯 里班伯格
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202034092A publication Critical patent/TW202034092A/en
Application granted granted Critical
Publication of TWI825198B publication Critical patent/TWI825198B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0327Operation of the cell; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/505Arrangements improving the resistance to acoustic resonance like noise
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0085Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)
  • X-Ray Techniques (AREA)
  • Geometry (AREA)

Abstract

An apparatus for an extreme ultraviolet (EUV) light source includes an optical modulation system including an electro-optic material, the optical modulation system configured to receive a pulsed light beam that includes a plurality of pulses of light separated from each other in time; and a control system configured to control an electrical source such that a first electrical pulse is applied to the electro-optic material while a first pulse of light is incident on the electro-optic material, a second electrical pulse is applied to the electro- optic material while a second pulse of light is incident on the electro-optic modulator, and an intermediate electrical pulse is applied to the electro-optic material after the first pulse of light is incident on the electro-optic material and before the second pulse of light is incident on the electro-optic material.

Description

極紫外線(EUV)光源及用於EUV光源之設備、用於形成光學脈衝之設備及調整光學脈衝之性質的方法 Extreme ultraviolet (EUV) light sources and equipment for EUV light sources, equipment for forming optical pulses and methods for adjusting the properties of optical pulses

本發明係關於光學調變器之控制。舉例而言,可控制光學調變器中之光學洩漏。光學調變器可為極紫外線(EUV)光源及/或微影系統之部分。 The present invention relates to the control of optical modulators. For example, optical leakage in optical modulators can be controlled. The optical modulator may be part of an extreme ultraviolet (EUV) light source and/or lithography system.

極紫外線(「EUV」)光,例如波長為100奈米(nm)或更小(有時亦被稱作軟x射線)且包括波長為例如20nm或更小、介於5nm與20nm之間或介於13nm與14nm之間的光之電磁輻射可用於光微影程序中,以藉由在抗蝕劑層中起始聚合而在基板(例如矽晶圓)中產生極小特徵。 Extreme ultraviolet ("EUV") light, for example, with a wavelength of 100 nanometers (nm) or less (sometimes also called soft x-rays) and includes wavelengths of, for example, 20 nm or less, between 5 nm and 20 nm, or Electromagnetic radiation of light between 13nm and 14nm can be used in photolithography processes to create very small features in a substrate (such as a silicon wafer) by initiating polymerization in the resist layer.

用以產生EUV光之方法包括但未必限於:運用在EUV範圍內之發射譜線將包括例如氙、鋰或錫之元素的材料轉換成電漿狀態。在常常被稱為雷射產生電漿(「LPP」)之一個此類方法中,可藉由運用可被稱作驅動雷射之經放大光束來輻照例如呈材料小滴、板、帶、流或叢集之形式的目標材料而產生所需電漿。對於此程序,通常在例如真空腔室之密封容器中產生電漿,且使用各種類型之度量衡設備來監視電漿。 Methods used to generate EUV light include, but are not necessarily limited to, converting materials including elements such as xenon, lithium or tin into a plasma state using emission lines in the EUV range. In one such method, often referred to as laser-produced plasma ("LPP"), materials such as droplets, plates, strips, or The desired plasma is generated by targeting the material in the form of a stream or cluster. For this procedure, the plasma is typically generated in a sealed container, such as a vacuum chamber, and various types of metrology equipment are used to monitor the plasma.

在一個通用態樣中,一種用於一極紫外線(EUV)光源之設備包括 一光學調變系統,其包括一電光材料,該光學調變系統經組態以接收一脈衝光束,該脈衝光束包括在時間上彼此分離之複數個光脈衝;及一控制系統,其經組態以控制一電源,使得在一第一光脈衝入射於該電光材料上時將一第一電脈衝施加至該電光材料,在一第二光脈衝入射於電光調變器上時將一第二電脈衝施加至該電光材料,且在該第一光脈衝入射於該電光材料上之後且在該第二光脈衝入射於該電光材料上之前將一中間電脈衝施加至該電光材料。 In one general aspect, an apparatus for an extreme ultraviolet (EUV) light source includes An optical modulation system including an electro-optical material configured to receive a pulsed beam including a plurality of light pulses that are temporally separated from each other; and a control system configured To control a power supply, a first electric pulse is applied to the electro-optic material when a first light pulse is incident on the electro-optic material, and a second electric pulse is applied when a second light pulse is incident on the electro-optic modulator. A pulse is applied to the electro-optical material, and an intermediate electrical pulse is applied to the electro-optical material after the first light pulse is incident on the electro-optical material and before the second light pulse is incident on the electro-optical material.

實施可包括以下特徵中之一或多者。施加至該電光材料之該第一電脈衝可在該電光材料中產生一物理效應,且當該中間電脈衝被施加至該電光材料時,該物理效應可存在於該電光材料中。該物理效應可包括在該電光材料中行進之聲波及/或機械應變。將中間電脈衝施加至該電光材料可減少該物理效應。 Implementations may include one or more of the following features. The first electrical pulse applied to the electro-optical material can produce a physical effect in the electro-optical material, and the physical effect can be present in the electro-optical material when the intermediate electrical pulse is applied to the electro-optical material. The physical effects may include acoustic waves and/or mechanical strains traveling in the electro-optical material. Applying intermediate electrical pulses to the electro-optical material can reduce this physical effect.

該第一光脈衝及該第二光脈衝可為該脈衝光束中之連續光脈衝。 The first light pulse and the second light pulse may be continuous light pulses in the pulse beam.

該控制系統可經組態以控制該第一電脈衝與該中間電脈衝之間的一時間量。 The control system can be configured to control an amount of time between the first electrical pulse and the intermediate electrical pulse.

該電光材料可包括一半導體。 The electro-optical material may include a semiconductor.

該電光材料可包括一絕緣體。 The electro-optical material may include an insulator.

該電光材料可包括一電光晶體。 The electro-optical material may include an electro-optical crystal.

該設備亦可包括至少一個基於偏振之光學元件。 The device may also include at least one polarization-based optical element.

在另一通用態樣中,一種用於形成光學脈衝之設備包括一光學調變系統,該光學調變系統包括一電光材料,該光學調變系統經組態以在一開啟狀態中透射光且在一關閉狀態中阻擋光,且該光學調變系統經 組態以接收一脈衝光束,該脈衝光束至少包括在時間上彼此分離之一第一光脈衝及一第二光脈衝。一控制系統可耦接至一電壓源,該控制系統經組態以:藉由使該電壓源在該第一光脈衝入射於電光調變器上時將該第一電壓脈衝施加至該電光調變器來產生一第一成形光學脈衝,該第一電壓脈衝經組態以將該電光調變器切換成該開啟狀態;將一中間電壓脈衝施加至該電光材料;且藉由在施加該第一電壓脈衝及該中間電壓脈衝之後且在該第二光脈衝入射於該電光材料上時將一第二電壓脈衝施加至該電光材料來產生一第二成形光學脈衝。該第二電壓脈衝經組態以將該電光調變器切換成該開啟狀態,且該第二成形光學脈衝之一性質係藉由該中間電壓脈衝至該電光材料之施加來控制。 In another general aspect, an apparatus for forming optical pulses includes an optical modulation system including an electro-optical material, the optical modulation system configured to transmit light in an on state and Blocks light in an off state, and the optical modulation system is Configured to receive a pulsed beam, the pulsed beam including at least a first light pulse and a second light pulse that are temporally separated from each other. A control system may be coupled to a voltage source, the control system being configured to: by causing the voltage source to apply the first voltage pulse to the electro-optic modulator when the first light pulse is incident on the electro-optic modulator. the electro-optical modulator to generate a first shaped optical pulse, the first voltage pulse being configured to switch the electro-optical modulator into the on state; applying an intermediate voltage pulse to the electro-optical material; and by applying the third A second voltage pulse is applied to the electro-optical material after a voltage pulse and the intermediate voltage pulse and when the second optical pulse is incident on the electro-optical material to generate a second shaped optical pulse. The second voltage pulse is configured to switch the electro-optic modulator into the on state, and a property of the second shaped optical pulse is controlled by application of the intermediate voltage pulse to the electro-optic material.

實施可包括以下特徵中之一或多者。該第二成形光學脈衝可包括一基座部分及一主要部分,且該第二成形光學脈衝之該性質可包括基座之一性質,使得該基座部分之一性質係藉由該中間電壓脈衝至該電光材料之該施加來控制。該基座部分與該主要部分可為時間上連續的。該基座部分之該性質可為該基座部分之一時距(temporal duration)、一最大強度及/或一平均強度。 Implementations may include one or more of the following features. The second shaped optical pulse may include a base portion and a main portion, and the property of the second shaped optical pulse may include a property of the base portion such that a property of the base portion is determined by the intermediate voltage pulse to control the application of the electro-optical material. The base portion and the main portion may be temporally continuous. The property of the base portion may be a temporal duration, a maximum intensity and/or an average intensity of the base portion.

該中間電壓脈衝至該電光材料之該施加可修改由該光學調變系統在該關閉狀態中透射之光學洩漏光的一量。該中間電壓脈衝至該電光材料之該施加可減少由該光學調變系統在該關閉狀態中透射之光學洩漏光的該量。 The application of the intermediate voltage pulse to the electro-optical material may modify an amount of optical leakage light transmitted by the optical modulation system in the off state. The application of the intermediate voltage pulse to the electro-optical material may reduce the amount of optical leakage light transmitted by the optical modulation system in the off state.

在一些實施中,該控制系統使該第一電壓脈衝在一第一時間被施加至該電光材料,該控制系統使該中間電壓脈衝在該第一時間之後的一第二時間被施加至該電光材料,該第二時間與該第一時間在時間上分 離一延遲時間,且該控制系統進一步經組態以調整該延遲時間以藉此控制該第二成形光學脈衝之一性質。 In some implementations, the control system causes the first voltage pulse to be applied to the electro-optical material at a first time, and the control system causes the intermediate voltage pulse to be applied to the electro-optical material at a second time after the first time. material, the second time is time-divided from the first time from a delay time, and the control system is further configured to adjust the delay time to thereby control a property of the second shaped optical pulse.

該控制系統亦可經組態以控制該中間電壓脈衝之一振幅、一時距及/或一相位。 The control system may also be configured to control an amplitude, a duration and/or a phase of the intermediate voltage pulse.

該控制系統可進一步經組態以:接收該基座部分之一經量測性質的一指示,且基於所接收指示而調整該中間電壓脈衝之一性質。 The control system may be further configured to receive an indication of a measured property of the base portion and adjust a property of the intermediate voltage pulse based on the received indication.

該控制系統可進一步經組態以:接收由一電漿產生之極紫外線(EUV)光之一量的一指示,且基於EUV光之該量之所接收指示而調整該中間電壓脈衝之一性質。該控制系統經組態以調整該中間電壓脈衝之一性質可包括該控制系統經組態以調整該中間電壓脈衝之一振幅、該中間電壓脈衝之一時距、該中間電壓脈衝之一相位及/或一第二時間,該第二時間為將該中間電壓脈衝施加至該電光材料之一時間。 The control system may be further configured to receive an indication of an amount of extreme ultraviolet (EUV) light generated by a plasma and adjust a property of the intermediate voltage pulse based on the received indication of the amount of EUV light. . The control system configured to adjust a property of the intermediate voltage pulse may include the control system configured to adjust an amplitude of the intermediate voltage pulse, a time interval of the intermediate voltage pulse, a phase of the intermediate voltage pulse, and/or or a second time, the second time being a time for applying the intermediate voltage pulse to the electro-optical material.

在另一通用態樣中,一種調整一光學脈衝之一性質的方法包括:藉由在光入射於一光學調變系統上時將一第一電壓脈衝施加至該光學調變系統之一電光材料來形成一第一光學脈衝;在施加該第一電壓脈衝之後將一中間電壓脈衝施加至該電光材料;及藉由在該第一電壓脈衝及該中間電壓脈衝之後且在光入射於該電光材料上時將一第二電壓脈衝施加至該電光材料來形成一第二光學脈衝。該光學脈衝之一性質係基於該中間電壓脈衝之該施加而調整。 In another general aspect, a method of modulating a property of an optical pulse includes applying a first voltage pulse to an electro-optical material of an optical modulation system when light is incident on the optical modulation system. to form a first optical pulse; applying an intermediate voltage pulse to the electro-optical material after applying the first voltage pulse; and by following the first voltage pulse and the intermediate voltage pulse and after light is incident on the electro-optical material A second voltage pulse is applied to the electro-optical material to form a second optical pulse. A property of the optical pulse is adjusted based on the application of the intermediate voltage pulse.

實施可包括以下特徵中之一或多者。可放大該第一光學脈衝以形成一經放大第一光學脈衝;可接收自一電漿發射之極紫外線(EUV)光之一量的一指示,該電漿係藉由使該經放大第一光學脈衝與目標材料相互作用而產生;且可基於自該電漿發射之EUV光之該量的所接收指示而判 定該中間電壓脈衝之至少一個性質。該中間電壓脈衝之該至少一個性質可包括在該第一電壓脈衝之施加之後的一時間延遲,且判定該中間電壓脈衝之至少一個性質可包括基於自該電漿發射之EUV光之該量的該所接收指示而判定該時間延遲。該中間電壓脈衝之該至少一個性質可包括該中間電壓脈衝之一振幅及/或一持續時間,且判定該中間電壓脈衝之至少一個性質可包括判定該中間電壓脈衝之該振幅及/或該持續時間。 Implementations may include one or more of the following features. The first optical pulse can be amplified to form an amplified first optical pulse; an indication of an amount of extreme ultraviolet (EUV) light emitted from a plasma can be received by causing the amplified first optical pulse The pulse is generated by interaction with the target material; and can be determined based on the received indication of the amount of EUV light emitted from the plasma. Determine at least one property of the intermediate voltage pulse. The at least one property of the intermediate voltage pulse may include a time delay after application of the first voltage pulse, and determining the at least one property of the intermediate voltage pulse may include based on the amount of EUV light emitted from the plasma. The time delay is determined based on the received indication. The at least one property of the intermediate voltage pulse may include an amplitude and/or a duration of the intermediate voltage pulse, and determining the at least one property of the intermediate voltage pulse may include determining the amplitude and/or the duration of the intermediate voltage pulse. time.

在一些實施中,該第二光學脈衝包括一基座部分及一主要部分,且該基座部分之一性質係基於該中間電壓脈衝之該施加而調整。該基座部分可在時間上與該主要部分連續。 In some implementations, the second optical pulse includes a base portion and a main portion, and a property of the base portion is adjusted based on the application of the intermediate voltage pulse. The base portion may be temporally continuous with the main portion.

在另一通用態樣中,一種極紫外線(EUV)光源包括:一容器;一目標材料供應設備,其經組態以耦接至該容器;一光學調變系統,其經組態以定位成接收一脈衝光束,該光學調變系統包括一電光材料;及一控制系統,其耦接至一電壓源,該控制系統經組態以:使該電壓源將複數個成形電壓脈衝施加至該電光材料,該複數個成形電壓脈衝中之每一者係在一不同時間被施加至該電光材料,且使該電壓源將至少一個中間電壓脈衝施加至該電光材料,該至少一個中間電壓脈衝係在該複數個成形電壓脈衝中之兩者之間被施加至該電光材料。 In another general aspect, an extreme ultraviolet (EUV) light source includes: a container; a target material supply device configured to be coupled to the container; an optical modulation system configured to position Receiving a pulsed beam, the optical modulation system includes an electro-optical material; and a control system coupled to a voltage source, the control system being configured to cause the voltage source to apply a plurality of shaped voltage pulses to the electro-optical material. material, each of the plurality of shaped voltage pulses is applied to the electro-optical material at a different time, and causing the voltage source to apply at least one intermediate voltage pulse to the electro-optical material, the at least one intermediate voltage pulse being at Between two of the plurality of shaped voltage pulses are applied to the electro-optical material.

實施可包括以下特徵中之一或多者。該目標材料供應設備可經組態以將複數個目標材料小滴提供至該容器中之一目標區,該等目標材料小滴以一目標遞送速率到達該目標區,且該控制系統以一成形速率將該等成形電壓脈衝施加至該電光材料,該成形速率取決於該目標遞送速率。 Implementations may include one or more of the following features. The target material supply device may be configured to provide a plurality of target material droplets to a target zone in the container, the target material droplets arriving at the target zone at a target delivery rate, and the control system in a shaped The shaping voltage pulses are applied to the electro-optical material at a rate that depends on the target delivery rate.

該中間電壓脈衝之特性可包括一振幅及/或一相位,且該控 制系統可進一步經組態以:存取與該成形速率相關聯地儲存之一振幅及/或一相位,且使該電壓源產生具有經存取振幅及/或相位之該中間電壓脈衝。該控制系統可進一步經組態以控制該等成形電壓脈衝中之一者與該等中間電壓脈衝中之一者之一施加之間的一時間延遲。 The characteristics of the intermediate voltage pulse may include an amplitude and/or a phase, and the control The control system may be further configured to access an amplitude and/or a phase stored in association with the forming rate and cause the voltage source to generate the intermediate voltage pulse having the accessed amplitude and/or phase. The control system may be further configured to control a time delay between application of one of the shaping voltage pulses and one of the intermediate voltage pulses.

該EUV光源亦可包括一光學放大器。每當將一成形電壓脈衝施加至該電光材料時,可形成一光學脈衝;成形光學脈衝可由該光學放大器放大以形成一經放大光學脈衝;該控制系統可進一步經組態以耦接至一度量衡系統,該度量衡系統經組態以量測由該容器中之一電漿產生之EUV光的一量,該電漿可藉由用成形的經放大光學脈衝輻照該目標材料來形成,該控制系統可經組態以自該度量衡系統接收EUV光之經量測量;且該控制系統可經組態以基於EUV光之該經量測量而修改該中間電壓脈衝之一或多個特性。該中間電壓脈衝之該一或多個特性可包括該中間電壓脈衝之一振幅、該中間電壓脈衝之一時距、該中間電壓脈衝之一相位及/或在一最近成形電壓脈衝之施加之後的一延遲時間。 The EUV light source may also include an optical amplifier. Whenever a shaped voltage pulse is applied to the electro-optical material, an optical pulse can be formed; the shaped optical pulse can be amplified by the optical amplifier to form an amplified optical pulse; the control system can be further configured to couple to a metrology system , the metrology system configured to measure an amount of EUV light generated by a plasma in the container, the plasma being formed by irradiating the target material with shaped amplified optical pulses, the control system The control system can be configured to receive a quantitative measurement of EUV light from the metrology system; and the control system can be configured to modify one or more characteristics of the intermediate voltage pulse based on the quantitative measurement of EUV light. The one or more characteristics of the intermediate voltage pulse may include an amplitude of the intermediate voltage pulse, a duration of the intermediate voltage pulse, a phase of the intermediate voltage pulse, and/or a duration following application of a most recently shaped voltage pulse. delay time.

上文所描述之技術中之任一者的實施可包括EUV光源、系統、方法、程序、裝置或設備。在以下附圖及描述中闡述一或多個實施之細節。其他特徵將自描述及圖式及自申請專利範圍而顯而易見。 Implementations of any of the techniques described above may include EUV light sources, systems, methods, procedures, apparatus, or devices. The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings and from the patent claims.

