TW202036174A - Dose control for an extreme ultraviolet optical lithography system - Google Patents

Dose control for an extreme ultraviolet optical lithography system Download PDF

Info

Publication number
TW202036174A
TW202036174A TW109103478A TW109103478A TW202036174A TW 202036174 A TW202036174 A TW 202036174A TW 109103478 A TW109103478 A TW 109103478A TW 109103478 A TW109103478 A TW 109103478A TW 202036174 A TW202036174 A TW 202036174A
Authority
TW
Taiwan
Prior art keywords
light
optical
control system
euv
source
Prior art date
Application number
TW109103478A
Other languages
Chinese (zh)
Inventor
史賓瑟 里奇
麥可 安東尼 普維斯
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202036174A publication Critical patent/TW202036174A/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/008Production of X-ray radiation generated from plasma involving an energy-carrying beam in the process of plasma generation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An apparatus for an extreme ultraviolet (EUV) lithography system includes an optical modulation system including at least one optical element configured for placement on a beam path between the optical modulation system and a plasma formation region configured to receive target material that emits EUV light in a plasma state; and a control system configured to be coupled to the optical modulation system and to receive a signal including an indication of a characteristic of exposure light impinging on a wafer in a scanning system of the lithography system. The control system is further configured to adjust the optical modulation system based on the indication of the characteristic of the exposure light to thereby control a property of a first portion of a light beam based on the characteristic of the exposure light, the light beam including at least the first portion and a second portion.

Description

用於極紫外線光學微影系統的劑量控制Dose control for extreme ultraviolet photolithography system

本發明係關於用於極紫外線(EUV)光學微影裝置之劑量控制。The present invention relates to dose control for extreme ultraviolet (EUV) photolithography devices.

極紫外線(「EUV」)光,例如波長為100奈米(nm)或更小(有時亦被稱作軟x射線)且包括波長為例如20 nm或更小、介於5 nm與20 nm之間或介於13 nm與14 nm之間的光之電磁輻射可用於光微影程序中,以藉由在抗蝕劑層中起始聚合而在基板(例如矽晶圓)中產生極小特徵。Extreme ultraviolet ("EUV") light, for example, a wavelength of 100 nanometers (nm) or less (sometimes called soft x-rays) and includes a wavelength of, for example, 20 nm or less, between 5 nm and 20 nm Electromagnetic radiation of light between or between 13 nm and 14 nm can be used in photolithography procedures to create very small features in substrates (such as silicon wafers) by initial polymerization in the resist layer .

用以產生EUV光之方法包括但未必限於:運用在EUV範圍內之發射譜線將包括例如氙、鋰或錫之元素的材料轉換成電漿狀態。在常常被稱為雷射產生電漿(「LPP」)之一個此類方法中,可藉由運用可被稱作驅動雷射之經放大光束來輻照例如呈材料小滴、板、帶、串流或叢集之形式的目標材料而產生所需電漿。對於此程序,通常在例如真空腔室之密封容器中產生電漿,且使用各種類型之度量衡設備來監測電漿。Methods for generating EUV light include, but are not necessarily limited to: using emission lines in the EUV range to convert materials including elements such as xenon, lithium, or tin into a plasma state. In one such method, often referred to as laser-generated plasma ("LPP"), an amplified light beam that can be called a driving laser can be used to irradiate material droplets, plates, ribbons, etc. Target materials in the form of streams or clusters are used to generate the required plasma. For this procedure, plasma is usually generated in a sealed container such as a vacuum chamber, and various types of metrology equipment are used to monitor the plasma.

在一個態樣中,一種用於一極紫外線(EUV)微影系統之裝置包括:一光學調變系統,其包括至少一個光學元件,該至少一個光學元件經組態為置放於該光學調變系統與一電漿形成區之間的一光束路徑上,該電漿形成區經組態以接收在一電漿狀態中發射EUV光之目標材料;及一控制系統,其經組態為耦接至該光學調變系統且接收一信號,該信號包括照射於該微影系統之一掃描系統中之一晶圓上的曝光光之一特性之一指示。該控制系統經進一步組態以基於該曝光光之該特性之該指示而調整該光學調變系統,以藉此基於該曝光光之該特性控制一光束之一第一部分之一屬性,該光束包括至少該第一部分及一第二部分。In one aspect, an apparatus for an extreme ultraviolet (EUV) lithography system includes: an optical modulation system that includes at least one optical element configured to be placed in the optical modulation system On a beam path between the variable system and a plasma forming area configured to receive a target material that emits EUV light in a plasma state; and a control system configured as a coupling It is connected to the optical modulation system and receives a signal including an indication of a characteristic of exposure light irradiated on a wafer in a scanning system of the lithography system. The control system is further configured to adjust the optical modulation system based on the indication of the characteristic of the exposure light to thereby control a property of a first part of a light beam based on the characteristic of the exposure light, the light beam comprising At least the first part and the second part.

實施方案可包括以下特徵中之一或多者。Implementations can include one or more of the following features.

該裝置亦可包括耦接至該控制系統之一劑量感測器,該劑量感測器經組態以:感測該晶圓處之該曝光光且將包括該曝光光之該特性之該指示的該信號提供至該控制系統。該劑量感測器可相對於該微影系統之該掃描系統中之該晶圓而定位。The device may also include a dose sensor coupled to the control system, the dose sensor being configured to: sense the exposure light at the wafer and include the indication of the characteristic of the exposure light The signal is provided to the control system. The dose sensor can be positioned relative to the wafer in the scanning system of the lithography system.

該光學調變系統可經組態以產生包括一基座部分及一主要部分之一經修改光學脈衝,且該光束之該第一部分可包括該基座部分且該光束之該第二部分可包括該主要部分,使得該控制系統經組態以調整該調變系統以藉此基於該曝光光之該特性控制該基座部分之至少一個屬性。該基座部分之該至少一個屬性可為一時距、一平均強度及/或一最大強度。該經修改脈衝之該主要部分可具有足以將該目標材料中之至少一些轉換成發射EUV光之電漿的一能量。該光學調變系統可包括一電光調變器(EOM),且至少一個光學元件可包括一電光材料。該EOM可包括一第一電極、一第二電極,且該電光材料係介於該第一電極與該第二電極之間。該控制系統經組態以調整該至少一個光學元件可包括該控制系統經組態以:調整由該第一電極及該第二電極施加至該電光材料之一電壓量及/或調整由該第一電極及該第二電極將一電壓施加至該電光材料的一時間。該調變系統之該至少一個光學元件進一步包括經組態為置放於該光束路徑上之至少一個偏振元件,且該控制系統經組態以調整該至少一個光學元件可包括該控制系統經組態以移動該偏振元件。該控制系統經組態以調整該至少一個光學元件亦可包括該控制系統經組態以:調整由該第一電極及該第二電極施加至該電光材料之一電壓量及/或調整由該第一電極及該第二電極將一電壓施加至該電光材料的一時間。該光學系統可包括多於一個EOM,且每一EOM係介於兩個偏振元件之間。The optical modulation system can be configured to generate a modified optical pulse that includes a base portion and a main portion, and the first portion of the light beam can include the base portion and the second portion of the light beam can include the The main part enables the control system to be configured to adjust the modulation system to thereby control at least one attribute of the base part based on the characteristic of the exposure light. The at least one attribute of the base portion may be a time interval, an average intensity and/or a maximum intensity. The main portion of the modified pulse may have an energy sufficient to convert at least some of the target material into plasma that emits EUV light. The optical modulation system may include an electro-optical modulator (EOM), and at least one optical element may include an electro-optical material. The EOM may include a first electrode and a second electrode, and the electro-optical material is interposed between the first electrode and the second electrode. The control system being configured to adjust the at least one optical element may include the control system being configured to: adjust an amount of voltage applied to the electro-optical material by the first electrode and the second electrode and/or adjust the amount of voltage applied by the first electrode and the second electrode A time for an electrode and the second electrode to apply a voltage to the electro-optical material. The at least one optical element of the modulation system further includes at least one polarization element configured to be placed on the beam path, and the control system configured to adjust the at least one optical element may include the control system being configured State to move the polarization element. The control system configured to adjust the at least one optical element may also include the control system configured to: adjust the amount of voltage applied to the electro-optical material by the first electrode and the second electrode and/or adjust the The first electrode and the second electrode apply a voltage to the electro-optical material for a time. The optical system may include more than one EOM, and each EOM is between two polarization elements.

在一些實施中,該控制系統經進一步組態以:在一非作用時段期間,致使該第一電極及該第二電極將一非零偏壓電壓施加至該電光材料,且在一作用時段期間,該控制系統經組態以致使該第一電極及該第二電極將大於該偏壓電壓之一第二電壓施加至該電光材料,該偏壓電壓之一振幅係基於該曝光光之該特性之該指示,且該基座之該屬性係藉由該偏壓之該振幅至少部分地判定。該光學調變系統之該至少一個光學元件亦可包括一聲光調變器(AOM),該AOM係介於該光學調變系統與該電漿形成區之間,且該AOM經組態以判定該基座之一時距。In some implementations, the control system is further configured to: during an inactive period, cause the first electrode and the second electrode to apply a non-zero bias voltage to the electro-optic material, and during an active period , The control system is configured to cause the first electrode and the second electrode to apply a second voltage greater than the bias voltage to the electro-optical material, and an amplitude of the bias voltage is based on the characteristic of the exposure light The indication and the attribute of the base are at least partially determined by the amplitude of the bias. The at least one optical element of the optical modulation system may also include an acousto-optic modulator (AOM), the AOM is between the optical modulation system and the plasma formation region, and the AOM is configured to Determine one time interval of this base.

在一些實施中,該光束包括複數個脈衝,該光束之該第一部分包括該複數個脈衝中之一第一脈衝,且該光束之該第二部分包括該複數個脈衝中之一第二脈衝,使得該控制系統經組態以調整該調變系統以藉此基於該曝光光之該特性控制該複數個脈衝中之該第一脈衝的至少一個屬性。所有該複數個脈衝皆可在該光束路徑上傳播。該光束之該第一部分及該光束之該第二部分可由不同光源產生。In some implementations, the light beam includes a plurality of pulses, the first portion of the light beam includes a first pulse in the plurality of pulses, and the second portion of the light beam includes a second pulse in the plurality of pulses, The control system is configured to adjust the modulation system to thereby control at least one attribute of the first pulse among the plurality of pulses based on the characteristic of the exposure light. All the plural pulses can propagate on the beam path. The first part of the light beam and the second part of the light beam can be generated by different light sources.

該曝光光之一特性之該指示可包括在該晶圓之一特定部分處的EUV光之一劑量之一指示,該晶圓處之EUV光之該劑量包括在一預定時間量內該晶圓之該特定部分處的EUV光之一總量。該控制系統可經進一步組態以:分析該指示以判定EUV光之一臨限劑量是否已被遞送至該晶圓之該特定部分,且若該臨限劑量已被遞送至該晶圓之該特定部分,則發佈一命令以致使該晶圓相對於該EUV光移動使得該晶圓之一不同部分接收該EUV光。The indication of a characteristic of the exposure light may include an indication of a dose of EUV light at a specific portion of the wafer, and the dose of EUV light at the wafer includes the wafer within a predetermined amount of time The total amount of EUV light at that specific part. The control system may be further configured to analyze the indication to determine whether a threshold dose of EUV light has been delivered to the specific part of the wafer, and if the threshold dose has been delivered to the wafer For a specific part, a command is issued to cause the wafer to move relative to the EUV light so that a different part of the wafer receives the EUV light.

該裝置亦可包括經組態以產生該光束之一光產生模組,該光產生模組包括一增益介質及經組態以激發該增益介質之一能量源。在此等實施中,該控制系統耦接至該光產生模組,該控制系統經進一步組態以:控制該能量源使得該光束之一能量遍及一時間窗大體上相同,且該控制系統經組態以調整該調變系統包括該控制系統經組態以調整該調變系統使得該光束之該第一部分之一能量遍及該時間窗大體上相同。The device may also include a light generating module configured to generate the light beam, the light generating module including a gain medium and an energy source configured to excite the gain medium. In these implementations, the control system is coupled to the light generating module, and the control system is further configured to: control the energy source so that an energy of the light beam is substantially the same throughout a time window, and the control system is Configuring to adjust the modulation system includes that the control system is configured to adjust the modulation system such that an energy of the first portion of the light beam is substantially the same throughout the time window.

在另一態樣中,一種極紫外線(EUV)光源包括:一容器,其經組態以形成一真空空間;一目標供應裝置,其經組態以將一目標提供至該容器中之一電漿產生區;一光學裝置,其包括一或多個光學元件,該一或多個光學元件經組態為置放於光產生模組與該電漿產生區之間的一光束路徑上;及一控制系統,其耦接至該光學裝置,該控制系統經組態以控制該光學裝置以藉此控制一光束之一第一部分之一或多個屬性,該光束包括至少該第一部分及一第二部分。在操作使用中,該容器經組態以將EUV光提供至一微影裝置,該微影裝置經組態以將該EUV光導引朝向一晶圓,且該第一部分之該一或多個屬性的該控制係基於該晶圓處之該EUV光之一特性。In another aspect, an extreme ultraviolet (EUV) light source includes: a container configured to form a vacuum space; a target supply device configured to provide a target to an electric source in the container A plasma generating area; an optical device comprising one or more optical elements configured to be placed on a beam path between the light generating module and the plasma generating area; and A control system coupled to the optical device, the control system being configured to control the optical device to thereby control one or more attributes of a first part of a light beam, the light beam including at least the first part and a first part Two parts. In operational use, the container is configured to provide EUV light to a lithography device, the lithography device is configured to guide the EUV light toward a wafer, and the one or more of the first part The control of attributes is based on a characteristic of the EUV light at the wafer.

實施方案可包括以下特徵中之一或多者。該EUV光源亦可包括一光產生模組,該光產生模組包括一增益介質及經組態以激發該增益介質之一能量源。該能量源可包括經組態為由一射頻(RF)電源驅動之複數個電極,且該光產生模組包括容納該複數個電極之一腔室,且該控制系統在不調整該RF電源之任何屬性的情況下控制該光束之該第一部分之該一或多個屬性。Implementations can include one or more of the following features. The EUV light source may also include a light generating module that includes a gain medium and an energy source configured to excite the gain medium. The energy source may include a plurality of electrodes configured to be driven by a radio frequency (RF) power source, and the light generating module includes a chamber containing the plurality of electrodes, and the control system does not adjust the RF power source In the case of any attribute, the one or more attributes of the first part of the beam are controlled.

該光學裝置可包括經組態以產生一經修改光學脈衝之一光學調變系統,該經修改脈衝可包括一基座部分及一主要部分,且該光束之該第一部分可包括該基座部分且該光束之該第二部分包括該主要部分,且該控制系統可經組態以控制該光學裝置以藉此控制該基座部分之一或多個屬性。The optical device may include an optical modulation system configured to generate a modified optical pulse, the modified pulse may include a base portion and a main portion, and the first portion of the light beam may include the base portion and The second part of the light beam includes the main part, and the control system can be configured to control the optical device to thereby control one or more properties of the base part.

該EUV光源亦可包括一光產生模組,且該光產生模組可經組態以產生包括複數個脈衝之一脈衝式光束,該光束之該第一部分可包括該複數個脈衝中之一第一脈衝,且該光束之該第二部分可包括該複數個脈衝中之一第二脈衝,且該控制系統可經組態以調整該光學裝置以藉此基於該晶圓處之EUV光之該特性而控制該複數個脈衝中之該第一脈衝的至少一個屬性。The EUV light source may also include a light generating module, and the light generating module may be configured to generate a pulsed light beam including a plurality of pulses. The first part of the light beam may include one of the pulses. One pulse, and the second part of the beam can include one of the second pulses of the plurality of pulses, and the control system can be configured to adjust the optical device to thereby be based on the EUV light at the wafer Characteristics to control at least one attribute of the first pulse among the plurality of pulses.

該EUV光源亦可包括一光產生模組,且該光產生模組可包括至少一第一光學源及一第二光學源,該光束之該第一部分可為由該第一光學源產生之一光學脈衝,且該光束之該第二部分可為由該第二光學源產生之一光學脈衝。The EUV light source may also include a light generating module, and the light generating module may include at least a first optical source and a second optical source, and the first part of the light beam may be one generated by the first optical source Optical pulse, and the second part of the light beam can be an optical pulse generated by the second optical source.

該EUV光源亦可包括耦接至該控制系統之一劑量感測器,該劑量感測器經組態以感測該晶圓處之該EUV光之該特性且產生該晶圓處之該EUV光之該特性的指示。The EUV light source may also include a dose sensor coupled to the control system, the dose sensor being configured to sense the characteristic of the EUV light at the wafer and generate the EUV at the wafer An indication of this characteristic of light.

在另一態樣中,一種極紫外線(EUV)微影系統包括:一容器,其經組態以形成一真空空間;一目標供應裝置,其經組態以將一目標提供至該容器中之一電漿產生區;一光學裝置,其包括一或多個光學元件,該一或多個光學元件經組態為置放於光產生模組與該電漿產生區之間的一光束路徑上;一微影裝置,其經組態以自該容器接收EUV光且將該EUV光導引朝向一晶圓;及一控制系統,其耦接至該光學裝置,該控制系統經組態以控制該光學裝置以藉此控制一光束之第一部分之一或多個屬性,該光束包括至少該第一部分及一第二部分。在操作使用中,該第一部分之該一或多個屬性的該控制係基於該晶圓處之該EUV光之一特性。In another aspect, an extreme ultraviolet (EUV) lithography system includes: a container configured to form a vacuum space; and a target supply device configured to provide a target to the container A plasma generating area; an optical device comprising one or more optical elements configured to be placed on a beam path between the light generating module and the plasma generating area ; A lithography device, which is configured to receive EUV light from the container and guide the EUV light toward a wafer; and a control system, which is coupled to the optical device, the control system is configured to control The optical device controls one or more attributes of a first part of a light beam, and the light beam includes at least the first part and a second part. In operational use, the control of the one or more attributes of the first part is based on a characteristic of the EUV light at the wafer.

以上所描述之技術中的任一者之實施可包括一種EUV光源、一種微影系統、一種系統、一種方法、一種程序、一種器件或一種裝置。以下隨附圖式及描述中闡述一或多個實施之細節。其他特徵將自描述及圖式及自申請專利範圍而顯而易見。The implementation of any of the technologies described above may include an EUV light source, a lithography system, a system, a method, a program, a device, or a device. One or more implementation details are set forth in the accompanying drawings and description below. Other features will be obvious from the description and drawings and from the scope of the patent application.

系統,且其全文係以引用方式併入本文中。System, and its full text is incorporated herein by reference.

圖1為EUV微影系統100之方塊圖。該微影系統100包括將EUV光197提供至微影裝置180之EUV光源101。微影裝置180塑形、控制、導引EUV光197及/或將EUV光197聚焦成曝光光束191。曝光光束191照射於基板192上以在基板192處形成微電子特徵。系統100亦包括控制系統150。控制系統150基於曝光光束191之特性之指示154來控制調變系統140。在圖1中,具有虛線-點線-虛線風格的線表示資料、命令及/或資訊在其上作為例如電信號或作為經編碼有資訊之光信號流動的資料鏈路。該資料鏈路可為能夠攜載資訊之任何類型之媒體。舉例而言,資料鏈路可為電纜、光纖及/或無線連接。FIG. 1 is a block diagram of the EUV lithography system 100. The lithography system 100 includes an EUV light source 101 that provides EUV light 197 to the lithography device 180. The lithography device 180 shapes, controls, and guides the EUV light 197 and/or focuses the EUV light 197 into an exposure beam 191. The exposure beam 191 irradiates the substrate 192 to form microelectronic features on the substrate 192. The system 100 also includes a control system 150. The control system 150 controls the modulation system 140 based on the indication 154 of the characteristics of the exposure beam 191. In FIG. 1, a line with a dashed-dotted-dashed line style represents a data link on which data, commands, and/or information flow as, for example, electrical signals or as optical signals encoded with information. The data link can be any type of medium capable of carrying information. For example, the data link can be a cable, optical fiber, and/or wireless connection.

調變系統140包括一光學元件142,該光學元件與由光學源104產生之光束107相互作用以修改光束107之屬性(例如強度)且產生經修改光束108。經修改光束108在路徑106上傳播至電漿形成區123以與包括目標材料之目標121相互作用。該相互作用將目標121中之目標材料中之至少一些轉換成電漿196,該電漿發射EUV光197。The modulation system 140 includes an optical element 142 that interacts with the light beam 107 generated by the optical source 104 to modify the properties (eg, intensity) of the light beam 107 and generate a modified light beam 108. The modified light beam 108 propagates on the path 106 to the plasma formation region 123 to interact with the target 121 including the target material. This interaction converts at least some of the target materials in target 121 into plasma 196, which emits EUV light 197.

因為EUV光197係藉由光束107與目標121之間的相互作用而形成,所以控制光束107之屬性亦允許控制EUV光197之特性。此外,因為曝光光束191係基於經導引至微影裝置180中之EUV光197之部分,所以控制光束107之屬性亦允許控制曝光光束191之特性。舉例而言,作為在一段時間內遞送至基板192之光能之量的曝光光束191之劑量可藉由控制光束107之屬性來控制。如下文所論述,控制系統150實施光束107之單個參數係由調變系統140調變以控制EUV光197以及曝光光束191之特性的技術。Because the EUV light 197 is formed by the interaction between the light beam 107 and the target 121, controlling the properties of the light beam 107 also allows the characteristics of the EUV light 197 to be controlled. In addition, because the exposure beam 191 is based on the portion of the EUV light 197 that is guided to the lithography device 180, controlling the properties of the beam 107 also allows the properties of the exposure beam 191 to be controlled. For example, the dose of the exposure beam 191, which is the amount of light energy delivered to the substrate 192 in a period of time, can be controlled by controlling the properties of the beam 107. As discussed below, the control system 150 implements a technique in which a single parameter of the light beam 107 is modulated by the modulation system 140 to control the characteristics of the EUV light 197 and the exposure light beam 191.

