TWI824571B - Klebsiella pneumoniae capsule polysaccharide vaccines - Google Patents

Klebsiella pneumoniae capsule polysaccharide vaccines Download PDF

Info

Publication number
TWI824571B
TWI824571B TW111122713A TW111122713A TWI824571B TW I824571 B TWI824571 B TW I824571B TW 111122713 A TW111122713 A TW 111122713A TW 111122713 A TW111122713 A TW 111122713A TW I824571 B TWI824571 B TW I824571B
Authority
TW
Taiwan
Prior art keywords
capsular polysaccharide
cps
ser
gly
ala
Prior art date
Application number
TW111122713A
Other languages
Chinese (zh)
Other versions
TW202237179A (en
Inventor
王錦堂
吳世雄
吳宗益
Original Assignee
國立臺灣大學
中央研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=64796984&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI824571(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 國立臺灣大學, 中央研究院 filed Critical 國立臺灣大學
Publication of TW202237179A publication Critical patent/TW202237179A/en
Application granted granted Critical
Publication of TWI824571B publication Critical patent/TWI824571B/en

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention provides various immunogens comprising a repeat unit of saccharide of Klebsiella pneumoniaeCPS, which has a formula selected from the group consisitng of Formulae (I) to (VI) as described herein. Also provided are vaccines comprising one or more immunogens selected from Formula (I) to (VI) and methods of eliciting an immune response against a Klebsiella pneumoniaeand preventing infection of Klebsiella pneumoniaeby using an immunogen of the invention.

Description

克雷伯氏肺炎桿菌之莢膜多醣疫苗Klebsiella pneumoniae capsular polysaccharide vaccine

本發明涉及疫苗領域。具體地,本發明涉及一種抗克雷伯氏肺炎桿菌感染的疫苗,其包含克雷伯氏肺炎桿菌的莢膜多醣寡醣單元的接合物。The present invention relates to the field of vaccines. In particular, the present invention relates to a vaccine against Klebsiella pneumoniae infection comprising a conjugate of oligosaccharide units of the capsular polysaccharide of Klebsiella pneumoniae.

克雷伯氏肺炎桿菌係一種引起人體各種疾病的重要病原體。最近,由克雷伯氏肺炎桿菌引起的社區獲得性細菌性肝膿瘍(PLA)已經成為一種全球性的疾病。在患有克雷伯氏肺炎桿菌的細菌性肝膿瘍(PLA)中,死亡率為10%,而在具有轉移性腦膜炎的細菌性肝膿瘍(PLA)中,死亡率則提高為30-40%。轉移性腦膜炎的存活者通常具有嚴重的神經學後遺症,而轉移性眼內炎通常會影響眼睛導致眼盲。除了引起細菌性肝膿瘍(PLA)之外,克雷伯氏肺炎桿菌也已經被證實會引起侵入性感染,導致在其它部位的膿瘍(例如腎、脾、腦、前列腺),壞死性筋膜炎和嚴重的菌血症肺炎。Klebsiella pneumoniae is an important pathogen that causes various diseases in the human body. Recently, community-acquired bacterial liver abscess (PLA) caused by Klebsiella pneumoniae has become a global disease. In bacterial liver abscess (PLA) with Klebsiella pneumoniae, the mortality rate is 10%, while in bacterial liver abscess (PLA) with metastatic meningitis, the mortality rate increases to 30-40 %. Survivors of metastatic meningitis often have severe neurological sequelae, while metastatic endophthalmitis often affects the eye leading to blindness. In addition to causing bacterial liver abscesses (PLAs), Klebsiella pneumoniae has also been shown to cause invasive infections, leading to abscesses in other sites (e.g., kidney, spleen, brain, prostate), necrotizing fasciitis and severe bacteremic pneumonia.

研究報告指出,引起PLA的菌株最常見的莢膜類型為K1,第二為K2。除了這些對細菌性肝膿瘍(PLA)的研究外,最近的研究也指出,克雷伯氏肺炎桿菌的K1及K2莢膜類型也會引起其他如壞死性筋膜炎及社區獲得性菌血症肺炎的侵入性感染( Lin YT et al., BMC infectious diseases 2010, 10:307; and Fang CT etal., Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2007, 45(3):284-293)。 Research reports indicate that the most common capsule type of strains causing PLA is K1, followed by K2. In addition to these studies on bacterial liver abscess (PLA), recent studies also indicate that the K1 and K2 capsular types of Klebsiella pneumoniae can also cause other diseases such as necrotizing fasciitis and community-acquired bacteremia. Invasive infections of pneumonia (Lin YT et al., BMC infectious diseases 2010, 10:307; and Fang CT etal., Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2007, 45(3):284- 293 ).

此外,克雷伯氏肺炎桿菌也造成了大約10%的院內感染並且對廣譜β-內醯胺類和碳青黴烯類等抗生素抗藥性的提高也係顯著的問題。我們最近的研究指出,莢膜類型K64(38%),K62(13%),K24(8%),KN2(7%)和K28(6%)佔抗碳青黴烯類抗生素的克雷伯氏肺炎桿菌菌株(Carbapenem-Resistant Klebsiella pneumoniae; CRKP)中的72%,在研究中可以觀察到CRKP的莢膜類型有集中的現象。 In addition, Klebsiella pneumoniae causes approximately 10% of nosocomial infections and increasing resistance to antibiotics such as broad-spectrum β-lactams and carbapenems is a significant problem. Our recent study indicates that capsule types K64 (38%), K62 (13%), K24 (8%), KN2 (7%) and K28 (6%) account for 10% of carbapenem-resistant Klebsiella In 72% of Carbapenem-Resistant Klebsiella pneumoniae (CRKP) strains, a concentration of CRKP capsule types was observed in the study.