2:極紫外線(EUV)輻射發射電漿 2: Extreme ultraviolet (EUV) radiation emitting plasma

3:近正入射收集器 3: Near normal incidence collector

20:EUV輻射光束 20: EUV radiation beam

21:輻射光束 21: Radiation beam

22:琢面化場鏡面裝置/系統 22: Faceted field mirror device/system

24:琢面化光瞳鏡面裝置 24: Faceted pupil mirror device

26:經圖案化光束/輻射光束 26: Patterned beam/radiation beam

28:反射元件 28: Reflective element

30:反射元件 30: Reflective element

100:系統 100:System

101:EUV光源 101:EUV light source

104:光學脈衝產生系統 104: Optical pulse generation system

105:光源 105:Light source

106:光束 106:Beam

107:經修改光學脈衝 107: Modified Optical Pulse

108:輻照光學脈衝/經放大光學脈衝 108: Irradiated optical pulse/amplified optical pulse

111:路徑 111:Path

115:目標區 115:Target area

118:目標/目標材料 118:Target/Target Material

120:調變器/系統 120:Modulator/System

122:材料 122:Material

123:電源 123:Power supply

124:電場 124: Electric field

130:光學放大器 130:Optical amplifier

132:增益介質 132: Gain medium

175:控制系統 175:Control system

176:通信介面 176: Communication interface

177:電子處理器 177: Electronic processor

178:電子儲存器 178: Electronic storage

179:輸入/輸出(I/O)介面 179:Input/output (I/O) interface

180:真空腔室 180: Vacuum chamber

182:度量衡系統 182: Weights and Measures System

183:通信鏈路 183: Communication link

184:感測器 184:Sensor

185:光學感測系統 185: Optical sensing system

195:微影設備 195:Lithography equipment

196:EUV光 196: EUV light

197:電漿 197:Plasma

206:光學脈衝 206: Optical pulse

207:經修改光學脈衝 207: Modified Optical Pulse

214:電壓信號 214:Voltage signal

220:調變系統 220: Modulation system

221:窗口 221:Window

223:電壓源 223:Voltage source

223a:電極 223a:Electrode

223b:電極 223b:Electrode

224:基於偏振之光學元件 224: Optical components based on polarization

225:基座部分 225: Base part

266:洩漏光 266:Leaking light

267:部分 267:Part

268:主要部分 268:Main part

306:光束 306:Beam

306_1:第一光學脈衝 306_1: First optical pulse

306_2:第二光學脈衝 306_2: Second optical pulse

324:電信號 324:Electrical signal

325a_1:第一電壓脈衝 325a_1: First voltage pulse

325a_2:第二電壓脈衝 325a_2: Second voltage pulse

325b_1:中間電壓脈衝 325b_1: Intermediate voltage pulse

330:延遲 330: Delay

331_1:時距/持續時間 331_1: time interval/duration

331_2:時距/持續時間 331_2: time interval/duration

332:寬度/持續時間 332: Width/Duration

400:程序 400:Program

410:步驟 410: Steps

420:步驟 420: Steps

430:步驟 430: Steps

500:微影設備 500: Lithography equipment

601:儲集器 601:Reservoir

602:噴嘴 602:Nozzle

620:圍封結構 620:Enclosed structure

621:孔隙 621:pore

623:雷射 623:Laser

624:雷射能量 624:Laser energy

626:小滴產生器 626: Droplet Generator

628:燃料流 628:Fuel flow

630:截留器 630: interceptor

660:輻射強度 660: Radiation intensity

669:過濾器 669:Filter

B:振幅/輻射光束 B: Amplitude/radiation beam

C:目標部分 C: Target part

IF:虛擬源點/中間焦點 IF: virtual source point/intermediate focus

IL:照明系統 IL: lighting system

M1:圖案化裝置對準標記 M1: Patterning device alignment mark

M2:圖案化裝置對準標記 M2: Patterned device alignment mark

MA:圖案化裝置/倍縮光罩 MA: Patterning device/reduction mask

MT:支撐結構 MT: support structure

O:方向光軸 O: Directional optical axis

P1:基板對準標記 P1: Substrate alignment mark

P2:基板對準標記 P2: Substrate alignment mark

PM:第一定位器 PM: first locator

PS:投影系統 PS:Projection system

PS1:位置感測器 PS1: Position sensor

PS2:位置感測器 PS2: Position sensor

PW:第二定位器 PW: Second locator

SO:源收集器模組 SO: Source collector module

t1:時間 t1: time

t2:時間 t2: time

ta:時間 ta: time

tb:時間 tb: time

ti:時間 ti: time

W:基板 W: substrate

WT:基板台 WT: substrate table

圖1為EUV微影系統之實例的方塊圖。 Figure 1 is a block diagram of an example EUV lithography system.

圖2A為調變系統之實例的方塊圖。 Figure 2A is a block diagram of an example of a modulation system.

圖2B為光學脈衝之實例的說明。 Figure 2B is an illustration of an example of optical pulses.

圖2C為由圖2B之光學脈衝形成之經修改光學脈衝之實例的說明。 Figure 2C is an illustration of an example of a modified optical pulse formed from the optical pulse of Figure 2B.

圖3A為光束隨時間變化之實例的說明。 Figure 3A is an illustration of an example of a beam changing over time.

圖3B為電信號隨時間變化之實例的說明。 Figure 3B is an illustration of an example of an electrical signal changing over time.

圖4為用於控制輻照光學脈衝之性質之程序之實例的流程圖。 Figure 4 is a flowchart of an example of a procedure for controlling the properties of irradiating optical pulses.

圖5及圖6為微影設備之實例的方塊圖。 Figures 5 and 6 are block diagrams of examples of lithography equipment.

圖7為EUV光源之實例的方塊圖。 Figure 7 is a block diagram of an example EUV light source.

描述了用於控制電光調變器之光學洩漏的技術。電光調變器用以調變初始光束以形成經修改光學脈衝。電光調變器包括電光材料。將電信號(例如,具有有限持續時間之電壓脈衝)施加至電光材料以改變電光材料之折射率,使得調變初始光束且形成經修改光學脈衝。在施加該電信號之後,將中間電信號施加至電光材料。如下文更詳細地論述,將中間電信號施加至電光材料允許控制電光調變器之光學洩漏。中間電信號減輕、改變或控制由電信號產生之聲波。控制聲波亦控制電光調變器之光學洩漏之量,藉此允許控制隨後成形(或稍後成形)之經修改光學脈衝的特性或性質。 Techniques for controlling optical leakage in electro-optical modulators are described. An electro-optical modulator is used to modulate the initial beam to form a modified optical pulse. Electro-optical modulators include electro-optical materials. An electrical signal (eg, a voltage pulse of finite duration) is applied to the electro-optical material to change the refractive index of the electro-optical material, such that the initial light beam is modulated and a modified optical pulse is formed. After applying the electrical signal, an intermediate electrical signal is applied to the electro-optical material. As discussed in more detail below, applying an intermediate electrical signal to the electro-optical material allows the optical leakage of the electro-optical modulator to be controlled. The intermediate electrical signal reduces, changes or controls the sound waves generated by the electrical signal. Controlling the acoustic wave also controls the amount of optical leakage of the electro-optical modulator, thereby allowing control of the characteristics or properties of the modified optical pulse that is subsequently shaped (or later shaped).

參看圖1,其展示系統100之方塊圖。系統100為EUV微影系統之實例。系統100包括將EUV光196提供至微影設備195之EUV光源101。微影設備195運用EUV光196來曝光晶圓(例如,矽晶圓)以在該晶圓上形成電子特徵。運用輻照光學脈衝108自藉由輻照目標118中之目標材料而形成的電漿197發射EUV光196。目標材料為在電漿狀態中發射EUV光之任何材料(例如,錫)。 Referring to Figure 1, a block diagram of system 100 is shown. System 100 is an example of an EUV lithography system. System 100 includes EUV light source 101 that provides EUV light 196 to lithography equipment 195 . Lithography equipment 195 uses EUV light 196 to expose a wafer (eg, a silicon wafer) to form electronic features on the wafer. EUV light 196 is emitted from the plasma 197 formed by irradiating the target material in target 118 using irradiation optical pulses 108 . The target material is any material that emits EUV light in the plasma state (eg, tin).

EUV光源101包括自經修改光學脈衝107產生經放大光學脈 衝108之光學脈衝產生系統104。光學脈衝產生系統104包括光源105,光源105可為例如脈衝(例如,Q切換)或連續波二氧化碳(CO2)雷射或固態雷射(例如,Nd:YAG雷射或摻鉺光纖(Er:玻璃)雷射)。光源105產生光束(optical beam)106(或光束(light beam)106),該光束可為一連串光脈衝或連續光束。光源105朝向包括電光材料122之調變系統120將光束106發射至路徑111上。電光材料122在路徑111上,且光束106入射於電光材料122上。 EUV light source 101 includes an optical pulse generation system 104 that generates amplified optical pulses 108 from modified optical pulses 107 . Optical pulse generation system 104 includes a light source 105, which may be, for example, a pulsed (e.g., Q-switched) or continuous wave carbon dioxide ( CO2 ) laser or a solid-state laser (e.g., Nd:YAG laser or erbium-doped fiber (Er: glass)laser). The light source 105 generates an optical beam 106 (or light beam 106), which may be a series of light pulses or a continuous beam. The light source 105 emits a light beam 106 onto a path 111 toward a modulation system 120 including an electro-optical material 122 . Electro-optical material 122 is on path 111 and beam 106 is incident on electro-optical material 122 .

調變系統120為基於電光效應而調變光束106之電光調變器。電光效應描述自施加由電源123產生之直流(DC)或低頻電場124而產生的電光材料122之折射率改變。電源123可為例如電壓源、函數產生器或電力供應器。藉由在光束106入射於電光材料122上時控制電光材料122中之電光效應,調變系統120調變光束106之相位、偏振或振幅以形成脈衝107。 The modulation system 120 is an electro-optical modulator that modulates the light beam 106 based on the electro-optical effect. The electro-optical effect describes the change in the refractive index of the electro-optical material 122 resulting from the application of a direct current (DC) or low-frequency electric field 124 generated by the power source 123. The power source 123 may be, for example, a voltage source, a function generator, or a power supply. Modulation system 120 modulates the phase, polarization, or amplitude of beam 106 to form pulse 107 by controlling the electro-optical effect in electro-optical material 122 when beam 106 is incident on electro-optical material 122 .

電場124可用以控制調變系統120是否透射光。電場124可用以控制電光材料122,使得光束106之僅某一部分或數個部分穿過電光材料122。以此方式,調變系統120自光束106之一部分形成脈衝107。 Electric field 124 can be used to control whether modulation system 120 transmits light. The electric field 124 can be used to control the electro-optical material 122 so that only a portion or portions of the light beam 106 passes through the electro-optical material 122 . In this manner, modulation system 120 forms pulse 107 from a portion of beam 106 .

光學脈衝產生系統104亦包括一或多個光學放大器130,該等光學放大器中之每一者包括路徑111上之增益介質132。增益介質132經由泵浦接收能量且將能量提供至脈衝107,使得脈衝107被放大成經放大或輻照光學脈衝108。脈衝107之放大量係由放大器130及增益介質132之增益判定。增益為放大器130提供至輸入光束之能量的增加量或因數。 Optical pulse generation system 104 also includes one or more optical amplifiers 130 , each of which includes gain medium 132 on path 111 . Gain medium 132 receives energy via the pump and provides energy to pulse 107 such that pulse 107 is amplified into amplified or irradiated optical pulse 108. The amount of amplification of pulse 107 is determined by the gains of amplifier 130 and gain medium 132. Gain is the increase or factor by which the energy supplied by amplifier 130 to the input beam is increased.

脈衝108在路徑111上朝向收納目標118之真空容器180傳播。脈衝108與目標118在真空容器180中之目標區115處相互作用,且該 相互作用將目標118中之目標材料中之至少一些轉換成發射EUV光196之電漿197。 Pulse 108 propagates on path 111 toward vacuum vessel 180 housing target 118 . Pulse 108 interacts with target 118 at target zone 115 in vacuum vessel 180, and the The interaction converts at least some of the target material in target 118 into plasma 197 that emits EUV light 196 .

將電場124施加至電光材料122在材料122中產生聲波。聲波產生材料122中之應變且甚至在不再將電場124施加至材料122之後及/或在電場124之性質改變之後仍可持續。由聲波產生之應變改變材料122之折射率,即使在不預期材料122之折射率改變之時間段期間亦如此。此等折射率改變可能導致光學洩漏。光學洩漏為當調變系統120處於光不應穿過調變系統120之狀態中時穿過調變器120的光。如下文所論述,電場124包括被施加至材料122以藉由減輕及/或控制材料122中之殘餘聲波來減輕及/或控制光學洩漏的分量(例如,脈衝)。 Applying electric field 124 to electro-optical material 122 generates acoustic waves in material 122 . The sound waves create a strain in material 122 that persists even after electric field 124 is no longer applied to material 122 and/or after the properties of electric field 124 change. The strain produced by the acoustic waves changes the refractive index of material 122 even during periods of time when the refractive index of material 122 is not expected to change. Such refractive index changes may cause optical leakage. Optical leakage is the light that passes through modulator 120 when modulation system 120 is in a state where light should not pass through modulation system 120 . As discussed below, electric field 124 includes a component (eg, a pulse) that is applied to material 122 to mitigate and/or control optical leakage by mitigating and/or controlling residual acoustic waves in material 122 .

EUV光源101亦包括相對於目標區115定位之度量衡系統182。度量衡系統182包括經組態以感測EUV光196之一或多個感測器184。度量衡系統182在真空腔室180中(例如,在目標區115處)產生EUV光196之量的表示。度量衡系統182經由通信鏈路183將表示經量測EUV光之量的資料提供至控制系統175。 EUV light source 101 also includes a metrology system 182 positioned relative to target area 115 . Metrology system 182 includes one or more sensors 184 configured to sense EUV light 196 . Metrology system 182 produces an indication of the amount of EUV light 196 in vacuum chamber 180 (eg, at target zone 115). Metrology system 182 provides data representing the measured amount of EUV light to control system 175 via communication link 183 .

在一些實施中,度量衡系統182亦包括光學感測系統185,光學感測系統185包括經組態以量測脈衝107及/或經放大脈衝108之性質的一或多個光學感測器。光學感測系統185可包括能夠偵測脈衝107及/或脈衝108中之一或多個波長以使得感測系統185能夠判定脈衝107及/或經放大脈衝108之性質(例如,基座部分之性質)的任何感測器。在圖1之實例中,光學感測系統185為度量衡系統182之部分,然而,光學感測系統185可與度量衡系統182分離。舉例而言,光學感測系統185可經定位以接收調變系統120與光學放大器130之間的光學脈衝107之樣本。光學感測系統185 亦可將與光學脈衝107及/或脈衝108之量測相關的資料提供至控制系統175。在一些實施中,來自EUV感測器184及/或光學感測系統185之資訊由控制系統175使用以設定及/或改變電場124之參數。 In some implementations, metrology system 182 also includes optical sensing system 185 , which includes one or more optical sensors configured to measure properties of pulse 107 and/or amplified pulse 108 . Optical sensing system 185 may include one or more wavelengths capable of detecting pulse 107 and/or pulse 108 such that sensing system 185 can determine the properties of pulse 107 and/or amplified pulse 108 (e.g., the properties of the base portion properties) of any sensor. In the example of FIG. 1 , optical sensing system 185 is part of metrology system 182 , however, optical sensing system 185 may be separate from metrology system 182 . For example, optical sensing system 185 may be positioned to receive samples of optical pulses 107 between modulation system 120 and optical amplifier 130 . Optical sensing system 185 Data related to the measurement of optical pulses 107 and/or pulses 108 may also be provided to control system 175 . In some implementations, information from EUV sensor 184 and/or optical sensing system 185 is used by control system 175 to set and/or change parameters of electric field 124 .

除了自度量衡系統182接收資料之外,控制系統175亦經由通信介面176與脈衝產生系統104及/或脈衝產生系統104之組件中的任一者交換資料及/或資訊。舉例而言,在一些實施中,控制系統175可提供觸發信號以操作調變系統120及/或光源105。在另一實例中,控制系統175可自EUV感測器184接收EUV光之經量測量以用於輻照光學脈衝108之例項與目標118之例項之間的許多相互作用,以判定電場124之特定參數或性質之許多可能設定中的哪一者導致產生最高量之EUV光。在又一實例中,控制系統175將資料及/或資訊提供至產生電場124之電源123。在此實例中,由控制系統175提供之資料判定電場124之各種性質,諸如振幅及/或電場124之兩個脈衝之間的時間延遲。 In addition to receiving data from the weights and measures system 182 , the control system 175 also exchanges data and/or information with the pulse generation system 104 and/or any of the components of the pulse generation system 104 via the communication interface 176 . For example, in some implementations, the control system 175 may provide a trigger signal to operate the modulation system 120 and/or the light source 105 . In another example, the control system 175 may receive a measurement of the EUV light from the EUV sensor 184 for a number of interactions between instances of the irradiating optical pulse 108 and the target 118 to determine the electric field. Which of many possible settings of specific parameters or properties of 124 results in the production of the highest amount of EUV light. In yet another example, control system 175 provides data and/or information to power source 123 that generates electric field 124 . In this example, data provided by control system 175 determines various properties of electric field 124 such as amplitude and/or time delay between two pulses of electric field 124 .

控制系統175包括電子處理器177、電子儲存器178,及輸入/輸出(I/O)介面179。電子處理器177包括適合於執行電腦程式之一或多個處理器,諸如通用或專用微處理器,及任何種類數位電腦之任何一或多個處理器。通常,電子處理器自唯讀記憶體、隨機存取記憶體或此兩者接收指令及資料。電子處理器177可為任何類型之電子處理器。 The control system 175 includes an electronic processor 177 , an electronic storage 178 , and an input/output (I/O) interface 179 . Electronic processor 177 includes one or more processors suitable for executing computer programs, such as a general or special purpose microprocessor, and any one or more processors of any kind of digital computer. Typically, electronic processors receive instructions and data from read-only memory, random access memory, or both. Electronic processor 177 may be any type of electronic processor.

電子儲存器178可為諸如RAM之揮發性記憶體,或非揮發性記憶體。在一些實施中,電子儲存器178包括非揮發性及揮發性部分或組件。電子儲存器178可儲存用於控制系統175及/或控制系統175之組件之操作中的資料及資訊。 Electronic storage 178 may be volatile memory such as RAM, or non-volatile memory. In some implementations, electronic storage 178 includes non-volatile and volatile portions or components. Electronic storage 178 may store data and information used in the operation of control system 175 and/or components of control system 175 .

電子儲存器178亦可儲存指令,可能作為電腦程式,該等 指令在經執行時使處理器177與控制系統175、調變系統120及/或光源105中之組件通信。舉例而言,在源105為脈衝源之實施中,該等指令可為使電子處理器177產生引起光源105發射光學脈衝之信號的指令。 Electronic storage 178 may also store instructions, possibly as computer programs, which The instructions, when executed, cause the processor 177 to communicate with components in the control system 175 , the modulation system 120 , and/or the light source 105 . For example, in implementations where source 105 is a pulsed source, the instructions may be instructions that cause electronic processor 177 to generate a signal that causes light source 105 to emit optical pulses.