用於控制EUV光197之量及EUV光源中之劑量的其他技術為吾人所知。舉例而言,光學源104包括受能量源103激發以產生光束107之增益介質102。能量源103可為例如增益介質之兩個側上之一對電極。在此等實施中,電極係由射頻(RF)電源驅動,該射頻(RF)電源向電極給予能量以形成激發增益介質之放電。一些先前系統調變能量源103 (例如藉由週期性地增加施加至電極之電壓)以調變光束107之能量且作出EUV光197之量以及劑量之對應改變。然而,調變能量源103亦會改變光束107之許多屬性。舉例而言,調變能量源103可改變光束107之能量、指向及光束大小。所有此等屬性皆與EUV光197之產生相關。結果,使藉由調變能量源103所產生之EUV光之量穩定可具有挑戰性。儘管可經由額外回饋迴路來減輕無意地調變光束107之各種屬性之效應,但此類回饋迴路增加複雜度且會降低可靠性。Other techniques for controlling the amount of EUV light 197 and the dose in the EUV light source are known to us. For example, the optical source 104 includes a gain medium 102 that is excited by an energy source 103 to generate a light beam 107. The energy source 103 may be, for example, a pair of electrodes on both sides of the gain medium. In these implementations, the electrodes are driven by a radio frequency (RF) power supply that imparts energy to the electrodes to form a discharge that excites the gain medium. Some previous systems modulate the energy source 103 (for example, by periodically increasing the voltage applied to the electrodes) to modulate the energy of the light beam 107 and make corresponding changes in the amount and dose of EUV light 197. However, modulating the energy source 103 will also change many properties of the light beam 107. For example, the modulated energy source 103 can change the energy, direction, and size of the beam 107. All these attributes are related to the generation of EUV light 197. As a result, it can be challenging to stabilize the amount of EUV light generated by modulating the energy source 103. Although additional feedback loops can be used to mitigate the effects of unintentionally modulating various properties of the light beam 107, such feedback loops increase complexity and reduce reliability.

另一方面,控制系統150實施藉由運用調變系統140調變光束107之一或多個屬性而不依賴於調變能量源103來控制所產生之EUV光197的技術。因此,參數之致動或調變係以獨立於光束107之與EUV產生相關的其他參數之方式來完成。因而,藉由控制系統150實施之途徑無需單獨的控制迴路來控制光束107之其他參數之非想要的變化。On the other hand, the control system 150 implements a technique of controlling the EUV light 197 generated by using the modulation system 140 to modulate one or more of the properties of the light beam 107 without relying on the modulated energy source 103. Therefore, the actuation or modulation of the parameters is accomplished in a manner independent of other parameters of the beam 107 related to EUV generation. Therefore, the approach implemented by the control system 150 does not require a separate control loop to control unwanted changes in other parameters of the light beam 107.

儘管控制系統150實施無需此類單獨控制迴路來校正EUV產生中之不希望的或間接的變化之途徑,但控制系統150可允許使用單獨及/或額外的控制迴路,該等控制迴路對於使用先前系統之途徑實施起來可具有挑戰性或不可能使用先前系統之途徑來實施。舉例而言,先前系統可能不具有脈衝間致動器來控制光束107之屬性或光束107之一部分之屬性。光束107之該部分可為光束107之脈衝或脈衝之基座部分,諸如基座部分366 (圖3C)。控制系統150允許對光束107之部分之脈衝間致動,此允許使用先前系統中係不可能的控制迴路(諸如基於劑量、光束108之脈衝中之總能量)來控制基座部分。Although the control system 150 does not need such a separate control loop to correct for undesired or indirect changes in EUV production, the control system 150 may allow the use of separate and/or additional control loops, which are less effective when used before. The system approach can be challenging or impossible to implement using the previous system approach. For example, previous systems may not have inter-pulse actuators to control the properties of the beam 107 or the properties of a portion of the beam 107. The portion of the beam 107 may be a pulse of the beam 107 or a pedestal portion of the pulse, such as the pedestal portion 366 (FIG. 3C). The control system 150 allows for inter-pulse actuation of parts of the beam 107, which allows the use of control loops (such as dose-based, total energy in the pulses of the beam 108) to control the base part that were not possible in previous systems.

此外,由控制系統150實施之技術對光學源104之熱狀態有極小的影響。依賴於調變能量源103之途徑導致光學源104之輸出能量以相對較大量變化,例如約100毫焦耳(mJ)。輸出能量之大的變化影響光學源104以及路徑106上之光學元件的熱狀態。另一方面,因為控制系統150實施調變光束107之途徑,所以可藉由以相對較小量,例如不到約5 mJ來調變光束107之強度從而使所產生EUV光197之量變化。此導致更大的熱穩定性。In addition, the technology implemented by the control system 150 has a minimal effect on the thermal state of the optical source 104. Relying on the approach of modulating the energy source 103 causes the output energy of the optical source 104 to vary by a relatively large amount, for example, about 100 millijoules (mJ). The large change in output energy affects the thermal state of the optical source 104 and the optical elements on the path 106. On the other hand, because the control system 150 implements the method of modulating the light beam 107, the intensity of the light beam 107 can be adjusted by a relatively small amount, for example, less than about 5 mJ, so that the amount of EUV light 197 generated can be changed. This leads to greater thermal stability.

另外,控制系統150與運用能量源103相比,能夠運用調變系統140來更快地調變光束107。舉例而言,在光學源104以50千赫茲(kHz)之重複率產生光學脈衝的實施中,可每隔十個光學脈衝調變一次能量源103。相比之下,調變系統140可以50 kHz經調變,且因此可調變由光學源104產生之每一脈衝上之屬性。因此,控制系統150能夠較精細且準確地控制光束107之調變且此可導致系統效能之總體改良。In addition, the control system 150 can use the modulation system 140 to modulate the light beam 107 faster than using the energy source 103. For example, in an implementation where the optical source 104 generates optical pulses at a repetition rate of 50 kilohertz (kHz), the energy source 103 can be modulated every ten optical pulses. In contrast, the modulation system 140 can be modulated at 50 kHz, and therefore the properties on each pulse generated by the optical source 104 can be adjusted. Therefore, the control system 150 can finely and accurately control the modulation of the light beam 107 and this can lead to an overall improvement in system performance.

圖2A及圖2B分別為微影系統200A及200B之方塊圖。在圖2A及圖2B中,具有虛線-點線-虛線風格的線表示資料、命令及/或資訊在其上作為例如電信號或作為經編碼有資訊之光信號流動的資料鏈路。該資料鏈路可為能夠攜載資訊之任何類型之媒體。舉例而言,資料鏈路可為電纜、光纖及/或無線連接。2A and 2B are block diagrams of lithography systems 200A and 200B, respectively. In FIGS. 2A and 2B, lines with a dashed-dotted-dashed line style represent data links on which data, commands, and/or information flow as, for example, electrical signals or as optical signals encoded with information. The data link can be any type of medium capable of carrying information. For example, the data link can be a cable, optical fiber, and/or wireless connection.

參看圖2A,微影系統200A為微影系統100 (圖1)之實施的實例。微影系統200A包括將EUV光197提供至微影裝置280之EUV光源201A。微影裝置280運用曝光光束191來曝光基板192。Referring to FIG. 2A, the lithography system 200A is an implementation example of the lithography system 100 (FIG. 1). The lithography system 200A includes an EUV light source 201A that provides EUV light 197 to the lithography device 280. The lithography device 280 uses the exposure beam 191 to expose the substrate 192.

微影系統200A包括產生光束207之光學源204。光學源204包括增益介質202及激發增益介質202以產生光束207之能量源203。光束207可為包括在時間上彼此分離的複數個光學脈衝之脈衝式光束,或連續波(CW)光束。光學源204可為例如脈衝式(例如Q切換)或連續波二氧化碳(CO2 )雷射或固態雷射(例如Nd:YAG雷射或摻鉺光纖(Er:玻璃)雷射)。The lithography system 200A includes an optical source 204 that generates a light beam 207. The optical source 204 includes a gain medium 202 and an energy source 203 that excites the gain medium 202 to generate a light beam 207. The beam 207 may be a pulsed beam including a plurality of optical pulses separated in time, or a continuous wave (CW) beam. The optical source 204 may be, for example, a pulsed (for example, Q-switching) or continuous wave carbon dioxide (CO 2 ) laser or a solid state laser (for example, a Nd:YAG laser or an Erbium-doped fiber (Er: glass) laser).

微影系統200A亦包括調變系統240。調變系統240為能夠變化或調變光束207之屬性的任何類型之器件。舉例而言,調變系統240可為電光調變器(EOM)、聲光調變器(AOM)或此等器件之組合。調變系統240包括光學元件242。光束207入射於光學元件242上。光學元件242與光束207之間的相互作用會修改光束207之屬性以產生經修改光束208。調變系統240之實例係關於圖3A、圖4及圖5加以論述。EUV光源201A亦包括光學調變系統240與電漿形成區223之間的光學放大器系統230。光學放大器系統230包括光束路徑206上之一或多個光學放大器。每一光學放大器皆包括放大經修改光束208之波長之增益介質。經修改光束208通過光學放大器系統230傳播至電漿形成區223。The lithography system 200A also includes a modulation system 240. The modulation system 240 is any type of device capable of changing or modulating the properties of the light beam 207. For example, the modulation system 240 may be an electro-optical modulator (EOM), an acousto-optical modulator (AOM), or a combination of these devices. The modulation system 240 includes an optical element 242. The light beam 207 is incident on the optical element 242. The interaction between the optical element 242 and the light beam 207 will modify the properties of the light beam 207 to produce a modified light beam 208. Examples of the modulation system 240 are discussed in relation to FIGS. 3A, 4, and 5. The EUV light source 201A also includes an optical amplifier system 230 between the optical modulation system 240 and the plasma formation region 223. The optical amplifier system 230 includes one or more optical amplifiers on the beam path 206. Each optical amplifier includes a gain medium that amplifies the wavelength of the modified light beam 208. The modified light beam 208 propagates to the plasma formation region 223 through the optical amplifier system 230.

EUV光源201A包括產生目標之串流222的供應系統220。串流222中之目標在真空腔室211中朝向電漿形成區223行進。在圖2A之實例中,目標221 (其為串流222之部分)係在電漿形成區223中。串流222中之每一目標皆包括目標材料,其為當處於電漿狀態中時發射EUV光的任何材料。舉例而言,目標材料可包括水、錫、鋰及/或氙。其他材料可用作目標材料。舉例而言,元素錫可用作純錫(Sn);用作錫化合物,例如SnBr4 、SnBr2 、SnH4 ;用作錫合金,例如錫-鎵合金、錫-銦合金、錫-銦-鎵合金或此等合金之任何組合。此外,目標材料可為目標混合物,其包括當處於電漿狀態中時不發射EUV光之雜質,諸如非目標粒子或夾雜粒子。舉例而言,非目標粒子或夾雜粒子可為氧化錫(SnO2 )粒子或鎢(W)粒子。The EUV light source 201A includes a supply system 220 that generates a target stream 222. The target in the stream 222 travels toward the plasma formation region 223 in the vacuum chamber 211. In the example of FIG. 2A, the target 221 (which is part of the stream 222) is in the plasma formation region 223. Each target in the stream 222 includes a target material, which is any material that emits EUV light when in a plasma state. For example, the target material may include water, tin, lithium, and/or xenon. Other materials can be used as target materials. For example, elements can be used as pure tin, tin (of Sn); as tin compounds, e.g. SnBr 4, SnBr 2, SnH 4 ; as tin alloys such as tin - gallium alloy, tin - indium alloys, tin - indium - Gallium alloy or any combination of these alloys. In addition, the target material may be a target mixture, which includes impurities that do not emit EUV light when in a plasma state, such as non-target particles or inclusion particles. For example, the non-target particles or inclusion particles may be tin oxide (SnO 2 ) particles or tungsten (W) particles.

經修改光束208與目標221之間的相互作用產生電漿196,該電漿發射EUV光197。EUV光197與光學元件213相互作用,該光學元件將EUV光197中之至少一些導引至微影裝置280。光學元件213可為收集器鏡面,其具有孔隙,經修改光束208通過該孔隙傳播,且彎曲反射表面面向電漿形成區223且反射及聚焦在EUV範圍內之波長。The interaction between the modified light beam 208 and the target 221 produces a plasma 196, which emits EUV light 197. EUV light 197 interacts with optical element 213, which guides at least some of EUV light 197 to lithography device 280. The optical element 213 may be a collector mirror with an aperture through which the modified light beam 208 propagates, and the curved reflective surface faces the plasma forming region 223 and reflects and focuses on wavelengths in the EUV range.

微影裝置280包括複數個反射光學元件281及282、一光罩284及一隙縫283,其皆在圍封體286中。圍封體286為能夠支撐反射光學元件281及282、光罩284及隙縫283且亦能夠維持該圍封體286內之真空空間的外殼、貯槽或其他結構。The lithography device 280 includes a plurality of reflective optical elements 281 and 282, a mask 284 and a slit 283, which are all in the enclosure 286. The enclosure 286 is a shell, tank, or other structure that can support the reflective optical elements 281 and 282, the mask 284, and the slit 283, and can also maintain the vacuum space in the enclosure 286.

EUV光197進入圍封體286且由光學元件281通過隙縫283朝向光罩284反射。隙縫283為用以在微影程序中掃描晶圓之分散光之形狀。隙縫283之大小為物理量。遞送至基板192之劑量或遞送至基板192之光子數目取決於隙縫283之大小及對隙縫283進行掃描之速度。The EUV light 197 enters the enclosure 286 and is reflected by the optical element 281 through the slit 283 toward the mask 284. The slit 283 is the shape of the scattered light used to scan the wafer in the lithography process. The size of the gap 283 is a physical quantity. The dose delivered to the substrate 192 or the number of photons delivered to the substrate 192 depends on the size of the slit 283 and the speed at which the slit 283 is scanned.

光罩284亦可被稱作倍縮光罩或圖案化器件。光罩284包括表示待形成於基板192上之電子特徵之空間圖案。EUV光197與光罩284相互作用。EUV光197與光罩284之間的相互作用導致光罩284之圖案被賦予至EUV光197上以形成曝光光束191。曝光光束191通過隙縫283且由光學元件282導引至基板192。基板192與曝光光束191之間的相互作用使光罩284之圖案曝光至基板192上,且電子特徵藉此形成於基板192處。基板192包括複數個部分293 (例如晶粒)。每一部分293在Y-Z平面中之面積小於整個基板192在Y-Z平面中之面積。每一部分193可由曝光光束191曝光以包括光罩284之複本,使得每一部分193包括由光罩284上之圖案指示之電子特徵。The mask 284 may also be referred to as a reduction mask or a patterned device. The mask 284 includes a spatial pattern representing the electronic features to be formed on the substrate 192. The EUV light 197 interacts with the mask 284. The interaction between the EUV light 197 and the mask 284 causes the pattern of the mask 284 to be imparted to the EUV light 197 to form an exposure beam 191. The exposure light beam 191 passes through the slit 283 and is guided to the substrate 192 by the optical element 282. The interaction between the substrate 192 and the exposure beam 191 exposes the pattern of the mask 284 to the substrate 192, and electronic features are formed on the substrate 192 thereby. The substrate 192 includes a plurality of parts 293 (eg, dies). The area of each part 293 in the Y-Z plane is smaller than the area of the entire substrate 192 in the Y-Z plane. Each part 193 may be exposed by the exposure beam 191 to include a copy of the photomask 284, so that each part 193 includes the electronic features indicated by the pattern on the photomask 284.

微影系統200A亦包括度量衡系統260。度量衡系統260包括感測器系統262。感測器系統262包括一或多個感測器。感測器系統262亦包括耦接至感測器系統262之電子件模組264。感測器系統262可包括攝影機、感測器、偵測器,或對曝光光束191中之EUV波長敏感的此類器件之任何組合。感測器系統262可包括基板191處之感測器,其經定位成使得其可監測照射於基板上之光或使得其可監測與照射於基板上之光相關的光。感測器系統262可包括經組態以量測真空腔室211中或圍封體286之入口處(例如光學元件281處)的EUV光197之感測器。The lithography system 200A also includes a metrology system 260. The metrology system 260 includes a sensor system 262. The sensor system 262 includes one or more sensors. The sensor system 262 also includes an electronic component module 264 coupled to the sensor system 262. The sensor system 262 may include a camera, a sensor, a detector, or any combination of such devices that are sensitive to the EUV wavelength in the exposure beam 191. The sensor system 262 may include a sensor at the substrate 191 that is positioned so that it can monitor the light irradiated on the substrate or so that it can monitor the light related to the light irradiated on the substrate. The sensor system 262 may include a sensor configured to measure EUV light 197 in the vacuum chamber 211 or at the entrance of the enclosure 286 (for example, at the optical element 281).

電子件模組264包括用於操作感測器系統262之電子組件。舉例而言,電子件模組264可包括能夠驅動感測器系統262以執行某些動作且自感測器系統262獲得資料的電子處理器。另外,電子件模組264產生曝光光束191之一或多個特性(例如強度或能量)之指示或表示254。舉例而言,指示254可包括表示基板192處之強度或光能的數值資料。此外,指示254亦可包括描述此資訊之資料。舉例而言,指示254可包括收集資訊所遍及的時間段。The electronic component module 264 includes electronic components for operating the sensor system 262. For example, the electronic component module 264 may include an electronic processor capable of driving the sensor system 262 to perform certain actions and obtaining data from the sensor system 262. In addition, the electronic component module 264 generates an indication or representation 254 of one or more characteristics (such as intensity or energy) of the exposure beam 191. For example, the indication 254 may include numerical data representing the intensity or light energy at the substrate 192. In addition, the instructions 254 may also include data describing this information. For example, the indication 254 may include the time period during which the information is collected.

度量衡系統260耦接至控制系統250。控制系統250經由通信介面253與度量衡系統260及調變系統240交換資料及/或資訊。舉例而言,控制系統250接收指示254且基於該指示254將觸發或命令信號提供至調變系統240。此外,儘管控制系統250不依賴於能量源203之調變以調變光束207之屬性,但控制系統250可與光學源204交換資料及/或資訊。在控制系統250與光學源204相互作用之實施中,在光學源204與控制系統250之間存在資料鏈路。The metrology system 260 is coupled to the control system 250. The control system 250 exchanges data and/or information with the metrology system 260 and the modulation system 240 via the communication interface 253. For example, the control system 250 receives the instruction 254 and provides a trigger or command signal to the modulation system 240 based on the instruction 254. In addition, although the control system 250 does not rely on the modulation of the energy source 203 to modulate the properties of the light beam 207, the control system 250 can exchange data and/or information with the optical source 204. In the implementation of the interaction between the control system 250 and the optical source 204, there is a data link between the optical source 204 and the control system 250.

控制系統250包括電子處理器251、電子儲存器252及通信介面253。電子處理器251包括適合於執行電腦程式之一或多個處理器,諸如一般或特殊用途微處理器,及任何種類數位電腦之任一或多個處理器。通常,電子處理器自唯讀記憶體、隨機存取記憶體或此兩者接收指令及資料。電子處理器251可為任何類型之電子處理器。The control system 250 includes an electronic processor 251, an electronic storage 252 and a communication interface 253. The electronic processor 251 includes one or more processors suitable for executing computer programs, such as general or special-purpose microprocessors, and any type or types of digital computers. Generally, electronic processors receive commands and data from read-only memory, random access memory, or both. The electronic processor 251 can be any type of electronic processor.

電子儲存器252可為諸如RAM之揮發性記憶體,或非揮發性記憶體。在一些實施中,且電子儲存器252包括非揮發性及揮發性部分或組件。電子儲存器252可儲存用於控制系統250及/或控制系統250之組件之操作中的資料及資訊。舉例而言,電子儲存器252可儲存指示對於一個部分293之可接受的劑量之劑量規格。劑量規格可為單個數值或值範圍。電子儲存器252亦可儲存指令(例如一起形成電腦程式、軟體模組或可調用函數之指令序列),該等指令在經執行時致使處理器251與控制系統250、調變系統240、度量衡系統260及/或微影裝置280中之組件通信。此外,電子儲存器252可儲存指定用於分析指示254之資料處理技術之指令。The electronic storage 252 may be a volatile memory such as RAM, or a non-volatile memory. In some implementations, the electronic storage 252 includes non-volatile and volatile parts or components. The electronic storage 252 can store data and information used in the operation of the control system 250 and/or components of the control system 250. For example, the electronic storage 252 may store a dosage specification indicating an acceptable dosage for a portion 293. The dosage specification can be a single value or a range of values. The electronic storage 252 can also store instructions (for example, a sequence of instructions that together form a computer program, a software module, or a callable function). When executed, these instructions cause the processor 251, the control system 250, the modulation system 240, and the measurement system 260 and/or component communication in the lithography device 280. In addition, the electronic storage 252 can store instructions designated for the data processing technology of the analysis instructions 254.