針對細菌莢膜為設計目標的疫苗,例如用於肺炎鏈球菌的疫苗,通常可以有效對抗由這類具有莢膜的病原體所引起的感染。在1985年曾公開了一種克雷伯氏肺炎桿菌K1莢膜多醣(CPS)疫苗。在1988年有一發明揭示了一種克雷伯氏肺炎桿菌24價的莢膜多糖(莢膜多醣(CPS))疫苗。雖然多年前就曾公開了克雷伯氏肺炎桿菌K1莢膜多醣(CPS)和24價莢膜多醣(CPS)疫苗,但直到目前為止,仍然沒有可用的克雷伯氏肺炎桿菌疫苗。先前的研究表明多醣疫苗僅能誘導缺乏免疫記憶的T細胞的獨立免疫以及缺乏高親和性抗體的產生。因此,一種克雷伯氏肺炎桿菌莢膜多醣(CPS)-蛋白質接合疫苗可以更有效對抗由該細菌所引起的感染。Vaccines designed to target bacterial capsules, such as those for Streptococcus pneumoniae, are often effective against infections caused by these encapsulated pathogens. In 1985, a Klebsiella pneumoniae K1 capsular polysaccharide (CPS) vaccine was disclosed. In 1988, an invention disclosed a Klebsiella pneumoniae 24-valent capsular polysaccharide (capsular polysaccharide (CPS)) vaccine. Although Klebsiella pneumoniae K1 capsular polysaccharide (CPS) and 24-valent capsular polysaccharide (CPS) vaccines were disclosed many years ago, until now, there is still no available Klebsiella pneumoniae vaccine. Previous studies have shown that polysaccharide vaccines can only induce independent immunity of T cells lacking immune memory and lack the production of high-affinity antibodies. Therefore, a Klebsiella pneumoniae capsular polysaccharide (CPS)-protein conjugate vaccine may be more effective against infections caused by this bacterium.

過去的研究指出,K1和K2莢膜多醣(CPS)係由幾個醣重複單元所組成的巨大分子( Yang FL etal., The Journal of biological chemistry 2011, 286(24):21041-21051)。莢膜多醣(CPS)的解聚將提高與蛋白質偶聯的效率。而一些化學試劑,如三氟乙酸,氫氧化銨和乙酸,雖然會降解莢膜多醣(CPS),卻導致對於免疫反應非常重要的莢膜多醣(CPS)修飾(乙醯化或丙酮化)的喪失。WO20125676A1提供了一種分離的噬菌體,該噬菌體可感染K1克雷伯氏肺炎桿菌菌株並且具有一種專門分解K1 莢膜多醣(CPS)的莢膜解聚酶。將可利用此酵素開發一種可有效對抗克雷伯氏肺炎桿菌感染的疫苗。 Past studies have pointed out that K1 and K2 capsular polysaccharides (CPS) are giant molecules composed of several sugar repeating units ( Yang FL etal., The Journal of biological chemistry 2011, 286(24):21041-21051 ). Depolymerization of capsular polysaccharide (CPS) will increase the efficiency of conjugation to proteins. Some chemical reagents, such as trifluoroacetic acid, ammonium hydroxide, and acetic acid, although they degrade capsular polysaccharide (CPS), lead to the modification (acetylation or acetonation) of capsular polysaccharide (CPS) that is important for immune responses. loss. WO20125676A1 provides an isolated phage that can infect K1 Klebsiella pneumoniae strains and has a capsular depolymerase that specifically breaks down K1 capsular polysaccharide (CPS). This enzyme will be used to develop a vaccine that is effective against Klebsiella pneumoniae infections.

除非另有說明,否則本文係根據常規用法使用技術術語。Unless otherwise stated, technical terms are used in this article in accordance with conventional usage.

除非上下文另外清楚地指出,否則單數術語“一”、“一個”和“該”皆包括複數指代物。 同樣地,除非上下文另有明確指示,否則詞語“或”旨在包括“和”。The singular terms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Likewise, the word "or" is intended to include "and" unless the context clearly indicates otherwise.

本文所使用之縮寫:GlcAp:葡萄醣醛酸;Fucp:岩藻醣;Glcp:葡萄醣;Manp:甘露醣;Rhap:鼠李醣;Galp:半乳醣;GlcUAp:GlcAp:葡萄醣醛酸。Abbreviations used in this article: GlcAp: glucuronic acid; Fucp: fucose; Glcp: glucose; Manp: mannose; Rhap: rhamnose; Galp: galactose; GlcUAp: GlcAp: glucuronic acid.

本文所用之術語“接合物”係指由連接在一起的兩個異源分子組成的組合物,其用於刺激或引發動物中的特異性免疫反應。在一些實施方式中,該免疫反應係指保護性的,其直接使動物更有效地對抗該免疫原性接合物所針對的生物體的感染。該免疫原性接合物的具體實施方式係指疫苗,例如接合疫苗。The term "conjugate" as used herein refers to a composition consisting of two heterologous molecules linked together for the purpose of stimulating or eliciting a specific immune response in an animal. In some embodiments, the immune response is protective, which directly renders the animal more effective against infection by the organism targeted by the immunogenic conjugate. A specific embodiment of the immunogenic conjugate refers to a vaccine, such as a conjugate vaccine.

本文所用之術語“連接物”係指用於可操作地連接兩個不同分子的分子橋的化合物或部分,其中連接物的一端可操作地連接至第一分子,另一端則可操作地連接至第二分子。兩種不同的分子能以逐步的方式連接到連接物上。The term "linker" as used herein refers to a compound or moiety of a molecular bridge used to operably link two different molecules, wherein one end of the linker is operably linked to the first molecule and the other end is operably linked to Second molecule. Two different molecules can be attached to the linker in a stepwise manner.

本文所用之術語“疫苗”係指能在受試者中引起預防性或治療性免疫反應的藥物組合物。通常,疫苗會引起對病原體抗原的抗原專一性免疫反應。The term "vaccine" as used herein refers to a pharmaceutical composition capable of eliciting a prophylactic or therapeutic immune response in a subject. Typically, vaccines elicit an antigen-specific immune response to pathogen antigens.

本文所用之術語“寡醣”係指含有兩個或更多個單醣單元的化合物。寡醣被認為具有還原性末端和非還原性末端。The term "oligosaccharide" as used herein refers to compounds containing two or more monosaccharide units. Oligosaccharides are considered to have reducing and non-reducing ends.