I/O介面179為任何種類之電子介面,其允許控制系統175與操作者、調變系統120及/或光源105及/或在另一電子裝置上運行之自動程序接收及/或提供資料及信號。舉例而言,I/O介面179可包括視覺顯示器、鍵盤及通信介面中之一或多者。 I/O interface 179 is any type of electronic interface that allows control system 175 to receive and/or provide data to an operator, modulation system 120 and/or light source 105 and/or an automated program running on another electronic device. signal. For example, I/O interface 179 may include one or more of a visual display, a keyboard, and a communication interface.

圖2A為調變系統220之方塊圖。調變系統220為調變系統120(圖1)之實施的實例。調變系統220包括電光材料122,在圖2A中所展示之實施中,電光材料122定位於電極223a、223b之間。可控制電極223a、223b以在電極223a與223b之間形成電場。舉例而言,控制系統175可使電壓源223將電壓信號214提供至電極223b,使得電極223b保持在不同於電極223a之電壓下,因此產生跨越電光材料122之電場或電位差(V)。 FIG. 2A is a block diagram of the modulation system 220. Modulation system 220 is an example of an implementation of modulation system 120 (FIG. 1). Modulation system 220 includes electro-optical material 122, which in the implementation shown in Figure 2A is positioned between electrodes 223a, 223b. Electrodes 223a, 223b can be controlled to form an electric field between electrodes 223a and 223b. For example, control system 175 may cause voltage source 223 to provide voltage signal 214 to electrode 223b such that electrode 223b is maintained at a different voltage than electrode 223a, thereby creating an electric field or potential difference (V) across electro-optical material 122.

此外,調變系統220可包括電光材料122之多於一個例項。舉例而言,調變系統220可包括兩個電光材料122、三個電光材料122或適合於施加、可置放於光束路徑111上之任何數目。電光材料122之每一例項亦包括可控制以將電場施加至彼電光材料122之各別電極223a、223b。在包括電光材料122之多於一個例項的實施中,施加至每一電光材料122之電場可為相同的,或電光場中之至少一些可為不同的。電光材料122可作為群組由控制系統175控制,或各種電場可由控制系統175之各別例項個別地控制。 Additionally, modulation system 220 may include more than one instance of electro-optical material 122. For example, modulation system 220 may include two electro-optical materials 122 , three electro-optical materials 122 , or any number suitable for application that may be placed on beam path 111 . Each instance of electro-optical material 122 also includes respective electrodes 223a, 223b that are controllable to apply an electric field to that electro-optical material 122. In implementations that include more than one instance of electro-optical material 122, the electric field applied to each electro-optical material 122 may be the same, or at least some of the electro-optical fields may be different. The electro-optical materials 122 may be controlled as a group by the control system 175 , or the various electric fields may be controlled individually by respective instances of the control system 175 .

調變系統220亦包括一或多個基於偏振之光學元件224。在 圖2A之實例中,僅展示一個基於偏振之光學元件224。然而,在其他實施中,可包括額外基於偏振之光學元件224。舉例而言,第二基於偏振之光學元件224可在接收光束106之調變系統220的一側上。此外,基於偏振之光學元件224展示為與電光材料122實體上分離,其他其他實施係可能的。舉例而言,基於偏振之光學元件224可為形成於電光材料122上以使得光學元件224與電光材料122彼此接觸之膜。 Modulation system 220 also includes one or more polarization-based optical elements 224. exist In the example of Figure 2A, only one polarization-based optical element 224 is shown. However, in other implementations, additional polarization-based optical elements 224 may be included. For example, the second polarization-based optical element 224 may be on the side of the modulation system 220 that receives the beam 106 . Furthermore, while polarization-based optical element 224 is shown physically separate from electro-optical material 122, other implementations are possible. For example, polarization-based optical element 224 may be a film formed on electro-optical material 122 such that optical element 224 and electro-optical material 122 are in contact with each other.

基於偏振之光學元件224為基於光之偏振狀態與光相互作用的任何光學元件。舉例而言,基於偏振之光學元件224可為透射水平偏振光且阻擋豎直偏振光或者透射豎直偏振光且阻擋水平偏振光之線性偏振器。基於偏振之光學元件224可為透射水平偏振光且反射豎直偏振光之偏振光束分光器。基於偏振之光學元件224可為吸收除具有特定偏振狀態之光以外的所有光之光學元件。在一些實施中,基於偏振之光學元件224可包括四分之一波板。至少一個基於偏振之光學元件224經定位以接收穿過電光材料122之光且將具有某一偏振狀態之光導向至光束路徑111上。 Polarization-based optical element 224 is any optical element that interacts with light based on its polarization state. For example, polarization-based optical element 224 may be a linear polarizer that transmits horizontally polarized light and blocks vertically polarized light, or transmits vertically polarized light and blocks horizontally polarized light. Polarization-based optical element 224 may be a polarizing beam splitter that transmits horizontally polarized light and reflects vertically polarized light. Polarization-based optical element 224 may be an optical element that absorbs all light except light with a specific polarization state. In some implementations, polarization-based optical element 224 may include a quarter wave plate. At least one polarization-based optical element 224 is positioned to receive light passing through electro-optical material 122 and direct light having a certain polarization state onto beam path 111 .

如上文所論述,儘管圖2中展示一個電光材料122及一個基於偏振之光學元件224,但此等組件中之任一者或兩者中之多於一者可在光束路徑111上彼此串聯且包括於調變系統120中。舉例而言,調變系統可包括在光束路徑111上串聯的三個基於偏振之光學元件224及兩個電光材料122,其中電光材料122中之每一者在三個基於偏振之光學元件224中之兩者之間。 As discussed above, although one electro-optical material 122 and one polarization-based optical element 224 are shown in Figure 2, either or more than one of these components may be in series with each other on the beam path 111 and included in the modulation system 120. For example, the modulation system may include three polarization-based optical elements 224 and two electro-optical materials 122 in series on the beam path 111 , with each of the electro-optical materials 122 in the three polarization-based optical elements 224 between the two.

電光材料122可為透射光束106之一或多個波長的任何材料。對於光束106包括波長為10.6微米(μm)之光的實施,材料122可為例如碲化鋅鎘(CdZnTe或CZT)、碲化鎘(CdTe)、碲化鋅(ZnTe)及/或砷化 鎵(GaAs)。在其他波長下可使用其他材料。舉例而言,材料122可為磷酸一鉀(KDP)、磷酸二氫銨(ADP)、石英、氯化亞銅(CuCl)、硫化鋅(ZnS)、硒化鋅(ZnSe)、鈮酸鋰(LiNbO3)、磷化鎵(GaP)、鉭酸鋰(LiTaO3)或鈦酸鋇(BaTiO3)。亦可使用透射光束106之一或多個波長且回應於施加外力而展現雙折射的其他材料作為材料122。舉例而言,石英可用作材料122。 Electro-optical material 122 may be any material that transmits one or more wavelengths of light beam 106 . For implementations in which beam 106 includes light with a wavelength of 10.6 micrometers (μm), material 122 may be, for example, cadmium zinc telluride (CdZnTe or CZT), cadmium telluride (CdTe), zinc telluride (ZnTe), and/or gallium arsenide (GaAs). Other materials can be used at other wavelengths. For example, the material 122 may be potassium monophosphate (KDP), ammonium dihydrogen phosphate (ADP), quartz, cuprous chloride (CuCl), zinc sulfide (ZnS), zinc selenide (ZnSe), lithium niobate ( LiNbO 3 ), gallium phosphide (GaP), lithium tantalate (LiTaO 3 ) or barium titanate (BaTiO 3 ). Other materials that transmit one or more wavelengths of light beam 106 and exhibit birefringence in response to the application of an external force may also be used as material 122 . For example, quartz may be used as material 122 .

電光材料122亦展現各向異性。在展現各向異性之材料中,材料之性質(諸如折射率)在空間上不均一。因此,可藉由施加可控制外力(諸如,電位差(V))而沿著一或多個特定方向修改材料122之性質。舉例而言,可經由施加外力來控制傳播通過材料122之光之不同偏振分量的折射率。因此,可藉由控制電極223a、223b之間的電位差(V)來控制穿過材料122之光的偏振狀態。 Electro-optical material 122 also exhibits anisotropy. In materials that exhibit anisotropy, the properties of the material, such as the refractive index, are not uniform in space. Accordingly, the properties of material 122 can be modified along one or more specific directions by applying a controllable external force, such as a potential difference (V). For example, the refractive index of different polarization components of light propagating through material 122 can be controlled by applying an external force. Therefore, the polarization state of the light passing through the material 122 can be controlled by controlling the potential difference (V) between the electrodes 223a, 223b.

在理想操作下,調變系統220僅在施加至材料122之電位差V使穿過材料122之光的偏振狀態與基於偏振之光學元件224之偏振條件匹配時透射光。舉例而言,若基於偏振之光學元件224為經定位以將水平偏振光透射至光束路徑111上之線形偏振器,且光束106在最初入射於材料122上豎直偏振時,則僅在施加至材料122之電位差V改變光束106之偏振狀態以使得光束106在與基於偏振之光學元件224相互作用之前變得水平偏振時形成脈衝107。 Under ideal operation, modulation system 220 only transmits light when the potential difference V applied to material 122 causes the polarization state of light passing through material 122 to match the polarization condition of polarization-based optical element 224 . For example, if polarization-based optical element 224 is a linear polarizer positioned to transmit horizontally polarized light onto beam path 111 , and beam 106 is vertically polarized upon initial incidence on material 122 , then only when applied to The potential difference V of the material 122 changes the polarization state of the beam 106 such that the beam 106 forms a pulse 107 when it becomes horizontally polarized before interacting with the polarization-based optical element 224 .

調變系統220被視為在調變系統220經控制以有意地透射光之任何時候皆處於開啟狀態中。舉例而言,當所施加電位差V使得光束106之偏振狀態與基於偏振之光學元件224匹配時,光學調變系統220被視為處於開啟狀態中並且形成脈衝107。當所施加電位差V使得光束106之偏 振狀態被預期與基於偏振之光學元件224正交時,光學調變系統220處於關閉狀態中。在理想條件下,當光學調變系統220處於關閉狀態中時,光束106不穿過調變系統120。 Modulation system 220 is considered to be in an on state any time modulation system 220 is controlled to intentionally transmit light. For example, when the applied potential difference V causes the polarization state of beam 106 to match polarization-based optical element 224 , optical modulation system 220 is considered to be in an on state and pulse 107 is formed. When the applied potential difference V causes the deflection of the beam 106 to The optical modulation system 220 is in the off state when the optical state is expected to be orthogonal to the polarization-based optical element 224 . Under ideal conditions, when the optical modulation system 220 is in the off state, the light beam 106 does not pass through the modulation system 120 .

然而,將電位差V施加至材料122使聲波在材料122中傳播。此等聲波可在自材料122移除電位差V之後持續。另外,聲波產生材料122中之應變,該應變改變材料122之光學性質且允許入射光穿過調變系統220(作為光學洩漏),即使在未施加電位差V時亦如此。因此,在實際操作中,調變系統220可透射雜散光(光學洩漏),即使在基於偏振之光學元件224之偏振條件使得入射於材料122上之光不應穿過調變系統220時亦如此。舉例而言,當光學洩漏僅在形成輻照光學脈衝之前存在時,光學洩漏在輻照光學脈衝上形成基座部分。 However, applying a potential difference V to material 122 causes sound waves to propagate in material 122 . These acoustic waves may continue after the potential difference V is removed from the material 122 . Additionally, the acoustic waves create strains in the material 122 that change the optical properties of the material 122 and allow incident light to pass through the modulation system 220 (as optical leakage) even when the potential difference V is not applied. Therefore, in practice, modulation system 220 may transmit stray light (optical leakage) even when the polarization conditions of polarization-based optical element 224 are such that light incident on material 122 should not pass through modulation system 220 . For example, when the optical leakage is present only before the formation of the irradiation optical pulse, the optical leakage forms a base portion on the irradiation optical pulse.

亦參看圖2B及圖2C,展示光學脈衝206(圖2B)之實例及由光學脈衝206形成之經修改光學脈衝207(圖2C)之實例的說明。脈衝207包括基座部分225及主要部分268。圖2B展示脈衝206隨時間變化之強度,且圖2C展示脈衝207隨時間變化之強度。 Referring also to FIGS. 2B and 2C , an illustration of an example of optical pulse 206 ( FIG. 2B ) and an example of modified optical pulse 207 ( FIG. 2C ) formed from optical pulse 206 is shown. Pulse 207 includes base portion 225 and main portion 268 . Figure 2B shows the intensity of pulse 206 as a function of time, and Figure 2C shows the intensity of pulse 207 as a function of time.

脈衝206具有近似高斯的時間曲線(強度對時間)。脈衝206與調變系統220相互作用以形成脈衝207。控制系統175控制調變系統220以選擇或提取脈衝206之特定部分267。在圖2B之實例中,在時間t=ta,調變系統220經設定為透射光,且在時間t=tb,調變系統220經設定為阻擋光。換言之,光學調變系統220僅意欲在部分267中透射光(其為在時間ta與時間tb之間在脈衝206中之光)。舉例而言,控制系統175可藉由施加電壓信號214來控制調變系統220在時間ta透射光,使得穿過電光材料122之光具有與基於偏振之光學元件224之偏振匹配的偏振。可藉由移除電壓信 號214來控制調變系統220在時間tb停止透射光。 Pulse 206 has an approximately Gaussian time profile (intensity versus time). Pulse 206 interacts with modulation system 220 to form pulse 207. The control system 175 controls the modulation system 220 to select or extract a specific portion 267 of the pulse 206 . In the example of Figure 2B, at time t=ta, the modulation system 220 is set to transmit light, and at time t=tb, the modulation system 220 is set to block light. In other words, optical modulation system 220 is only intended to transmit light in portion 267 (which is the light in pulse 206 between time ta and time tb). For example, the control system 175 may control the modulation system 220 to transmit light at time ta by applying the voltage signal 214 so that the light passing through the electro-optical material 122 has a polarization that matches the polarization of the polarization-based optical element 224 . By removing the voltage signal No. 214 to control the modulation system 220 to stop transmitting light at time tb.

然而,由於電光材料122中之聲波(或其他干擾,諸如基於偏振之光學元件224之非預期運動),光學洩漏可在ta之前的時間及/或在時間tb之後的時間由調變系統220透射。在圖2B之實例中,洩漏光266為僅在時間ta之前出現之光學洩漏。洩漏光266僅在部分267之前穿過調變模組120。 However, optical leakage may be transmitted by modulation system 220 at times before ta and/or at times after time tb due to acoustic waves in electro-optical material 122 (or other disturbances, such as unintended motion of polarization-based optical element 224 ). . In the example of Figure 2B, leakage light 266 is an optical leakage that occurs only before time ta. Leak light 266 passes through modulation module 120 only before portion 267 .

參看圖2C,洩漏光266形成基座部分225。在所展示之實例中,基座部分225出現在標記為221之窗口期間,且基座部分225在時間上早於脈衝207之剩餘部分出現。光學脈衝207之並非基座部分225的部分被稱作主要部分268。基座部分225及主要部分268兩者皆為光學脈衝207之部分,且基座部分225在時間上連接至主要部分268。換言之,不存在基座部分225與主要部分268之間無光之時段。 Referring to FIG. 2C , leaked light 266 forms base portion 225 . In the example shown, base portion 225 occurs during the window labeled 221 and occurs temporally earlier than the remainder of pulse 207 . The portion of optical pulse 207 that is not base portion 225 is referred to as main portion 268. Both base portion 225 and main portion 268 are part of optical pulse 207, and base portion 225 is temporally connected to main portion 268. In other words, there is no period of no light between the base portion 225 and the main portion 268.

基座部分225具有與主要部分268不同的時間曲線(強度隨時間變化)。舉例而言,基座部分225之平均及最大強度以及光能小於主要部分268之平均及最大強度以及光能。此外,基座部分225之形狀不同於主要部分268之形狀。另外,基座部分225之特性(例如,強度、時間曲線及/或持續時間)不同於在沒有任何光學洩漏之情況下形成之脈衝的早期部分的特性。 The base portion 225 has a different time profile (intensity versus time) than the main portion 268 . For example, the average and maximum intensity and light energy of base portion 225 are less than the average and maximum intensity and light energy of main portion 268 . Additionally, the base portion 225 has a different shape than the main portion 268 . Additionally, the characteristics of the base portion 225 (eg, intensity, time profile, and/or duration) differ from the characteristics of the early portion of the pulse formed without any optical leakage.

該經修改脈衝207由放大器130放大以形成經放大脈衝208,該經放大脈衝傳播至目標區115。經放大脈衝208包括基座部分225及主要部分268,其中經放大脈衝208之每一部分225、268具有大於該經修改脈衝207之對應部分的強度。在圖2C之實例中,基座部分225出現在主要部分268之前且在主要部分268之前到達目標118。在一些實施中,主 要部分268具有足以將目標118中之目標材料中之至少一些轉換成發射EUV光之電漿的強度或能量。基座部分225不具有與主要部分268一樣多的能量,且可能或可能不具有足以將目標材料轉換成電漿之能量。然而,基座部分225中之光可反射離開目標118,使材料自目標118之表面蒸發,及/或使目標118之部分斷裂。基座部分225可藉由在主要部分268到達目標118之前更改目標118而干涉電漿形成,及/或使不合需要的反射傳播回路徑111上。 The modified pulse 207 is amplified by amplifier 130 to form an amplified pulse 208 that propagates to target zone 115 . The amplified pulse 208 includes a base portion 225 and a main portion 268 , wherein each portion 225 , 268 of the amplified pulse 208 has an intensity greater than the corresponding portion of the modified pulse 207 . In the example of FIG. 2C , base portion 225 appears before main portion 268 and reaches target 118 before main portion 268 . In some implementations, the main The desired portion 268 has sufficient intensity or energy to convert at least some of the target material in the target 118 into a plasma that emits EUV light. Base portion 225 does not have as much energy as main portion 268 and may or may not have enough energy to convert the target material into a plasma. However, light in base portion 225 may reflect away from target 118, causing material to evaporate from the surface of target 118, and/or causing portions of target 118 to break. The base portion 225 may interfere with plasma formation by modifying the target 118 before the main portion 268 reaches the target 118 and/or causing undesirable reflections to propagate back onto the path 111 .

另一方面,基座部分225可調節目標118,使得性質(例如,密度、形狀及/或大小)對於電漿產生係較有利的。因而,需要藉由控制光學洩漏之量來控制基座部分225中之光的量。控制系統175運用在形成脈衝207之前施加至電光材料122之中間電信號控制光學洩漏(在此實例中,洩漏光266)之量。 On the other hand, base portion 225 may adjust target 118 such that properties (eg, density, shape, and/or size) are more favorable for plasma generation. Therefore, it is necessary to control the amount of light in the base portion 225 by controlling the amount of optical leakage. Control system 175 controls the amount of optical leakage (in this example, leakage light 266) using an intermediate electrical signal applied to electro-optical material 122 prior to forming pulse 207.