通信介面253為允許控制系統250接收資料及信號及/或向操作員、調變系統240、光學源204、度量衡系統260及/或執行於另一電子器件上之自動處理程序提供資料及信號的任何種類之電子介面。舉例而言,通信介面253可包括視覺顯示器、鍵盤、網路連接(例如乙太網路連接),及/或能夠接收可聽命令及/或產生音訊輸出之器件。The communication interface 253 allows the control system 250 to receive data and signals and/or provide data and signals to the operator, the modulation system 240, the optical source 204, the metrology system 260, and/or an automatic processing program executed on another electronic device Any kind of electronic interface. For example, the communication interface 253 may include a visual display, a keyboard, a network connection (such as an Ethernet connection), and/or a device capable of receiving audible commands and/or generating audio output.

度量衡系統260及控制系統250在圖2A之實例中被展示為單獨的項目。然而,度量衡系統260之全部或部分可經實施為控制系統250之部分。舉例而言,電子件模組264可由電子處理器251藉由儲存於電子儲存器252上之指令實施。The metrology system 260 and the control system 250 are shown as separate items in the example of FIG. 2A. However, all or part of the metrology system 260 may be implemented as part of the control system 250. For example, the electronic component module 264 can be implemented by the electronic processor 251 by instructions stored in the electronic storage 252.

圖2B為微影系統200B之方塊圖。微影系統200B與系統200A (圖2A)相同,惟微影系統200B包括光學源204B,該光學源包括發射第一光束207_1之第一光學源204_1及發射第二光束207_2之第二光學源204_2除外。光束207_1及207_2可為脈衝式光束。光束207_2之脈衝可被稱作預脈衝,且光束207_1之脈衝可被稱作主脈衝。光束207_1及207_2分別與調變系統240_1及240_2相互作用。調變系統240_1及240_2為調變系統240B之部分。FIG. 2B is a block diagram of the lithography system 200B. The lithography system 200B is the same as the system 200A (FIG. 2A), except that the lithography system 200B includes an optical source 204B, which includes a first optical source 204_1 emitting a first light beam 207_1 and a second optical source 204_2 emitting a second light beam 207_2 except. The light beams 207_1 and 207_2 may be pulsed light beams. The pulse of the beam 207_2 may be referred to as a pre-pulse, and the pulse of the beam 207_1 may be referred to as a main pulse. The light beams 207_1 and 207_2 interact with the modulation systems 240_1 and 240_2, respectively. The modulation systems 240_1 and 240_2 are part of the modulation system 240B.

光束207_2傳播至真空腔室211中之初始目標區223_2。初始目標區223_2相對於電漿形成區223在-x方向上位移且係介於電漿形成區223與供應系統220之間。初始目標區223_2接收串流222中之目標中之一者。在圖2B之實例中,初始目標區223_2中之目標被標註為221i且被稱作初始目標221i。The beam 207_2 propagates to the initial target area 223_2 in the vacuum chamber 211. The initial target area 223_2 is displaced in the −x direction relative to the plasma forming area 223 and is located between the plasma forming area 223 and the supply system 220. The initial target area 223_2 receives one of the targets in the stream 222. In the example of FIG. 2B, the target in the initial target area 223_2 is marked as 221i and is called the initial target 221i.

光束207_2與調變系統240_2相互作用以形成經修改光束208_2。經修改光束208_2在初始目標區223_2處與初始目標221i相互作用,以調節目標221i且形成經修改目標221m。經修改目標221m漂移至電漿形成區223且由光束207_1輻照以形成電漿196。相比於未經調節目標,經修改目標221m較易於吸收光能,且經修改目標221m中之目標材料之較高部分轉換成電漿196。舉例而言,光束207_2與目標221i之間的相互作用可改變初始目標221i中之目標材料之分佈的形狀、體積及/或大小,及/或可縮減目標材料沿著光束207_1之傳播方向之密度梯度。所有此等改變增強經修改目標221m自光束207_1吸收光能之能力且增加轉換成電漿196之目標材料之量。經修改目標221m可為例如與目標221i相比具有較大體積的目標材料之圓盤形分佈。減小之密度導致221m中之目標材料之較高部分轉換成電漿196且因此導致較大量的EUV光。The light beam 207_2 interacts with the modulation system 240_2 to form a modified light beam 208_2. The modified light beam 208_2 interacts with the initial target 221i at the initial target area 223_2 to adjust the target 221i and form a modified target 221m. The modified target 221m drifts to the plasma formation region 223 and is irradiated by the beam 207_1 to form the plasma 196. Compared to the unregulated target, the modified target 221m is easier to absorb light energy, and the higher part of the target material in the modified target 221m is converted into plasma 196. For example, the interaction between the light beam 207_2 and the target 221i can change the shape, volume and/or size of the target material distribution in the initial target 221i, and/or can reduce the density of the target material along the propagation direction of the light beam 207_1 gradient. All these changes enhance the ability of the modified target 221m to absorb light energy from the beam 207_1 and increase the amount of target material converted into plasma 196. The modified target 221m may be, for example, a disk-shaped distribution of target material having a larger volume than the target 221i. The reduced density causes a higher portion of the target material in 221m to be converted into plasma 196 and therefore a greater amount of EUV light.

控制系統250耦接至調變系統240B。以此方式,控制系統250可用以控制初始目標221i之調節參數。舉例而言,控制系統250能夠控制經修改光束208_2之屬性,諸如強度及/或時距。The control system 250 is coupled to the modulation system 240B. In this way, the control system 250 can be used to control the adjustment parameters of the initial target 221i. For example, the control system 250 can control the properties of the modified light beam 208_2, such as intensity and/or time span.

光學源204_1及204_2可為例如兩個雷射。舉例而言,光學源204_1、204_2可為兩個二氧化碳(CO2 )雷射。在其他實施中,光學源204_1、204_2可為不同類型之雷射。舉例而言,光學源204_2可為固態雷射,且光學源204_1可為CO2 雷射。光束207_1、207_2可具有不同波長。舉例而言,在光學源204_1、204_2包括兩個CO2 雷射之實施中,第一光束207_1之波長可為約10.26微米(µm)且第二光束207_2之波長可介於10.18 µm與10.26 µm之間。第二光束207_2之波長可為約10.59 µm。在此等實施中,自CO2 雷射之不同線產生光束207_1、207_2,從而導致該等光束207_1、207_2具有不同波長,儘管兩個光束皆自同一類型之源產生。The optical sources 204_1 and 204_2 can be, for example, two lasers. For example, the optical sources 204_1 and 204_2 may be two carbon dioxide (CO 2 ) lasers. In other implementations, the optical sources 204_1 and 204_2 may be different types of lasers. For example, the optical source 204_2 may be a solid state laser, and the optical source 204_1 may be a CO 2 laser. The light beams 207_1, 207_2 may have different wavelengths. For example, in an implementation where the optical sources 204_1 and 204_2 include two CO 2 lasers, the wavelength of the first beam 207_1 may be about 10.26 micrometers (µm) and the wavelength of the second beam 207_2 may be between 10.18 µm and 10.26 µm between. The wavelength of the second light beam 207_2 may be about 10.59 µm. In these implementations, the beams 207_1 and 207_2 are generated from different lines of the CO 2 laser, resulting in the beams 207_1 and 207_2 having different wavelengths, even though the two beams are both generated from the same type of source.

光束207_1及207_2具有不同能量且可具有不同持續時間。舉例而言,光束207_2之脈衝(或預脈衝)可具有至少1奈秒(ns)之持續時間,舉例而言,預脈衝可具有1 ns至100 ns之持續時間及1 µm或10 µm之波長。在一個實例中,輻射之預脈衝為具有15 mJ至60 mJ之能量、20 ns至70 ns之脈衝持續時間及1 µm至10 µm之波長的雷射脈衝。在一些實例中,預脈衝可具有小於1 ns之持續時間。舉例而言,預脈衝可具有300皮秒(ps)或更小、100 ps或更小、100 ps至300 ps之間或10 ps至100 ps之間的持續時間。The beams 207_1 and 207_2 have different energies and may have different durations. For example, the pulse (or pre-pulse) of the beam 207_2 may have a duration of at least 1 nanosecond (ns), for example, the pre-pulse may have a duration of 1 ns to 100 ns and a wavelength of 1 µm or 10 µm . In one example, the pre-pulse of radiation is a laser pulse with an energy of 15 mJ to 60 mJ, a pulse duration of 20 ns to 70 ns, and a wavelength of 1 µm to 10 µm. In some examples, the pre-pulse may have a duration of less than 1 ns. For example, the pre-pulse may have a duration of 300 picoseconds (ps) or less, 100 ps or less, 100 ps to 300 ps, or 10 ps to 100 ps.

在圖2B之實例中,第一光束207_1及第二光束207_2與單獨調變系統相互作用且在單獨光學路徑上行進。然而,在其他實施中,第一光束207_1及第二光束207_2可共用同一光學路徑之全部或部分且亦可共用同一光束遞送系統。In the example of FIG. 2B, the first beam 207_1 and the second beam 207_2 interact with the separate modulation system and travel on separate optical paths. However, in other implementations, the first beam 207_1 and the second beam 207_2 may share all or part of the same optical path and may also share the same beam delivery system.

亦參看圖2C,光學源204、光學源204_1及/或光學源204_2可包括多於一個光源。圖2C為包括EUV光源201C及光學源204C之微影系統200C的方塊圖。光學源204C可用作光學源204_1及/或光學源204_2。EUV光源201C可為EUV光源201A (圖2A)或EUV光源201B (圖2B)。Referring also to FIG. 2C, the optical source 204, the optical source 204_1, and/or the optical source 204_2 may include more than one light source. FIG. 2C is a block diagram of a lithography system 200C including an EUV light source 201C and an optical source 204C. The optical source 204C can be used as the optical source 204_1 and/or the optical source 204_2. The EUV light source 201C may be the EUV light source 201A (FIG. 2A) or the EUV light source 201B (FIG. 2B).

光學源204C包括第一光學源204_1C及第二光學源204C_2及光束組合器205,該光束組合器將由第一光學源204C_1發射之光束207C_1及由第二光學源204C_2發射之光束光207C_2導引朝向光學調變系統240。光束組合器205可為例如一或多個折射及/或反射器件(諸如鏡面、透鏡及/或稜鏡)。光束207C_1及207C_2與調變系統240相互作用以形成經修改光束208C。光207C_1及207C_2為脈衝式光束。The optical source 204C includes a first optical source 204_1C, a second optical source 204C_2, and a beam combiner 205. The beam combiner guides the beam 207C_1 emitted by the first optical source 204C_1 and the beam 207C_2 emitted by the second optical source 204C_2 toward Optical modulation system 240. The beam combiner 205 may be, for example, one or more refractive and/or reflective devices (such as mirrors, lenses, and/or mirrors). The light beams 207C_1 and 207C_2 interact with the modulation system 240 to form a modified light beam 208C. The lights 207C_1 and 207C_2 are pulsed beams.

光學源204C_1及204C_2可能彼此相同或可能不同。光學源204C_1及204C_2可為例如兩個雷射。舉例而言,光學源204C_1、204C_2可為兩個二氧化碳(CO2 )雷射。在其他實施中,光學源204C_1、204C_2可為不同類型之雷射。舉例而言,光學源204C_2可為固態雷射,且光學源204_1可為CO2 雷射。光束207C_1、207C_2可具有不同波長。舉例而言,在光學源204C_1、204C_2包括兩個CO2 雷射之實施中,第一光束207C_1之波長可為約10.26微米(µm)且第二光束207C_2之波長可介於10.18 µm與10.26 µm之間。第二光束207C_2之波長可為約10.59 µm。在此等實施中,自CO2 雷射之不同線產生光束207C_1、207C_2,從而導致該等光束207C_1、207C_2具有不同波長,儘管兩個光束皆自同一類型之源產生。The optical sources 204C_1 and 204C_2 may be the same or may be different from each other. The optical sources 204C_1 and 204C_2 can be, for example, two lasers. For example, the optical sources 204C_1 and 204C_2 may be two carbon dioxide (CO 2 ) lasers. In other implementations, the optical sources 204C_1 and 204C_2 may be different types of lasers. For example, the optical source 204C_2 may be a solid-state laser, and the optical source 204_1 may be a CO 2 laser. The light beams 207C_1, 207C_2 may have different wavelengths. For example, in an implementation where the optical sources 204C_1 and 204C_2 include two CO 2 lasers, the wavelength of the first beam 207C_1 may be about 10.26 micrometers (µm) and the wavelength of the second beam 207C_2 may be between 10.18 µm and 10.26 µm between. The wavelength of the second light beam 207C_2 may be about 10.59 µm. In these implementations, the light beams 207C_1 and 207C_2 are generated from different lines of the CO 2 laser, resulting in the light beams 207C_1 and 207C_2 having different wavelengths, even though both light beams are generated from the same type of source.

在所展示之實例中,光束207C_1及207C_2係由光束組合器205導引至大體上相同的光束路徑上。然而,光學源204C可在無光束組合器205的情況下予以實施。在此等實施中,光束207C_1及207C_2在單獨路徑上傳播。In the example shown, the beams 207C_1 and 207C_2 are guided by the beam combiner 205 to substantially the same beam path. However, the optical source 204C can be implemented without the beam combiner 205. In these implementations, the light beams 207C_1 and 207C_2 propagate on separate paths.

如上文所提及,光學源204C可用作光學源204、204_1及/或光學源204_2。因此,用於EUV光源201A (圖2A)之光束207可由來自兩個單獨光源之光產生。此外,光束207_1及/或光束207_2 (圖2B)可由來自兩個單獨光源之光產生。如下文所論述,在此等實施中由單獨光源產生之光可被認為係基座部分。As mentioned above, the optical source 204C can be used as the optical source 204, 204_1 and/or the optical source 204_2. Therefore, the light beam 207 for the EUV light source 201A (FIG. 2A) can be generated by light from two separate light sources. In addition, light beam 207_1 and/or light beam 207_2 (FIG. 2B) can be generated by light from two separate light sources. As discussed below, the light generated by a separate light source in these implementations can be considered part of the base.

圖3A展示調變系統340之方塊圖。調變系統340為可用作調變系統140、240、240_1或240_2之調變系統之實例。調變系統340包括電光調變器,其基於電光效應調變光束307以產生經修改光束308。光束307可分別為光束107、207、207_1或207_2,且經修改光束308可分別為經修改光束108、208、208_1或208_2。FIG. 3A shows a block diagram of the modulation system 340. The modulation system 340 is an example of a modulation system that can be used as the modulation system 140, 240, 240_1, or 240_2. The modulation system 340 includes an electro-optic modulator that modulates the light beam 307 based on the electro-optic effect to generate a modified light beam 308. The beam 307 may be the beam 107, 207, 207_1, or 207_2, respectively, and the modified beam 308 may be the modified beam 108, 208, 208_1, or 208_2, respectively.

調變系統340包括在電極344a、344b之間的光學元件342。光學元件342為經歷電光效應之任何材料。電光效應描述由橫越電光材料342施加直流電(DC)或低頻電場或電位差343所造成的電光材料342之折射率改變。電極耦接至電源345,電源345藉由將電極344a及344b保持處於不同電壓而產生電位差343。電源345可為例如電壓源、函數產生器或電源供應器。電極344a、344b為可控制的以形成電場343。舉例而言,控制系統150可致使電源345將電壓信號347提供至電極344a使得電極344a保持處於與電極344b不同的電壓,因此橫越電光材料342產生電場或電位差(V) 343。The modulation system 340 includes an optical element 342 between the electrodes 344a, 344b. The optical element 342 is any material that experiences electro-optical effects. The electro-optical effect describes the change in the refractive index of the electro-optical material 342 caused by applying a direct current (DC) or low-frequency electric field or potential difference 343 across the electro-optical material 342. The electrodes are coupled to a power source 345, and the power source 345 generates a potential difference 343 by keeping the electrodes 344a and 344b at different voltages. The power supply 345 may be, for example, a voltage source, a function generator, or a power supply. The electrodes 344a, 344b are controllable to form an electric field 343. For example, the control system 150 may cause the power supply 345 to provide a voltage signal 347 to the electrode 344a so that the electrode 344a remains at a different voltage from the electrode 344b, thus generating an electric field or potential difference (V) 343 across the electro-optic material 342.

藉由在光束307入射於電光材料342上時控制電光材料342中之電光效應,調變系統340調變光束307之相位、偏振或振幅以形成經修改光束308。電位差343可用以控制調變系統340是否透射光。電場343可用以控制電光材料342使得光束107之僅某一部分或某些部分穿過電光材料342。以此方式,調變系統340自光束107之一部分形成脈衝308 (經修改光束)。脈衝308傳播至真空腔室211,真空腔室211接收目標之串流122。脈衝308與目標相互作用,且該相互作用將目標中之目標材料中之至少一些轉換成發射EUV光197之電漿196。By controlling the electro-optic effect in the electro-optic material 342 when the light beam 307 is incident on the electro-optic material 342, the modulation system 340 modulates the phase, polarization, or amplitude of the light beam 307 to form a modified light beam 308. The potential difference 343 can be used to control whether the modulation system 340 transmits light. The electric field 343 can be used to control the electro-optical material 342 so that only a certain part or some parts of the light beam 107 pass through the electro-optical material 342. In this way, the modulation system 340 forms a pulse 308 (modified beam) from a portion of the beam 107. The pulse 308 propagates to the vacuum chamber 211 and the vacuum chamber 211 receives the stream 122 of the target. The pulse 308 interacts with the target, and the interaction converts at least some of the target material in the target into a plasma 196 that emits EUV light 197.

調變系統340亦包括一或多個以偏振為基礎之光學元件346。在圖3A之實例中,僅展示一個以偏振為基礎之光學元件346。然而,在其他實施中,可包括額外以偏振為基礎之光學元件346。舉例而言,第二以偏振為基礎之光學元件346可在調變系統340之接收光束107之側上。此外,以偏振為基礎之光學元件346被展示為與電光材料342實體上分離,但其他實施係可能的。舉例而言,以偏振為基礎之光學元件346可為形成於電光材料342上以使得以偏振為基礎之光學元件346與電光材料342彼此接觸的膜。The modulation system 340 also includes one or more polarization-based optical elements 346. In the example of FIG. 3A, only one polarization-based optical element 346 is shown. However, in other implementations, additional polarization-based optical elements 346 may be included. For example, the second polarization-based optical element 346 can be on the side of the modulation system 340 that receives the light beam 107. In addition, the polarization-based optical element 346 is shown physically separate from the electro-optic material 342, but other implementations are possible. For example, the polarization-based optical element 346 may be a film formed on the electro-optical material 342 so that the polarization-based optical element 346 and the electro-optical material 342 are in contact with each other.

以偏振為基礎之光學元件346為基於光之偏振狀態與光相互作用的任何光學元件。舉例而言,以偏振為基礎之光學元件346可為透射水平偏振光且阻擋豎直偏振光或者透射豎直偏振光且阻擋水平偏振光的線性偏振器。以偏振為基礎之光學元件346可為透射水平偏振光且反射豎直偏振光之偏振光束分裂器。以偏振為基礎之光學元件346可為除具有特定偏振狀態之光外吸收所有光的光學元件。在一些實施中,以偏振為基礎之光學元件346可包括四分之一波片。至少一個以偏振為基礎之光學元件346經定位以接收穿過電光材料342之光且將某一偏振狀態之光導引至光束路徑106上。The polarization-based optical element 346 is any optical element that interacts with light based on the polarization state of light. For example, the polarization-based optical element 346 may be a linear polarizer that transmits horizontally polarized light and blocks vertical polarized light or transmits vertically polarized light and blocks horizontally polarized light. The polarization-based optical element 346 may be a polarization beam splitter that transmits horizontally polarized light and reflects vertically polarized light. The polarization-based optical element 346 may be an optical element that absorbs all light except for light with a specific polarization state. In some implementations, the polarization-based optical element 346 may include a quarter wave plate. At least one polarization-based optical element 346 is positioned to receive light passing through the electro-optical material 342 and direct light of a certain polarization state onto the beam path 106.

電光材料342可為透射光束307之多個波長中之一者的任何材料。對於光束307包括波長為10.6微米(µm)之光的實施,電光材料342可為例如碲化鋅鎘(CdZnTe或CZT)、碲化鎘(CdTe)、碲化鋅(ZnTe)及/或砷化鎵(GaAs)。在其他波長下可使用其他材料。舉例而言,材料342可為磷酸一鉀(KDP)、磷酸二氫銨(ADP)、石英、氯化亞銅(CuCl)、硫化鋅(ZnS)、硒化鋅(ZnSe)、鈮酸鋰(LiNbO3 )、磷化鎵(GaP)、鉭酸鋰(LiTaO3 )或鈦酸鋇(BaTiO3 )。亦可使用透射光束307之一或多個波長且回應於施加外力而展現雙折射的其他材料作為電光材料342。舉例而言,石英可用作電光材料342。The electro-optical material 342 can be any material that transmits one of the multiple wavelengths of the light beam 307. For implementations where the beam 307 includes light with a wavelength of 10.6 microns (µm), the electro-optical material 342 may be, for example, cadmium zinc telluride (CdZnTe or CZT), cadmium telluride (CdTe), zinc telluride (ZnTe) and/or arsenide Gallium (GaAs). Other materials can be used at other wavelengths. For example, the material 342 may be monopotassium phosphate (KDP), ammonium dihydrogen phosphate (ADP), quartz, cuprous chloride (CuCl), zinc sulfide (ZnS), zinc selenide (ZnSe), lithium niobate ( LiNbO 3 ), gallium phosphide (GaP), lithium tantalate (LiTaO 3 ), or barium titanate (BaTiO 3 ). Other materials that transmit one or more wavelengths of the light beam 307 and exhibit birefringence in response to an external force can also be used as the electro-optical material 342. For example, quartz can be used as the electro-optical material 342.