本文所用之術語“蛋白質載體”係指與寡醣偶聯或接合的蛋白質,肽或其片段,其可比單獨的寡醣更高程度地加強所得寡醣-蛋白質載體接合物的免疫原性。The term "protein carrier" as used herein refers to a protein, peptide or fragment thereof coupled or conjugated to an oligosaccharide, which enhances the immunogenicity of the resulting oligosaccharide-protein carrier conjugate to a greater extent than the oligosaccharide alone.

本文所用之術語“抗體”涵蓋多克隆和單克隆抗體製劑,亦包括雜交抗體,改變的抗體,F(ab')2片段,F(ab)分子,Fv片段,在噬菌體上分佈的單鏈片段變體(scFv),單結構域抗體,嵌合抗體,人源化抗體及其顯示親本抗體分子的免疫結合特性的功能片段。The term "antibody" as used herein encompasses both polyclonal and monoclonal antibody preparations and also includes hybrid antibodies, altered antibodies, F(ab')2 fragments, F(ab) molecules, Fv fragments, and single-chain fragments distributed on phage Variants (scFv), single domain antibodies, chimeric antibodies, humanized antibodies and functional fragments thereof that display the immunobinding properties of the parent antibody molecule.

本文所用之術語“免疫原”係指能夠在哺乳動物中誘導免疫反應的蛋白質或其部分,例如已感染或有感染病原體風險的哺乳動物。免疫原的施用可誘導出針對感興趣病原體的保護性免疫和/或主動免疫。The term "immunogen" as used herein refers to a protein or portion thereof capable of inducing an immune response in a mammal, such as a mammal that is infected or is at risk of infection with a pathogen. Administration of the immunogen induces protective immunity and/or active immunity against the pathogen of interest.

本發明係利用與載體分別接合的克雷伯氏肺炎桿菌的分解莢膜多醣(CPS)以產生的莢膜多醣(CPS)接合疫苗。令人驚訝地,本發明之莢膜多醣(CPS)接合疫苗亦可同時誘導具有殺菌活性的莢膜多醣(CPS)抗體。故,本發明之莢膜多醣(CPS)接合疫苗可用於預防克雷伯氏肺炎桿菌造成的侵入性感染。The present invention is a capsular polysaccharide (CPS) conjugated vaccine produced by utilizing decomposed capsular polysaccharide (CPS) of Klebsiella pneumoniae separately conjugated with a carrier. Surprisingly, the capsular polysaccharide (CPS) conjugate vaccine of the present invention can also induce capsular polysaccharide (CPS) antibodies with bactericidal activity at the same time. Therefore, the capsular polysaccharide (CPS) conjugate vaccine of the present invention can be used to prevent invasive infections caused by Klebsiella pneumoniae.

本發明提供了包含選自如本文所述的公式(I)至(VI)的克雷伯氏肺炎桿菌莢膜多醣(CPS)的重複單元的各種免疫原。The present invention provides various immunogens comprising repeating units selected from the Klebsiella pneumoniae capsular polysaccharide (CPS) of formulas (I) to (VI) as described herein.

一方面,本發明提供了包含具有下列公式(I)的克雷伯氏肺炎桿菌K1莢膜多醣(CPS)的三醣的重複單元的免疫原: In one aspect, the invention provides an immunogen comprising repeating units of the trisaccharide of Klebsiella pneumoniae K1 capsular polysaccharide (CPS) having the following formula (I):

在一具體實施方式中,m為2。In a specific embodiment, m is 2.

本發明發現K1-ORF34多肽可以降解克雷伯氏肺炎桿菌K1莢膜多醣(CPS)。降解後,可以獲得克雷伯氏肺炎桿菌K1 莢膜多醣(CPS)的六醣。從K1莢膜多醣(CPS)降解的六醣可被用為針對克雷伯氏肺炎桿菌( Klebsiella pneumoniae)感染的免疫原。K1-ORF34多肽具有如SEQ ID NO:1所示的胺基酸序列。 MALIRLVAPERVFSDLASMVAYPNFQVQDKITLLGSAGGDFTFTTTASVVDNGTVFAVPGGYLLRKFVGPAYSSWFSNWTGIVTFMSAPNRHLVVDTVLQATSVLNIKSNSTLEFTDTGRILPDAAVARQVLNITGSAPSVFVPLAADAAAGSKVITVAAGALSAVKGTYLYLRSNKLCDGGPNTYGVKISQIRKVVGVSTSGGVTSIRLDKALHYNYYLSDAAEVGIPTMVENVTLVSPYINEFGYDDLNRFFTSGISANFAADLHIQDGVIIGNKRPGASDIEGRSAIKFNNCVDSTVKGTCFYNIGWYGVEVLGCSEDTEVHDIHAMDVRHAISLNWQSTADGDKWGEPIEFLGVNCEAYSTTQAGFDTHDIGKRVKFVRCVSYDSADDGFQARTNGVEYLNCRAYRAAMDGFASNTGVAFPIYRECLAYDNVRSGFNCSYGGGYVYDCEAHGSQNGVRINGGRVKGGRYTRNSSSHIFVTKDVAETAQTSLEIDGVSMRYDGTGRAVYFHGTVGIDPTLVSMSNNDMTGHGLFWALLSGYTVQPTPPRMSRNLLDDTGIRGVATLVAGEATVNARVRGNFGSVANSFKWVSEVKLTRLTFPSSAGALTVTSVAQNQDVPTPNPDLNSFVIRSSNAADVSQVAWEVYL (SEQ ID NO:1) The present invention finds that K1-ORF34 polypeptide can degrade Klebsiella pneumoniae K1 capsular polysaccharide (CPS). After degradation, the hexasaccharide of Klebsiella pneumoniae K1 capsular polysaccharide (CPS) can be obtained. Hexasaccharides degraded from K1 capsular polysaccharide (CPS) can be used as immunogens against Klebsiella pneumoniae infections. The K1-ORF34 polypeptide has the amino acid sequence shown in SEQ ID NO:1. MALIRLVAPERVFSDLASMVAYPNFQVQDKITLLGSAGGDFTFTTTASVVDNGTVFAVPGGYLLRKFVGPAYSSWFSNWTGIVTFMSAPNRHLVVDTVLQATSVLNIKSNSTLEFTDTGRILPDAAVARQVLNITGSAPSVFVPLAADAAAGSKVITVAAGALSAVKGTYLYLRSNKLCDGGPNTYGVKISQIRKVVGVSTSGGVTSIRLDK ALHYNYYLSDAAEVGIPTMVENVTLVSPYINEFGYDDLNRFFTSGISANFAADLHIQDGVIIGNKRPGASDIEGRSAIKFNNCVDSTVKGTCFYNIGWYGVEVLGCSEDTEVHDIHAMDVRHAISLNWQSTADGDKWGEPIEFLGVNCEAYSTTQAGFDTHDIGKRVKFVRCVSYDSADDGFQARTNGVEYLNCRAYRAAMDGFASNTGVAFPIY RECLAYDNVRSGFNCSYGGGYVYDCEAHGSQNGVRINGGRVKGGRYTRNSSSHIFVTKDVAETAQTSLEIDGVSMRYDGTGRAVYFHGTVGIDPTLVSMSNNDMTGHGLFWALLSGYTVQPTPPRMSRNLLDDTTGIRGVATLVAGEATVNARVRGNFGSVANSFKWVSEVKLTRLTFPSSAGALTVTSVAQNQDVPTPNPDLNSFVIRSSNAADVSQVA WEVYL (SEQ ID NO:1)