提供關於圖2B及圖2C所論述之脈衝207作為經修改光學脈衝207之一個實例。脈衝207可具有其他形式。舉例而言,洩漏光266可出現在時間ta之前,使得基座部分225與主要部分268分離。在此等實施中,存在基座部分225與主要部分268之間無光之時段。此外,洩漏光266可出現在時間tb之後,使得基座部分225出現在主要部分268之後。在此等實施中,基座部分225在主要部分268之後到達目標區115。在一些實施中,洩漏光266出現在時間ta之前且在時間tb之後,使得基座部分225存在於主要部分268之每一側上。 Pulse 207 discussed with respect to FIGS. 2B and 2C is provided as an example of a modified optical pulse 207. Pulse 207 may have other forms. For example, leakage light 266 may occur before time ta, causing base portion 225 to separate from main portion 268 . In such implementations, there are periods of no light between base portion 225 and main portion 268. Additionally, leaked light 266 may occur after time tb such that base portion 225 appears after main portion 268 . In such implementations, base portion 225 arrives at target zone 115 after main portion 268 . In some implementations, leakage light 266 occurs before time ta and after time tb, such that base portion 225 is present on each side of main portion 268 .

圖3A為光束306隨時間變化之強度的標繪圖。圖3B為隨時間變化之電信號324之電壓的標繪圖。圖3A及圖3B中使用相同時間標度。電信號324為可由受控制系統175控制之函數產生器產生且被施加至電光 材料122(圖1及圖2A)之電信號的實例。關於調變系統220(圖2A)論述電信號324。光束306為可入射於電光材料122上之光束(optical beam或light beam))的實例。 Figure 3A is a plot of the intensity of light beam 306 over time. Figure 3B is a plot of the voltage of electrical signal 324 as a function of time. The same time scale is used in Figures 3A and 3B. Electrical signal 324 is generated by a function generator controlled by control system 175 and applied to the electro-optical Example of electrical signals for material 122 (Figures 1 and 2A). Electrical signal 324 is discussed with respect to modulation system 220 (FIG. 2A). Beam 306 is an example of a light beam (optical beam or light beam) that may be incident on electro-optical material 122 .

光束306包括兩個初始光學光脈衝:入射於材料122上之第一初始光學脈衝306_1及第二初始光學脈衝306_2。在第二初始脈衝306_2入射於材料122上之前,第一初始光學脈衝306_1入射於材料122上。第一光學脈衝306_1與第二光學脈衝306_2為在時間上彼此分離之單獨光學脈衝。光束306可包括除初始光學脈衝306_1及306_2之外的光學脈衝。 The beam 306 includes two initial optical light pulses: a first initial optical pulse 306_1 and a second initial optical pulse 306_2 incident on the material 122 . Before the second initial pulse 306_2 is incident on the material 122, the first initial optical pulse 306_1 is incident on the material 122. The first optical pulse 306_1 and the second optical pulse 306_2 are separate optical pulses separated in time from each other. Beam 306 may include optical pulses in addition to initial optical pulses 306_1 and 306_2.

電信號324包括在時間t1開始施加至材料122之第一電脈衝325a_1及在時間t2開始施加至材料122之第二電脈衝325a_2。電脈衝325a_1、325a_2為分別在有限時距331_1、331_2內具有A伏特之振幅的電壓脈衝。因此,施加電脈衝325a_1及325a_2產生分別在時距331_1、331_2內施加至材料122之電壓A。 Electrical signal 324 includes a first electrical pulse 325a_1 applied to material 122 starting at time t1 and a second electrical pulse 325a_2 applied to material 122 starting at time t2. The electrical pulses 325a_1 and 325a_2 are voltage pulses having an amplitude of A volt within limited time intervals 331_1 and 331_2 respectively. Therefore, application of electrical pulses 325a_1 and 325a_2 produces voltage A applied to material 122 within time intervals 331_1 and 331_2 respectively.

電壓A為足以使調變系統220置於開啟狀態中之電壓。因此,在將電脈衝325a_1及325a_2施加至材料122時,入射於材料122上之光透射穿過光學調變系統220。在電脈衝325a_1及325a_2結束之後,調變系統220返回至關閉狀態。 Voltage A is a voltage sufficient to place the modulation system 220 in an on state. Therefore, when electrical pulses 325a_1 and 325a_2 are applied to material 122, light incident on material 122 is transmitted through optical modulation system 220. After the electrical pulses 325a_1 and 325a_2 end, the modulation system 220 returns to the off state.

時距331_1及331_2可為相同或不同的。在圖3B之實施中,第一電脈衝325a_1及第二電脈衝325a_2具有相同電壓振幅(A)。然而,在其他實施中,電脈衝325a_1、325a_2具有不同電壓幅值,其中電脈衝325a_1、325a_2兩者具有足以將調變系統220轉變至開啟狀態之電壓。 Time intervals 331_1 and 331_2 may be the same or different. In the implementation of FIG. 3B , the first electrical pulse 325a_1 and the second electrical pulse 325a_2 have the same voltage amplitude (A). However, in other implementations, the electrical pulses 325a_1 and 325a_2 have different voltage amplitudes, wherein both of the electrical pulses 325a_1 and 325a_2 have a voltage sufficient to transition the modulation system 220 to the on state.

電信號324亦包括在時間ti施加至材料122之中間電脈衝 325b_1。時間ti出現在時間t1之後及時間t2之前時間ti與第一電脈衝325a_1結束之時間分離延遲時間330。中間電脈衝325b_1在時距或寬度332內具有振幅B。 Electrical signal 324 also includes an intermediate electrical pulse applied to material 122 at time ti 325b_1. Time ti occurs after time t1 and before time t2. The time separation delay time 330 between time ti and the end of the first electrical pulse 325a_1 occurs. Intermediate electrical pulse 325b_1 has amplitude B over time interval or width 332.

在時間0,調變系統220處於關閉狀態中。在時間t1施加第一電脈衝325a_1將調變系統220轉變至開啟狀態。在時間t1,第一光學脈衝306_1入射於材料122上。第一電脈衝325a_1之時距短於第一光學脈衝306_1之時距。因此,第一光學脈衝306_1之僅在持續時間331_1期間入射於材料122上的部分穿過材料122。第一光學脈衝306_1之穿過材料的部分形成經修改光學脈衝(諸如圖2C之經修改光學脈衝207)。將第一電脈衝325a_1施加至材料122在材料122中產生聲波。聲波產生應變且改變材料122之光學性質。甚至在第一電信號325a_1結束且未將電壓施加至材料122之後,聲波繼續在材料122中傳播。當第二光學脈衝306_2入射於材料122上時但在將第二電信號325a_2施加至材料122之前,可存在藉由施加第一電信號325a_1而產生之聲波。在此等情形下,即使調變系統220處於關閉狀態中,光亦可穿過調變系統220。此光為光學洩漏且在稍後由調變系統220形成之光學脈衝上形成基座。 At time 0, the modulation system 220 is in the off state. Applying the first electrical pulse 325a_1 at time t1 transitions the modulation system 220 to the on state. At time t1, first optical pulse 306_1 is incident on material 122. The time interval of the first electrical pulse 325a_1 is shorter than the time interval of the first optical pulse 306_1. Therefore, only the portion of the first optical pulse 306_1 that is incident on the material 122 during the duration 331_1 passes through the material 122 . The portion of first optical pulse 306_1 that passes through the material forms a modified optical pulse (such as modified optical pulse 207 of Figure 2C). Applying first electrical pulse 325a_1 to material 122 generates acoustic waves in material 122 . The sound waves create strains and change the optical properties of material 122 . Even after the first electrical signal 325a_1 ends and no voltage is applied to the material 122, sound waves continue to propagate in the material 122. When the second optical pulse 306_2 is incident on the material 122 but before the second electrical signal 325a_2 is applied to the material 122, there may be an acoustic wave generated by applying the first electrical signal 325a_1. In such cases, light can pass through the modulation system 220 even if the modulation system 220 is in a closed state. This light is an optical leak and forms a basis for the optical pulses later formed by the modulation system 220.

圖4為用於控制輻照光學脈衝之性質之程序400之實例的流程圖。輻照光學脈衝可包括基座部分。關於EUV光源101及控制系統175(圖1)、調變系統220(圖2A)、光束306(圖3A)及電信號324(圖3B)論述程序400。然而,程序400可由其他EUV光源、其他光束、其他電信號及/或其他電光調變系統執行。 Figure 4 is a flowchart of an example of a process 400 for controlling the properties of irradiating optical pulses. The irradiating optical pulse may include a base portion. Process 400 is discussed with respect to EUV light source 101 and control system 175 (FIG. 1), modulation system 220 (FIG. 2A), beam 306 (FIG. 3A), and electrical signal 324 (FIG. 3B). However, process 400 may be performed by other EUV light sources, other light beams, other electrical signals, and/or other electro-optical modulation systems.

使用調變系統220形成第一經修改光學脈衝(410)。第一經修改光學脈衝係藉由在時間t1使第一光學脈衝306_1入射於材料122上且將 第一電壓脈衝325a_1施加至材料122來形成。在時間t1,第一光學脈衝306_1入射於材料122上且調變系統220處於開啟狀態中。因此,第一光學脈衝306_1之在時間t1開始直至持續時間331_1結束的部分穿過材料122,變成第一經修改光學脈衝。另外,施加第一電壓脈衝325a_1使聲波在材料122中傳播。該等聲波被稱作第一聲波,且可在第一電壓脈衝325a_1已結束且調變系統220處於關閉狀態中之後繼續在材料122中傳播。 A first modified optical pulse is formed using modulation system 220 (410). The first modified optical pulse is generated by causing the first optical pulse 306_1 to be incident on the material 122 at time t1 and First voltage pulse 325a_1 is applied to material 122 to form. At time t1, the first optical pulse 306_1 is incident on the material 122 and the modulation system 220 is in the on state. Therefore, the portion of the first optical pulse 306_1 starting at time t1 and ending at the duration 331_1 passes through the material 122 and becomes a first modified optical pulse. Additionally, applying the first voltage pulse 325a_1 causes sound waves to propagate in the material 122 . These sound waves are called first sound waves and may continue to propagate in the material 122 after the first voltage pulse 325a_1 has ended and the modulation system 220 is in the off state.

將中間電壓脈衝325b_1施加至材料122(420)。將中間電壓325b_1施加至材料122亦使聲波(被稱作第二聲波)在材料122中傳播。第二聲波干涉第一聲波。相長干涉增大聲波之振幅,且相消干涉減小聲波之振幅。中間電壓脈衝325b_1之振幅及/或持續時間332判定第二聲波之振幅。延遲330判定第二聲波相對於第一聲波之相位。因此,藉由控制延遲330及/或振幅B,可控制第一聲波與第二聲波之間的相互作用之性質。舉例而言,當第二聲波具有與第一聲波相同的振幅及相反相位時,第一聲波及第二聲波進行干涉,使得在施加中間電脈衝325b_1之後,聲波不在材料122中傳播。 Intermediate voltage pulse 325b_1 is applied to material 122 (420). Applying intermediate voltage 325b_1 to material 122 also causes sound waves (referred to as second sound waves) to propagate in material 122 . The second sound wave interferes with the first sound wave. Constructive interference increases the amplitude of sound waves, and destructive interference decreases the amplitude of sound waves. The amplitude and/or duration 332 of the intermediate voltage pulse 325b_1 determines the amplitude of the second acoustic wave. Delay 330 determines the phase of the second sound wave relative to the first sound wave. Therefore, by controlling delay 330 and/or amplitude B, the nature of the interaction between the first sound wave and the second sound wave can be controlled. For example, when the second sound wave has the same amplitude and opposite phase as the first sound wave, the first sound wave and the second sound wave interfere such that the sound wave does not propagate in the material 122 after the intermediate electrical pulse 325b_1 is applied.

使用調變系統220形成第二經修改光學脈衝(430)。第二經修改光學脈衝係在將中間電壓脈衝325b_1施加至材料122之後形成。第二光學脈衝306_2入射於材料122上。在時間t2,將第二電壓脈衝325a_2施加至材料122,使得調變系統220轉變至開啟狀態。第二光學脈衝306_2之在時間t2開始直至持續時間331_2的部分透射穿過材料122。 A second modified optical pulse is formed using modulation system 220 (430). The second modified optical pulse is formed after intermediate voltage pulse 325b_1 is applied to material 122 . The second optical pulse 306_2 is incident on material 122 . At time t2, a second voltage pulse 325a_2 is applied to the material 122, causing the modulation system 220 to transition to the on state. A portion of second optical pulse 306_2 starting at time t2 and lasting for time 331_2 is transmitted through material 122 .

如上文所論述,第一聲波及第二聲波進行干涉,且材料122中之聲波之特性取決於干擾之性質。聲波產生材料122中之應變且改變材料122之折射率,且折射率之此等改變可允許光在調變系統220處於 關閉狀態中時作為光學洩漏穿過調變系統220。中間電壓脈衝325b_1用以按所要方式修改第二光學脈衝306_2之一或多個性質。舉例而言,中間電壓脈衝325b_1可用以修改第二光學脈衝306_2之最大或平均強度、時距及/或時間曲線。在一些實施中,中間電壓脈衝325b_1用以控制及/或形成基座部分。 As discussed above, the first sound wave and the second sound wave interfere, and the characteristics of the sound wave in material 122 depend on the nature of the interference. The sound waves create strains in the material 122 and change the refractive index of the material 122 , and these changes in the refractive index may allow light to be in the modulation system 220 When in the off state it passes through modulation system 220 as optical leakage. The intermediate voltage pulse 325b_1 is used to modify one or more properties of the second optical pulse 306_2 in a desired manner. For example, the intermediate voltage pulse 325b_1 may be used to modify the maximum or average intensity, duration, and/or time profile of the second optical pulse 306_2. In some implementations, intermediate voltage pulse 325b_1 is used to control and/or form the base portion.

舉例而言,取決於材料122中之聲波之特性,第二光學脈衝306_2中在時間t2或不再施加電壓脈衝325a_2之後的時間之前(當調變系統220處於關閉狀態中時)入射於材料122上之光中的一些亦可作為光學洩漏透射穿過調變系統220以在第二經修改光學脈衝上形成基座部分。基座之強度、持續時間及其他性質取決於光學洩漏之量,該量可藉由調整材料122中之聲波來控制。材料122中之聲波可藉由將中間電壓脈衝325b_1施加至材料122來控制、調整或減輕。因此,基座部分之一或多個性質係藉由施加中間電壓脈衝325b_1來控制或調整。此外,光學脈衝306_2之主要部分之一或多個性質可運用中間電壓脈衝325b_1來控制。 For example, depending on the characteristics of the acoustic waves in the material 122, the second optical pulse 306_2 is incident on the material 122 before time t2 or the time after the voltage pulse 325a_2 is no longer applied (when the modulation system 220 is in the off state). Some of the light above may also be transmitted through the modulation system 220 as an optical leak to form a base portion on the second modified optical pulse. The strength, duration, and other properties of the base depend on the amount of optical leakage, which can be controlled by adjusting the acoustic waves in the material 122 . Sound waves in material 122 can be controlled, modulated, or mitigated by applying intermediate voltage pulses 325b_1 to material 122. Therefore, one or more properties of the base portion are controlled or adjusted by applying the intermediate voltage pulse 325b_1. Additionally, one or more properties of the main portion of optical pulse 306_2 may be controlled using intermediate voltage pulse 325b_1.

中間電壓脈衝325b_1可用以按其他方式控制第二光學脈衝306_2之一或多個性質。舉例而言,如上文所論述,基座部分可在時間上與經修改脈衝之主要部分分離。在此等實施中,中間電壓脈衝325b_1可用以修改單獨基座部分及/或主要部分。 Intermediate voltage pulse 325b_1 may be used to otherwise control one or more properties of second optical pulse 306_2. For example, as discussed above, the base portion may be temporally separated from the main portion of the modified pulse. In such implementations, intermediate voltage pulse 325b_1 may be used to modify individual base portions and/or main portions.

此外,光束306可包括額外光學脈衝,且電信號324可包括額外電壓脈衝。在一些實施中,控制系統175接收藉由經修改光學脈衝與目標材料118之間的相互作用產生之EUV光之量的指示,如由EUV感測器184(圖1)所量測。舉例而言,當中間電壓脈衝之性質改變以判定用於中間電壓脈衝之最佳設定時,針對兩個或更多個相互作用追蹤EUV光之經量 測量。可針對若干相互作用中之每一者改變延遲330以判定哪一延遲330產生最多EUV光。在另一實例中,改變中間電壓脈衝325b_1之振幅B以判定產生最多EUV光之振幅B。 Additionally, beam 306 may include additional optical pulses and electrical signal 324 may include additional voltage pulses. In some implementations, control system 175 receives an indication of the amount of EUV light produced by the interaction between the modified optical pulse and target material 118, as measured by EUV sensor 184 (FIG. 1). For example, tracking the amount of EUV light for two or more interactions as the properties of the intermediate voltage pulse change to determine the best settings for the intermediate voltage pulse. Measure. Delay 330 can be varied for each of several interactions to determine which delay 330 produces the most EUV light. In another example, the amplitude B of the intermediate voltage pulse 325b_1 is varied to determine the amplitude B that produces the most EUV light.

在一些實施中,使振幅B、寬度332及/或延遲330之最佳值與光束306中之脈衝之重複率相關的查找表或資料庫儲存於電子儲存器178上,使得在光束306之重複率改變的情況下,可改變振幅及/或延遲330。 In some implementations, a lookup table or database correlating the optimal values of amplitude B, width 332 and/or delay 330 with the repetition rate of the pulses in beam 306 is stored on electronic storage 178 such that upon repetition of beam 306 If the rate changes, the amplitude and/or delay 330 may be changed.

圖5及圖6係關於可使用諸如系統120及22之調變系統的微影設備。圖5為包括源收集器模組SO之微影設備500的方塊圖。微影設備500包括: Figures 5 and 6 relate to lithography equipment that may use modulation systems such as systems 120 and 22. Figure 5 is a block diagram of a lithography apparatus 500 including a source collector module SO. Lithography equipment 500 includes:

●照明系統(照明器)IL,其經組態以調節輻射光束B(例如,EUV輻射)。 • An illumination system (illuminator) IL configured to modulate the radiation beam B (eg EUV radiation).

●支撐結構(例如,光罩台)MT,其經建構以支撐圖案化裝置(例如光罩或倍縮光罩)MA,且連接至經組態以準確地定位該圖案化裝置之第一定位器PM; ● A support structure (e.g., a mask table) MT constructed to support a patterning device (e.g., a reticle or a reticle) MA and connected to a first positioning configured to accurately position the patterning device Device PM;

●基板台(例如晶圓台)WT,其經建構以固持基板(例如,抗蝕劑塗佈晶圓)W,且連接至經組態以準確地定位該基板之第二定位器PW;及 ● A substrate table (eg, a wafer table) WT configured to hold a substrate (eg, a resist-coated wafer) W and connected to a second positioner PW configured to accurately position the substrate; and

●投影系統(例如,反射投影系統)PS,其經組態以將由圖案化裝置MA賦予至輻射光束B之圖案投影至基板W之目標部分C(例如,包括一或多個晶粒)上。 • A projection system (eg, reflective projection system) PS configured to project the pattern imparted to the radiation beam B by the patterning device MA onto a target portion C of the substrate W (eg, including one or more dies).

照明系統可包括用於導向、塑形或控制輻射的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電或其他類型之光學組件,或其任何組合。 Illumination systems may include various types of optical components for directing, shaping, or controlling radiation, such as refractive, reflective, magnetic, electromagnetic, electrostatic, or other types of optical components, or any combination thereof.