電光材料342亦展現各向異性。在展現各向異性之材料中,材料之屬性(諸如折射率)在空間上不均一。因此,可藉由施加可控制外力(諸如,電位差(343))而沿著一或多個特定方向修改電光材料342之屬性。舉例而言,可經由施加外力來控制傳播通過材料342之光之不同偏振分量的折射率。因此,可藉由控制電極344a、344b之間的電位差(V)來控制穿過材料342之光的偏振狀態。The electro-optical material 342 also exhibits anisotropy. In a material exhibiting anisotropy, the properties of the material (such as refractive index) are not uniform in space. Therefore, the properties of the electro-optic material 342 can be modified along one or more specific directions by applying a controllable external force (such as a potential difference (343)). For example, the refractive index of different polarization components of light propagating through the material 342 can be controlled by applying an external force. Therefore, the polarization state of the light passing through the material 342 can be controlled by controlling the potential difference (V) between the electrodes 344a and 344b.

在理想操作下,調變系統340僅在施加至電光材料342之電位差343致使穿過電光材料342之光的偏振狀態與以偏振為基礎之光學元件346之偏振條件匹配時才透射光。舉例而言,若以偏振為基礎之光學元件346為經定位以將水平偏振光透射至光束路徑106上的線形偏振器,且光束307在最初入射於電光材料342上時豎直偏振,則僅在施加至電光材料342之電位差343改變光束307之偏振狀態使得光束307在與以偏振為基礎之光學元件346相互作用之前變得水平偏振時才形成脈衝308。Under ideal operation, the modulation system 340 transmits light only when the potential difference 343 applied to the electro-optical material 342 causes the polarization state of the light passing through the electro-optical material 342 to match the polarization condition of the polarization-based optical element 346. For example, if the polarization-based optical element 346 is a linear polarizer positioned to transmit horizontally polarized light to the beam path 106, and the beam 307 is vertically polarized when it is initially incident on the electro-optic material 342, only The pulse 308 is formed when the potential difference 343 applied to the electro-optical material 342 changes the polarization state of the beam 307 so that the beam 307 becomes horizontally polarized before interacting with the polarization-based optical element 346.

每當調變系統340被控制為有意地透射光時,該調變系統340就被視為處於開啟狀態中或經啟動。舉例而言,當經施加電位差343係使得光束307之偏振狀態旋轉以與以偏振為基礎之光學元件346匹配時,光學調變系統340被認為處於開啟狀態中且形成脈衝308。當經施加電位差343係使得預期光束307之偏振狀態與以偏振為基礎之光學元件346正交時,光學調變系統340處於關閉狀態或未經啟動。在理想條件下,當光學調變系統340處於關閉狀態中時,光束307不穿過調變系統340。Whenever the modulation system 340 is controlled to transmit light intentionally, the modulation system 340 is considered to be in an on state or activated. For example, when the applied potential difference 343 rotates the polarization state of the beam 307 to match the polarization-based optical element 346, the optical modulation system 340 is considered to be in the on state and a pulse 308 is formed. When the potential difference 343 is applied such that the polarization state of the expected beam 307 is orthogonal to the polarization-based optical element 346, the optical modulation system 340 is turned off or not activated. Under ideal conditions, when the optical modulation system 340 is in the off state, the light beam 307 does not pass through the modulation system 340.

然而,將電位差343施加至電光材料342會使聲波在電光材料342中傳播。此等聲波可在自電光材料342移除電位差343之後持續。另外,聲波造成電光材料342中之應變,該等應變改變電光材料342之光學屬性且允許入射光穿過調變系統342 (作為光學洩漏),即使在未施加電位差343時亦如此。因此,在實際操作中,調變系統340可透射雜散光(光學洩漏),即使在以偏振為基礎之光學元件346之偏振條件係使得入射於電光材料342上之光不應穿過調變系統340時亦如此。舉例而言,當光學洩漏恰好在形成脈衝308之前存在時,光學洩漏脈衝308上形成基座部分。However, applying the potential difference 343 to the electro-optical material 342 causes sound waves to propagate in the electro-optical material 342. These sound waves can continue after the potential difference 343 is removed from the electro-optical material 342. In addition, acoustic waves cause strains in the electro-optical material 342, which strains change the optical properties of the electro-optical material 342 and allow incident light to pass through the modulation system 342 (as an optical leak), even when the potential difference 343 is not applied. Therefore, in actual operation, the modulation system 340 can transmit stray light (optical leakage), even if the polarization condition of the polarization-based optical element 346 is such that the light incident on the electro-optical material 342 should not pass through the modulation system The same was true at 340. For example, when the optical leakage exists just before the formation of the pulse 308, the optical leakage pulse 308 forms a pedestal portion.

亦參看圖3B及圖3C,展示光束307之脈衝之實例及藉由與光學調變器340相互作用而形成之經修改光學脈衝308之實例的說明。圖3B展示脈衝307依據時間而變化之強度,且圖3C展示脈衝308依據時間而變化之強度。(應注意,圖3B之時間刻度與圖3A之時間刻度相比被拉伸)。脈衝308包括基座部分367及主要部分368。Referring also to FIGS. 3B and 3C, an illustration of an example of the pulse of the light beam 307 and an example of a modified optical pulse 308 formed by interaction with the optical modulator 340 is shown. Figure 3B shows the intensity of pulse 307 as a function of time, and Figure 3C shows the intensity of pulse 308 as a function of time. (It should be noted that the time scale in Figure 3B is stretched compared to the time scale in Figure 3A). The pulse 308 includes a base part 367 and a main part 368.

脈衝307具有大致高斯的時間量變曲線(強度對時間)。脈衝307與調變系統340相互作用以形成脈衝308。控制系統150控制調變系統340以提取脈衝307之特定部分365。在圖3B之實例中,在時間t=ta時,調變系統340經設定為透射光,且在時間t=tb時,調變系統340經設定為阻擋光。換言之,光學調變系統340僅意欲在部分365中透射光(其為在時間ta與時間tb之間在脈衝307中的光)。舉例而言,控制系統250可藉由施加電壓信號347來控制調變系統340以在時間ta時透射光,使得穿過電光材料342之光具有與以偏振為基礎之光學元件346之偏振匹配的偏振。可藉由移除電壓信號347來控制調變系統340以在時間tb時停止透射光。The pulse 307 has an approximately Gaussian time-quantity curve (intensity versus time). The pulse 307 interacts with the modulation system 340 to form a pulse 308. The control system 150 controls the modulation system 340 to extract the specific part 365 of the pulse 307. In the example of FIG. 3B, at time t=ta, the modulation system 340 is set to transmit light, and at time t=tb, the modulation system 340 is set to block light. In other words, the optical modulation system 340 is only intended to transmit light in the portion 365 (which is the light in the pulse 307 between time ta and time tb). For example, the control system 250 can control the modulation system 340 by applying a voltage signal 347 to transmit light at time ta, so that the light passing through the electro-optical material 342 has a polarization matching with the polarization of the polarization-based optical element 346 polarization. The modulation system 340 can be controlled by removing the voltage signal 347 to stop transmitting light at time tb.

然而,由於電光材料342中之聲波(或其他干擾,諸如以偏振為基礎之光學元件346之未預期運動),光學洩漏可在ta之前的時間及/或在時間tb之後的時間由調變系統340透射。在圖3B之實例中,洩漏光364為恰好在時間ta之前發生的光學洩漏。洩漏光364恰好在部分365之前穿過調變系統340。However, due to the acoustic waves in the electro-optical material 342 (or other interference, such as the unexpected movement of the polarization-based optical element 346), the optical leakage can be caused by the modulation system at the time before ta and/or at the time after the time tb. 340 transmission. In the example of FIG. 3B, the leakage light 364 is an optical leakage that occurred just before the time ta. The leakage light 364 passes through the modulation system 340 just before the portion 365.

參看圖3C,洩漏光364形成基座部分366。在所展示之實例中,基座部分366在被標註為367之窗口期間出現,且基座部分366在時間上早於脈衝308之其餘部分出現。光學脈衝308之並非基座部分366的部分被稱作主要部分368。基座部分366及主要部分368兩者皆為光學脈衝308之部分,且基座部分366在時間上連接至主要部分368。換言之,在圖3C之實例中,不存在在基座部分366與主要部分368之間無光的時段。Referring to FIG. 3C, the leakage light 364 forms the base portion 366. In the example shown, the base portion 366 appears during the window labeled 367, and the base portion 366 appears earlier in time than the rest of the pulse 308. The part of the optical pulse 308 that is not the base part 366 is called the main part 368. Both the base portion 366 and the main portion 368 are parts of the optical pulse 308, and the base portion 366 is connected to the main portion 368 in time. In other words, in the example of FIG. 3C, there is no period of no light between the base portion 366 and the main portion 368.

基座部分366具有與主要部分368不同的時間量變曲線(依據時間而變化的強度)。舉例而言,基座部分366之平均及最大強度以及光能小於主要部分368之平均及最大強度以及光能。此外,基座部分366之形狀不同於主要部分368之形狀。另外,基座部分366之特性(例如,強度、時間量變曲線及/或持續時間)不同於在無任何光學洩漏之情況下形成之脈衝的早期部分的特性。The base portion 366 has a time-quantity change curve (intensity that varies with time) different from that of the main portion 368. For example, the average and maximum intensity and light energy of the base portion 366 are less than the average and maximum intensity and light energy of the main portion 368. In addition, the shape of the base part 366 is different from the shape of the main part 368. In addition, the characteristics of the base portion 366 (eg, intensity, time-quantity curve, and/or duration) are different from the characteristics of the early portion of the pulse formed without any optical leakage.

經修改脈衝308係由放大器系統230放大以形成經放大之經修改脈衝。經放大之經修改脈衝包括基座部分366及主要部分368,其中經放大之經修改脈衝之每一部分366、368具有大於該經修改脈衝308之對應部分的強度。在圖3C之實例中,基座部分366在主要部分368之前出現且在主要部分368之前到達目標221。在一些實施中,主要部分368具有足以將目標221中之目標材料中之至少一些轉換成發射EUV光197之電漿196的強度或能量。The modified pulse 308 is amplified by the amplifier system 230 to form an amplified modified pulse. The amplified modified pulse includes a base portion 366 and a main portion 368, wherein each portion 366, 368 of the amplified modified pulse has an intensity greater than the corresponding portion of the modified pulse 308. In the example of FIG. 3C, the base portion 366 appears before the main portion 368 and reaches the target 221 before the main portion 368. In some implementations, the main portion 368 has sufficient intensity or energy to convert at least some of the target materials in the target 221 into plasma 196 that emits EUV light 197.

基座部分366並不具有與主要部分368一樣多的能量,且可能具有或可能不具有足以將目標材料轉換成電漿的能量。然而,基座部分366中之光可使來自目標221之表面之材料蒸發、折斷目標221之部分,且調節目標221使得屬性(例如密度、形狀及/或大小)對於電漿產生更有利。因而,基座部分366之屬性允許對所產生之EUV光之量及曝光光束191之特性進行控制。基座部分366之屬性可藉由控制光學洩漏之量來控制。控制系統250以各種方式且基於指示154來控制光學洩漏(此實例中之洩漏光364)之量。The base portion 366 does not have as much energy as the main portion 368, and may or may not have enough energy to convert the target material into plasma. However, the light in the base portion 366 can evaporate the material from the surface of the target 221, break the part of the target 221, and adjust the target 221 so that the properties (such as density, shape, and/or size) are more favorable for plasma generation. Thus, the properties of the base portion 366 allow control of the amount of EUV light generated and the characteristics of the exposure beam 191. The properties of the base portion 366 can be controlled by controlling the amount of optical leakage. The control system 250 controls the amount of optical leakage (the leakage light 364 in this example) in various ways and based on the indication 154.

提供關於圖3B及圖3C所論述之脈衝308作為經修改光學脈衝308之一個實例。該脈衝308可具有其他形式。舉例而言,洩漏光364可在時間ta之前出現,使得基座部分366與主要部分368分離。在此等實施中,存在在基座部分366與主要部分368之間無光的時段。此外,洩漏光364可在時間tb之後出現,使得基座部分366在主要部分368之後出現。在此等實施中,基座部分366在主要部分368之後到達目標221。在一些實施中,洩漏光364在時間ta之前且在時間tb之後出現,使得在主要部分368之每一側上存在基座部分366。The pulse 308 discussed with respect to FIGS. 3B and 3C is provided as an example of a modified optical pulse 308. The pulse 308 may have other forms. For example, the leakage light 364 may appear before the time ta, so that the base portion 366 is separated from the main portion 368. In such implementations, there are periods of no light between the base portion 366 and the main portion 368. In addition, the leakage light 364 may appear after the time tb, so that the base portion 366 appears after the main portion 368. In these implementations, the base portion 366 reaches the target 221 after the main portion 368. In some implementations, the leakage light 364 occurs before time ta and after time tb such that there is a base portion 366 on each side of the main portion 368.

此外,基座部分366可在時間上相對於主要部分368分離,且基座部分366可包括主要部分368中不包括的波長。在一些實施中,基座部分366為由單獨光源產生之光脈衝。舉例而言,當諸如光學源207C (圖2C)之光學源用以形成光束307時,基座部分366可由單獨光源產生。在基座部分366係由單獨光源產生之實施中,基座部分366與光學調變器340相互作用,且基座366之屬性係藉由基於指示254控制光學調變器340予以調整。In addition, the base part 366 may be separated from the main part 368 in time, and the base part 366 may include wavelengths not included in the main part 368. In some implementations, the base portion 366 is a light pulse generated by a separate light source. For example, when an optical source such as the optical source 207C (FIG. 2C) is used to form the light beam 307, the base portion 366 may be generated by a separate light source. In an implementation where the base portion 366 is generated by a separate light source, the base portion 366 interacts with the optical modulator 340, and the properties of the base 366 are adjusted by controlling the optical modulator 340 based on the indication 254.

圖3D展示實驗資料300D之實例。x軸展示經正規化至達成最大轉換效率(CE)所需之總基座強度之百分比的基座部分(諸如圖3C之基座366)之總強度。轉換效率為轉換成電漿196之目標材料之部分的指示。基座366之總強度為整個基座366中之強度。最大CE取決於EUV光源之各種屬性。在圖3D之實例中,用於光源之最大正規化CE在y軸上被表示為100%。然而,用於光源之最大真正(非正規化) CE通常小於100%。基座之最佳總強度在圖3D之x軸上被表示為100。Figure 3D shows an example of experimental data 300D. The x-axis shows the total strength of the base portion (such as the base 366 of FIG. 3C) normalized to a percentage of the total base strength required to achieve maximum conversion efficiency (CE). The conversion efficiency is an indication of the portion of the target material converted into the plasma 196. The total strength of the base 366 is the strength of the entire base 366. The maximum CE depends on various properties of the EUV light source. In the example of Figure 3D, the maximum normalized CE for the light source is represented as 100% on the y-axis. However, the maximum true (non-normalized) CE for the light source is usually less than 100%. The optimal total strength of the base is shown as 100 on the x-axis in Figure 3D.

實驗資料300D包括在以下兩個不同EUV源上獲得之資料:EUV源1 (以X符號表示)及EUV源2 (由空心圓符號表示)。如由實驗資料300D所展示,藉由變化基座366之總強度,可使CE變化約13%。基座366之判定基座366之總強度的屬性(諸如(例如)最大或平均強度或時距)可受到調變系統240控制。EUV光197之量取決於CE。因此,曝光光束191及/或EUV光197之特性可藉由控制基座366之屬性來控制。The experimental data 300D includes data obtained on the following two different EUV sources: EUV source 1 (indicated by the X symbol) and EUV source 2 (indicated by the open circle symbol). As shown by the experimental data 300D, by changing the total strength of the base 366, the CE can be changed by about 13%. The properties of the base 366 that determine the total intensity of the base 366 (such as, for example, the maximum or average intensity or time interval) can be controlled by the modulation system 240. The amount of EUV light 197 depends on CE. Therefore, the characteristics of the exposure beam 191 and/or the EUV light 197 can be controlled by controlling the properties of the base 366.

控制系統250可藉由經由電壓信號347控制洩漏光來控制基座366之強度及/或時距,從而控制光束207之屬性。控制系統250控制電源345以產生電壓信號347且將電壓信號347施加至電極344a、344b。圖4A展示依據時間而變化的電壓信號347_1及347_2之標繪圖。電壓信號347_1及347_2為電壓信號347之實例。The control system 250 can control the intensity and/or time interval of the base 366 by controlling the leakage light via the voltage signal 347, thereby controlling the properties of the light beam 207. The control system 250 controls the power supply 345 to generate a voltage signal 347 and apply the voltage signal 347 to the electrodes 344a, 344b. FIG. 4A shows plots of voltage signals 347_1 and 347_2 that vary with time. The voltage signals 347_1 and 347_2 are examples of the voltage signal 347.

電壓信號347_1在調變系統240處於關閉狀態中時具有為0 V之振幅。調變系統240在時間ta之前處於關閉狀態。在時間ta時,電壓信號347_1之振幅增加至電壓349。電壓349為大於零之電壓及足以改變電光材料342之折射率之電壓。在時間tb時,調變系統240返回至關閉狀態,且電壓信號347_2之振幅返回至0 V。基座366係由如上文所論述之洩漏光364形成。The voltage signal 347_1 has an amplitude of 0 V when the modulation system 240 is in the off state. The modulation system 240 is in the off state before the time ta. At time ta, the amplitude of the voltage signal 347_1 increases to the voltage 349. The voltage 349 is a voltage greater than zero and a voltage sufficient to change the refractive index of the electro-optical material 342. At time tb, the modulation system 240 returns to the off state, and the amplitude of the voltage signal 347_2 returns to 0V. The base 366 is formed by the leakage light 364 as discussed above.

電壓信號347_2包括偏壓電壓348。偏壓電壓348大於零。當電壓信號347_2用作電壓信號347時,偏壓電壓348被施加至電極344a、344b,使得當調變系統240處於關閉狀態中時存在橫越電光材料242之電位差343。在一些實施中,偏壓電壓348始終被施加至電極344a、344b。偏壓電壓348為大於零且小於電壓349的恆定電壓(直流或DC電壓)。在時間ta時,調變系統240處於開啟狀態中,且電壓信號347_2之量值自偏壓電壓348增加至電壓349。在時間tb時,調變系統240處於關閉狀態中,且電壓信號347_2之量值返回至偏壓電壓348。The voltage signal 347_2 includes a bias voltage 348. The bias voltage 348 is greater than zero. When the voltage signal 347_2 is used as the voltage signal 347, the bias voltage 348 is applied to the electrodes 344a, 344b, so that there is a potential difference 343 across the electro-optical material 242 when the modulation system 240 is in the off state. In some implementations, the bias voltage 348 is always applied to the electrodes 344a, 344b. The bias voltage 348 is a constant voltage (direct current or DC voltage) greater than zero and less than the voltage 349. At time ta, the modulation system 240 is in the on state, and the magnitude of the voltage signal 347_2 increases from the bias voltage 348 to the voltage 349. At time tb, the modulation system 240 is in the off state, and the magnitude of the voltage signal 347_2 returns to the bias voltage 348.

當電壓信號347_2用作電壓信號347時,當將偏壓電壓施加至電光材料342時存在洩漏光。因此,基座366與由洩漏光364形成之基座相比可具有較長時距。此外,當藉由將偏壓電壓348施加至電光材料342而形成基座366時,基座366可在主要部分368之前及/或在主要部分368之後出現。在此等實施中,調變系統340可包括修改或縮減基座部分366之時距之額外組件。舉例而言且亦參看圖4B,經修改光束308可與聲光調變器444相互作用以移除基座部分366中之一些。When the voltage signal 347_2 is used as the voltage signal 347, there is leakage light when the bias voltage is applied to the electro-optical material 342. Therefore, the susceptor 366 can have a longer time interval compared to the susceptor formed by the leakage light 364. In addition, when the pedestal 366 is formed by applying the bias voltage 348 to the electro-optic material 342, the pedestal 366 may appear before the main portion 368 and/or after the main portion 368. In such implementations, the modulation system 340 may include additional components that modify or reduce the time interval of the base portion 366. For example and referring also to FIG. 4B, the modified light beam 308 can interact with the acousto-optic modulator 444 to remove some of the base portion 366.

控制系統250亦可經由操控調變系統240中之偏振元件來控制洩漏光。圖5為光學調變系統540之方塊圖。可代替調變系統140 (圖1)、調變系統240 (圖2A)、調變系統240_1 (圖2B)或調變系統240_2 (圖2B)來使用該調變系統540。The control system 250 can also control the leakage light by manipulating the polarization element in the modulation system 240. FIG. 5 is a block diagram of the optical modulation system 540. The modulation system 540 can be used instead of the modulation system 140 (FIG. 1), the modulation system 240 (FIG. 2A), the modulation system 240_1 (FIG. 2B), or the modulation system 240_2 (FIG. 2B).