在另一方面,本發明提供了一種免疫原,其包含克雷伯氏肺炎桿菌K2 莢膜多醣(CPS)的四醣的重複單元,具有下列公式(II): 其中 n 為1至4。 In another aspect, the invention provides an immunogen comprising repeating units of the tetrasaccharide of Klebsiella pneumoniae K2 capsular polysaccharide (CPS), having the following formula (II): where n ranges from 1 to 4.

在一具體實施方式中,免疫原包含一個重複單元(即,n為1)。In a specific embodiment, the immunogen contains one repeating unit (ie, n is 1).

本發明發現K2-ORF16多肽可降解克雷伯氏肺炎桿菌K2 莢膜多醣(CPS)。降解後,可得到克雷伯氏肺炎桿菌K2 莢膜多醣(CPS)的四醣。K2 莢膜多醣(CPS)降解後產生的四醣可以用作對抗克雷伯氏肺炎桿菌( Klebsiella pneumoniae)感染的免疫原。因此,本發明提供了分離的多肽或其變體,其具有專一於克雷伯氏肺炎桿菌( Klebsiella pneumoniae)莢膜型K2菌株的莢膜的降解活性,所述多肽或其變體係選自由下列(a)及(b)所組成之群組:(a)一種包含氨基酸序列SEQ ID NO:2之多肽;及(b)一種由一多核苷酸編碼(encode)而來的多肽,其中所述多核苷酸係為至少在高嚴格條件下,會與(i)多肽SEQ ID NO: 2的編碼序列(coding sequence),或(ii)(i)的全長互補序列雜交的多核苷酸。在一具體實施方式中,所述K2-ORF16多肽具有如SEQ ID NO:2所示的胺基酸序列。 MTIIKRADLGRPLTWDELDDNFQQVDDLTAAASAAVLSASASATAAAGSATNSLNSANSAASSADDAAASATVAINALMNSTFEPADFDFTSGGTLDSTDRNKAVYNPADNNWYSWSGILPKIVTAATDPTADSNWKPRTDQLLRQNLASSVIPGTSLVTHSDGIHLDDYIEIFNRRTKFIMPEDFPGTDTEQLQSALSYAKSNRVNVVLQAGKTYYVTGSQGLEVDLGYYSFESPNGIAYIDFTGCTATYCLWVHSSRPYPDGSENHCTSMRGIKFKSSVKGIGQRLLLTGNNNDSSNGTYNGDCKIENCMFSTADIVLGASNSTWRYKFINCGFMMESTGGTYAMHFPAGISDSGESVTFQNCKIFDMKGCPILVECASFAIGMPGTSVLNTPIKITGSGAMVIMDSAANIENPGASAWYRYGEVTGTGARLILNGCTLVCNNPSLQTKPLFYVGANAFIDVTLVKTPGNDYLFQNGDEGLRTFVEGDGYVTASHCIGDILSGVGNIPLHKSLNPTLNPGFETGDLSSWSFNNQGSASQTCVVGTAYKKTGTYGARMTSFGSLSCFLTQKVKVTQHGYYSTTCQINTITAGTGTTAGSLTITFYNRDGNALQAGASSNFTNTPSGWQSVGRFIQGRVPQAAEYCEVSFRCREGAVIDVDNFIINFT (SEQ ID NO:2) The present invention finds that K2-ORF16 polypeptide can degrade Klebsiella pneumoniae K2 capsular polysaccharide (CPS). After degradation, the tetrasaccharide of Klebsiella pneumoniae K2 capsular polysaccharide (CPS) can be obtained. The tetrasaccharide produced after the degradation of K2 capsular polysaccharide (CPS) can be used as an immunogen against Klebsiella pneumoniae infection. Therefore, the present invention provides an isolated polypeptide or a variant thereof, which has a degrading activity specific to the capsule of Klebsiella pneumoniae capsular type K2 strain, the polypeptide or a variant thereof being selected from the following The group consisting of (a) and (b): (a) a polypeptide comprising the amino acid sequence SEQ ID NO: 2; and (b) a polypeptide encoded by a polynucleotide, wherein The polynucleotide is a polynucleotide that hybridizes to (i) the coding sequence of the polypeptide SEQ ID NO: 2, or (ii) the full-length complementary sequence of (i), at least under high stringency conditions. In a specific embodiment, the K2-ORF16 polypeptide has the amino acid sequence shown in SEQ ID NO: 2. MTIIKRADLGRPLTWDELDDNFQQVDDLTAAASAAVLSASASATAAAGSATNSLNSANSAASSADDAAASATVAINALMNSTFEPADFDFTSGGTLDSTDRNKAVYNPADNNWYSWSGILPKIVTAATDPTADSNWKPRTDQLLRQNLASSVIPGTSLVTHSDGIHLDDYIEIFNRRTKFIMPEDFPGTDTEQLQSALSYAKSNRVNVVLQAGKTYYVTGSQGLEVD LGYYSFESPNGIAYIDFTGCTATYCLWVHSSRPYPDGSENHCTSMRGIKFKSSVKGIGQRLLLTGNNNDSSNGTYNGDCKIENCMFSTADIVLGASNSTWRYKFINCGFMMESTGGTYAMHFPAGISDSGESVTFQNCKIFDMKGCPILVECASFAIGMPGTSVLNTPIKITGSGAMVIMDSAANIENPGASAWYRYGEVTGTGARLILNGCTLVCNNPSLQTKPLFYV GANAFIDVTLVKTPGNDYLFQNGDEGLRTFVEGDGYVTASHCIGDILSGVGNIPLHKSLNPTLNPGFETGDLSSWSFNNQGSASQTCVVGTAYKKTGTYGARMTSFGSLSCFLTQKVKVTQHGYYSTTCQINTITAGTGTTAGSLTITFYNRDGNALQAGASSNFTNTPSGWQSVGRFIQGRVPQAAEYCEVSFRCREGAVIDVDNFIINFT (SEQ ID NO:2)