支撐結構MT以取決於圖案化裝置MA之定向、微影設備之設計及其他條件(諸如,該圖案化裝置是否被固持於真空環境中)的方式來固持該圖案化裝置。支撐結構可使用機械、真空、靜電或其他夾持技術來固持圖案化裝置。支撐結構可為例如框架或台,其可視需要而固定或可移動。支撐結構可確保圖案化裝置例如相對於投影系統處於所要位置。 The support structure MT holds the patterning device MA in a manner that depends on the orientation of the patterning device MA, the design of the lithography equipment, and other conditions, such as whether the patterning device is held in a vacuum environment. The support structure may use mechanical, vacuum, electrostatic, or other clamping techniques to hold the patterned device. The support structure may be, for example, a frame or a table, which may be fixed or moveable as required. The support structure may ensure that the patterning device is in a desired position relative to the projection system, for example.

術語「圖案化裝置」應被廣泛地解譯為係指可用以在輻射光束之橫截面中向輻射光束賦予圖案以便在基板之目標部分中產生圖案的任何裝置。被賦予至輻射光束之圖案可對應於目標部分中產生之裝置(諸如,積體電路)中之特定功能層。 The term "patterning device" should be interpreted broadly to mean any device that can be used to impart a pattern to a radiation beam in its cross-section so as to produce a pattern in a target portion of a substrate. The pattern imparted to the radiation beam may correspond to specific functional layers in a device, such as an integrated circuit, produced in the target portion.

圖案化裝置可為透射的或反射的。圖案化裝置之實例包括光罩、可程式化鏡面陣列,及可程式化LCD面板。光罩在微影中為吾人所熟知,且包括諸如二元、交變相移及衰減式相移之光罩類型,以及各種混合光罩類型。可程式化鏡面陣列之一實例採用小鏡面之矩陣配置,該等小鏡面中之每一者可個別地傾斜,以便使入射輻射光束在不同方向上反射。傾斜鏡面將圖案賦予至藉由鏡面矩陣反射之輻射光束中。 The patterning device may be transmissive or reflective. Examples of patterning devices include photomasks, programmable mirror arrays, and programmable LCD panels. Masks are well known in lithography and include mask types such as binary, alternating phase shift, and attenuated phase shift, as well as various hybrid mask types. One example of a programmable mirror array uses a matrix configuration of small mirrors, each of which can be individually tilted to reflect an incident radiation beam in different directions. Tilted mirrors impart patterns to the radiation beam reflected by the mirror matrix.

類似於照明系統IL,投影系統PS可包括適於所使用之曝光輻射或適於諸如真空之使用之其他因素的各種類型之光學組件,諸如,折射、反射、磁性、電磁、靜電或其他類型之光學組件,或其任何組合。可能需要將真空用於EUV輻射,此係由於其他氣體可吸收過多輻射。因此,可憑藉真空壁及真空泵而將真空環境提供至整個光束路徑。 Similar to the illumination system IL, the projection system PS may include various types of optical components, such as refractive, reflective, magnetic, electromagnetic, electrostatic or other types, suitable for the exposure radiation used or suitable for other factors such as the use of a vacuum. optical components, or any combination thereof. A vacuum may be required for EUV radiation because other gases can absorb too much radiation. Therefore, a vacuum environment can be provided to the entire beam path by virtue of the vacuum wall and the vacuum pump.

在圖5及圖6之實例中,該設備屬於反射類型(例如,採用反射光罩)。微影設備可屬於具有兩個(雙載物台)或多於兩個基板台(及/或兩個或多於兩個圖案化裝置台)之類型。在此等「多載物台」機器中,可 並行地使用額外台,或可對一或多個台進行預備步驟,同時將一或多個其他台用於曝光。 In the examples of Figures 5 and 6, the device is of the reflective type (for example, using a reflective mask). Lithography equipment may be of the type having two (dual stages) or more than two substrate stages (and/or two or more patterning device stages). In these "multi-stage" machines, it is possible to Additional stages are used in parallel, or preparatory steps can be performed on one or more stages while one or more other stages are used for exposure.

參看圖5,照明器IL自源收集器模組SO接收極紫外線輻射光束。用以產生EUV光之方法包括但未必限於:運用在EUV範圍內之一或多個發射譜線將具有至少一個元素(例如氙、鋰或錫)之材料轉換成電漿狀態。在一種此類方法(常常被稱為雷射產生電漿「LPP」)中,可藉由用雷射光束輻照燃料(諸如具有所需譜線發射元素之材料的小滴、流或叢集)而產生所需電漿。源收集器模組SO可為包括雷射(圖5中未展示)之EUV輻射系統之部分,該雷射用於提供激發燃料之雷射光束。所得電漿發射輸出輻射,例如EUV輻射,該輻射係使用安置於源收集器模組中之輻射收集器予以收集。舉例而言,當使用二氧化碳(CO2)雷射以提供用於燃料激發之雷射光束時,雷射及源收集器模組可為單獨實體。 Referring to Figure 5, the illuminator IL receives a beam of extreme ultraviolet radiation from the source collector module SO. Methods used to generate EUV light include, but are not necessarily limited to, converting a material containing at least one element (such as xenon, lithium or tin) into a plasma state using one or more emission lines in the EUV range. In one such method, often referred to as laser-produced plasma (LPP), a fuel (such as a droplet, stream, or cluster of material having the desired line-emitting element) is produced by irradiating it with a laser beam. And produce the required plasma. The source collector module SO may be part of an EUV radiation system including a laser (not shown in Figure 5) for providing a laser beam that excites the fuel. The resulting plasma emits output radiation, such as EUV radiation, which is collected using a radiation collector disposed in the source collector module. For example, when a carbon dioxide ( CO2 ) laser is used to provide the laser beam for fuel excitation, the laser and source collector module may be separate entities.

在此等狀況下,不認為雷射形成微影設備之部分,且輻射光束係憑藉包括例如合適導向鏡及/或光束擴展器之光束遞送系統而自雷射傳遞至源收集器模組。在其他情況下,舉例而言,當源為放電產生電漿EUV產生器(常常被稱為DPP源)時,源可為源收集器模組之整體部分。 In these cases, the laser is not considered to form part of the lithography apparatus, and the radiation beam is delivered from the laser to the source collector module by means of a beam delivery system including, for example, suitable guide mirrors and/or beam expanders. In other cases, for example when the source is a discharge plasma EUV generator (often referred to as a DPP source), the source may be an integral part of the source collector module.

照明器IL可包含用於調整輻射光束之角強度分佈的調整器。通常,可調整照明器之光瞳平面中之強度分佈之至少外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL可包含各種其他組件,諸如琢面化場鏡面裝置及琢面化光瞳鏡面裝置。照明器IL可用以調節輻射光束,以在其橫截面中具有所要均一性及強度分佈。 The illuminator IL may comprise an adjuster for adjusting the angular intensity distribution of the radiation beam. Typically, at least an outer radial extent and/or an inner radial extent (commonly referred to as σ outer and σ inner respectively) of the intensity distribution in the pupil plane of the illuminator can be adjusted. Additionally, the illuminator IL may include various other components, such as faceted field mirror devices and faceted pupil mirror devices. The illuminator IL can be used to adjust the radiation beam to have a desired uniformity and intensity distribution in its cross-section.

輻射光束B入射於被固持於支撐結構(例如光罩台)MT上之圖案化裝置(例如光罩)MA上,且係由該圖案化裝置而圖案化。在自圖案 化裝置(例如,光罩)MA反射之後,輻射光束B穿過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器PS2(例如干涉裝置、線性編碼器或電容式感測器),可準確地移動基板台WT,例如以便使不同目標部分C定位於輻射光束B之路徑中。相似地,第一定位器PM及另一位置感測器PS1可用以相對於輻射光束B之路徑來準確地定位圖案化裝置(例如光罩)MA。可使用圖案化裝置對準標記M1、M2及基板對準標記P1、P2來對準圖案化裝置(例如光罩)MA及基板W。 Radiation beam B is incident on a patterning device (eg, mask) MA held on a support structure (eg, mask table) MT and is patterned by the patterning device. in self pattern After reflection from the irradiation device (eg, reticle) MA, the radiation beam B passes through the projection system PS, which focuses the beam onto a target portion C of the substrate W. By means of the second positioner PW and the position sensor PS2 (for example an interference device, a linear encoder or a capacitive sensor), the substrate table WT can be accurately moved, for example in order to position different target portions C in the path of the radiation beam B middle. Similarly, the first positioner PM and another position sensor PS1 can be used to accurately position the patterning device (eg, mask) MA relative to the path of the radiation beam B. The patterning device (eg, photomask) MA and the substrate W may be aligned using the patterning device alignment marks M1, M2 and the substrate alignment marks P1, P2.

所描繪設備可在以下模式中之至少一者中使用: The device depicted can be used in at least one of the following modes:

1.在步進模式中,在將被賦予至輻射光束之整個圖案一次性投影至目標部分C上時,使支撐結構(例如,光罩台)MT及基板台WT保持基本上靜止(亦即,單次靜態曝光)。接著,使基板台WT在X及/或Y方向上移位,從而使得可曝光不同目標部分C。 1. In step mode, the support structure (eg, mask table) MT and substrate table WT remain substantially stationary (i.e., while the entire pattern imparted to the radiation beam is projected onto the target portion C at once , single static exposure). Next, the substrate table WT is displaced in the X and/or Y directions so that different target portions C can be exposed.

2.在掃描模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,同步地掃描支撐結構(例如光罩台)MT及基板台WT(亦即,單次動態曝光)。可藉由投影系統PS之放大率(縮小率)及影像反轉特性來判定基板台WT相對於支撐結構(例如光罩台)MT之速度及方向。 2. In scanning mode, the support structure (eg mask table) MT and substrate table WT are scanned simultaneously while projecting the pattern imparted to the radiation beam onto the target portion C (ie, a single dynamic exposure). The speed and direction of the substrate table WT relative to the support structure (such as the mask table) MT can be determined by the magnification (reduction ratio) and image reversal characteristics of the projection system PS.

3.在另一模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,使支撐結構(例如光罩台)MT保持基本上靜止,從而固持可程式化圖案化裝置,且移動或掃描基板台WT。在此模式中,通常採用脈衝式輻射源,且在基板台WT之每一移動之後或在掃描期間之順次輻射脈衝之間根據需要而更新可程式化圖案化裝置。此操作模式可易於應用於利用可程式化圖案化裝置(諸如上文所提及之類型的可程式化鏡面陣列)之無光罩微 影。 3. In another mode, the support structure (eg, mask table) MT remains substantially stationary, thereby holding the programmable patterning device, while the pattern imparted to the radiation beam is projected onto the target portion C, and Move or scan the substrate stage WT. In this mode, a pulsed radiation source is typically employed, and the programmable patterning device is updated as needed after each movement of the substrate table WT or between sequential radiation pulses during scanning. This mode of operation can be readily applied to maskless microscopy using programmable patterning devices such as programmable mirror arrays of the type mentioned above. film.

亦可採用對上文所描述之使用模式之組合及/或變體或完全不同的使用模式。 Combinations and/or variations of the usage modes described above or completely different usage modes may also be employed.

圖6更詳細地展示微影設備500之實施,該微影設備包括源收集器模組SO、照明系統IL及投影系統PS。源收集器模組SO經建構及配置以使得可將真空環境維持於源收集器模組SO之圍封結構620中。系統IL及PS同樣地含於其自身真空環境內。可由雷射產生LPP電漿源形成EUV輻射發射電漿2。源收集器模組SO之功能為自電漿2遞送EUV輻射光束20,使得該EUV輻射光束聚焦於虛擬源點中。虛擬源點通常被稱作中間焦點(IF),且源收集器模組經配置成使得中間焦點IF位於圍封結構620中之孔隙621處或附近。虛擬源點IF為輻射發射電漿2之影像。 Figure 6 shows in greater detail an implementation of a lithography apparatus 500 including a source collector module SO, an illumination system IL and a projection system PS. The source collector module SO is constructed and configured such that a vacuum environment can be maintained within the enclosure 620 of the source collector module SO. Systems IL and PS are likewise contained within their own vacuum environments. The LPP plasma source can be generated by laser to form EUV radiation emitting plasma 2. The function of the source collector module SO is to deliver the EUV radiation beam 20 from the plasma 2 such that the EUV radiation beam is focused into the virtual source point. The virtual source point is often referred to as the intermediate focus (IF), and the source collector module is configured such that the intermediate focus IF is located at or near aperture 621 in enclosure 620 . The virtual source point IF is the image of the radiation emitting plasma 2 .

自中間焦點IF處之孔隙621,輻射橫穿照明系統IL,照明系統IL在此實例中包括琢面化場鏡面裝置22及琢面化光瞳鏡面裝置24。此等裝置形成所謂的「蠅眼」照明器,其經配置以提供在圖案化裝置MA處的輻射光束21之所要角度分佈,以及圖案化裝置MA處的輻射強度(如由元件符號660所展示)之所要均一性。在由支撐結構(光罩台)MT固持之圖案化裝置MA處反射光束21之後,形成經圖案化光束26,且投影系統PS經由反射元件28、30將經圖案化光束26成像至由基板台WT固持之基板W上。為了曝光基板W上之目標部分C,在基板台WT及圖案化裝置台MT執行經同步移動以經由照明隙縫掃描圖案化裝置MA上之圖案的同時產生輻射之脈衝。 From the aperture 621 at the intermediate focus IF, the radiation traverses the illumination system IL, which in this example includes a faceted field mirror device 22 and a faceted pupil mirror device 24. These devices form a so-called "fly's eye" illuminator configured to provide the desired angular distribution of the radiation beam 21 at the patterning device MA, and the intensity of the radiation at the patterning device MA (as shown by element 660 ) requires uniformity. After reflection of the beam 21 at the patterning device MA held by the support structure (mask stage) MT, a patterned beam 26 is formed and imaged by the projection system PS via the reflective elements 28, 30 onto the substrate stage. WT is held on the substrate W. To expose the target portion C on the substrate W, pulses of radiation are generated while the substrate table WT and the patterning device table MT perform synchronized movements to scan the pattern on the patterning device MA through the illumination aperture.

每一系統IL及PS配置於其自有真空或近真空環境內,該環境係由相似於圍封結構620之圍封結構界定。比所展示元件更多的元件通 常可存在於照明系統IL及投影系統PS中。另外,可存在比所展示鏡面更多的鏡面。舉例而言,除了圖6所展示之反射元件以外,在照明系統IL及/或投影系統PS中亦可存在一至六個額外反射元件。 Each system IL and PS is configured within its own vacuum or near-vacuum environment, which is defined by an enclosure similar to enclosure 620 . More components than shown are available It often exists in lighting system IL and projection system PS. Additionally, there may be more mirrors than shown. For example, in addition to the reflective elements shown in FIG. 6 , there may be one to six additional reflective elements in the lighting system IL and/or the projection system PS.

更詳細地考慮源收集器模組SO,包括雷射623之雷射能量源經配置以將雷射能量624沈積成包括目標材料之燃料。目標材料可為在電漿狀態中發射EUV輻射之任何材料,諸如氙(Xe)、錫(Sn)或鋰(Li)。電漿2為具有數十電子伏特(eV)之電子溫度的高度離子化電漿。可運用其他燃料材料,例如鋱(Tb)及釓(Gd)來產生更高能EUV輻射。在此等離子之去激發及再結合期間產生之高能輻射係自電漿發射、由近正入射收集器3收集且聚焦於孔隙621上。電漿2及孔隙621分別位於收集器CO之第一焦點及第二焦點處。 Considering source collector module SO in more detail, a laser energy source including laser 623 is configured to deposit laser energy 624 into a fuel including a target material. The target material may be any material that emits EUV radiation in the plasma state, such as xenon (Xe), tin (Sn), or lithium (Li). Plasma 2 is a highly ionized plasma with an electron temperature of tens of electron volts (eV). Other fuel materials, such as terium (Tb) and gallium (Gd), can be used to generate higher energy EUV radiation. High energy radiation generated during de-excitation and recombination of this plasma is emitted from the plasma, collected by near normal incidence collector 3 and focused on aperture 621. The plasma 2 and the pore 621 are respectively located at the first focus and the second focus of the collector CO.

儘管圖6所展示之收集器3為單一彎曲鏡面,但該收集器可採取其他形式。舉例而言,收集器可為具有兩個輻射收集表面之史瓦西(Schwarzschild)收集器。在一實施例中,收集器可為包含巢套於彼此內之複數個實質上圓柱形反射器之掠入射收集器。 Although the collector 3 shown in Figure 6 is a single curved mirror, the collector can take other forms. For example, the collector may be a Schwarzschild collector with two radiation collection surfaces. In one embodiment, the collector may be a grazing incidence collector comprising a plurality of substantially cylindrical reflectors nested within each other.

為了遞送例如為液體錫之燃料,小滴產生器626配置於圍封結構620內,經配置以朝向電漿2之所要位置發射小滴之高頻率流628。小滴產生器626可為目標形成設備216及/或包括黏著劑,諸如黏著劑234。在操作中,與小滴產生器626之操作同步地遞送雷射能量624,以遞送輻射脈衝從而將每一燃料小滴變成電漿2。小滴之遞送頻率可為幾千赫茲,例如50kHz。實務上,可以至少兩個脈衝來遞送雷射能量624:在具有有限能量之預脈衝到達電漿位置之前,將該預脈衝遞送至小滴,以便使燃料材料汽化成小雲狀物,且接著,將雷射能量624之主脈衝遞送至所要位置 處之雲狀物,以產生電漿2。截留器630設置於圍封結構620之相對側上,以捕獲不管出於何種原因而未變成電漿之燃料。 To deliver a fuel such as liquid tin, a droplet generator 626 is disposed within the enclosure 620 and is configured to emit a high frequency stream 628 of droplets towards a desired location of the plasma 2 . Droplet generator 626 may be target forming device 216 and/or include an adhesive, such as adhesive 234 . In operation, laser energy 624 is delivered synchronized with operation of droplet generator 626 to deliver pulses of radiation to convert each fuel droplet into plasma 2 . The droplet delivery frequency may be several kilohertz, such as 50kHz. Practically, laser energy 624 may be delivered in at least two pulses: a pre-pulse of limited energy is delivered to the droplet to vaporize the fuel material into a small cloud before it reaches the plasma site, and then , deliver the main pulse of laser energy 624 to the desired location Cloud-like objects at the location to generate plasma 2. Interceptor 630 is provided on an opposite side of enclosure 620 to capture fuel that does not become plasma for whatever reason.

小滴產生器626包含容納燃料液體(例如熔融錫)之儲集器601,以及過濾器669及噴嘴602。噴嘴602經組態以朝向電漿2形成位置噴射燃料液體之小滴。燃料液體之小滴可藉由儲集器601內之壓力與由壓電致動器(圖中未示)施加至噴嘴之振動的組合自噴嘴602噴射。 Droplet generator 626 includes a reservoir 601 containing fuel liquid (eg, molten tin), as well as a filter 669 and a nozzle 602. Nozzle 602 is configured to inject droplets of fuel liquid toward the location where plasma 2 is formed. Droplets of fuel liquid may be ejected from the nozzle 602 by a combination of pressure within the reservoir 601 and vibration applied to the nozzle by a piezoelectric actuator (not shown).