調變系統540包括第一偏振元件546_1、第二偏振元件546_2及第三偏振元件546_3。調變系統540亦包括第一EOM 540_1及第二EOM 540_2。第一EOM 540_1係在第一偏振元件546_1與第二偏振元件546_2之間,且第二EOM 540_2係在第二偏振元件546_2與第三偏振元件546_3之間。在圖5之實例中,第一偏振元件546_1及第三偏振元件546_3透射在Y方向上線性偏振的光,且偏振元件546_2透射在X方向上線性偏振的光。EOM 540_1及540_2基於如關於EOM 340 (圖3A)所論述之施加電壓來調變入射光。The modulation system 540 includes a first polarization element 546_1, a second polarization element 546_2, and a third polarization element 546_3. The modulation system 540 also includes a first EOM 540_1 and a second EOM 540_2. The first EOM 540_1 is between the first polarization element 546_1 and the second polarization element 546_2, and the second EOM 540_2 is between the second polarization element 546_2 and the third polarization element 546_3. In the example of FIG. 5, the first polarization element 546_1 and the third polarization element 546_3 transmit light linearly polarized in the Y direction, and the polarization element 546_2 transmits light linearly polarized in the X direction. EOM 540_1 and 540_2 modulate incident light based on the applied voltage as discussed with EOM 340 (FIG. 3A).

在圖5之實例中,當EOM 540_1使入射光之偏振自Y方向旋轉至X方向時及當EOM 540_2使入射光之偏振自X方向旋轉至Y方向時,調變系統540透射光且處於開啟狀態中。當EOM 540_2及EOM 540_1並不使入射光之偏振旋轉時,調變系統540處於關閉狀態中。因此,當不將電壓施加至EOM 540_1及/或EOM 540_2時或當將不足以改變入射光之偏振狀態之電壓施加至EOM 540_1及/或EOM 540_2時,調變系統540關閉。In the example of Figure 5, when EOM 540_1 rotates the polarization of incident light from Y direction to X direction and when EOM 540_2 rotates the polarization of incident light from X direction to Y direction, the modulation system 540 transmits light and is turned on Status. When EOM 540_2 and EOM 540_1 do not rotate the polarization of incident light, the modulation system 540 is in the off state. Therefore, when no voltage is applied to the EOM 540_1 and/or EOM 540_2 or when a voltage that is insufficient to change the polarization state of the incident light is applied to the EOM 540_1 and/or EOM 540_2, the modulation system 540 is turned off.

光學調變系統540調變光束307以產生經修改光束308。經修改光束308可具有基座部分366。基座部分366之時距及/或強度可藉由控制洩漏光之量來控制。為了使洩漏光變化,控制系統250可發佈命令以控制耦接至第三偏振元件546_3之機械安裝台541。該命令致使機械安裝台541使第三偏振元件546_3相對於Y軸旋轉使得光被允許通過該元件546_3,即使當EOM 540_2並不使入射光之偏振自沿著X方向線性偏振之狀態旋轉至沿著Y方向線性偏振之狀態時亦如此。舉例而言,當控制系統250已命令第三偏振元件546_3自Y軸旋轉幾度時,EOM 540_2可透射在X方向上線性偏振之光。在此實例中,第三偏振元件透射洩漏光。隨後,將電壓信號347施加至EOM 540_2,且EOM 540_2使待沿著Y方向線性偏振之入射光之偏振旋轉且形成主要部分368。在此實例中,主要部分368具有基於洩漏光之基座。The optical modulation system 540 modulates the light beam 307 to produce a modified light beam 308. The modified light beam 308 may have a base portion 366. The time interval and/or intensity of the base portion 366 can be controlled by controlling the amount of leakage light. In order to change the leakage light, the control system 250 can issue a command to control the mechanical mounting table 541 coupled to the third polarization element 546_3. This command causes the mechanical mounting table 541 to rotate the third polarizing element 546_3 relative to the Y axis so that light is allowed to pass through the element 546_3, even when the EOM 540_2 does not rotate the polarization of the incident light from linear polarization along the X direction to The same is true for the state of linear polarization in the Y direction. For example, when the control system 250 has commanded the third polarization element 546_3 to rotate a few degrees from the Y axis, the EOM 540_2 can transmit light linearly polarized in the X direction. In this example, the third polarizing element transmits the leaked light. Subsequently, the voltage signal 347 is applied to the EOM 540_2, and the EOM 540_2 rotates the polarization of the incident light to be linearly polarized along the Y direction and forms the main portion 368. In this example, the main part 368 has a base based on leaking light.

相似地,偏振元件346 (圖3A)可被置放於機械安裝台上且基於來自控制系統250之命令旋轉以控制洩漏光之量及時距。Similarly, the polarization element 346 (FIG. 3A) can be placed on a mechanical mounting table and rotated based on a command from the control system 250 to control the amount and time interval of the leaked light.

圖6為程序600之流程圖。程序600為用於基於曝光光束之特性之指示控制EUV光源中之光束之屬性的程序之實例。該程序600可由控制系統250之電子處理器251中之一或多者來執行。該程序600係關於調變系統240、340及540來論述。然而,程序600可由其他控制系統執行且可與其他調變系統一起使用。FIG. 6 is a flowchart of the procedure 600. The program 600 is an example of a program for controlling the properties of the beam in the EUV light source based on the indication of the characteristics of the exposure beam. The program 600 can be executed by one or more of the electronic processors 251 of the control system 250. The program 600 is discussed about the modulation systems 240, 340, and 540. However, the procedure 600 can be executed by other control systems and can be used with other modulation systems.

接收(610)指示254。指示254包括與曝光光束191之特性相關之資訊。舉例而言,指示254可包括表達在基板192之部分293處所接收之劑量的資料。劑量為在一段時間內接收之光能之量。在此等實施中,指示254係由感測基板192處之EUV光之感測器產生。該感測器為感測器系統262之部分。其他實施係可能的。舉例而言,指示254可為在電漿形成區223 (圖2A)處所產生之EUV光197之量的指示。在此等實施中,指示可由處於真空腔室211中之感測器產生或由處於微影裝置280中且經定位以在與光罩284相互作用之前量測EUV光197的感測器產生。Receive (610) instructions 254. The indication 254 includes information related to the characteristics of the exposure light beam 191. For example, the indication 254 may include data expressing the dose received at the portion 293 of the substrate 192. Dose is the amount of light energy received in a period of time. In these implementations, the indication 254 is generated by a sensor that senses EUV light at the substrate 192. The sensor is part of the sensor system 262. Other implementations are possible. For example, the indicator 254 may be an indicator of the amount of EUV light 197 generated at the plasma formation region 223 (FIG. 2A). In these implementations, the indication may be generated by a sensor in the vacuum chamber 211 or by a sensor in the lithography device 280 and positioned to measure EUV light 197 before interacting with the photomask 284.

分析(620)指示254。在指示包括經量測劑量之實施中,分析包括比較經量測劑量與劑量規格。劑量規格為指定針對基板192之一部分293之可接受的劑量之值或值範圍。若經量測劑量低於規格,則極少的EUV光到達部分293,且電子特徵可能會部分形成或者不完整。若經量測劑量高於規格,則過多的EUV光到達部分293,且該部分被曝光過度且電子特徵再次不恰當地形成。若劑量在規格內或等於規格,則正確量之光到達部分293且電子特徵很可能適當地且完全地形成。Analysis (620) indicates 254. In an implementation where the indication includes a measured dose, the analysis includes comparing the measured dose to a dosage specification. The dose specification is a value or range of values specifying an acceptable dose for a portion 293 of the substrate 192. If the measured dose is lower than the specification, very little EUV light reaches the portion 293, and the electronic features may be partially formed or incomplete. If the measured dose is higher than the specification, too much EUV light reaches the portion 293, the portion is overexposed and the electronic features are again inappropriately formed. If the dose is within or equal to the specification, the correct amount of light reaches the portion 293 and the electronic features are likely to be properly and completely formed.

控制系統250使用關於經量測劑量之資訊以控制光束207之一或多個屬性(630)。舉例而言,若經量測劑量指示極少的光到達部分293,則控制系統250以使得將產生更多EUV光之方式來控制調變系統240。舉例而言,調變系統240可經實施為EOM 340。在此等實施中,控制系統250控制電壓信號347及/或操控偏振元件346使得形成基座366以調節目標221,使得產生更多EUV光197。The control system 250 uses the information about the measured dose to control one or more attributes of the light beam 207 (630). For example, if the measured dose indicates that very little light reaches the portion 293, the control system 250 controls the modulation system 240 in such a way that more EUV light will be generated. For example, the modulation system 240 may be implemented as an EOM 340. In these implementations, the control system 250 controls the voltage signal 347 and/or manipulates the polarizing element 346 to form the base 366 to adjust the target 221 so that more EUV light 197 is generated.

若經量測劑量在劑量規格內或超過劑量規格,則控制系統250向微影裝置280發佈指示部分293不應由曝光光束191進一步曝光之命令。作為回應,微影裝置280移動基板192及/或曝光光束191使得曝光不同部分293。If the measured dose is within or exceeds the dose specification, the control system 250 issues a command to the lithography device 280 indicating that the portion 293 should not be further exposed by the exposure beam 191. In response, the lithography device 280 moves the substrate 192 and/or the exposure beam 191 to expose different portions 293.

此外,若經量測劑量指示過多的光到達部分293,則控制系統250可控制光學調變系統240使得縮減劑量之光到達下一部分293。舉例而言,控制系統250可藉由阻擋光束207之一些部分而縮減到達基板192之EUV光之總量,以藉此縮減遍及一時間窗所產生之EUV光197之量。舉例而言,光束207可為脈衝式光束,且控制系統250可啟動調變系統240以阻擋或極大地縮減每第三個或第四個脈衝之強度使得產生較少EUV光197且縮減劑量。In addition, if the measured dose indicates that too much light reaches the portion 293, the control system 250 can control the optical modulation system 240 so that the reduced dose light reaches the next portion 293. For example, the control system 250 can reduce the total amount of EUV light reaching the substrate 192 by blocking some parts of the light beam 207, thereby reducing the amount of EUV light 197 generated throughout a time window. For example, the light beam 207 may be a pulsed light beam, and the control system 250 may activate the modulation system 240 to block or greatly reduce the intensity of every third or fourth pulse so that less EUV light 197 is generated and the dose is reduced.

分析指示254 (620)可採取其他形式。舉例而言,代替劑量,指示254可為在微影裝置280之入口處之經量測EUV光之量(例如EUV光之強度)的指示。在此等實施中,將經量測EUV光之量與目標量或規格進行比較。若經量測EUV光之量低於規格,則控制系統250以增加所產生EUV光197之量之方式作用於調變系統240。若經量測EUV光之量高於規格,則控制系統250向微影裝置280發佈部分293之曝光係完全的指示。控制系統250亦可以減小所產生EUV光之量之方式作用於調變系統240。Analysis instructions 254 (620) may take other forms. For example, instead of the dose, the indicator 254 may be an indicator of the measured amount of EUV light (such as the intensity of EUV light) at the entrance of the lithography device 280. In these implementations, the measured amount of EUV light is compared with the target amount or specification. If the measured amount of EUV light is lower than the specification, the control system 250 acts on the modulation system 240 by increasing the amount of EUV light 197 generated. If the measured amount of EUV light is higher than the specification, the control system 250 issues an instruction to the lithography device 280 that the exposure of the part 293 is complete. The control system 250 can also act on the modulation system 240 by reducing the amount of EUV light generated.

在指示254為EUV光之經量測量之指示的實施中,控制系統250可將EUV光之經量測量應用至隙縫283及光罩284之模型以估計對應於EUV光之經量測量的劑量。隙縫283之模型可為例如低通濾波器,其模擬隙縫283且因此估計遞送至基板191之光之量。在此等實施中,可將所估計劑量與劑量規格進行比較。In the implementation where the indication 254 is an indication of the EUV light flux measurement, the control system 250 can apply the EUV light flux measurement to the model of the slit 283 and the mask 284 to estimate the dose corresponding to the EUV light flux measurement. The model of the slit 283 may be, for example, a low-pass filter, which simulates the slit 283 and therefore estimates the amount of light delivered to the substrate 191. In such implementations, the estimated dose can be compared with the dose specification.

圖7A為包括源收集器模組SO之微影系統700的方塊圖。微影系統700為微影系統100之實例。微影系統700亦包括:經組態以調節輻射光束B之照明系統IL。輻射光束B可為自源收集器模組SO發射之EUV光束。微影系統700亦包括經建構以支撐圖案化器件MA之支撐結構MT。支撐結構MT可為例如光罩台,且圖案化器件MA可為例如光罩或倍縮光罩。當輻射光束B與圖案化器件MA相互作用時,與圖案化器件MA相關聯之空間圖案被賦予至輻射光束B上。支撐結構MT耦接至經組態以定位圖案化器件MA之第一定位器PM。另外,裝置700包括其經建構以固持基板W之基板台WT,該基板W可為例如抗蝕劑塗佈晶圓。基板台WT連接至經組態以定位基板W之第二定位器PW。系統700亦包括經組態以將經圖案化輻射光束E (亦被稱作曝光光E或曝光光束E)投影至基板W之目標部分C上之投影系統PS。目標部分C可為基板W之任何部分。在圖7A之實例中,基板W包括複數個晶粒D,且目標部分C包括晶粒D中之多於一者。FIG. 7A is a block diagram of the lithography system 700 including the source collector module SO. The lithography system 700 is an example of the lithography system 100. The lithography system 700 also includes: an illumination system IL configured to adjust the radiation beam B. The radiation beam B may be an EUV beam emitted from the source collector module SO. The lithography system 700 also includes a support structure MT constructed to support the patterned device MA. The support structure MT can be, for example, a photomask stage, and the patterned device MA can be, for example, a photomask or a reduction photomask. When the radiation beam B interacts with the patterned device MA, the spatial pattern associated with the patterned device MA is imparted to the radiation beam B. The support structure MT is coupled to a first positioner PM configured to position the patterned device MA. In addition, the apparatus 700 includes a substrate table WT configured to hold a substrate W, which may be, for example, a resist coated wafer. The substrate table WT is connected to a second positioner PW configured to position the substrate W. The system 700 also includes a projection system PS configured to project a patterned radiation beam E (also referred to as exposure light E or exposure beam E) onto a target portion C of the substrate W. The target portion C can be any portion of the substrate W. In the example of FIG. 7A, the substrate W includes a plurality of die D, and the target portion C includes more than one of the die D.

照明系統IL包括用於導引、塑形及/或控制輻射光束B及曝光光E的光學組件。該等光學組件可包括折射、反射、磁性、電磁、靜電或任何其他類型之光學組件。The illumination system IL includes optical components for guiding, shaping and/or controlling the radiation beam B and the exposure light E. The optical components may include refractive, reflective, magnetic, electromagnetic, electrostatic or any other types of optical components.

支撐結構MT以取決於圖案化器件MA之定向、微影系統700之設計及/或其他條件(諸如(例如)圖案化器件MA是否被固持於真空環境中)之方式來固持圖案化器件MA。支撐結構MT可使用機械、真空、靜電及/或其他夾持技術以固持圖案化器件MA。支撐結構MT可為(例如)框架或台,其可固定或可移動。支撐結構MT可確保圖案化器件MA (例如)相對於投影系統PS處於所要位置。The support structure MT holds the patterned device MA in a manner that depends on the orientation of the patterned device MA, the design of the lithography system 700, and/or other conditions (such as, for example, whether the patterned device MA is held in a vacuum environment). The support structure MT may use mechanical, vacuum, electrostatic and/or other clamping techniques to hold the patterned device MA. The support structure MT may be, for example, a frame or a table, which may be fixed or movable. The support structure MT can ensure that the patterned device MA (for example) is in a desired position relative to the projection system PS.

圖案化器件MA為可用以將圖案賦予至輻射光束B上之任何器件。圖案化器件MA可為透射的或反射的。圖案化器件之實例包括光罩、可程式化鏡面陣列,及可程式化LCD面板。在圖案化器件MA為光罩之實施中,圖案化器件MA可為例如二元光罩、交變相移光罩,或衰減式相移或混合光罩類型。在圖案化器件MA為可程式化鏡面陣列之實施中,圖案化器件MA包括鏡面之矩陣配置,該等鏡面中之每一者可個別地傾斜使得該等鏡面中之每一者能夠在不同方向上反射輻射光束B,該方向並不取決於輻射光束B由該矩陣中之其他鏡面反射之方向。被賦予至入射光上之圖案係藉由矩陣中之各個鏡面之位置予以判定。該圖案可對應於基板W之目標部分C中所產生之器件中的特定功能層。舉例而言,該圖案可對應於一起形成積體電路之電子特徵。The patterned device MA is any device that can be used to impart a pattern to the radiation beam B. The patterned device MA may be transmissive or reflective. Examples of patterned devices include photomasks, programmable mirror arrays, and programmable LCD panels. In an implementation where the patterned device MA is a photomask, the patterned device MA can be, for example, a binary photomask, an alternating phase shift photomask, or an attenuated phase shift or hybrid photomask type. In the implementation of the patterned device MA as a programmable mirror array, the patterned device MA includes a matrix configuration of mirrors, each of the mirrors can be individually tilted so that each of the mirrors can be in different directions The radiation beam B is reflected upward, and the direction does not depend on the direction in which the radiation beam B is reflected by other mirrors in the matrix. The pattern assigned to the incident light is determined by the position of each mirror in the matrix. The pattern may correspond to a specific functional layer in the device produced in the target portion C of the substrate W. For example, the pattern may correspond to electronic features that together form an integrated circuit.

投影系統PS包括將曝光光E導引至目標部分C之光學組件。投影系統PS之光學組件可為折射的、反射的、磁性的、電磁的、靜電的,及/或適於正使用之曝光輻射或適於諸如真空之使用之其他因素的其他類型之光學組件。此外,可需要將真空用於EUV輻射,此係因為氣體可能吸收EUV輻射。因此可憑藉真空壁及真空泵提供真空環境。The projection system PS includes optical components that guide the exposure light E to the target portion C. The optical components of the projection system PS may be refractive, reflective, magnetic, electromagnetic, electrostatic, and/or other types of optical components suitable for the exposure radiation being used or other factors such as the use of vacuum. In addition, vacuum may need to be used for EUV radiation because the gas may absorb EUV radiation. Therefore, a vacuum environment can be provided by the vacuum wall and vacuum pump.

在圖7A及圖7B之實例中,裝置700為包括反射光學組件及反射圖案化器件MA之反射類型。微影系統700可屬於具有兩個(雙載物台)或多於兩個基板台(及/或兩個或多於兩個圖案化器件台)之類型。在此類多載物台機器中,可並行地使用額外台,或可對一或多個台進行預備步驟,同時將一或多個其他台用於曝光。In the example of FIGS. 7A and 7B, the device 700 is a reflective type including a reflective optical component and a reflective patterning device MA. The lithography system 700 can be of a type having two (dual stage) or more than two substrate stages (and/or two or more patterned device stages). In such a multi-stage machine, additional tables can be used in parallel, or a preliminary step can be performed on one or more tables while one or more other tables are used for exposure.

照明系統IL自源收集器模組SO接收極紫外線輻射光束B。EUV光源101 (圖1)、201A (圖2A)及201B (圖2B)以及800 (圖8)為源收集器模組SO之實例。The illumination system IL receives the extreme ultraviolet radiation beam B from the source collector module SO. The EUV light source 101 (FIG. 1), 201A (FIG. 2A), 201B (FIG. 2B), and 800 (FIG. 8) are examples of the source collector module SO.

照明系統IL可包括用於調整輻射光束之角強度分佈之調整器。通常,可調整照明器之光瞳平面中之強度分佈的至少外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明系統IL可包括各種其他組件,諸如琢面化場鏡面器件及琢面化光瞳鏡面器件。照明系統IL可用以調節輻射光束B,以在其橫截面中具有所要均一性及強度分佈。The illumination system IL may include an adjuster for adjusting the angular intensity distribution of the radiation beam. Generally, at least the outer radial extent and/or the inner radial extent (usually referred to as σ outer and σ inner respectively) of the intensity distribution in the pupil plane of the illuminator can be adjusted. In addition, the illumination system IL may include various other components, such as a faceted field mirror device and a faceted pupil mirror device. The illumination system IL can be used to adjust the radiation beam B to have the desired uniformity and intensity distribution in its cross section.

輻射光束B與圖案化器件MA相互作用使得圖案被賦予至輻射光束B上。輻射光束B自圖案化器件MA反射,其具有被賦予為曝光光E之圖案。曝光光E穿過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及第二位置感測器PS2,可準確地移動基板台WT,例如以便將不同目標部分C定位於輻射光束B之路徑中。相似地,第一定位器PM及另一位置感測器PS1可用以相對於輻射光束B之路徑來準確地定位圖案化器件(例如光罩) MA。定位感測器PS1及PS2可為例如干涉器件、線性編碼器及/或電容式感測器。可使用圖案化器件對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件MA及基板W。The radiation beam B interacts with the patterning device MA so that the pattern is imparted to the radiation beam B. The radiation beam B is reflected from the patterned device MA, which has a pattern imparted to the exposure light E. The exposure light E passes through the projection system PS, and the projection system PS focuses the beam onto the target portion C of the substrate W. With the second positioner PW and the second position sensor PS2, the substrate table WT can be accurately moved, for example, to position different target parts C in the path of the radiation beam B. Similarly, the first positioner PM and the other position sensor PS1 can be used to accurately position the patterned device (such as a mask) MA relative to the path of the radiation beam B. The positioning sensors PS1 and PS2 can be, for example, interferometric devices, linear encoders and/or capacitive sensors. The patterned device alignment marks M1, M2 and the substrate alignment marks P1, P2 can be used to align the patterned device MA and the substrate W.