該多肽的變體係人造的,其係包含SEQ ID NO:2的多肽的一個或多個胺基酸的取代、缺失和/或插入。優選地,胺基酸改變具有較小的影響,即具保留性的胺基酸序列的取代或插入不顯著影響蛋白質的折疊和/或活性,其通常為1至約30個胺基酸的小缺失、小的胺基或羧基末端延伸,例如胺基末端甲硫胺酸的殘基、最多約20至25個殘基的小連接肽或通過改變淨電荷或其他功能,如組胺酸標籤、多聚組胺酸標籤區域、抗原決定位或結合結構域。Variants of the polypeptide are man-made and comprise the substitution, deletion and/or insertion of one or more amino acids of the polypeptide of SEQ ID NO:2. Preferably, the amino acid change has a small impact, that is, the substitution or insertion of a retaining amino acid sequence does not significantly affect the folding and/or activity of the protein, which is usually a small change of 1 to about 30 amino acids. Deletions, small amine or carboxyl-terminal extensions, such as residues of the amine-terminal methionine, small linker peptides of up to about 20 to 25 residues, or by changing net charge or other functionality, such as histidine tags, Polyhistidine tag region, epitope or binding domain.

另一方面,本發明提供了一種免疫原,其包括克雷伯氏肺炎桿菌K64 莢膜多醣(CPS)的六醣的重複單元,具有下列公式(III): 其中n為1至4。在一具體實施方式中,n為1。 In another aspect, the present invention provides an immunogen comprising the repeating unit of the hexasaccharide of Klebsiella pneumoniae K64 capsular polysaccharide (CPS), having the following formula (III): where n ranges from 1 to 4. In a specific embodiment, n is 1.

在另一方面,本發明提供了一種免疫原,其包括克雷伯氏肺炎桿菌K62莢膜多醣(CPS)的五醣的重複單元,具有下列公式(IV): 其中n係1至4。在一具體實施方式中,n為2。 In another aspect, the invention provides an immunogen comprising repeating units of the pentasaccharide of Klebsiella pneumoniae K62 capsular polysaccharide (CPS), having the following formula (IV): where n ranges from 1 to 4. In a specific embodiment, n is 2.

在另一方面,本發明提供了一種免疫原,其包括克雷伯氏肺炎桿菌K24莢膜多醣(CPS)的五醣的重複單元,具有下列公式(V): 其中n係1至4。在一具體實施方式中,n為1。 In another aspect, the invention provides an immunogen comprising repeating units of the pentasaccharide of Klebsiella pneumoniae K24 capsular polysaccharide (CPS), having the following formula (V): where n ranges from 1 to 4. In a specific embodiment, n is 1.

在另一方面,本發明提供了一種免疫原,其包括克雷伯氏肺炎桿菌K28 莢膜多醣(CPS)的六醣的重複單元,具有下列公式(VI): 其中n為1至4,n為1。 In another aspect, the invention provides an immunogen comprising repeating units of the hexasaccharide of Klebsiella pneumoniae K28 capsular polysaccharide (CPS), having the following formula (VI): Where n ranges from 1 to 4, and n is 1.

在另一方面,本發明提供了一種免疫原,所述免疫原包括克雷伯氏肺炎桿菌KN2 莢膜多醣(CPS)的六醣的重複單元,其具有四個六醣和一種己醣醛酸,其分子量約為1027。In another aspect, the invention provides an immunogen comprising a repeating unit of the hexasaccharide of Klebsiella pneumoniae KN2 capsular polysaccharide (CPS) having four hexasaccharides and one hexuronic acid , its molecular weight is approximately 1027.

WO20125676A1描述了用於降解K24、K28、K62、K64和KN2的莢膜多醣(CPS)的酵素。WO20125676A1 describes enzymes for the degradation of capsular polysaccharides (CPS) of K24, K28, K62, K64 and KN2.

在另一方面,本發明提供了包含一種或多種選自公式(I)至(VI)的免疫原的疫苗。In another aspect, the invention provides a vaccine comprising one or more immunogens selected from formulas (I) to (VI).