如熟習此項技術者將知曉,可定義參考軸線X、Y及Z以量測及描述設備、其各種組件及輻射光束20、21、26之幾何形狀及行為。在設備之每一部分處,可定義X軸、Y軸及Z軸之局域參考座標系。在圖6之實例中,Z軸在系統中之給定點處與方向光軸O大致重合,且大體上垂直於圖案化裝置(倍縮光罩)MA之平面且垂直於基板W之平面。在源收集器模組中,X軸與燃料流628之方向大致地重合,而Y軸正交於燃料流628之方向,從而自頁面指出,如圖6所指示。另一方面,在固持倍縮光罩MA之支撐結構MT附近,X軸大體上橫向於與Y軸對準之掃描方向。出於方便起見,在示意圖6之此區域中,X軸自頁面中指出,再次如所標記。此等指定在此項技術中係習知的,且將在本文中出於方便起見而被採用。原則上,可選擇任何參考座標系以描述設備及其行為。 As those skilled in the art will appreciate, reference axes X, Y, and Z can be defined to measure and describe the geometry and behavior of the device, its various components, and the radiation beams 20, 21, 26. At each part of the equipment, local reference coordinate systems for the X, Y, and Z axes can be defined. In the example of Figure 6, the Z-axis is approximately coincident with the directional optical axis O at a given point in the system, and is approximately perpendicular to the plane of the patterning device (reticle) MA and perpendicular to the plane of the substrate W. In the source collector module, the X-axis generally coincides with the direction of fuel flow 628, and the Y-axis is orthogonal to the direction of fuel flow 628, as indicated on the page, as indicated in Figure 6. On the other hand, near the support structure MT holding the reticle MA, the X-axis is generally transverse to the scanning direction aligned with the Y-axis. For convenience, in this area of Figure 6, the X-axis is pointed out from the page, again as labeled. Such designations are conventional in the art and will be used herein for convenience. In principle, any reference coordinate system can be chosen to describe the device and its behavior.

用於源收集器模組及微影設備500整體上之操作中的眾多額外組件存在於典型設備中,但此處未說明。此等組件包括用於減小或減輕經圍封真空內之污染效應之配置,例如,以防止燃料材料之沈積物損害或削弱收集器3及其他光學件之效能。存在但未予以詳細地描述之其他特徵為在控制微影設備500之各種組件及子系統時涉及之所有感測器、控制器及致動器。 Numerous additional components used in the operation of the source collector module and lithography apparatus 500 as a whole are present in typical apparatuses but are not illustrated here. These components include arrangements for reducing or mitigating the effects of contamination within the enclosed vacuum, for example, to prevent deposits of fuel material from damaging or impairing the performance of the collector 3 and other optical components. Other features that are present but not described in detail are all sensors, controllers, and actuators involved in controlling the various components and subsystems of lithography apparatus 500.

參看圖7,展示LPP EUV光源700之實施。光源700可用作微影設備500中之源收集器模組SO。此外,圖1之光學脈衝產生系統104可為驅動雷射715之部分。驅動雷射715可用作雷射623(圖6)。 Referring to Figure 7, an implementation of an LPP EUV light source 700 is shown. The light source 700 can be used as the source collector module SO in the lithography apparatus 500. Additionally, optical pulse generation system 104 of FIG. 1 may be part of driving laser 715. Driving laser 715 can be used as laser 623 (Fig. 6).

藉由運用經放大光束710輻照電漿形成位置705處之目標混合物714而形成LPP EUV光源700,經放大光束710沿著朝向目標混合物714之光束路徑行進。關於圖1、圖2A、圖2B及圖3所論述之目標材料以及關於圖1論述之流121中之目標可為或包括目標混合物714。電漿形成位置705係在真空腔室730之內部707內。當經放大光束710照在目標混合物714上時,目標混合物714內之目標材料轉換成具有在EUV範圍內之發射譜線之元素的電漿狀態。所產生電漿具有取決於目標混合物714內之目標材料之組合物的某些特性。此等特性可包括由電漿產生之EUV光之波長及自電漿釋放之碎屑之類型及量。 LPP EUV light source 700 is formed by irradiating target mixture 714 at plasma formation location 705 with an amplified beam 710 that travels along a beam path toward target mixture 714 . The target materials discussed with respect to Figures 1, 2A, 2B, and 3 and the targets in stream 121 discussed with respect to Figure 1 may be or include target mixture 714. The plasma formation location 705 is within the interior 707 of the vacuum chamber 730. When the amplified beam 710 is illuminated on the target mixture 714, the target materials within the target mixture 714 are converted into a plasma state of elements having emission lines in the EUV range. The generated plasma has certain properties that depend on the composition of the target materials within the target mixture 714. Such characteristics may include the wavelength of EUV light produced by the plasma and the type and amount of debris released from the plasma.

光源700亦包括供應系統725,供應系統725遞送、控制及導向呈液滴、液流、固體粒子或叢集、液滴內所含有之固體粒子或液流內所含有之固體粒子之形式的目標混合物714。目標混合物714包括目標材料,諸如水、錫、鋰、氙或在經轉換成電漿狀態時具有在EUV範圍內之發射譜線的任何材料。舉例而言,元素錫可用作純錫(Sn);用作錫化合物,例如SnBr4、SnBr2、SnH4;用作錫合金,例如錫-鎵合金、錫-銦合金、錫-銦-鎵合金或此等合金之任何組合。目標混合物714亦可包括諸如非目標粒子之雜質。因此,在不存在雜質之情形中,目標混合物714僅由目標材料構成。目標混合物714係由供應系統725遞送至腔室730之內部707中且遞送至電漿形成位置705。 The light source 700 also includes a supply system 725 that delivers, controls, and directs the target mixture in the form of droplets, streams, solid particles or clusters, solid particles contained within a droplet, or solid particles contained within a stream. 714. Target mixture 714 includes target materials such as water, tin, lithium, xenon, or any material that has an emission line in the EUV range when converted to a plasma state. For example, element tin can be used as pure tin (Sn); as tin compounds, such as SnBr 4 , SnBr 2 , SnH 4 ; as tin alloys, such as tin-gallium alloy, tin-indium alloy, tin-indium- Gallium alloy or any combination of such alloys. Target mixture 714 may also include impurities such as non-target particles. Therefore, in the absence of impurities, target mixture 714 consists solely of the target material. Target mixture 714 is delivered by supply system 725 into interior 707 of chamber 730 and to plasma formation location 705.

光源700包括驅動雷射系統715,驅動雷射系統715歸因於 雷射系統715之一或若干增益介質內之粒子數反轉而產生經放大光束710。光源700包括介於雷射系統715與電漿形成位置705之間的光束遞送系統,該光束遞送系統包括光束傳送系統720及聚焦總成722。光束傳送系統720自雷射系統715接收經放大光束710,且視需要轉向及修改經放大光束710且將經放大光束710輸出至聚焦總成722。聚焦總成722接收經放大光束710且將光束710聚焦至電漿形成位置705。 The light source 700 includes a driving laser system 715 due to The particle population in one or more gain media of the laser system 715 is inverted to produce an amplified beam 710 . The light source 700 includes a beam delivery system between the laser system 715 and the plasma formation location 705 . The beam delivery system includes a beam delivery system 720 and a focusing assembly 722 . Beam delivery system 720 receives amplified beam 710 from laser system 715, steers and modifies amplified beam 710 as necessary, and outputs amplified beam 710 to focusing assembly 722. Focusing assembly 722 receives amplified beam 710 and focuses beam 710 to plasma formation location 705 .

在一些實施中,雷射系統715可包括用於提供一或多個主脈衝且在一些狀況下提供一或多個預脈衝之一或多個光學放大器、雷射及/或燈。在包括一或多個預脈衝之實施中,可將諸如光學脈衝產生系統104之光學脈衝產生系統置放於預脈衝中之一或多者之路徑中。每一光學放大器包括能夠以高增益光學地放大所要波長之增益介質、激發源及內部光學件。光學放大器可具有或可不具有形成雷射空腔之雷射鏡面或其他回饋裝置。因此,雷射系統715即使在不存在雷射空腔的情況下歸因於雷射放大器之增益介質中之粒子數反轉亦會產生經放大光束710。此外,雷射系統715可在存在用以提供對雷射系統715之足夠回饋之雷射空腔的情況下產生為相干雷射光束之經放大光束710。術語「經放大光束」涵蓋以下各者中之一或多者:來自雷射系統715之僅僅經放大但未必為相干雷射振盪的光,及來自雷射系統715之經放大且亦為相干雷射振盪的光。 In some implementations, laser system 715 may include one or more optical amplifiers, lasers, and/or lamps for providing one or more main pulses and, in some cases, one or more pre-pulses. In implementations that include one or more pre-pulses, an optical pulse generation system such as optical pulse generation system 104 may be placed in the path of one or more of the pre-pulses. Each optical amplifier includes a gain medium capable of optically amplifying a desired wavelength with high gain, an excitation source, and internal optics. The optical amplifier may or may not have a laser mirror or other feedback device forming a laser cavity. Therefore, laser system 715 may produce amplified beam 710 due to population inversion in the gain medium of the laser amplifier even in the absence of a laser cavity. Additionally, laser system 715 may generate amplified beam 710 as a coherent laser beam in the presence of a laser cavity to provide sufficient feedback to laser system 715. The term "amplified light beam" encompasses one or more of the following: light from laser system 715 that is merely amplified but not necessarily coherent laser oscillations, and light from laser system 715 that is also coherent laser oscillation. emit oscillating light.

雷射系統715中之光學放大器可包括填充氣體(包括CO2)作為增益介質,且可以大於或等於800倍之增益放大在約9100nm與約11000nm之間的波長下,且尤其在約10600nm下的光。供用於雷射系統715中之合適放大器及雷射可包括脈衝式雷射裝置,例如脈衝式氣體放電CO2雷射裝置,該脈衝式氣體放電CO2雷射裝置例如運用以相對較高功率(例如 10kW或更高)及高脈衝重複率(例如40kHz或更多)操作的DC或RF激發產生處於約9300nm或約10600nm之輻射。舉例而言,脈衝重複率可為50kHz。雷射系統715中之光學放大器亦可包括可在較高功率下操作雷射系統715時使用的冷卻系統,諸如水。 The optical amplifier in the laser system 715 may include a filling gas (including CO 2 ) as a gain medium, and may amplify a gain of greater than or equal to 800 times at a wavelength between about 9100 nm and about 11000 nm, and particularly at about 10600 nm. Light. Suitable amplifiers and lasers for use in laser system 715 may include pulsed laser devices, such as pulsed gas discharge CO2 laser devices that operate, for example, with relatively high power ( DC or RF excitation operating at a high pulse repetition rate (eg, 10 kW or more) and a high pulse repetition rate (eg, 40 kHz or more) produces radiation at about 9300 nm or about 10600 nm. For example, the pulse repetition rate may be 50kHz. The optical amplifier in laser system 715 may also include a cooling system, such as water, that may be used when operating laser system 715 at higher powers.

光源700包括收集器鏡面735,收集器鏡面735具有孔隙740以允許經放大光束710穿過且到達電漿形成位置705。收集器鏡面735可為例如具有在電漿形成位置705處之主焦點及在中間位置745處之次級焦點(亦被稱為中間焦點)之橢球形鏡面,其中EUV光可自光源700輸出且可經輸入至例如積體電路微影工具(圖中未示)。光源700亦可包括開端式中空圓錐形護罩750(例如氣體錐體),該圓錐形護罩自收集器鏡面735朝向電漿形成位置705逐漸變窄以減少進入聚焦總成722及/或光束傳送系統720的電漿產生之碎屑之量,同時允許經放大光束710到達電漿形成位置705。出於此目的,可將氣流提供於護罩中,該氣流經導向電漿形成位置705。 Light source 700 includes a collector mirror 735 having an aperture 740 to allow amplified light beam 710 to pass through and reach plasma formation location 705 . Collector mirror 735 may be, for example, an ellipsoidal mirror having a primary focus at plasma formation location 705 and a secondary focus (also referred to as an intermediate focus) at intermediate location 745, where EUV light may be output from light source 700 and This may be input to, for example, an integrated circuit lithography tool (not shown). The light source 700 may also include an open-ended hollow conical shield 750 (e.g., a gas cone) that tapers from the collector mirror 735 toward the plasma formation location 705 to reduce entry into the focusing assembly 722 and/or the beam. The amount of plasma generated by the delivery system 720 simultaneously allows the amplified beam 710 to reach the plasma formation location 705 . For this purpose, an air flow may be provided in the shroud, which air flow is directed to the plasma formation location 705 .

光源700亦可包括連接至小滴位置偵測回饋系統756、雷射控制系統757及光束控制系統758之主控控制器755。光源700可包括一或多個目標或小滴成像器760,該一或多個目標或小滴成像器提供指示小滴例如相對於電漿形成位置705之位置的輸出且將此輸出提供至小滴位置偵測回饋系統756,該小滴位置偵測回饋系統可例如計算小滴位置及軌跡,可在逐小滴基礎上或平均地自該小滴位置及軌跡計算出小滴位置誤差。因此,小滴位置偵測回饋系統756將小滴位置誤差作為輸入提供至主控控制器755。因此,主控控制器755可將雷射位置、方向及時序校正信號提供至例如可用以例如控制雷射時序電路之雷射控制系統757及/或提供至光束控制系統758,該光束控制系統用以控制經放大光束位置及光束傳送系統 720之塑形以改變光束焦斑在腔室730內之位置及/或焦度。 The light source 700 may also include a main control controller 755 connected to the droplet position detection feedback system 756, the laser control system 757, and the beam control system 758. The light source 700 may include one or more targets or droplet imagers 760 that provide an output indicative of the position of the droplet, such as relative to the plasma formation location 705 and provide this output to the droplet. The droplet position detection feedback system 756 may, for example, calculate the droplet position and trajectory, and may calculate the droplet position error from the droplet position and trajectory on a droplet-by-drop basis or on average. Therefore, the droplet position detection feedback system 756 provides the droplet position error as an input to the main control controller 755 . Therefore, the main control controller 755 can provide laser position, direction and timing correction signals to, for example, a laser control system 757 that can be used, for example, to control a laser timing circuit and/or to a beam control system 758, which uses To control the amplified beam position and beam delivery system The shape of 720 is used to change the position and/or power of the beam focal spot in the chamber 730 .

供應系統725包括目標材料遞送控制系統726,該目標材料遞送控制系統可操作以回應於例如來自主控控制器755之信號而修改如由目標材料供應設備727釋放的小滴之釋放點,以校正到達所要電漿形成位置705處之小滴中的誤差。目標材料供應設備727包括採用黏著劑(諸如黏著劑234)之目標形成設備。 Supply system 725 includes a target material delivery control system 726 operable to modify the release point of droplets as released by target material supply device 727 in response to a signal, for example, from master controller 755 to correct The error in the droplet reaching the desired plasma formation position 705. Target material supply equipment 727 includes target forming equipment using an adhesive (such as adhesive 234).

另外,光源700可包括量測一或多個EUV光參數之光源偵測器765及770,該一或多個EUV光參數包括但不限於脈衝能量、依據波長而變化之能量分佈、特定波長帶內之能量、在特定波長帶外的能量,及EUV強度及/或平均功率之角度分佈。光源偵測器765產生回饋信號以供主控控制器755使用。回饋信號可例如指示為了有效及高效EUV光產生而在適當地點及時間恰當地攔截小滴的雷射脈衝之諸如時序及焦點的參數之誤差。 In addition, the light source 700 may include light source detectors 765 and 770 that measure one or more EUV light parameters, including but not limited to pulse energy, energy distribution that changes according to wavelength, and specific wavelength bands. energy within a specific wavelength band, energy outside a specific wavelength band, and the angular distribution of EUV intensity and/or average power. The light source detector 765 generates a feedback signal for use by the main controller 755 . The feedback signal may, for example, indicate errors in parameters such as timing and focus of the laser pulse to intercept the droplet properly at the right place and time for effective and efficient EUV light production.

光源700亦可包括導引雷射器775,該導引雷射器可用以將光源700之各個區段對準或輔助將經放大光束710轉向至電漿形成位置705。結合導引雷射775,光源700包括度量衡系統724,該度量衡系統被置放於聚焦總成722內以對來自導引雷射775之光之一部分以及經放大光束710進行取樣。在其他實施中,度量衡系統724被置放於光束傳送系統720內。度量衡系統724可包括對光之子集進行取樣或重新導向之光學元件,此光學元件係由可耐受導引雷射光束及經放大光束710之功率的任何材料製造。光束分析系統係由度量衡系統724及主控控制器755形成,此係由於主控控制器755分析自導引雷射775取樣之光且使用此資訊以經由光束控制系統758調整聚焦總成722內之組件。 The light source 700 may also include a guide laser 775 that may be used to align various segments of the light source 700 or assist in steering the amplified beam 710 to the plasma formation location 705. In conjunction with the guide laser 775, the light source 700 includes a metrology system 724 placed within the focusing assembly 722 to sample a portion of the light from the guide laser 775 and the amplified beam 710. In other implementations, the weights and measures system 724 is placed within the beam delivery system 720 . Metrology system 724 may include optical elements that sample or redirect a subset of light and are made of any material that can withstand the power of the guided laser beam and amplified beam 710. The beam analysis system is formed by the metrology system 724 and the master controller 755 because the master controller 755 analyzes the light sampled by the guided laser 775 and uses this information to adjust the focus assembly 722 via the beam control system 758 of components.

因此,概言之,光源700產生經放大光束710,該經放大光束沿著光束路徑經導向以輻照電漿形成位置705處之目標混合物714以將混合物714內之目標材料轉換成發射在EUV範圍內之光之電漿。經放大光束710在基於雷射系統715之設計及性質而判定之特定波長(其亦被稱作驅動雷射波長)下操作。另外,經放大光束710在目標材料將足夠回饋提供回至雷射系統715中以產生相干雷射光時或在驅動雷射系統715包括合適光學回饋以形成雷射空腔的情況下可為雷射光束。 Thus, in summary, light source 700 generates an amplified beam 710 that is directed along the beam path to irradiate target mixture 714 at plasma formation location 705 to convert the target material within mixture 714 to emit EUV Plasma of light within range. Amplified beam 710 operates at a specific wavelength (which is also referred to as the drive laser wavelength) determined based on the design and properties of laser system 715 . Additionally, amplified beam 710 may be a laser when the target material provides sufficient feedback back into laser system 715 to produce coherent laser light or when driving laser system 715 includes suitable optical feedback to form a laser cavity. beam.

可藉由以下條項進一步描述實施: Implementation may be further described by the following items:

1.一種用於一極紫外線(EUV)光源之設備,該設備包含:一光學調變系統,其包含一電光材料,該光學調變系統經組態以接收一脈衝光束,該脈衝光束包含在時間上彼此分離之複數個光脈衝;及一控制系統,其經組態以控制一電源,使得在一第一光脈衝入射於電光調變器上時將一第一電脈衝施加至該電光材料,在一第二光脈衝入射於該電光材料上時將一第二電脈衝施加至該電光材料,且在該第一光脈衝入射於該電光材料上之後且在該第二光脈衝入射於該電光材料上之前將一中間電脈衝施加至該電光材料。 1. An apparatus for an extreme ultraviolet (EUV) light source, the apparatus comprising: an optical modulation system comprising an electro-optical material, the optical modulation system being configured to receive a pulsed beam contained in a plurality of light pulses that are temporally separated from each other; and a control system configured to control a power source such that a first electrical pulse is applied to the electro-optic material when a first light pulse is incident on the electro-optic modulator , applying a second electrical pulse to the electro-optical material when a second light pulse is incident on the electro-optical material, and after the first light pulse is incident on the electro-optical material and after the second light pulse is incident on the electro-optical material An intermediate electrical pulse is previously applied to the electro-optical material.