微影系統700可在以下模式中之至少一者中使用:(1)步進模式、(2)掃描模式或(3)第三或其他模式。在步進模式中,在將被賦予至輻射光束B之整個圖案一次性投影至目標部分C上時,使支撐結構MT及基板台WT保持基本上靜止(亦即,單次靜態曝光)。接著,使基板台WT在X及/或Y方向上移位使得可曝光不同目標部分C。在掃描模式中,在將被賦予至輻射光束B之圖案投影至目標部分C上時,同步地掃描支撐結構MT及基板台WT (亦即單次動態曝光)。可藉由投影系統PS之放大率(縮小率)及影像反轉特性來判定基板台WT相對於支撐結構MT之速度及方向。在第三或其他模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,使支撐結構MT保持基本上靜止,從而固持可程式化圖案化器件,且移動或掃描基板台WT。在此模式中,通常使用脈衝式輻射源,且在基板台WT之每一移動之後或在掃描期間之順次輻射脈衝之間根據需要而更新可程式化圖案化器件。此操作模式可易於應用於利用可程式化圖案化器件(諸如,上文所提及之類型之可程式化鏡面陣列)之無光罩微影。亦可使用此等三個使用模式之組合及/或變化或完全不同的使用模式。The lithography system 700 can be used in at least one of the following modes: (1) step mode, (2) scan mode, or (3) third or other mode. In the stepping mode, when the entire pattern imparted to the radiation beam B is projected onto the target portion C at one time, the support structure MT and the substrate table WT are kept substantially stationary (ie, a single static exposure). Next, the substrate table WT is shifted in the X and/or Y direction so that different target portions C can be exposed. In the scanning mode, when the pattern imparted to the radiation beam B is projected onto the target portion C, the support structure MT and the substrate table WT are simultaneously scanned (that is, a single dynamic exposure). The speed and direction of the substrate table WT relative to the support structure MT can be determined by the magnification (reduction ratio) and image reversal characteristics of the projection system PS. In the third or other mode, when the pattern imparted to the radiation beam is projected onto the target portion C, the support structure MT is kept substantially stationary, thereby holding the programmable patterned device, and moving or scanning the substrate table WT . In this mode, a pulsed radiation source is usually used, and the programmable patterned device is updated as needed after each movement of the substrate table WT or between successive radiation pulses during scanning. This mode of operation can be easily applied to maskless lithography using programmable patterned devices, such as the type of programmable mirror array mentioned above. Combinations and/or variations of these three usage modes or completely different usage modes can also be used.

圖7B更詳細地展示包括源收集器模組SO、照明系統IL及投影系統PS之微影系統700的實施。源收集器模組SO包括真空環境。系統IL及PS中之每一者亦包括真空環境。EUV輻射發射電漿形成於源收集器模組SO內。源收集器模組SO使自電漿發射之EUV輻射聚焦至中間焦點IF,使得輻射光束B (760)被提供至照明系統IL。FIG. 7B shows in more detail the implementation of the lithography system 700 including the source collector module SO, the illumination system IL, and the projection system PS. The source collector module SO includes a vacuum environment. Each of the systems IL and PS also includes a vacuum environment. EUV radiation emission plasma is formed in the source collector module SO. The source collector module SO focuses the EUV radiation emitted from the plasma to the intermediate focus IF, so that the radiation beam B (760) is provided to the illumination system IL.

輻射光束B橫穿照明系統IL,照明系統IL在圖7B之實例中包括琢面化場鏡面器件22及琢面化光瞳鏡面器件24。此等器件形成所謂的「蠅眼」照明器,其經配置以提供在圖案化器件MA處輻射光束21之所要角度分佈且維持圖案化器件MA處之輻射強度之均一性。在圖案化器件MA處光束B之反射後,形成曝光光E (經圖案化光束B),且曝光光E (26)係由投影系統PS經由反射元件28、30而成像至基板W上。另外,曝光光E與對曝光光E塑形之隙縫相互作用,使得曝光光E在垂直於傳播方向之平面中具有矩形橫截面。為了曝光基板W上之目標部分C,源收集器模組SO產生輻射脈衝以形成輻射光束B,同時基板台WT及圖案化器件台MT執行同步移動以經由矩形曝光光E掃描圖案化器件MA上之圖案。The radiation beam B traverses the illumination system IL. The illumination system IL includes a faceted field mirror device 22 and a faceted pupil mirror device 24 in the example of FIG. 7B. These devices form so-called "fly-eye" illuminators that are configured to provide a desired angular distribution of the radiation beam 21 at the patterned device MA and maintain the uniformity of the radiation intensity at the patterned device MA. After the reflection of the light beam B at the patterned device MA, an exposure light E (patterned light beam B) is formed, and the exposure light E (26) is imaged onto the substrate W by the projection system PS via the reflective elements 28 and 30. In addition, the exposure light E interacts with the slit that shapes the exposure light E, so that the exposure light E has a rectangular cross-section in a plane perpendicular to the propagation direction. In order to expose the target portion C on the substrate W, the source collector module SO generates a radiation pulse to form a radiation beam B, while the substrate table WT and the patterned device table MT perform synchronous movement to scan the patterned device MA through the rectangular exposure light E The pattern.

每一系統IL及PS配置於其自有真空或近真空環境內,該環境係由圍封結構界定。比所展示元件更多之元件通常可存在於照明系統IL及投影系統PS中。另外,可存在比所展示鏡面更多的鏡面。舉例而言,除了圖7B所展示之反射元件以外,在照明系統IL及/或投影系統PS中亦可存在一至六個額外反射元件。Each system IL and PS is configured in its own vacuum or near-vacuum environment, which is defined by the enclosure structure. More elements than shown can generally be present in the illumination system IL and the projection system PS. In addition, there may be more mirrors than shown. For example, in addition to the reflective elements shown in FIG. 7B, there may also be one to six additional reflective elements in the illumination system IL and/or the projection system PS.

用於源收集器模組及微影系統700整體上之操作的眾多額外組件存在於典型裝置中,但在此處未予以說明。此等組件包括用於縮減或減輕經圍封真空內之污染效應之配置,例如,以防止燃料材料之沈積物損害或削弱收集器3及其他光學件之效能。存在但未予以詳細地描述之其他特徵為在控制微影系統700之各種組件及子系統時涉及之所有感測器、控制器及致動器。Many additional components for the overall operation of the source collector module and the lithography system 700 are present in a typical device, but are not described here. These components include arrangements for reducing or mitigating the effects of pollution in the enclosed vacuum, for example, to prevent deposits of fuel materials from damaging or impairing the performance of the collector 3 and other optical components. Other features that exist but are not described in detail are all the sensors, controllers, and actuators involved in controlling the various components and subsystems of the lithography system 700.

參看圖8,展示LPP EUV光源800之實施。光源800可用作微影系統700中之源收集器模組SO。此外,圖1之光學源104、光學源204 (圖2A)及光學源204B (圖2B)可為驅動雷射815之部分。Referring to Fig. 8, the implementation of LPP EUV light source 800 is shown. The light source 800 can be used as the source collector module SO in the lithography system 700. In addition, the optical source 104, the optical source 204 (FIG. 2A) and the optical source 204B (FIG. 2B) of FIG. 1 can be part of the driving laser 815.

藉由運用經放大光束810輻照電漿形成區805處之目標混合物814而形成LPP EUV光源800,該經放大光束810沿著朝向目標混合物814之光束路徑行進。關於圖1所論述之目標材料以及關於圖2A及圖2B所論述之串流222中之目標可為或包括目標混合物814。電漿形成區805係在真空腔室830之內部807內。當經放大光束810撞擊目標混合物814時,該目標混合物814內之目標材料轉換成具有在EUV範圍內之發射譜線之元素的電漿狀態。所產生電漿具有取決於目標混合物814內之目標材料之組合物的某些特性。此等特性可包括由電漿產生之EUV光之波長,以及自電漿釋放之碎屑之類型及量。The LPP EUV light source 800 is formed by irradiating the target mixture 814 at the plasma formation area 805 with an amplified light beam 810 that travels along a beam path toward the target mixture 814. The target material discussed in relation to FIG. 1 and the target in the stream 222 discussed in relation to FIGS. 2A and 2B may be or include the target mixture 814. The plasma formation region 805 is located in the interior 807 of the vacuum chamber 830. When the amplified light beam 810 hits the target mixture 814, the target material in the target mixture 814 is converted into a plasma state of elements with emission lines in the EUV range. The generated plasma has certain characteristics that depend on the composition of the target material in the target mixture 814. These characteristics may include the wavelength of EUV light generated by the plasma, and the type and amount of debris released from the plasma.

光源800包括驅動雷射系統815,該驅動雷射系統歸因於雷射系統815之一或多個增益介質內之粒子數反轉而產生經放大光束810。光源800包括雷射系統815與電漿形成區805之間的光束遞送系統,該光束遞送系統包括光束傳送系統820及聚焦總成822。光束傳送系統820自雷射系統815接收經放大光束810,且視需要轉向及修改經放大光束810且將經放大光束810輸出至聚焦總成822。聚焦總成822接收經放大光束810且將光束810聚焦至電漿形成區805。The light source 800 includes a driving laser system 815 that generates an amplified light beam 810 due to population inversion in one or more of the gain media of the laser system 815. The light source 800 includes a beam delivery system between the laser system 815 and the plasma forming area 805, and the beam delivery system includes a beam delivery system 820 and a focusing assembly 822. The beam delivery system 820 receives the amplified light beam 810 from the laser system 815, and turns and modifies the amplified light beam 810 as necessary and outputs the amplified light beam 810 to the focusing assembly 822. The focusing assembly 822 receives the amplified light beam 810 and focuses the light beam 810 to the plasma formation area 805.

在一些實施中,雷射系統815可包括用於提供一或多個主脈衝且在一些狀況下提供一或多個預脈衝之一或多個光學放大器、雷射及/或燈。每一光學放大器包括能夠以高增益光學地放大所要波長之增益介質、激發源及內部光學件。光學放大器可能具有或可能不具有形成雷射空腔之雷射鏡面或其他回饋器件。因此,雷射系統815即使在不存在雷射空腔的情況下歸因於雷射放大器之增益介質中之粒子數反轉亦會產生經放大光束810。此外,雷射系統815可在存在雷射空腔以將足夠回饋提供至雷射系統815的情況下產生作為相干雷射光束之經放大光束810。術語「經放大光束」涵蓋如下各者中之一或多者:來自雷射系統815之僅僅經放大但未必為相干雷射振盪的光,及來自雷射系統815之經放大且亦為相干雷射振盪的光。In some implementations, the laser system 815 may include one or more optical amplifiers, lasers, and/or lamps for providing one or more main pulses and in some cases one or more pre-pulses. Each optical amplifier includes a gain medium capable of optically amplifying a desired wavelength with high gain, an excitation source, and internal optics. The optical amplifier may or may not have a laser mirror or other feedback device forming a laser cavity. Therefore, the laser system 815 will generate an amplified light beam 810 due to population inversion in the gain medium of the laser amplifier even in the absence of a laser cavity. In addition, the laser system 815 can generate the amplified beam 810 as a coherent laser beam in the presence of a laser cavity to provide sufficient feedback to the laser system 815. The term "amplified light beam" encompasses one or more of the following: light from laser system 815 that is only amplified but not necessarily coherent laser oscillation, and light from laser system 815 that is amplified and also coherent laser Shoot oscillating light.

雷射系統815中之光學放大器可包括填充氣體(包括CO2 )作為增益介質,且可以大於或等於800倍之增益放大處於約9100 nm與約11000 nm之間的波長,且尤其處於約10600 nm的光。供用於雷射系統815中之合適放大器及雷射可包括脈衝式雷射器件,例如脈衝式氣體放電CO2 雷射器件,該脈衝式氣體放電CO2 雷射器件例如運用以相對較高功率(例如10 kW或高於10 kW)及高脈衝重複率(例如40 kHz或大於40 kHz)操作的DC或RF激發產生處於約9300 nm或約10600 nm之輻射。脈衝重複率可為例如50 kHz。雷射系統815中之光學放大器亦可包括可在較高功率下操作雷射系統815時使用的冷卻系統,諸如水。The optical amplifier in the laser system 815 may include a filling gas (including CO 2 ) as a gain medium, and may have a gain greater than or equal to 800 times to amplify the wavelength between about 9100 nm and about 11000 nm, and especially at about 10600 nm Of light. Suitable for use in laser amplifiers and laser system 815 may include a pulse of laser devices, for example, pulsed CO 2 laser gas discharge device, the pulsed gas discharge CO 2 laser device, for example, the use of a relatively high power ( For example, 10 kW or higher) and high pulse repetition rate (for example, 40 kHz or greater than 40 kHz) operating DC or RF excitation produces radiation at about 9300 nm or about 10600 nm. The pulse repetition rate can be, for example, 50 kHz. The optical amplifier in the laser system 815 may also include a cooling system, such as water, which can be used when the laser system 815 is operated at a higher power.

光源800包括收集器鏡面835,該收集器鏡面具有孔隙840以允許經放大光束810穿過且到達電漿形成區805。收集器鏡面835可為例如在電漿形成區805處具有主焦點且在中間部位845處具有次級焦點(亦被稱為中間焦點)的橢球形鏡面,其中可自光源800輸出EUV光且可將該EUV光輸入至例如積體電路微影工具(圖中未繪示)。光源800亦可包括開端式中空圓錐形護罩850 (例如氣體錐體),該圓錐形護罩自收集器鏡面835朝向電漿形成區805漸狹以縮減進入聚焦總成822及/或光束傳送系統820的電漿產生之碎屑之量,同時允許經放大光束810到達電漿形成區805。出於此目的,可將氣流提供於護罩中,該氣流經導引朝向電漿形成區805。The light source 800 includes a collector mirror 835 having an aperture 840 to allow the amplified light beam 810 to pass through and reach the plasma formation region 805. The collector mirror 835 can be, for example, an ellipsoidal mirror with a primary focus at the plasma formation region 805 and a secondary focus (also called an intermediate focus) at the middle part 845, wherein EUV light can be output from the light source 800 and can be The EUV light is input to, for example, an integrated circuit lithography tool (not shown in the figure). The light source 800 may also include an open-ended hollow cone-shaped shield 850 (such as a gas cone), which tapers from the collector mirror 835 toward the plasma formation area 805 to reduce access to the focusing assembly 822 and/or beam delivery The amount of debris generated by the plasma of the system 820, while allowing the amplified light beam 810 to reach the plasma forming area 805. For this purpose, an air flow can be provided in the shield, and the air flow is guided toward the plasma formation area 805.

光源800亦可包括主控控制器855,該主控控制器連接至小滴位置偵測回饋系統856、雷射控制系統857及光束控制系統858。光源800可包括一或多個目標或小滴成像器860,該一或多個目標或小滴成像器提供指示小滴例如相對於電漿形成區805之位置之輸出且將此輸出提供至小滴位置偵測回饋系統856,該小滴位置偵測回饋系統可例如計算小滴位置及軌跡,自該小滴位置及軌跡可基於逐小滴地或平均地計算出小滴位置誤差。小滴位置偵測回饋系統856因此將小滴位置誤差作為輸入提供至主控控制器855。主控控制器855因此可將例如雷射位置、方向及時序校正信號提供至可用以例如控制雷射時序電路之雷射控制系統857及/或提供至光束控制系統858,以控制經放大光束位置及光束傳送系統820之塑形從而改變腔室830內之光束焦斑之部位及/或焦度。The light source 800 may also include a main control controller 855 that is connected to the droplet position detection feedback system 856, the laser control system 857, and the beam control system 858. The light source 800 may include one or more targets or droplet imagers 860 that provide an output indicating the position of the droplet, for example, relative to the plasma forming region 805 and provide this output to the small A droplet position detection and feedback system 856, which can calculate droplet position and trajectory, for example, from which droplet position and trajectory can calculate droplet position error on a drop-by-drop basis or on an average basis. The droplet position detection feedback system 856 therefore provides the droplet position error as an input to the main control controller 855. The main control controller 855 can therefore provide, for example, laser position, direction, and timing correction signals to the laser control system 857 that can be used, for example, to control the laser timing circuit and/or to the beam control system 858 to control the position of the amplified beam And the shaping of the beam delivery system 820 to change the position and/or power of the focal spot of the beam in the chamber 830.

供應系統825包括目標材料遞送控制系統826,該目標材料遞送控制系統可操作以回應於來自例如主控控制器855之信號而修改由目標材料供應裝置827釋放之小滴之釋放點,以校正到達所要電漿形成區805之小滴中的誤差。The supply system 825 includes a target material delivery control system 826 that is operable to modify the release point of the droplet released by the target material supply device 827 in response to a signal from, for example, the main control controller 855 to correct the arrival The error in the droplet of the desired plasma formation area 805.

另外,光源800可包括光源偵測器865及870,該等光源偵測器量測一或多個EUV光參數,包括但不限於脈衝能量、依據波長而變化的能量分佈、特定波長帶內之能量、特定波長帶之外之能量,及EUV強度之角度分佈及/或平均功率。光源偵測器865產生回饋信號以供主控控制器855使用。回饋信號可例如指示為了有效及高效EUV光產生而在適當地點及時間恰當地截取小滴的諸如雷射脈衝之時序及焦點之參數之誤差。In addition, the light source 800 may include light source detectors 865 and 870. The light source detectors measure one or more EUV light parameters, including but not limited to pulse energy, energy distribution that varies according to wavelength, and energy within a specific wavelength band. Energy, energy outside a specific wavelength band, and the angular distribution of EUV intensity and/or average power. The light source detector 865 generates a feedback signal for the main control controller 855 to use. The feedback signal may, for example, indicate the error of parameters such as the timing and focus of the laser pulse to appropriately intercept the droplet at the appropriate place and time for effective and efficient EUV light generation.

光源800亦可包括引導雷射875,該引導雷射可用以對準光源800之各個區段或輔助將經放大光束810轉向至電漿形成區705。結合引導雷射875,光源800包括度量衡系統824,該度量衡系統被置放於聚焦總成822內以對來自引導雷射875之光之一部分以及經放大光束810進行取樣。在其他實施中,度量衡系統824被置放於光束傳送系統820內。度量衡系統824可包括對光之子集進行取樣或重新導引之光學元件,此光學元件係由可耐受引導雷射光束及經放大光束810之功率的任何材料製成。光束分析系統係由度量衡系統824及主控控制器855形成,此係由於主控控制器855分析來自引導雷射875之經取樣光且使用此資訊以經由光束控制系統858調整聚焦總成822內之組件。The light source 800 may also include a guide laser 875, which can be used to align each section of the light source 800 or assist in steering the amplified light beam 810 to the plasma formation region 705. In combination with the guide laser 875, the light source 800 includes a metrology system 824 that is placed in the focusing assembly 822 to sample a portion of the light from the guide laser 875 and the amplified beam 810. In other implementations, the metrology system 824 is placed in the beam delivery system 820. The metrology system 824 may include an optical element that samples or redirects a subset of light. The optical element is made of any material that can withstand the power of the guided laser beam and the amplified beam 810. The beam analysis system is formed by the metrology system 824 and the main control controller 855. This is because the main control controller 855 analyzes the sampled light from the guide laser 875 and uses this information to adjust the focus assembly 822 via the beam control system 858 The components.

因此,概言之,光源800產生經放大光束810,該經放大光束沿著光束路徑經導引以輻照電漿形成區805處之目標混合物814,以將混合物814內之目標材料轉換成發射在EUV範圍內之光之電漿。經放大光束810在基於雷射系統815之設計及屬性而判定之特定波長(其亦被稱作驅動雷射波長)下操作。另外,當目標材料將足夠回饋提供回至雷射系統815中以產生相干雷射光時或在驅動雷射系統815包括合適光學回饋以形成雷射空腔的情況下,經放大光束810可為雷射光束。Therefore, in summary, the light source 800 generates an amplified light beam 810, which is guided along the beam path to irradiate the target mixture 814 at the plasma formation region 805 to convert the target material in the mixture 814 into emission Plasma of light in the EUV range. The amplified light beam 810 operates at a specific wavelength determined based on the design and properties of the laser system 815 (which is also referred to as the driving laser wavelength). In addition, when the target material provides sufficient feedback to the laser system 815 to generate coherent laser light or in the case that the driving laser system 815 includes appropriate optical feedback to form a laser cavity, the amplified beam 810 can be a laser beam. Shot beam.