K1、K2、K62、K64、K24和K28的結構醣單元和降解的莢膜多醣(CPS)產物如下。 醣單位結構 莢膜多醣(CPS)之降解產物 K1 三醣 六醣(兩個單位) K2 四醣 四醣(一個單位) K62 五醣 十醣(兩個單位) K64 六醣 六醣(一個單位) K24 五醣 五醣(一個單位) K28 六醣 六醣(一個單位) The structural sugar units and degraded capsular polysaccharide (CPS) products of K1, K2, K62, K64, K24 and K28 are as follows. sugar unit structure Degradation products of capsular polysaccharide (CPS) K1 trisaccharide Six sugars (two units) K2 Tetrasaccharide Tetrasaccharide (one unit) K62 Five sugars Ten sugars (two units) K64 Six sugars Six sugars (one unit) K24 Five sugars Five sugars (one unit) K28 Six sugars Six sugars (one unit)

在一具體實施方式中,免疫原與蛋白質載體互相接合。In a specific embodiment, the immunogen and protein carrier are conjugated to each other.

在一具體實施方式中,本發明之疫苗係多價疫苗。在一些具體實施方式中,疫苗係包含公式I和公式II之免疫原的K1和K2 莢膜多醣(CPS)接合二價疫苗。在另一個實施方式中,該疫苗係包含免疫原I-載體和免疫原II-載體混合物的K1和K2 莢膜多醣(CPS)接合的二價疫苗,其中具有公式(I)的免疫原I和具有公式(II)的免疫原II係分別接合至一載體。In a specific embodiment, the vaccine of the invention is a polyvalent vaccine. In some embodiments, the vaccine is a K1 and K2 capsular polysaccharide (CPS) conjugated bivalent vaccine comprising the immunogens of Formula I and Formula II. In another embodiment, the vaccine is a K1 and K2 capsular polysaccharide (CPS) conjugated bivalent vaccine comprising a mixture of Immunogen I-vector and Immunogen II-vector, wherein Immunogen I and The immunogens II of formula (II) are respectively conjugated to a carrier.

在一具體實施方式中,疫苗係多價疫苗。在一些具體實施方式中,所述疫苗係包含公式III和公式IV的免疫原的K64和K62 莢膜多醣(CPS)接合二價疫苗。在另一具體實施方式中,所述疫苗係K64和K62 莢膜多醣(CPS)接合二價疫苗,包括免疫原III-載體和免疫原IV-載體的混合物,其中,具有公式(III)的免疫原III和具有公式(IV)的免疫原IV分別與載體接合。In a specific embodiment, the vaccine is a polyvalent vaccine. In some embodiments, the vaccine is a K64 and K62 capsular polysaccharide (CPS) conjugated bivalent vaccine comprising immunogens of Formula III and Formula IV. In another specific embodiment, the vaccine is a K64 and K62 capsular polysaccharide (CPS) conjugated bivalent vaccine, including a mixture of an immunogen III-vector and an immunogen IV-vector, wherein the immune response of formula (III) Protein III and immunogen IV of formula (IV) are separately conjugated to the carrier.

本發明的免疫原可以與載體接合形成接合物。在一具體實施方式中,接合物係一疫苗。在另一具體實施方式中,接合疫苗中的任何一種免疫原比為1:1.4至1:10.2。在一具體實施方式中,所述疫苗包含10%(重量百分比)至90%(重量百分比)的免疫原I-蛋白質載體或免疫原III-蛋白載體及10%(重量百分比)至90%(重量百分比)的免疫原II-蛋白質載體或免疫原IV-蛋白質載體。 疫苗優選包含等量的免疫原I-蛋白質載體或免疫原III-蛋白質載體及免疫原II-蛋白質載體或免疫原IV-蛋白質載體。The immunogen of the present invention can be conjugated to a carrier to form a conjugate. In a specific embodiment, the conjugate is a vaccine. In another specific embodiment, the ratio of either immunogen in the conjugate vaccine is from 1:1.4 to 1:10.2. In a specific embodiment, the vaccine includes 10% (weight percent) to 90% (weight percent) immunogen I-protein carrier or immunogen III-protein carrier and 10% (weight percent) to 90% (weight percent) %) of the Immunogen II-protein carrier or the Immunogen IV-protein carrier. The vaccine preferably contains equal amounts of an immunogen I-protein carrier or an immunogen III-protein carrier and an immunogen II-protein carrier or an immunogen IV-protein carrier.

合適的載體在本領域中係為習知技術,並且可以包括例如蛋白質、肽、脂質、聚合物、樹枝狀大分子、病毒體、類病毒顆粒(VLP)或其組合。在一具體實施方式中,載體係蛋白質載體,包括但不限於細菌類毒素、毒素、外毒素和其無毒衍生物,如鑰孔蟲戚血藍蛋白(KLH)、B型肝炎病毒核心蛋白、甲狀腺球蛋白、白蛋白(BSA)、人血清白蛋白(HSA)和卵清蛋白)、肺炎球菌表面蛋白A(PspA)、肺炎球菌粘附蛋白(PsaA)、結核菌素純化蛋白衍生物(PPD);運鐵蛋白結合蛋白、聚氨基酸、破傷風類毒素、破傷風毒素片段C,白喉類毒素,CRM(無毒白喉毒素突變體),霍亂毒素,金黃色葡萄球菌外毒素或類毒素,大腸桿菌熱不穩定性腸毒素,銅綠假單胞菌外毒素A和細菌外膜蛋白(如腦膜炎奈瑟氏菌血清型B外膜蛋白複合物(OMPC)和外膜3類孔蛋白(rPorB))。Suitable vectors are well known in the art and may include, for example, proteins, peptides, lipids, polymers, dendrimers, virions, virus-like particles (VLPs), or combinations thereof. In a specific embodiment, the carrier system protein carrier includes but is not limited to bacterial toxoids, toxins, exotoxins and non-toxic derivatives thereof, such as keyhole limpet hemocyanin (KLH), hepatitis B virus core protein, thyroid Globulin, albumin (BSA), human serum albumin (HSA) and ovalbumin), pneumococcal surface protein A (PspA), pneumococcal adhesion protein (PsaA), tuberculin purified protein derivative (PPD) ; Transferrin-binding protein, polyamino acid, tetanus toxoid, tetanus toxin fragment C, diphtheria toxoid, CRM (nontoxic diphtheria toxin mutant), cholera toxin, Staphylococcus aureus exotoxin or toxoid, E. coli heat-labile enterotoxin, Pseudomonas aeruginosa exotoxin A and bacterial outer membrane proteins such as Neisseria meningitidis serotype B outer membrane protein complex (OMPC) and outer membrane porin class 3 (rPorB).