2.如條項1之設備,其中將該第一電脈衝施加至該電光材料在該電光材料中產生一物理效應,且當該中間電脈衝被施加至該電光材料時,該物理效應存在於該電光材料中。 2. The apparatus of clause 1, wherein applying the first electrical pulse to the electro-optical material produces a physical effect in the electro-optical material, and when the intermediate electrical pulse is applied to the electro-optical material, the physical effect is present in in the electro-optical material.

3.如條項2之設備,其中該物理效應包含在該電光材料中行進之聲波及/或機械應變。 3. The device of clause 2, wherein the physical effect includes acoustic waves and/or mechanical strains traveling in the electro-optical material.

4.如條項2之設備,其中將該中間電脈衝施加至該電光材料減少該物理效應。 4. The device of clause 2, wherein applying the intermediate electrical pulse to the electro-optical material reduces the physical effect.

5.如條項1之設備,其中該第一光脈衝及該第二光脈衝為該脈衝光束中之連續光脈衝。 5. The device of clause 1, wherein the first light pulse and the second light pulse are continuous light pulses in the pulse beam.

6.如條項1之設備,其中該控制系統經組態以控制該第一電脈衝與該中間電脈衝之間的一時間量。 6. The apparatus of clause 1, wherein the control system is configured to control an amount of time between the first electrical pulse and the intermediate electrical pulse.

7.如條項1之設備,其中該電光材料包含一半導體。 7. The device of clause 1, wherein the electro-optical material includes a semiconductor.

8.如條項1之設備,其中該電光材料包含一絕緣體。 8. The device of clause 1, wherein the electro-optical material includes an insulator.

9.如條項1之設備,其中該電光材料包含一電光晶體。 9. The device of clause 1, wherein the electro-optical material includes an electro-optical crystal.

10.如條項1之設備,其進一步包含至少一個基於偏振之光學元件。 10. The apparatus of clause 1, further comprising at least one polarization-based optical element.

11.如條項1之設備,其中該中間電脈衝產生一聲學干擾,該聲學干擾干涉由該第一電脈衝產生之一聲學干擾。 11. The device of clause 1, wherein the intermediate electrical pulse generates an acoustic interference that interferes with an acoustic interference generated by the first electrical pulse.

12.一種用於形成光學脈衝之設備,該設備包含:一光學調變系統,其包含一電光材料,該光學調變系統經組態以在一開啟狀態中透射光且在一關閉狀態中阻擋光,且該光學調變系統經組態以接收一脈衝光束,該脈衝光束至少包含在時間上彼此分離之一第一光脈衝及一第二光脈衝;及一控制系統,其耦接至一電壓源,該控制系統經組態以:藉由使該電壓源在該第一光脈衝入射於電光調變器上時將該第一電壓脈衝施加至該電光調變器來產生一第一成形光學脈衝,該第一電壓脈衝經組態以將該電光調變器切換成該開啟狀態;將一中間電壓脈衝施加至該電光材料;且藉由在施加該第一電壓脈衝及該中間電壓脈衝之後且在該第二光脈衝入射於該電光材料上時將一第二電壓脈衝施加至該電光材料來產生一第二成形光學脈衝,其中該第二電壓脈衝經組態以將該電光調變器切換成該 開啟狀態,且該第二成形光學脈衝之一性質係藉由該中間電壓脈衝至該電光材料之施加來控制。 12. An apparatus for forming optical pulses, the apparatus comprising: an optical modulation system comprising an electro-optical material, the optical modulation system configured to transmit light in an on state and block light in an off state light, and the optical modulation system is configured to receive a pulse beam, the pulse beam includes at least a first light pulse and a second light pulse that are temporally separated from each other; and a control system coupled to a a voltage source, the control system configured to produce a first shape by causing the voltage source to apply the first voltage pulse to the electro-optic modulator when the first light pulse is incident on the electro-optic modulator Optical pulses, the first voltage pulse configured to switch the electro-optical modulator to the on state; applying an intermediate voltage pulse to the electro-optical material; and by applying the first voltage pulse and the intermediate voltage pulse A second voltage pulse is then applied to the electro-optic material to generate a second shaped optical pulse when the second optical pulse is incident on the electro-optic material, wherein the second voltage pulse is configured to modulate the electro-optic material. switch to this On state, and the properties of the second shaped optical pulse are controlled by the application of the intermediate voltage pulse to the electro-optical material.

13.如條項12之設備,其中該第二成形光學脈衝包含一基座部分及一主要部分,且該第二成形光學脈衝之該性質包含基座之一性質,使得該基座部分之一性質係藉由該中間電壓脈衝至該電光材料之該施加來控制。 13. The apparatus of clause 12, wherein the second shaped optical pulse includes a base portion and a main portion, and the property of the second shaped optical pulse includes a property of the base such that one of the base portion Properties are controlled by the application of the intermediate voltage pulse to the electro-optical material.

14.如條項13之設備,其中該基座部分及該主要部分為時間上連續的。 14. The equipment of clause 13, wherein the base part and the main part are temporally continuous.

15.如條項13之設備,其中該基座部分之該性質包含該基座部分之一時距、一最大強度及/或一平均強度。 15. The equipment of clause 13, wherein the property of the base portion includes a time interval, a maximum intensity and/or an average intensity of the base portion.

16.如條項12之設備,其中該中間電壓脈衝至該電光材料之該施加修改由該光學調變系統在該關閉狀態中透射之光學洩漏光的一量。 16. The apparatus of clause 12, wherein the application of the intermediate voltage pulse to the electro-optical material modifies an amount of optical leakage light transmitted by the optical modulation system in the off state.

17.如條項16之設備,其中該中間電壓脈衝至該電光材料之該施加減少由該光學調變系統在該關閉狀態中透射之光學洩漏光。 17. The apparatus of clause 16, wherein the application of the intermediate voltage pulse to the electro-optical material reduces optical leakage light transmitted by the optical modulation system in the off state.

18.如條項12之設備,其中該控制系統使該第一電壓脈衝在一第一時間被施加至該電光材料,該控制系統使該中間電壓脈衝在該第一時間之後的一第二時間被施加至該電光材料,該第二時間與該第一時間在時間上分離一延遲時間,且該控制系統進一步經組態以調整該延遲時間以藉此控制該第二成形光學脈衝之一性質。 18. The apparatus of clause 12, wherein the control system causes the first voltage pulse to be applied to the electro-optical material at a first time, and the control system causes the intermediate voltage pulse to be applied to the electro-optical material at a second time after the first time. is applied to the electro-optical material, the second time is temporally separated from the first time by a delay time, and the control system is further configured to adjust the delay time to thereby control a property of the second shaped optical pulse .

19.如條項18之設備,其中控制系統進一步經組態以控制該中間電壓脈衝之一振幅、一時距及/或一相位中之至少一者。 19. The apparatus of clause 18, wherein the control system is further configured to control at least one of an amplitude, a duration and/or a phase of the intermediate voltage pulse.

20.如條項13之設備,其中該控制系統進一步經組態以: 接收該基座部分之一經量測性質的一指示,且基於所接收指示而調整該中間電壓脈衝之一性質。 20. The equipment of clause 13, wherein the control system is further configured to: An indication of a measured property of the base portion is received, and a property of the intermediate voltage pulse is adjusted based on the received indication.

21.如條項12之設備,其中該控制系統進一步經組態以:接收由一電漿產生之極紫外線(EUV)光之一量的一指示,且基於對EUV光之該量的所接收指示而調整該中間電壓脈衝之一性質。 21. The apparatus of clause 12, wherein the control system is further configured to: receive an indication of an amount of extreme ultraviolet (EUV) light generated by a plasma, and based on receipt of the amount of EUV light Indicates and adjusts one of the properties of the intermediate voltage pulse.

22.如條項21之設備,其中該控制系統經組態以調整該中間電壓脈衝之一性質包含該控制系統經組態以調整該中間電壓脈衝之一振幅、該中間電壓脈衝之一時距、該中間電壓脈衝之一相位及/或一第二時間,該第二時間為將該中間電壓脈衝施加至該電光材料之一時間。 22. The equipment of clause 21, wherein the control system is configured to adjust a property of the intermediate voltage pulse including the control system is configured to adjust an amplitude of the intermediate voltage pulse, a time interval of the intermediate voltage pulse, A phase of the intermediate voltage pulse and/or a second time, the second time being a time for applying the intermediate voltage pulse to the electro-optical material.

23.一種調整一光學脈衝之一基座之一性質的方法,該方法包含:藉由在光入射於一光學調變系統上時將一第一電壓脈衝施加至該光學調變系統之一電光材料來形成一第一光學脈衝,該第一光學脈衝包含一第一基座部分及一第一主要部分;在施加該第一電壓脈衝之後將一中間電壓脈衝施加至該電光材料;及藉由在該第一電壓脈衝及該中間電壓脈衝之後且在光入射於該電光材料上時將一第二電壓脈衝施加至該電光材料來形成一第二光學脈衝,其中第二基座部分之一性質係基於該中間電壓脈衝之施加而調整。 23. A method of modulating a property of a base of an optical pulse, the method comprising: applying a first voltage pulse to an electro-optical component of an optical modulation system when light is incident on the optical modulation system. material to form a first optical pulse, the first optical pulse including a first base portion and a first main portion; applying an intermediate voltage pulse to the electro-optical material after applying the first voltage pulse; and by After the first voltage pulse and the intermediate voltage pulse and when light is incident on the electro-optical material, a second voltage pulse is applied to the electro-optical material to form a second optical pulse, wherein a property of the second base portion It is adjusted based on the application of this intermediate voltage pulse.

24.如條項23之方法,其進一步包含:放大該第一光學脈衝以形成一經放大第一光學脈衝;接收自一電漿發射之極紫外線(EUV)光之一量的一指示,該電漿係藉由使該經放大第一光學脈衝與目標材料相互作用而產生;及 基於自該電漿發射之EUV光之該量的所接收指示而判定該中間電壓脈衝之至少一個性質。 24. The method of clause 23, further comprising: amplifying the first optical pulse to form an amplified first optical pulse; receiving an indication of an amount of extreme ultraviolet (EUV) light emitted from a plasma that Plasma is generated by interacting the amplified first optical pulse with the target material; and At least one property of the intermediate voltage pulse is determined based on the received indication of the amount of EUV light emitted from the plasma.

25.如條項24之方法,其中該中間電壓脈衝之該至少一個性質包含在該第一電壓脈衝之施加之後的一時間延遲,且判定該中間電壓脈衝之至少一個性質包含基於自該電漿發射之EUV光之該量的該所接收指示而判定該時間延遲。 25. The method of clause 24, wherein the at least one property of the intermediate voltage pulse includes a time delay after application of the first voltage pulse, and determining the at least one property of the intermediate voltage pulse includes based on The time delay is determined based on the received indication of the amount of EUV light emitted.

26.如條項24之方法,其中該中間電壓脈衝之該至少一個性質包含該中間電壓脈衝之一振幅及/或一持續時間,且判定該中間電壓脈衝之至少一個性質包含判定該中間電壓脈衝之該振幅及/或該持續時間。 26. The method of clause 24, wherein the at least one property of the intermediate voltage pulse includes an amplitude and/or a duration of the intermediate voltage pulse, and determining the at least one property of the intermediate voltage pulse includes determining the intermediate voltage pulse. the amplitude and/or the duration.

27.如條項23之方法,其中該第二光學脈衝包含一基座部分及一主要部分,且該基座部分之一性質係基於該中間電壓脈衝之該施加而調整。 27. The method of clause 23, wherein the second optical pulse includes a base portion and a main portion, and a property of the base portion is adjusted based on the application of the intermediate voltage pulse.

28.如條項27之方法,其中該基座部分在時間上與該主要部分連續。 28. The method of clause 27, wherein the base portion is temporally continuous with the main portion.

29.一種極紫外線(EUV)光源,其包含:一容器;一目標材料供應設備,其經組態以耦接至該容器;一光學調變系統,其經組態以定位成接收一脈衝光束,該光學調變系統包含一電光材料;及一控制系統,其耦接至一電壓源,該控制系統經組態以:使該電壓源將複數個成形電壓脈衝施加至該電光材料,該複數個成形電壓脈衝中之每一者係在一不同時間被施加至該電光材料,且使該電壓源將至少一個中間電壓脈衝施加至該電光材料,該至少一個中間電壓脈衝係在該複數個成形電壓脈衝中之兩個連續成形電壓脈衝之 間被施加至該電光材料。 29. An extreme ultraviolet (EUV) light source, comprising: a container; a target material supply device configured to be coupled to the container; an optical modulation system configured to receive a pulsed beam , the optical modulation system includes an electro-optical material; and a control system coupled to a voltage source, the control system being configured to: cause the voltage source to apply a plurality of shaped voltage pulses to the electro-optical material, the plurality of Each of the shaped voltage pulses is applied to the electro-optical material at a different time and causes the voltage source to apply at least one intermediate voltage pulse to the electro-optical material, the at least one intermediate voltage pulse being applied to the electro-optical material during the plurality of shaped voltage pulses. One of two consecutive shaped voltage pulses in the voltage pulse time is applied to the electro-optical material.

30.如條項29之EUV光源,其中該目標材料供應設備經組態以將複數個目標材料小滴提供至該容器中之一目標區,該等目標材料小滴以一目標遞送速率到達該目標區,且該控制系統以一成形速率將該等成形電壓脈衝施加至該電光材料,該成形速率取決於該目標遞送速率。 30. The EUV light source of clause 29, wherein the target material supply device is configured to provide a plurality of target material droplets to a target area in the container, the target material droplets arriving at the target area at a target delivery rate. target area, and the control system applies the shaping voltage pulses to the electro-optical material at a shaping rate that is dependent on the target delivery rate.

31.如條項28之EUV光源,其中該中間電壓脈衝之特性包含一振幅及/或一相位,且該控制系統進一步經組態以:存取與該成形速率相關聯地儲存之一振幅及/或一相位,且使該電壓源產生具有經存取振幅及/或相位之該中間電壓脈衝。 31. The EUV light source of clause 28, wherein the characteristics of the intermediate voltage pulse include an amplitude and/or a phase, and the control system is further configured to: access an amplitude stored in association with the forming rate and /or a phase, and causing the voltage source to generate the intermediate voltage pulse having the accessed amplitude and/or phase.

32.如條項29之EUV光源,其中該控制系統進一步經組態以控制該等成形電壓脈衝中之一者與該等中間電壓脈衝中之一者之一施加之間的一時間延遲。 32. The EUV light source of clause 29, wherein the control system is further configured to control a time delay between application of one of the shaping voltage pulses and one of the intermediate voltage pulses.

33.如條項29之EUV光源,其進一步包含一光學放大器,且其中每當將一成形電壓脈衝施加至該電光材料時,形成一光學脈衝;由該光學放大器放大成形光學脈衝以形成一經放大光學脈衝;該控制系統進一步經組態以耦接至一度量衡系統,該度量衡系統經組態以量測由該容器中之一電漿產生之EUV光的一量,該電漿係藉由用成形的經放大光學脈衝輻照該目標材料來形成,該控制系統經組態以自該度量衡系統接收EUV光之經量測量;且該控制系統經組態以基於EUV光之該經量測量而修改該中間電壓脈衝之一或多個特性。 33. The EUV light source of clause 29, further comprising an optical amplifier, and wherein each time a shaped voltage pulse is applied to the electro-optical material, an optical pulse is formed; the shaped optical pulse is amplified by the optical amplifier to form an amplified Optical pulses; the control system is further configured to be coupled to a metrology system configured to measure an amount of EUV light generated by a plasma in the container by using The formed amplified optical pulses are irradiated to the target material to form, the control system is configured to receive a quantitative measurement of EUV light from the metrology system; and the control system is configured to generate an optical signal based on the quantitative measurement of EUV light. One or more characteristics of the intermediate voltage pulse are modified.

34.如條項33之EUV光源,其中該中間電壓脈衝之該一或多個特性包含該中間電壓脈衝之一振幅、該中間電壓脈衝之一時距、該中間電壓脈衝之一相位及/或在一最近成形電壓脈衝之施加之後的一延遲時間。 34. The EUV light source of clause 33, wherein the one or more characteristics of the intermediate voltage pulse include an amplitude of the intermediate voltage pulse, a time interval of the intermediate voltage pulse, a phase of the intermediate voltage pulse and/or A delay time after the application of a most recently shaped voltage pulse.

其他實施在申請專利範圍之範疇內。 Other implementations are within the scope of the patent application.