在以下編號條項中闡明本發明之其他態樣。 1.     一種用於一極紫外線(EUV)微影系統之裝置,該裝置包含: 一光學調變系統,其包含至少一個光學元件,該至少一個光學元件經組態為置放於該光學調變系統與一電漿形成區之間的一光束路徑上,該電漿形成區經組態以接收在一電漿狀態中發射EUV光之目標材料;及 一控制系統,其經組態為耦接至該光學調變系統且接收一信號,該信號包含照射於該微影系統之一掃描系統中之一晶圓上的曝光光之一特性之一指示,其中 該控制系統經進一步組態以基於該曝光光之該特性之該指示而調整該光學調變系統,以藉此基於該曝光光之該特性控制一光束之一第一部分之一屬性,該光束包含至少該第一部分及一第二部分。 2.     如條項1之裝置,其進一步包含耦接至該控制系統之一劑量感測器,該劑量感測器經組態以:感測該晶圓處之該曝光光且將包含該曝光光之該特性之該指示的該信號提供至該控制系統。 3.     如條項2之裝置,其中該劑量感測器相對於該微影系統之該掃描系統中之該晶圓而定位。 4.     如條項1之裝置,其中該光學調變系統經組態以產生包含一基座部分及一主要部分之一經修改光學脈衝,且 該光束之該第一部分包含該基座部分且該光束之該第二部分包含該主要部分,使得該控制系統經組態以調整該調變系統以藉此基於該曝光光之該特性控制該基座部分之至少一個屬性。 5.     如條項4之裝置,其中該基座部分之該至少一個屬性包含一時距、一平均強度及/或一最大強度。 6.     如條項4之裝置,其中該經修改脈衝之該主要部分具有足以將該目標材料中之至少一些轉換成發射EUV光之電漿的一能量。 7.     如條項4之裝置,其中該光學調變系統包含一電光調變器(EOM),且至少一個光學元件包含一電光材料。 8.     如條項7之裝置,其中該EOM包含一第一電極、一第二電極,且該電光材料係介於該第一電極與該第二電極之間。 9.     如條項8之裝置,其中該控制系統經組態以調整該至少一個光學元件包含該控制系統經組態以:調整由該第一電極及該第二電極施加至該電光材料之一電壓量及/或調整由該第一電極及該第二電極將一電壓施加至該電光材料的一時間。 10.   如條項8之裝置,其中該調變系統之該至少一個光學元件進一步包含經組態為置放於該光束路徑上之至少一個偏振元件,且該控制系統經組態以調整該至少一個光學元件包含該控制系統經組態以移動該偏振元件。 11.   如條項10之裝置,其中該控制系統經組態以調整該至少一個光學元件進一步包含該控制系統經組態以:調整由該第一電極及該第二電極施加至該電光材料之一電壓量及/或調整由該第一電極及該第二電極將一電壓施加至該電光材料的一時間。 12.   如條項11之裝置,其中該光學系統包含多於一個EOM,且每一EOM係介於兩個偏振元件之間。 13.   如條項9之裝置,其中: 該控制系統經進一步組態以:在一非作用時段期間,致使該第一電極及該第二電極將一非零偏壓電壓施加至該電光材料,且在一作用時段期間,該控制系統經組態以致使該第一電極及該第二電極將大於該偏壓電壓之一第二電壓施加至該電光材料, 該偏壓電壓之一振幅係基於該曝光光之該特性之該指示, 且該基座之該屬性係藉由該偏壓之該振幅至少部分地判定。 14.   如條項13之裝置,其中該光學調變系統之該至少一個光學元件進一步包含一聲光調變器(AOM),該AOM係介於該光學調變系統與該電漿形成區之間,且該AOM經組態以判定該基座之一時距。 15.   如條項1之裝置,其中該光束包含複數個脈衝, 該光束之該第一部分包含該複數個脈衝中之一第一脈衝,且 該光束之該第二部分包含該複數個脈衝中之一第二脈衝,使得該控制系統經組態以調整該調變系統以藉此基於該曝光光之該特性控制該複數個脈衝中之該第一脈衝的至少一個屬性。 16.   如條項15之裝置,其中所有該複數個脈衝皆在該光束路徑上傳播。 17.   如條項15之裝置,其中該光束之該第一部分及該光束之該第二部分係由不同光源產生。 18.   如條項1之裝置,其中該曝光光之一特性之該指示包含在該晶圓之一特定部分處的EUV光之一劑量之一指示,該晶圓處之EUV光之該劑量包含在一預定時間量內該晶圓之該特定部分處的EUV光之一總量。 19.   如條項18之裝置,其中該控制系統經進一步組態以:分析該指示以判定EUV光之一臨限劑量是否已被遞送至該晶圓之該特定部分,且若該臨限劑量已被遞送至該晶圓之該特定部分,則發佈一命令以致使該晶圓相對於該EUV光移動使得該晶圓之一不同部分接收該EUV光。 20.   如條項1之裝置,其進一步包含:經組態以產生該光束之一光產生模組,該光產生模組包含一增益介質及經組態以激發該增益介質之一能量源,且其中 該控制系統耦接至該光產生模組, 該控制系統經進一步組態以:控制該能量源使得該光束之一能量遍及一時間窗大體上相同,且 該控制系統經組態以調整該調變系統包含該控制系統經組態以調整該調變系統使得該光束之該第一部分之一能量遍及該時間窗大體上相同。 21.   一種極紫外線(EUV)光源,其包含: 一容器,其經組態以形成一真空空間; 一目標供應裝置,其經組態以將一目標提供至該容器中之一電漿產生區; 一光學裝置,其包含一或多個光學元件,該一或多個光學元件經組態為置放於一光產生模組與該電漿產生區之間的一光束路徑上;及 一控制系統,其耦接至該光學裝置,該控制系統經組態以控制該光學裝置以藉此控制一光束之一第一部分之一或多個屬性,該光束包含至少該第一部分及一第二部分,其中在操作使用中,該容器經組態以將EUV光提供至一微影裝置,該微影裝置經組態以將該EUV光導引朝向一晶圓,且該第一部分之該一或多個屬性的該控制係基於該晶圓處之該EUV光之一特性。 22.   如條項21之EUV光源,其進一步包含一光產生模組,該光產生模組包含一增益介質及經組態以激發該增益介質之一能量源。 23.   如條項22之EUV光源,其中該能量源包含經組態為由一射頻(RF)電源驅動之複數個電極,且該光產生模組包含容納該複數個電極之一腔室,且該控制系統在不調整該RF電源之任何屬性的情況下控制該光束之該第一部分之該一或多個屬性。 24.   如條項21之EUV光源,其中該光學裝置包含經組態以產生一經修改光學脈衝之一光學調變系統,該經修改脈衝包含一基座部分及一主要部分,且該光束之該第一部分包含該基座部分且該光束之該第二部分包含該主要部分,且 該控制系統經組態以控制該光學裝置以藉此控制該基座部分之一或多個屬性。 25.   如條項21之EUV光源,其進一步包含一光產生模組,且其中該光產生模組經組態以產生包含複數個脈衝之一脈衝式光束,該光束之該第一部分包含該複數個脈衝中之一第一脈衝,且該光束之該第二部分包含該複數個脈衝中之一第二脈衝,且 該控制系統經組態以調整該光學裝置以藉此基於該晶圓處之EUV光之該特性而控制該複數個脈衝中之該第一脈衝的至少一個屬性。 26.   如條項21之EUV光源,其進一步包含一光產生模組,且其中該光產生模組包含至少一第一光學源及一第二光學源,該光束之該第一部分為由該第一光學源產生之一光學脈衝,且該光束之該第二部分為由該第二光學源產生之一光學脈衝。 27.   如條項21之EUV光源,其進一步包含耦接至該控制系統之一劑量感測器,該劑量感測器經組態以感測該晶圓處之該EUV光之該特性且產生該晶圓處之該EUV光之該特性的指示。 28.   一種極紫外線(EUV)微影系統,其包含: 一容器,其經組態以形成一真空空間; 一目標供應裝置,其經組態以將一目標提供至該容器中之一電漿產生區; 一光學裝置,其包含一或多個光學元件,該一或多個光學元件經組態為置放於光產生模組與該電漿產生區之間的一光束路徑上; 一微影裝置,其經組態以自該容器接收EUV光且將該EUV光導引朝向一晶圓;及 一控制系統,其耦接至該光學裝置,該控制系統經組態以控制該光學裝置以藉此控制一光束之第一部分之一或多個屬性,該光束包含至少該第一部分及一第二部分,其中在操作使用中,該第一部分之該一或多個屬性的該控制係基於該晶圓處之該EUV光之一特性。Other aspects of the present invention are explained in the following numbered items. 1. A device used in an extreme ultraviolet (EUV) lithography system, which includes: An optical modulation system comprising at least one optical element configured to be placed on a beam path between the optical modulation system and a plasma formation region, the plasma formation region passing Configured to receive target materials emitting EUV light in a plasma state; and A control system configured to be coupled to the optical modulation system and receive a signal including an indication of a characteristic of exposure light irradiated on a wafer in a scanning system of the lithography system ,among them The control system is further configured to adjust the optical modulation system based on the indication of the characteristic of the exposure light to thereby control a property of a first part of a light beam based on the characteristic of the exposure light, the light beam comprising At least the first part and the second part. 2. The device of Clause 1, which further includes a dose sensor coupled to the control system, the dose sensor is configured to: sense the exposure light at the wafer and will include the exposure The signal of the indication of the characteristic of light is provided to the control system. 3. The device as in Clause 2, wherein the dose sensor is positioned relative to the wafer in the scanning system of the lithography system. 4. The device as in Clause 1, wherein the optical modulation system is configured to generate a modified optical pulse including a base part and a main part, and The first part of the light beam includes the base part and the second part of the light beam includes the main part, so that the control system is configured to adjust the modulation system to thereby control the base based on the characteristic of the exposure light At least one attribute of the seat part. 5. The device as in item 4, wherein the at least one attribute of the base part includes a time interval, an average intensity and/or a maximum intensity. 6. The device of Clause 4, wherein the main part of the modified pulse has an energy sufficient to convert at least some of the target material into plasma that emits EUV light. 7. The device as in Clause 4, wherein the optical modulation system includes an electro-optical modulator (EOM), and at least one optical element includes an electro-optical material. 8. The device as in Clause 7, wherein the EOM includes a first electrode and a second electrode, and the electro-optic material is between the first electrode and the second electrode. 9. The device as in clause 8, wherein the control system is configured to adjust the at least one optical element including the control system configured to: adjust one of the electro-optical materials applied by the first electrode and the second electrode The amount of voltage and/or adjust a time for applying a voltage to the electro-optical material by the first electrode and the second electrode. 10. The device of clause 8, wherein the at least one optical element of the modulation system further includes at least one polarization element configured to be placed on the beam path, and the control system is configured to adjust the at least An optical element includes the control system configured to move the polarization element. 11. The device as in Clause 10, wherein the control system is configured to adjust the at least one optical element further includes the control system configured to: adjust the application of the first electrode and the second electrode to the electro-optic material A voltage amount and/or adjustment of a time for applying a voltage to the electro-optical material by the first electrode and the second electrode. 12. The device of Clause 11, wherein the optical system includes more than one EOM, and each EOM is between two polarization elements. 13. Such as the device in item 9, where: The control system is further configured to cause the first electrode and the second electrode to apply a non-zero bias voltage to the electro-optical material during a non-active period, and during an active period, the control system is Configured to cause the first electrode and the second electrode to apply a second voltage greater than the bias voltage to the electro-optical material, An amplitude of the bias voltage is based on the indication of the characteristic of the exposure light, And the attribute of the base is determined at least in part by the amplitude of the bias. 14. The device of Clause 13, wherein the at least one optical element of the optical modulation system further includes an acousto-optic modulator (AOM), and the AOM is between the optical modulation system and the plasma formation region And the AOM is configured to determine a time interval of the base. 15. The device as in Clause 1, where the beam contains multiple pulses, The first part of the light beam includes a first pulse of one of the plurality of pulses, and The second part of the light beam includes one of the second pulses of the plurality of pulses, so that the control system is configured to adjust the modulation system to thereby control the one of the plurality of pulses based on the characteristic of the exposure light At least one attribute of the first pulse. 16. The device as in Clause 15, in which all the plural pulses propagate on the beam path. 17. The device as in Clause 15, wherein the first part of the light beam and the second part of the light beam are generated by different light sources. 18. The device of clause 1, wherein the indication of a characteristic of the exposure light includes an indication of a dose of EUV light at a specific part of the wafer, and the dose of EUV light at the wafer includes A total amount of EUV light at the specific portion of the wafer in a predetermined amount of time. 19. The device of Clause 18, wherein the control system is further configured to: analyze the indication to determine whether a threshold dose of EUV light has been delivered to the specific part of the wafer, and if the threshold dose Having been delivered to the specific part of the wafer, a command is issued to cause the wafer to move relative to the EUV light so that a different part of the wafer receives the EUV light. 20. The device according to Clause 1, further comprising: a light generating module configured to generate the light beam, the light generating module comprising a gain medium and an energy source configured to excite the gain medium, And where The control system is coupled to the light generating module, The control system is further configured to: control the energy source so that the energy of one of the beams is substantially the same throughout a time window, and The control system configured to adjust the modulation system includes the control system configured to adjust the modulation system such that an energy of the first portion of the light beam is substantially the same throughout the time window. 21. An extreme ultraviolet (EUV) light source, which includes: A container configured to form a vacuum space; A target supply device configured to provide a target to a plasma generating area in the container; An optical device including one or more optical elements configured to be placed on a beam path between a light generating module and the plasma generating region; and A control system coupled to the optical device, the control system being configured to control the optical device to thereby control one or more attributes of a first part of a light beam, the light beam including at least the first part and a first part Two parts, where in operation, the container is configured to provide EUV light to a lithography device, the lithography device is configured to guide the EUV light toward a wafer, and the first part of the The control of one or more attributes is based on a characteristic of the EUV light at the wafer. 22. Such as the EUV light source of Clause 21, which further includes a light generating module including a gain medium and an energy source configured to excite the gain medium. 23. Such as the EUV light source of Clause 22, wherein the energy source includes a plurality of electrodes configured to be driven by a radio frequency (RF) power supply, and the light generating module includes a chamber containing the plurality of electrodes, and The control system controls the one or more attributes of the first part of the light beam without adjusting any attributes of the RF power source. 24. Such as the EUV light source of Clause 21, wherein the optical device includes an optical modulation system configured to generate a modified optical pulse, the modified pulse includes a base part and a main part, and the light beam The first part includes the base part and the second part of the beam includes the main part, and The control system is configured to control the optical device to thereby control one or more properties of the base portion. 25. Such as the EUV light source of Clause 21, which further includes a light generating module, and wherein the light generating module is configured to generate a pulsed light beam including a plurality of pulses, and the first part of the light beam includes the plurality of pulses One of the first pulses of the plurality of pulses, and the second part of the light beam includes one of the second pulses of the plurality of pulses, and The control system is configured to adjust the optical device to thereby control at least one attribute of the first pulse of the plurality of pulses based on the characteristic of EUV light at the wafer. 26. For the EUV light source of Clause 21, it further includes a light generating module, and wherein the light generating module includes at least a first optical source and a second optical source, and the first part of the light beam is generated by the first optical source. An optical source generates an optical pulse, and the second part of the beam is an optical pulse generated by the second optical source. 27. The EUV light source of Clause 21 further includes a dose sensor coupled to the control system, the dose sensor being configured to sense the characteristic of the EUV light at the wafer and generate An indication of the characteristic of the EUV light at the wafer. 28. An extreme ultraviolet (EUV) lithography system, which includes: A container configured to form a vacuum space; A target supply device configured to provide a target to a plasma generating area in the container; An optical device comprising one or more optical elements, the one or more optical elements are configured to be placed on a beam path between the light generating module and the plasma generating region; A lithography device configured to receive EUV light from the container and guide the EUV light toward a wafer; and A control system coupled to the optical device, the control system being configured to control the optical device to thereby control one or more properties of a first part of a light beam, the light beam including at least the first part and a second part Part, wherein in operational use, the control of the one or more attributes of the first part is based on a characteristic of the EUV light at the wafer.

21:輻射光束 22:琢面化場鏡面器件 24:琢面化光瞳鏡面器件 26:曝光光E 28:反射元件 30:反射元件 100:極紫外線(EUV)微影系統 101:極紫外線(EUV)光源 102:增益介質 103:能量源 104:光學源 106:路徑 107:光束 108:經修改光束 121:目標 123:電漿形成區 140:調變系統 142:光學元件 150:控制系統 154:指示 180:微影裝置 191:曝光光束 192:基板 196:電漿 197:極紫外線(EUV)光 200A:微影系統 200B:微影系統 200C:微影系統 201A:極紫外線(EUV)光源 201B:極紫外線(EUV)光源 201C:極紫外線(EUV)光源 202:增益介質 203:能量源 204:光學源 204_1:第一光學源 204_2:第二光學源 204B:光學源 204C:光學源 204C_1:第一光學源 204C_2:第二光學源 205:光束組合器 206:光束路徑 207:光束 207_1:第一光束 207_2:第二光束 207C_1:光束/光 207C_2:光束/光 208:經修改光束 208_1:經修改光束 208_2:經修改光束 208C:經修改光束 211:真空腔室 213:光學元件 220:供應系統 221:目標 221i:初始目標 221m:經修改目標 222:串流 223:電漿形成區 223_2:初始目標區 230:光學放大器系統 240:光學調變系統 240B:調變系統 240_1:調變系統 240_2:調變系統 242:光學元件 250:控制系統 251:電子處理器 252:電子儲存器 253:通信介面 254:指示或表示 260:度量衡系統 262:感測器系統 264:電子件模組 280:微影裝置 281:反射光學元件 282:反射光學元件 283:隙縫 284:光罩 286:圍封體 293:部分 300D:實驗資料 307:光束 308:經修改光束/脈衝 340:調變系統 342:光學元件/電光材料 343:電場/電位差(V) 344a:電極 344b:電極 345:電源 346:以偏振為基礎之光學元件 347:電壓信號 347_1:電壓信號 347_2:電壓信號 348:偏壓電壓 349:電壓 364:洩漏光 365:脈衝307之特定部分 366:基座部分 367:窗口 368:主要部分 444:聲光調變器 540:光學調變系統 540_1:第一電光調變器(EOM) 540_2:第二電光調變器(EOM) 541:機械安裝台 546_1:第一偏振元件 546_2:第二偏振元件 546_3:第三偏振元件 600:程序 610:接收 620:分析 630:控制光束之一或多個屬性 700:微影系統 760:輻射光束B 800:雷射產生電漿(LPP)極紫外線(EUV)光源 805:電漿形成區 807:內部 810:經放大光束 814:目標混合物 815:驅動雷射/驅動雷射系統 820:光束傳送系統 822:聚焦總成 824:度量衡系統 825:供應系統 826:目標材料遞送控制系統 827:目標材料供應裝置 830:真空腔室 835:收集器鏡面 840:孔隙 845:中間部位 850:開端式中空圓錐形護罩 855:主控控制器 856:小滴位置偵測回饋系統 857:雷射控制系統 858:光束控制系統 860:目標或小滴成像器 865:光源偵測器 870:光源偵測器 875:引導雷射 B:輻射光束 C:目標部分 IF:中間焦點 IL:照明系統 M1:圖案化器件對準標記 M2:圖案化器件對準標記 MA:圖案化器件 MT:支撐結構 P1:基板對準標記 P2:基板對準標記 PM:第一定位器 PS:投影系統 PS1:位置感測器/定位感測器 PS2:第二位置感測器/定位感測器 PW:第二定位器 SO:源收集器模組 ta:時間 tb:時間 W:基板 WT:基板台21: Radiation beam 22: Faceted field mirror device 24: Faceted pupil mirror device 26: Exposure light E 28: reflective element 30: reflective element 100: extreme ultraviolet (EUV) lithography system 101: extreme ultraviolet (EUV) light source 102: gain medium 103: Energy Source 104: optical source 106: Path 107: beam 108: Modified beam 121: Goal 123: Plasma formation area 140: Modulation system 142: Optical components 150: control system 154: instructions 180: lithography device 191: Exposure beam 192: substrate 196: Plasma 197: extreme ultraviolet (EUV) light 200A: lithography system 200B: lithography system 200C: lithography system 201A: extreme ultraviolet (EUV) light source 201B: extreme ultraviolet (EUV) light source 201C: extreme ultraviolet (EUV) light source 202: gain medium 203: Energy Source 204: Optical Source 204_1: the first optical source 204_2: second optical source 204B: Optical source 204C: Optical source 204C_1: the first optical source 204C_2: second optical source 205: beam combiner 206: beam path 207: beam 207_1: First beam 207_2: Second beam 207C_1: beam/light 207C_2: beam/light 208: Modified beam 208_1: modified beam 208_2: Modified beam 208C: Modified beam 211: Vacuum chamber 213: optical components 220: Supply System 221: target 221i: initial goal 221m: modified target 222: Streaming 223: Plasma Formation Area 223_2: Initial target area 230: Optical amplifier system 240: Optical modulation system 240B: Modulation system 240_1: Modulation system 240_2: Modulation system 242: optical components 250: control system 251: Electronic Processor 252: Electronic Storage 253: Communication Interface 254: instruction or representation 260: Metrology System 262: Sensor System 264: Electronic module 280: Lithography Device 281: reflective optics 282: reflective optics 283: Gap 284: Mask 286: Enclosure 293: part 300D: Experimental data 307: beam 308: Modified beam/pulse 340: Modulation System 342: optical components/electro-optical materials 343: Electric field/potential difference (V) 344a: Electrode 344b: Electrode 345: Power 346: Polarization-based optical components 347: Voltage signal 347_1: voltage signal 347_2: Voltage signal 348: Bias voltage 349: Voltage 364: Leak Light 365: specific part of pulse 307 366: base part 367: window 368: main part 444: Sound and Light Modulator 540: optical modulation system 540_1: The first electro-optical modulator (EOM) 540_2: The second electro-optical modulator (EOM) 541: Mechanical installation table 546_1: first polarization element 546_2: second polarizing element 546_3: third polarization element 600: program 610: receive 620: analysis 630: Control one or more attributes of the beam 700: Lithography System 760: Radiation beam B 800: Laser-generated plasma (LPP) extreme ultraviolet (EUV) light source 805: Plasma Formation Area 807: internal 810: Amplified beam 814: Target Mix 815: Drive laser / drive laser system 820: beam delivery system 822: Focus assembly 824: Metrology System 825: Supply System 826: Target Material Delivery Control System 827: Target Material Supply Device 830: vacuum chamber 835: collector mirror 840: Pore 845: middle part 850: Open-ended hollow conical shield 855: Master Controller 856: Droplet position detection feedback system 857: Laser Control System 858: Beam Control System 860: Target or droplet imager 865: Light Source Detector 870: Light Source Detector 875: Guide Laser B: radiation beam C: target part IF: Intermediate focus IL: lighting system M1: Patterned device alignment mark M2: Patterned device alignment mark MA: Patterned device MT: supporting structure P1: substrate alignment mark P2: substrate alignment mark PM: the first locator PS: Projection system PS1: Position Sensor/Position Sensor PS2: second position sensor/positioning sensor PW: second locator SO: Source Collector Module ta: time tb: time W: substrate WT: substrate table

圖1及圖2A至圖2C為EUV微影系統之實例的方塊圖。Figures 1 and 2A to 2C are block diagrams of examples of EUV lithography systems.