在一具體實施方式中,載體係蛋白質載體。在另一具體實施方式中,所述蛋白質載體係CRM197。CRM197的胺基酸序列如SEQ ID NO:3所示。 GADDVVDSSKSFVMENFSSYHGTKPGYVDSIQKGIQKPKSGTQGNYDDDWKEFYSTDNKYDAAGYSVDNENPLSGKAGGVVKVTYPGLTKVLALKVDNAETIKKELGLSLTEPLMEQVGTEEFIKRFGDGASRVVLSLPFAEGSSSVEYINNWEQAKALSVELEINFETRGKRGQDAMYEYMAQACAGNRVRRSVGSSLSCINLDWDVIRDKTKTKIESLKEHGPIKNKMSESPNKTVSEEKAKQYLEEFHQTALEHPELSELKTVTGTNPVFAGANYAAWAVNVAQVIDSETADNLEKTTAALSILPGIGSVMGIADGAVHHNTEEIVAQSIALSSLMVAQAIPLVGELVDIGFAAYNFVESIINLFQVVHNSYNRPAYSPGHKTQPFLHDGYAVSWNTVEDSIIRTGFQGESGHDIKITAENTPLPIAGVLLPTIPGKLDVNKSKTHISVNGRKIRMRCRAIDGDVTFCRPKSPVYVGNGVHANLHVAFHRSSSEKIHSNEISSDSIGVLGYQKTVDHTKVNSKLSLFFEIKS (SEQ ID NO:3) In a specific embodiment, the vector is a protein carrier. In another specific embodiment, the protein carrier system is CRM197. The amino acid sequence of CRM197 is shown in SEQ ID NO:3. GADDVVDSSKSFVMENFSSYHGTKPGYVDSIQKGIQKPKSGTQGNYDDDWKEFYSTDNKYDAAGYSVDNENPLSGKAGGVVKVTYPGLTKVLALKVDNAETIKKELGLSLTEPLMEQVGTEEFIKRFGDGASRVVLSLPFAEGSSSVEYINNWEQAKALSVELEINFETRGKRGQDAMYEYMAQACAGNRVRRSVGSSLSCINLDWDVIRD KTKTKIESLKEHGPIKNKMSESPNKTVSEEKAKQYLEEFHQTALEHPELSELKTVTGTNPVFAGANYAAWAVNVAQVIDSETADNLEKTTAALSILPGIGSVMGIADGAVHHNTEEIVAQSIALSSLMVAQAIPLVGELVDIGFAAYNFVESIINLFQVVHNSYNRPAYSPGHKTQPFLHDGYAVSWNTVEDSIIRTGFQGESGHDIKITAENTPLPI AGVLLPTIPGKLDVNKSKTHISVNGRKIRMRCRAIDGDVTFCRPKSPVYVGNGVHANLHVAFHRSSSEKIHSNEISSDSIGVLGYQKTVDHTKVNSKLSLFFEIKS (SEQ ID NO:3)

多醣含有羥基,偶爾會含有羧基和胺基,而蛋白質含有胺基和羧基。本領域已知許多將蛋白質與多醣接合之方法。若蛋白質載體具有兩種或更多種相同的醣類,則醣可以與蛋白質載體的相同分子接合。或者,所述醣類可以分別與蛋白質載體的不同分子(每個蛋白質載體分子僅具有一種與其結合的醣類)分子偶聯。Polysaccharides contain hydroxyl groups and occasionally carboxyl and amine groups, whereas proteins contain amine and carboxyl groups. Many methods of conjugating proteins to polysaccharides are known in the art. If the protein carrier has two or more identical sugars, the sugars can be conjugated to the same molecules of the protein carrier. Alternatively, the saccharides may be individually coupled to different molecules of the protein carrier (each protein carrier molecule having only one saccharide bound to it).

根據本領域通常知識者在製藥和獸醫領域中熟知的標準技術,考慮如特定抗原、佐劑(如果有)、特定動物或患者的年齡、性別、體重、種類和狀況以及給藥途徑等因素,可以確定待給予人或動物的本發明所述之疫苗的用量及給藥的方法。In accordance with standard techniques well known to those of ordinary skill in the art in the pharmaceutical and veterinary fields, taking into account such factors as the specific antigen, adjuvants (if any), age, sex, weight, species and condition of the particular animal or patient, and route of administration, The amount of the vaccine of the invention to be administered to a human or animal and the method of administration can be determined.

本發明所述的接合疫苗能以與用於治療或預防的常規方法學一致的方法給予受試者,例如用於治療或預防來自克雷伯氏肺炎桿菌( Klebsiella pneumoniae)感染的方法。本發明揭示了在足以預防、抑制和/或改善克雷伯氏肺炎桿菌感染的條件下,將可達預防或治療之有效劑量的接合疫苗和/或其它生物活性劑施用於需要這種治療的受試者一段時間。在一些實施方式中,受試者接種本發明之接合疫苗後,成功引起受試者體內針對克雷伯氏肺炎桿菌( Klebsiella pneumoniae)抗原性免疫原的免疫反應。在一些實施方式中,該接受治療之受試者係選自已感染克雷伯氏肺炎桿菌或具有發展克雷伯氏肺炎桿菌感染風險的對象,例如已暴露或有可能暴露於克雷伯氏肺炎桿菌( Klebsiella pneumoniae)環境下的對象。在一重要方面,本發明提供的接合疫苗可以用於預防克雷伯氏肺炎桿菌的感染。 The conjugation vaccine of the present invention can be administered to a subject in a manner consistent with conventional methodologies for treatment or prevention, for example, methods for treatment or prevention of infection from Klebsiella pneumoniae . The present invention discloses that under conditions sufficient to prevent, inhibit and/or ameliorate Klebsiella pneumoniae infection, a conjugate vaccine and/or other biologically active agents at an effective dose for prevention or treatment are administered to patients in need of such treatment. Subject for a period of time. In some embodiments, after the subject is vaccinated with the conjugate vaccine of the present invention, the immune response against the Klebsiella pneumoniae antigenic immunogen in the subject is successfully induced. In some embodiments, the subject being treated is selected from a subject who has been infected with Klebsiella pneumoniae or is at risk of developing a Klebsiella pneumoniae infection, e.g., has been exposed or is at risk of being exposed to Klebsiella pneumoniae Klebsiella pneumoniae environment. In an important aspect, the conjugation vaccine provided by the invention can be used to prevent infection by Klebsiella pneumoniae.