106:光束 106:Beam

107:經修改光學脈衝 107: Modified Optical Pulse

108:輻照光學脈衝/經放大光學脈衝 108: Irradiated optical pulse/amplified optical pulse

111:路徑 111:Path

115:目標區 115:Target area

122:材料 122:Material

130:光學放大器 130:Optical amplifier

175:控制系統 175:Control system

176:通信介面 176: Communication interface

177:電子處理器 177: Electronic processor

178:電子儲存器 178: Electronic storage

179:輸入/輸出(I/O)介面 179:Input/output (I/O) interface

214:電壓信號 214:Voltage signal

220:調變系統 220: Modulation system

223:電壓源 223:Voltage source

223a:電極 223a:Electrode

223b:電極 223b:Electrode

224:基於偏振之光學元件 224: Optical components based on polarization

Claims (34)

一種用於一極紫外線(EUV)光源之設備,該設備包含: 一光學調變系統,其包含一電光材料,該光學調變系統經組態以接收一脈衝光束,該脈衝光束包含在時間上彼此分離之複數個光脈衝;及 一控制系統,其經組態以控制一電源,使得在一第一光脈衝入射於電光調變器上時將一第一電脈衝施加至該電光材料,在一第二光脈衝入射於該電光材料上時將一第二電脈衝施加至該電光材料,且在該第一光脈衝入射於該電光材料上之後且在該第二光脈衝入射於該電光材料上之前將一中間電脈衝施加至該電光材料。A device for an extreme ultraviolet (EUV) light source, the device containing: and A control system configured to control a power supply such that a first electrical pulse is applied to the electro-optic material when a first light pulse is incident on the electro-optic modulator, and a second light pulse is incident on the electro-optic modulator. A second electrical pulse is applied to the electro-optical material when the material is incident on the electro-optical material, and an intermediate electrical pulse is applied to the electro-optical material after the first light pulse is incident on the electro-optical material and before the second light pulse is incident on the electro-optical material. The electro-optical material. 如請求項1之設備,其中將該第一電脈衝施加至該電光材料在該電光材料中產生一物理效應,且當該中間電脈衝被施加至該電光材料時,該物理效應存在於該電光材料中。The device of claim 1, wherein applying the first electrical pulse to the electro-optic material produces a physical effect in the electro-optic material, and when the intermediate electrical pulse is applied to the electro-optic material, the physical effect is present in the electro-optic material in the material. 如請求項2之設備,其中該物理效應包含在該電光材料中行進之聲波及/或機械應變。The device of claim 2, wherein the physical effect includes acoustic waves and/or mechanical strains traveling in the electro-optical material. 如請求項2之設備,其中將該中間電脈衝施加至該電光材料減少該物理效應。The device of claim 2, wherein applying the intermediate electrical pulse to the electro-optical material reduces the physical effect. 如請求項1之設備,其中該第一光脈衝及該第二光脈衝為該脈衝光束中之連續光脈衝。The device of claim 1, wherein the first light pulse and the second light pulse are continuous light pulses in the pulse beam. 如請求項1之設備,其中該控制系統經組態以控制該第一電脈衝與該中間電脈衝之間的一時間量。The apparatus of claim 1, wherein the control system is configured to control an amount of time between the first electrical pulse and the intermediate electrical pulse. 如請求項1之設備,其中該電光材料包含一半導體。The device of claim 1, wherein the electro-optical material includes a semiconductor. 如請求項1之設備,其中該電光材料包含一絕緣體。The device of claim 1, wherein the electro-optical material includes an insulator. 如請求項1之設備,其中該電光材料包含一電光晶體。The device of claim 1, wherein the electro-optic material includes an electro-optic crystal. 如請求項1之設備,其進一步包含至少一個基於偏振之光學元件。The device of claim 1, further comprising at least one polarization-based optical element. 如請求項1之設備,其中該中間電脈衝產生一聲學干擾,該聲學干擾干涉由該第一電脈衝產生之一聲學干擾。The device of claim 1, wherein the intermediate electrical pulse generates an acoustic interference that interferes with an acoustic interference generated by the first electrical pulse. 一種用於形成光學脈衝之設備,該設備包含: 一光學調變系統,其包含一電光材料,該光學調變系統經組態以在一開啟狀態中透射光且在一關閉狀態中阻擋光,且該光學調變系統經組態以接收一脈衝光束,該脈衝光束至少包含在時間上彼此分離之一第一光脈衝及一第二光脈衝;及 一控制系統,其耦接至一電壓源,該控制系統經組態以: 藉由使該電壓源在該第一光脈衝入射於電光調變器上時將該第一電壓脈衝施加至該電光調變器來產生一第一成形光學脈衝,該第一電壓脈衝經組態以將該電光調變器切換成該開啟狀態; 將一中間電壓脈衝施加至該電光材料;且 藉由在施加該第一電壓脈衝及該中間電壓脈衝之後且在該第二光脈衝入射於該電光材料上時將一第二電壓脈衝施加至該電光材料來產生一第二成形光學脈衝,其中該第二電壓脈衝經組態以將該電光調變器切換成該開啟狀態,且該第二成形光學脈衝之一性質係藉由該中間電壓脈衝至該電光材料之施加來控制。A device for forming optical pulses, the device comprising: An optical modulation system including an electro-optical material, the optical modulation system is configured to transmit light in an on state and block light in an off state, and the optical modulation system is configured to receive a pulse a light beam, the pulsed light beam comprising at least a first light pulse and a second light pulse that are temporally separated from each other; and A control system coupled to a voltage source, the control system configured to: A first shaped optical pulse is generated by causing the voltage source to apply the first voltage pulse to the electro-optic modulator when the first optical pulse is incident on the electro-optic modulator, the first voltage pulse being configured to switch the electro-optical modulator to the on state; applying an intermediate voltage pulse to the electro-optical material; and A second shaped optical pulse is generated by applying a second voltage pulse to the electro-optical material after applying the first voltage pulse and the intermediate voltage pulse and when the second optical pulse is incident on the electro-optical material, wherein The second voltage pulse is configured to switch the electro-optic modulator into the on state, and a property of the second shaped optical pulse is controlled by application of the intermediate voltage pulse to the electro-optic material. 如請求項12之設備,其中該第二成形光學脈衝包含一基座部分及一主要部分,且該第二成形光學脈衝之該性質包含基座之一性質,使得該基座部分之一性質係藉由該中間電壓脈衝至該電光材料之該施加來控制。The apparatus of claim 12, wherein the second shaped optical pulse includes a base portion and a main portion, and the property of the second shaped optical pulse includes a property of the base portion such that a property of the base portion is Controlled by the application of the intermediate voltage pulse to the electro-optical material. 如請求項13之設備,其中該基座部分及該主要部分為時間上連續的。The device of claim 13, wherein the base part and the main part are temporally continuous. 如請求項13之設備,其中該基座部分之該性質包含該基座部分之一時距、一最大強度及/或一平均強度。The device of claim 13, wherein the property of the base portion includes a time interval, a maximum intensity and/or an average intensity of the base portion. 如請求項12之設備,其中該中間電壓脈衝至該電光材料之該施加修改由該光學調變系統在該關閉狀態中透射之光學洩漏光的一量。The apparatus of claim 12, wherein the application of the intermediate voltage pulse to the electro-optical material modifies an amount of optical leakage light transmitted by the optical modulation system in the off state. 如請求項16之設備,其中該中間電壓脈衝至該電光材料之該施加減少由該光學調變系統在該關閉狀態中透射之光學洩漏光。The apparatus of claim 16, wherein the application of the intermediate voltage pulse to the electro-optical material reduces optical leakage light transmitted by the optical modulation system in the off state. 如請求項12之設備,其中 該控制系統使該第一電壓脈衝在一第一時間被施加至該電光材料, 該控制系統使該中間電壓脈衝在該第一時間之後的一第二時間被施加至該電光材料, 該第二時間與該第一時間在時間上分離一延遲時間,且 該控制系統進一步經組態以調整該延遲時間以藉此控制該第二成形光學脈衝之一性質。Such as the equipment of request item 12, wherein the control system causes the first voltage pulse to be applied to the electro-optical material at a first time, the control system causes the intermediate voltage pulse to be applied to the electro-optical material at a second time after the first time, The second time is temporally separated from the first time by a delay time, and The control system is further configured to adjust the delay time to thereby control a property of the second shaped optical pulse. 如請求項18之設備,其中控制系統進一步經組態以控制該中間電壓脈衝之一振幅、一時距及一相位中之至少一者。The device of claim 18, wherein the control system is further configured to control at least one of an amplitude, a time interval, and a phase of the intermediate voltage pulse. 如請求項13之設備,其中該控制系統進一步經組態以: 接收該基座部分之一經量測性質的一指示,且 基於所接收指示而調整該中間電壓脈衝之一性質。The equipment of claim 13, wherein the control system is further configured to: receiving an indication of a measured property of the base portion, and A property of the intermediate voltage pulse is adjusted based on the received indication. 如請求項12之設備,其中該控制系統進一步經組態以: 接收由一電漿產生之極紫外線(EUV)光之一量的一指示,且 基於對EUV光之該量的所接收指示而調整該中間電壓脈衝之一性質。The equipment of claim 12, wherein the control system is further configured to: receives an indication of an amount of extreme ultraviolet (EUV) light produced by a plasma, and A property of the intermediate voltage pulse is adjusted based on the received indication of the amount of EUV light. 如請求項21之設備,其中該控制系統經組態以調整該中間電壓脈衝之一性質包含:該控制系統經組態以調整該中間電壓脈衝之一振幅、該中間電壓脈衝之一時距、該中間電壓脈衝之一相位及/或一第二時間,該第二時間為將該中間電壓脈衝施加至該電光材料之一時間。The device of claim 21, wherein the control system is configured to adjust a property of the intermediate voltage pulse including: the control system is configured to adjust an amplitude of the intermediate voltage pulse, a time interval of the intermediate voltage pulse, the A phase of the intermediate voltage pulse and/or a second time, the second time being a time for applying the intermediate voltage pulse to the electro-optical material. 一種調整一光學脈衝之一性質的方法,該方法包含: 藉由在光入射於一光學調變系統上時將一第一電壓脈衝施加至該光學調變系統之一電光材料來形成一第一光學脈衝; 在施加該第一電壓脈衝之後將一中間電壓脈衝施加至該電光材料;及 藉由在該第一電壓脈衝及該中間電壓脈衝之後且在光入射於該電光材料上時將一第二電壓脈衝施加至該電光材料來形成一第二光學脈衝,其中該第二光學脈衝之一性質係基於該中間電壓脈衝之施加。A method of adjusting one of the properties of an optical pulse, the method comprising: Forming a first optical pulse by applying a first voltage pulse to an electro-optical material of an optical modulation system when light is incident on the optical modulation system; applying an intermediate voltage pulse to the electro-optical material after applying the first voltage pulse; and A second optical pulse is formed by applying a second voltage pulse to the electro-optical material after the first voltage pulse and the intermediate voltage pulse and when light is incident on the electro-optical material, wherein the second optical pulse A property is based on the application of the intermediate voltage pulse. 如請求項23之方法,其進一步包含: 放大該第一光學脈衝以形成一經放大第一光學脈衝; 接收自一電漿發射之極紫外線(EUV)光之一量的一指示,該電漿係藉由使該經放大第一光學脈衝與目標材料相互作用而產生;及 基於自該電漿發射之EUV光之該量的所接收指示而判定該中間電壓脈衝之至少一個性質。For example, the method of request item 23 further includes: amplifying the first optical pulse to form an amplified first optical pulse; an indication of the amount of extreme ultraviolet (EUV) light received from a plasma generated by interaction of the amplified first optical pulse with a target material; and At least one property of the intermediate voltage pulse is determined based on the received indication of the amount of EUV light emitted from the plasma. 如請求項24之方法,其中該中間電壓脈衝之該至少一個性質包含在該第一電壓脈衝之施加之後的一時間延遲,且判定該中間電壓脈衝之至少一個性質包含基於自該電漿發射之EUV光之該量的該所接收指示而判定該時間延遲。The method of claim 24, wherein the at least one property of the intermediate voltage pulse includes a time delay after application of the first voltage pulse, and determining the at least one property of the intermediate voltage pulse includes based on emission from the plasma. The time delay is determined based on the received indication of the amount of EUV light. 如請求項24之方法,其中該中間電壓脈衝之該至少一個性質包含該中間電壓脈衝之一振幅及/或一持續時間,且判定該中間電壓脈衝之至少一個性質包含判定該中間電壓脈衝之該振幅及/或該持續時間。The method of claim 24, wherein the at least one property of the intermediate voltage pulse includes an amplitude and/or a duration of the intermediate voltage pulse, and determining the at least one property of the intermediate voltage pulse includes determining the property of the intermediate voltage pulse. amplitude and/or duration. 如請求項23之方法,其中該第二光學脈衝包含一基座部分及一主要部分,且該基座部分之一性質係基於該中間電壓脈衝之該施加而調整。The method of claim 23, wherein the second optical pulse includes a base portion and a main portion, and a property of the base portion is adjusted based on the application of the intermediate voltage pulse. 如請求項27之方法,其中該基座部分在時間上與該主要部分連續。The method of claim 27, wherein the base portion is temporally continuous with the main portion. 一種極紫外線(EUV)光源,其包含: 一容器; 一目標材料供應設備,其經組態以耦接至該容器; 一光學調變系統,其經組態以定位成接收一脈衝光束,該光學調變系統包含一電光材料;及 一控制系統,其耦接至一電壓源,該控制系統經組態以: 使該電壓源將複數個成形電壓脈衝施加至該電光材料,該複數個成形電壓脈衝中之每一者係在一不同時間被施加至該電光材料,且 使該電壓源將至少一個中間電壓脈衝施加至該電光材料,該至少一個中間電壓脈衝係在該複數個成形電壓脈衝中之兩個連續成形電壓脈衝之間被施加至該電光材料。An extreme ultraviolet (EUV) light source containing: a container; a target material supply device configured to be coupled to the container; an optical modulation system configured to receive a pulsed beam, the optical modulation system including an electro-optical material; and A control system coupled to a voltage source, the control system configured to: causing the voltage source to apply a plurality of shaped voltage pulses to the electro-optical material, each of the plurality of shaped voltage pulses being applied to the electro-optical material at a different time, and The voltage source is caused to apply at least one intermediate voltage pulse to the electro-optical material, the at least one intermediate voltage pulse being applied to the electro-optical material between two consecutive shaped voltage pulses of the plurality of shaped voltage pulses. 如請求項29之EUV光源,其中該目標材料供應設備經組態以將複數個目標材料小滴提供至該容器中之一目標區,該等目標材料小滴以一目標遞送速率到達該目標區,且該控制系統以一成形速率將該等成形電壓脈衝施加至該電光材料,該成形速率取決於該目標遞送速率。The EUV light source of claim 29, wherein the target material supply device is configured to provide a plurality of target material droplets to a target area in the container, the target material droplets arriving at the target area at a target delivery rate , and the control system applies the forming voltage pulses to the electro-optical material at a forming rate that depends on the target delivery rate. 如請求項29之EUV光源,其中該中間電壓脈衝之特性包含一振幅及/或一相位,且 該控制系統進一步經組態以: 存取與該成形速率相關聯地儲存之一振幅及/或一相位,且 使該電壓源產生具有經存取振幅及/或相位之該中間電壓脈衝。The EUV light source of claim 29, wherein the characteristics of the intermediate voltage pulse include an amplitude and/or a phase, and The control system is further configured to: access an amplitude and/or a phase stored in association with the forming rate, and The voltage source is caused to generate the intermediate voltage pulse having the accessed amplitude and/or phase. 如請求項29之EUV光源,其中該控制系統進一步經組態以控制該等成形電壓脈衝中之一者與該等中間電壓脈衝中之一者之一施加之間的一時間延遲。The EUV light source of claim 29, wherein the control system is further configured to control a time delay between application of one of the shaping voltage pulses and one of the intermediate voltage pulses. 如請求項29之EUV光源,其進一步包含一光學放大器,且 其中 每當將一成形電壓脈衝施加至該電光材料時,形成一光學脈衝; 由該光學放大器放大成形光學脈衝以形成一經放大光學脈衝; 該控制系統進一步經組態以耦接至一度量衡系統,該度量衡系統經組態以量測由該容器中之一電漿產生之EUV光的一量, 該電漿係藉由用成形的經放大光學脈衝輻照該目標材料來形成, 該控制系統經組態以自該度量衡系統接收EUV光之經量測量;且 該控制系統經組態以基於EUV光之該經量測量而修改該中間電壓脈衝之一或多個特性。The EUV light source of claim 29, further comprising an optical amplifier, and in forming an optical pulse each time a shaped voltage pulse is applied to the electro-optical material; Amplify the shaped optical pulse by the optical amplifier to form an amplified optical pulse; the control system is further configured to be coupled to a metrology system configured to measure an amount of EUV light generated by a plasma in the container, The plasma is formed by irradiating the target material with shaped amplified optical pulses, The control system is configured to receive quantitative measurements of EUV light from the metrology system; and The control system is configured to modify one or more characteristics of the intermediate voltage pulse based on the quantitative measurement of EUV light. 如請求項33之EUV光源,其中該中間電壓脈衝之該一或多個特性包含該中間電壓脈衝之一振幅、該中間電壓脈衝之一時距、該中間電壓脈衝之一相位及/或在一最近成形電壓脈衝之施加之後的一延遲時間。The EUV light source of claim 33, wherein the one or more characteristics of the intermediate voltage pulse include an amplitude of the intermediate voltage pulse, a time interval of the intermediate voltage pulse, a phase of the intermediate voltage pulse and/or a nearest A delay time after the application of the shaping voltage pulse.
TW108137177A 2018-10-18 2019-10-16 Extreme ultraviolet (euv) light source and apparatus for the same, apparatus for forming optical pulse, and method of adjusting property of optical pulse TWI825198B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862747518P 2018-10-18 2018-10-18
US62/747,518 2018-10-18

Publications (2)

Publication Number Publication Date
TW202034092A TW202034092A (en) 2020-09-16
TWI825198B true TWI825198B (en) 2023-12-11

Family

ID=68468815

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108137177A TWI825198B (en) 2018-10-18 2019-10-16 Extreme ultraviolet (euv) light source and apparatus for the same, apparatus for forming optical pulse, and method of adjusting property of optical pulse

Country Status (6)

Country Link
JP (1) JP2022503714A (en)
KR (1) KR20210076911A (en)
CN (1) CN112867964A (en)
NL (1) NL2024009A (en)
TW (1) TWI825198B (en)
WO (1) WO2020081734A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140203194A1 (en) * 2011-10-05 2014-07-24 Gigaphoton Inc. System and method for generating extreme ultra violet light
TW201721234A (en) * 2015-10-01 2017-06-16 Asml荷蘭公司 Optical isolation module
DE102016122705B3 (en) * 2016-11-24 2018-03-29 Trumpf Scientific Lasers Gmbh + Co. Kg METHOD FOR IRRADIATING A CRYSTAL OF A POCKEL CELL AND REINFORCING UNIT

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671349B2 (en) * 2003-04-08 2010-03-02 Cymer, Inc. Laser produced plasma EUV light source
US7068688B2 (en) * 2003-11-04 2006-06-27 Boston Applied Technologies, Incorporated Electro-optic Q-switch
US7196772B2 (en) * 2003-11-07 2007-03-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4663578B2 (en) * 2006-05-17 2011-04-06 日本電信電話株式会社 Electro-optic element and manufacturing method thereof
JP6364002B2 (en) * 2013-05-31 2018-07-25 ギガフォトン株式会社 Extreme ultraviolet light generation system
EP3018774A1 (en) * 2014-11-04 2016-05-11 High Q Laser GmbH Method for generating a burst mode by means of switching a Pockels cell
JP7241027B2 (en) * 2017-05-10 2023-03-16 エーエスエムエル ネザーランズ ビー.ブイ. Laser-produced plasma source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140203194A1 (en) * 2011-10-05 2014-07-24 Gigaphoton Inc. System and method for generating extreme ultra violet light
TW201721234A (en) * 2015-10-01 2017-06-16 Asml荷蘭公司 Optical isolation module
DE102016122705B3 (en) * 2016-11-24 2018-03-29 Trumpf Scientific Lasers Gmbh + Co. Kg METHOD FOR IRRADIATING A CRYSTAL OF A POCKEL CELL AND REINFORCING UNIT

Also Published As

Publication number Publication date
WO2020081734A1 (en) 2020-04-23
CN112867964A (en) 2021-05-28
KR20210076911A (en) 2021-06-24
TW202034092A (en) 2020-09-16
JP2022503714A (en) 2022-01-12
NL2024009A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
US11856681B2 (en) Target delivery system
TWI788814B (en) Extreme ultraviolet (euv) optical source, apparatus for an euv light source and optical isolation method
JP7356439B2 (en) Spatial modulation of a light beam
JP7225224B2 (en) System for monitoring plasma
WO2014203804A1 (en) Extreme ultraviolet light generating system
TW202036174A (en) Dose control for an extreme ultraviolet optical lithography system
TWI825198B (en) Extreme ultraviolet (euv) light source and apparatus for the same, apparatus for forming optical pulse, and method of adjusting property of optical pulse
TWI821437B (en) System for monitoring light emissions, euv light source, and method of controlling an euv light source
NL2020778A (en) Laser produced plasma source
US11979973B2 (en) Semiconductor manufacturing apparatus and operating method thereof
EP3949692A1 (en) Controlling conversion efficiency in an extreme ultraviolet light source
NL2034792A (en) Euv light generation system and electronic device manufacturing method