圖3A為光學調變系統之實例的方塊圖。Figure 3A is a block diagram of an example of an optical modulation system.

圖3B為光學脈衝之實例。Figure 3B shows an example of optical pulse.

圖3C為經修改光學脈衝之實例。Figure 3C is an example of a modified optical pulse.

圖3D為實驗資料之實例。Figure 3D is an example of experimental data.

圖4A為可經施加至光學調變系統之實例電壓信號的標繪圖。Figure 4A is a plot of an example voltage signal that can be applied to an optical modulation system.

圖4B及圖5為光學調變系統之實例的方塊圖。4B and 5 are block diagrams of examples of optical modulation systems.

圖6為用於控制光束之屬性之實例程序的流程圖。Figure 6 is a flowchart of an example program for controlling the properties of the beam.

圖7A及圖7B為微影系統之實例的方塊圖。7A and 7B are block diagrams of examples of the lithography system.

圖8為EUV光源之實例的方塊圖。Figure 8 is a block diagram of an example of an EUV light source.

191:曝光光束 191: Exposure beam

192:基板 192: substrate

196:電漿 196: Plasma

197:極紫外線(EUV)光 197: extreme ultraviolet (EUV) light

200A:微影系統 200A: lithography system

201A:極紫外線(EUV)光源 201A: extreme ultraviolet (EUV) light source

202:增益介質 202: gain medium

203:能量源 203: Energy Source

204:光學源 204: Optical Source

206:光束路徑 206: beam path

207:光束 207: beam

208:經修改光束 208: Modified beam

211:真空腔室 211: Vacuum chamber

213:光學元件 213: optical components

220:供應系統 220: Supply System

221:目標 221: target

222:串流 222: Streaming

223:電漿形成區 223: Plasma Formation Area

230:光學放大器系統 230: Optical amplifier system

240:光學調變系統 240: Optical modulation system

242:光學元件 242: optical components

250:控制系統 250: control system

251:電子處理器 251: Electronic Processor

252:電子儲存器 252: Electronic Storage

253:通信介面 253: Communication Interface

254:指示或表示 254: instruction or representation

260:度量衡系統 260: Metrology System

262:感測器系統 262: Sensor System

264:電子件模組 264: Electronic module

280:微影裝置 280: Lithography Device

281:反射光學元件 281: reflective optics

282:反射光學元件 282: reflective optics

283:隙縫 283: Gap

284:光罩 284: Mask

286:圍封體 286: Enclosure

293:部分 293: part

Claims (28)

一種用於一極紫外線(EUV)微影系統之裝置,該裝置包含: 一光學調變系統,其包含至少一個光學元件,該至少一個光學元件經組態為置放於該光學調變系統與一電漿形成區之間的一光束路徑上,該電漿形成區經組態以接收在一電漿狀態中發射EUV光之目標材料;及 一控制系統,其經組態為耦接至該光學調變系統且接收一信號,該信號包含照射於該微影系統之一掃描系統中之一晶圓上的曝光光之一特性之一指示,其中 該控制系統經進一步組態以基於該曝光光之該特性之該指示而調整該光學調變系統,以藉此基於該曝光光之該特性控制一光束之一第一部分之一屬性,該光束包含至少該第一部分及一第二部分。A device for an extreme ultraviolet (EUV) lithography system, the device includes: An optical modulation system comprising at least one optical element configured to be placed on a beam path between the optical modulation system and a plasma formation region, the plasma formation region passing Configured to receive target materials emitting EUV light in a plasma state; and A control system configured to be coupled to the optical modulation system and receive a signal including an indication of a characteristic of exposure light irradiated on a wafer in a scanning system of the lithography system ,among them The control system is further configured to adjust the optical modulation system based on the indication of the characteristic of the exposure light to thereby control a property of a first part of a light beam based on the characteristic of the exposure light, the light beam comprising At least the first part and the second part. 如請求項1之裝置,其進一步包含耦接至該控制系統之一劑量感測器,該劑量感測器經組態以:感測該晶圓處之該曝光光且將包含該曝光光之該特性之該指示的該信號提供至該控制系統。The device of claim 1, further comprising a dose sensor coupled to the control system, the dose sensor being configured to: sense the exposure light at the wafer and will include the exposure light The signal of the indication of the characteristic is provided to the control system. 如請求項2之裝置,其中該劑量感測器相對於該微影系統之該掃描系統中之該晶圓而定位。The device of claim 2, wherein the dose sensor is positioned relative to the wafer in the scanning system of the lithography system. 如請求項1之裝置,其中該光學調變系統經組態以產生包含一基座部分及一主要部分之一經修改光學脈衝,且 該光束之該第一部分包含該基座部分且該光束之該第二部分包含該主要部分,使得該控制系統經組態以調整該調變系統以藉此基於該曝光光之該特性控制該基座部分之至少一個屬性。The device of claim 1, wherein the optical modulation system is configured to generate a modified optical pulse including a base portion and a main portion, and The first part of the light beam includes the base part and the second part of the light beam includes the main part, so that the control system is configured to adjust the modulation system to thereby control the base based on the characteristic of the exposure light At least one attribute of the seat part. 如請求項4之裝置,其中該基座部分之該至少一個屬性包含一時距、一平均強度及/或一最大強度。Such as the device of claim 4, wherein the at least one attribute of the base portion includes a time interval, an average intensity and/or a maximum intensity. 如請求項4之裝置,其中該經修改脈衝之該主要部分具有足以將該目標材料中之至少一些轉換成發射EUV光之電漿的一能量。The device of claim 4, wherein the main portion of the modified pulse has an energy sufficient to convert at least some of the target material into plasma that emits EUV light. 如請求項4之裝置,其中該光學調變系統包含一電光調變器(EOM),且至少一個光學元件包含一電光材料。The device of claim 4, wherein the optical modulation system includes an electro-optical modulator (EOM), and at least one optical element includes an electro-optical material. 如請求項7之裝置,其中該EOM包含一第一電極、一第二電極,且該電光材料係介於該第一電極與該第二電極之間。The device of claim 7, wherein the EOM includes a first electrode and a second electrode, and the electro-optical material is interposed between the first electrode and the second electrode. 如請求項8之裝置,其中該控制系統經組態以調整該至少一個光學元件包含該控制系統經組態以:調整由該第一電極及該第二電極施加至該電光材料之一電壓量;及/或調整由該第一電極及該第二電極將一電壓施加至該電光材料的一時間。The device of claim 8, wherein the control system is configured to adjust the at least one optical element includes the control system is configured to: adjust an amount of voltage applied to the electro-optical material by the first electrode and the second electrode And/or adjust a time during which a voltage is applied to the electro-optical material by the first electrode and the second electrode. 如請求項8之裝置,其中該調變系統之該至少一個光學元件進一步包含經組態為置放於該光束路徑上之至少一個偏振元件,且該控制系統經組態以調整該至少一個光學元件包含該控制系統經組態以移動該偏振元件。The device of claim 8, wherein the at least one optical element of the modulation system further includes at least one polarization element configured to be placed on the beam path, and the control system is configured to adjust the at least one optical element The element includes the control system configured to move the polarization element. 如請求項10之裝置,其中該控制系統經組態以調整該至少一個光學元件進一步包含該控制系統經組態以:調整由該第一電極及該第二電極施加至該電光材料之一電壓量;及/或調整由該第一電極及該第二電極將一電壓施加至該電光材料的一時間。The device of claim 10, wherein the control system is configured to adjust the at least one optical element further includes the control system is configured to: adjust a voltage applied to the electro-optical material by the first electrode and the second electrode And/or adjust a time during which a voltage is applied to the electro-optical material by the first electrode and the second electrode. 如請求項11之裝置,其中該光學系統包含多於一個EOM,且每一EOM係介於兩個偏振元件之間。Such as the device of claim 11, wherein the optical system includes more than one EOM, and each EOM is between two polarization elements. 如請求項9之裝置,其中: 該控制系統經進一步組態以:在一非作用時段期間,致使該第一電極及該第二電極將一非零偏壓電壓施加至該電光材料,且在一作用時段期間,該控制系統經組態以致使該第一電極及該第二電極將大於該偏壓電壓之一第二電壓施加至該電光材料, 該偏壓電壓之一振幅係基於該曝光光之該特性之該指示, 且該基座之該屬性係藉由該偏壓之該振幅至少部分地判定。Such as the device of claim 9, where: The control system is further configured to cause the first electrode and the second electrode to apply a non-zero bias voltage to the electro-optical material during a non-active period, and during an active period, the control system is Configured to cause the first electrode and the second electrode to apply a second voltage greater than the bias voltage to the electro-optical material, An amplitude of the bias voltage is based on the indication of the characteristic of the exposure light, And the attribute of the base is determined at least in part by the amplitude of the bias. 如請求項13之裝置,其中該光學調變系統之該至少一個光學元件進一步包含一聲光調變器(AOM),該AOM係介於該光學調變系統與該電漿形成區之間,且該AOM經組態以判定該基座之一時距。The device of claim 13, wherein the at least one optical element of the optical modulation system further comprises an acousto-optic modulator (AOM), and the AOM is between the optical modulation system and the plasma formation region, And the AOM is configured to determine a time interval of the base. 如請求項1之裝置,其中該光束包含複數個脈衝, 該光束之該第一部分包含該複數個脈衝中之一第一脈衝,且 該光束之該第二部分包含該複數個脈衝中之一第二脈衝,使得該控制系統經組態以調整該調變系統以藉此基於該曝光光之該特性控制該複數個脈衝中之該第一脈衝的至少一個屬性。Such as the device of claim 1, wherein the light beam includes a plurality of pulses, The first part of the light beam includes a first pulse of one of the plurality of pulses, and The second part of the light beam includes one of the second pulses of the plurality of pulses, so that the control system is configured to adjust the modulation system to thereby control the one of the plurality of pulses based on the characteristic of the exposure light At least one attribute of the first pulse. 如請求項15之裝置,其中所有該複數個脈衝皆在該光束路徑上傳播。Such as the device of claim 15, wherein all the plurality of pulses propagate on the beam path. 如請求項15之裝置,其中該光束之該第一部分及該光束之該第二部分係由不同光源產生。The device of claim 15, wherein the first part of the light beam and the second part of the light beam are generated by different light sources. 如請求項1之裝置,其中該曝光光之一特性之該指示包含在該晶圓之一特定部分處的EUV光之一劑量之一指示,該晶圓處之EUV光之該劑量包含在一預定時間量內該晶圓之該特定部分處的EUV光之一總量。The device of claim 1, wherein the indication of a characteristic of the exposure light includes an indication of a dose of EUV light at a specific portion of the wafer, and the dose of EUV light at the wafer includes a A total amount of EUV light at the specific portion of the wafer for a predetermined amount of time. 如請求項18之裝置,其中該控制系統經進一步組態以:分析該指示以判定EUV光之一臨限劑量是否已被遞送至該晶圓之該特定部分,且若該臨限劑量已被遞送至該晶圓之該特定部分,則發佈一命令以致使該晶圓相對於該EUV光移動使得該晶圓之一不同部分接收該EUV光。Such as the device of claim 18, wherein the control system is further configured to: analyze the indication to determine whether a threshold dose of EUV light has been delivered to the specific part of the wafer, and if the threshold dose has been To deliver to the specific part of the wafer, a command is issued to cause the wafer to move relative to the EUV light so that a different part of the wafer receives the EUV light. 如請求項1之裝置,其進一步包含:經組態以產生該光束之一光產生模組,該光產生模組包含一增益介質及經組態以激發該增益介質之一能量源,且其中 該控制系統耦接至該光產生模組, 該控制系統經進一步組態以:控制該能量源使得該光束之一能量遍及一時間窗大體上相同,且 該控制系統經組態以調整該調變系統包含該控制系統經組態以調整該調變系統使得該光束之該第一部分之一能量遍及該時間窗大體上相同。The device of claim 1, further comprising: a light generating module configured to generate the light beam, the light generating module comprising a gain medium and an energy source configured to excite the gain medium, and wherein The control system is coupled to the light generating module, The control system is further configured to: control the energy source so that the energy of one of the beams is substantially the same throughout a time window, and The control system configured to adjust the modulation system includes the control system configured to adjust the modulation system such that an energy of the first portion of the light beam is substantially the same throughout the time window. 一種極紫外線(EUV)光源,其包含: 一容器,其經組態以形成一真空空間; 一目標供應裝置,其經組態以將一目標提供至該容器中之一電漿產生區; 一光學裝置,其包含一或多個光學元件,該一或多個光學元件經組態為置放於一光產生模組與該電漿產生區之間的一光束路徑上;及 一控制系統,其耦接至該光學裝置,該控制系統經組態以控制該光學裝置以藉此控制一光束之一第一部分之一或多個屬性,該光束包含至少該第一部分及一第二部分,其中在操作使用中,該容器經組態以將EUV光提供至一微影裝置,該微影裝置經組態以將該EUV光導引朝向一晶圓,且該第一部分之該一或多個屬性的該控制係基於該晶圓處之該EUV光之一特性。An extreme ultraviolet (EUV) light source, which includes: A container configured to form a vacuum space; A target supply device configured to provide a target to a plasma generating area in the container; An optical device including one or more optical elements configured to be placed on a beam path between a light generating module and the plasma generating region; and A control system coupled to the optical device, the control system being configured to control the optical device to thereby control one or more attributes of a first part of a light beam, the light beam including at least the first part and a first part Two parts, where in operation, the container is configured to provide EUV light to a lithography device, the lithography device is configured to guide the EUV light toward a wafer, and the first part of the The control of one or more attributes is based on a characteristic of the EUV light at the wafer. 如請求項21之EUV光源,其進一步包含一光產生模組,該光產生模組包含一增益介質及經組態以激發該增益介質之一能量源。For example, the EUV light source of claim 21, which further includes a light generating module including a gain medium and an energy source configured to excite the gain medium. 如請求項22之EUV光源,其中該能量源包含經組態為由一射頻(RF)電源驅動之複數個電極,且該光產生模組包含容納該複數個電極之一腔室,且該控制系統在不調整該RF電源之任何屬性的情況下控制該光束之該第一部分之該一或多個屬性。For example, the EUV light source of claim 22, wherein the energy source includes a plurality of electrodes configured to be driven by a radio frequency (RF) power supply, and the light generating module includes a chamber that accommodates the plurality of electrodes, and the control The system controls the one or more attributes of the first part of the light beam without adjusting any attributes of the RF power source. 如請求項21之EUV光源,其中該光學裝置包含經組態以產生一經修改光學脈衝之一光學調變系統,該經修改脈衝包含一基座部分及一主要部分,且該光束之該第一部分包含該基座部分且該光束之該第二部分包含該主要部分,且 該控制系統經組態以控制該光學裝置以藉此控制該基座部分之一或多個屬性。Such as the EUV light source of claim 21, wherein the optical device includes an optical modulation system configured to generate a modified optical pulse, the modified pulse including a base part and a main part, and the first part of the light beam Includes the base portion and the second portion of the beam includes the main portion, and The control system is configured to control the optical device to thereby control one or more properties of the base portion. 如請求項21之EUV光源,其進一步包含一光產生模組,且其中該光產生模組經組態以產生包含複數個脈衝之一脈衝式光束,該光束之該第一部分包含該複數個脈衝中之一第一脈衝,且該光束之該第二部分包含該複數個脈衝中之一第二脈衝,且 該控制系統經組態以調整該光學裝置以藉此基於該晶圓處之EUV光之該特性而控制該複數個脈衝中之該第一脈衝的至少一個屬性。For example, the EUV light source of claim 21, which further includes a light generating module, and wherein the light generating module is configured to generate a pulsed beam including a plurality of pulses, and the first part of the beam includes the plurality of pulses One of the first pulse, and the second part of the light beam includes one of the second pulses of the plurality of pulses, and The control system is configured to adjust the optical device to thereby control at least one attribute of the first pulse of the plurality of pulses based on the characteristic of EUV light at the wafer. 如請求項21之EUV光源,其進一步包含一光產生模組,且其中該光產生模組包含至少一第一光學源及一第二光學源,該光束之該第一部分為由該第一光學源產生之一光學脈衝,且該光束之該第二部分為由該第二光學源產生之一光學脈衝。For example, the EUV light source of claim 21, which further includes a light generating module, and wherein the light generating module includes at least a first optical source and a second optical source, and the first part of the light beam is generated by the first optical source. The source generates an optical pulse, and the second part of the beam is an optical pulse generated by the second optical source. 如請求項21之EUV光源,其進一步包含耦接至該控制系統之一劑量感測器,該劑量感測器經組態以感測該晶圓處之該EUV光之該特性且產生該晶圓處之該EUV光之該特性的指示。Such as the EUV light source of claim 21, which further includes a dose sensor coupled to the control system, the dose sensor being configured to sense the characteristic of the EUV light at the wafer and generate the crystal An indication of the characteristic of the EUV light at the circle. 一種極紫外線(EUV)微影系統,其包含: 一容器,其經組態以形成一真空空間; 一目標供應裝置,其經組態以將一目標提供至該容器中之一電漿產生區; 一光學裝置,其包含一或多個光學元件,該一或多個光學元件經組態為置放於光產生模組與該電漿產生區之間的一光束路徑上; 一微影裝置,其經組態以自該容器接收EUV光且將該EUV光導引朝向一晶圓;及 一控制系統,其耦接至該光學裝置,該控制系統經組態以控制該光學裝置以藉此控制一光束之第一部分之一或多個屬性,該光束包含至少該第一部分及一第二部分,其中在操作使用中,該第一部分之該一或多個屬性的該控制係基於該晶圓處之該EUV光之一特性。An extreme ultraviolet (EUV) lithography system, which includes: A container configured to form a vacuum space; A target supply device configured to provide a target to a plasma generating area in the container; An optical device comprising one or more optical elements, the one or more optical elements are configured to be placed on a beam path between the light generating module and the plasma generating region; A lithography device configured to receive EUV light from the container and guide the EUV light toward a wafer; and A control system coupled to the optical device, the control system being configured to control the optical device to thereby control one or more properties of a first part of a light beam, the light beam including at least the first part and a second part Part, wherein in operational use, the control of the one or more attributes of the first part is based on a characteristic of the EUV light at the wafer.
TW109103478A 2019-02-19 2020-02-05 Dose control for an extreme ultraviolet optical lithography system TW202036174A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962807568P 2019-02-19 2019-02-19
US62/807,568 2019-02-19

Publications (1)

Publication Number Publication Date
TW202036174A true TW202036174A (en) 2020-10-01

Family

ID=69500748

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109103478A TW202036174A (en) 2019-02-19 2020-02-05 Dose control for an extreme ultraviolet optical lithography system

Country Status (3)

Country Link
NL (1) NL2024823A (en)
TW (1) TW202036174A (en)
WO (1) WO2020169349A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7544316B2 (en) 2020-09-07 2024-09-03 ギガフォトン株式会社 Extreme ultraviolet light generating apparatus and method for manufacturing electronic device
CN114447200B (en) * 2022-01-18 2023-12-29 Tcl华星光电技术有限公司 Display panel and manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021454B2 (en) * 2011-10-05 2016-11-09 ギガフォトン株式会社 Extreme ultraviolet light generation apparatus and extreme ultraviolet light generation method
US9357625B2 (en) * 2014-07-07 2016-05-31 Asml Netherlands B.V. Extreme ultraviolet light source

Also Published As

Publication number Publication date
WO2020169349A1 (en) 2020-08-27
NL2024823A (en) 2020-08-27

Similar Documents

Publication Publication Date Title
US11553582B2 (en) Optical isolation module
JP7356439B2 (en) Spatial modulation of a light beam
JP6989506B2 (en) Equipment and methods that use a scanning light beam for film or surface modification
TW201842416A (en) Laser system
TW202036174A (en) Dose control for an extreme ultraviolet optical lithography system
NL2025612B1 (en) Extreme ultraviolet light generation system and electronic device manufacturing method
TWI825198B (en) Extreme ultraviolet (euv) light source and apparatus for the same, apparatus for forming optical pulse, and method of adjusting property of optical pulse
CN110612482B (en) Laser produced plasma source
CN112930714B (en) Monitoring light emission
WO2020205883A1 (en) Controlling conversion efficiency in an extreme ultraviolet light source
KR102718115B1 (en) Spatial modulation of a light beam
US11979973B2 (en) Semiconductor manufacturing apparatus and operating method thereof
NL2034792B1 (en) Euv light generation system and electronic device manufacturing method
JP6845035B2 (en) Extreme ultraviolet radiation source