本發明之接合疫苗可製備成溶液劑、混懸劑、片劑、丸劑、膠囊、緩釋製劑、粉劑等。抗原和免疫原性組合物可以與生理上可接受的與其相容的載體混合。這些都可以包括水、生理食鹽水、葡萄醣、甘油、乙醇或它們的組合等。該接合疫苗可進一步含有輔助物質,如潤濕劑或乳化劑或pH緩沖劑,以進一步提高效力。接合疫苗的施用可以包括通過各種途徑遞送,例如口服、靜脈內、肌肉內、鼻內、皮下和腹膜內施用。The conjugated vaccine of the present invention can be prepared into solutions, suspensions, tablets, pills, capsules, sustained-release preparations, powders, etc. Antigens and immunogenic compositions may be mixed with physiologically acceptable carriers that are compatible therewith. These can include water, physiological saline, glucose, glycerol, ethanol, or combinations thereof. The conjugated vaccine may further contain auxiliary substances, such as wetting or emulsifying agents or pH buffering agents, to further increase efficacy. Administration of the conjugate vaccine may include delivery by various routes, such as oral, intravenous, intramuscular, intranasal, subcutaneous, and intraperitoneal administration.

在另一方面,本發明提供了通過施用本發明的接合疫苗製備的抗體。In another aspect, the invention provides antibodies produced by administering a conjugation vaccine of the invention.

以下實施方式僅用於說明本發明而非限制本發明。除非另有說明,本發明所用的所有百分比都係重量百分比。本發明引用的所有專利,專利申請和文獻參考文獻均以引用的方式併入本文。The following embodiments are only used to illustrate the present invention but not to limit the present invention. Unless otherwise stated, all percentages used herein are by weight. All patents, patent applications and literature references cited herein are incorporated by reference.

材料和方法Materials and methods

分離噬菌體Isolate phage

噬菌體的純化和噬菌體的滴度測定係以瓊脂覆蓋的方法進行分離;噬菌體的感染性則係使用斑點測試進行確定( Lin TL, Hsieh PF, Huang YT, et al. Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: implication in typing and treatment. The Journal of infectious diseases 2014; 210:1734-44)。 Phage purification and phage titer determination were performed using agar overlay method; phage infectivity was determined using spot test ( Lin TL, Hsieh PF, Huang YT, et al. Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: implication in typing and treatment. The Journal of infectious diseases 2014; 210:1734-44 ).

噬菌體基因組Phage genome DNADNA 和定序and sequencing

噬菌體的基因體DNA係以QIAGEN的λ試劑組提取,其方法係修改自如下文獻( Lin TL, Hsieh PF, Huang YT, et al. Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: implication in typing and treatment. The Journal of infectious diseases 2014; 210:1734-44)。將噬菌體沉澱和裂解後,用苯酚/氯仿萃取DNA,並以乙醇進行沉澱,最後通過Illumina GAII定序來確定噬菌體的基因體序列。 The genomic DNA of the bacteriophage was extracted with QIAGEN's lambda reagent set, and the method was modified from the following literature ( Lin TL, Hsieh PF, Huang YT, et al. Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: implication in typing and treatment. The Journal of infectious diseases 2014; 210:1734-44 ). After precipitating and lysing the phage, the DNA was extracted with phenol/chloroform and precipitated with ethanol. Finally, the genome sequence of the phage was determined by Illumina GAII sequencing.

蛋白質表現和純化Protein representation and purification

最近的研究已揭示了重組His標記的K1-ORF34蛋白的表現和純化 Lin TL Hsieh PF Huang YT et al Isolation of a bacteriophage and its defolymerase specific for K1 capsule of Klebsiella pneumoniae implicationin typing and treatment.Journal of infectious diseases 2014; 210 1734-44 。K2- orf16片段的擴增係先使用1611E-ORF16順向引子(5'-CAAACATCACGGTGACGCTAGCATGACCATTATCAAACG-3';SEQ ID NO:4)和1611E-ORF16反向引子(5'-CTTTTAACATTTAGCACTCGAGTGTAAAATTAATAATG-3';SEQ ID NO:5)來進行PCR,再以NheI和XhoI限制酶進行分解,之後將經分解後之K2- orf16片段克隆到pET28c質體(Novagen)中的NheI和XhoI雙重分解位點(亦經NheI和XhoI限制酶進行分解)。K62莢膜解聚酶的擴增係先使用Ref-K10-1 ORF6順向引子(5'-ATGAATAAGATGTTTACCCAG-3'; SEQ ID NO:6)和Ref-K10-1 ORF6反向引子(5'-AATTGGGCGAAGGCGTTCAAAC-3'; SEQ ID NO:7)進行PCR,然後克隆到pET28c 質體(Novagen)的平端化EcoRI分解位點中。將得到的質體轉化到BL21型大腸桿菌(DE3)中,利用0.4毫莫耳濃度(mM)的IPTG在16℃進行誘導過夜來表達重組His標籤蛋白,並按照試劑組(Qiagen)內說明書提供的方法進行蛋白質純化。 Recent studies have revealed the expression and purification of recombinant His-tagged K1-ORF34 protein ( Lin TL , Hsieh PF , Huang YT , et al . Isolation of a bacteriophage and its defolymerase specific for K1 capsule of Klebsiella pneumoniae : implicationin typing and treatment .Journal of infectious diseases 2014; 210 : 1734-44 ) . The K2- orf16 fragment was amplified by first using the 1611E-ORF16 forward primer (5'-CAAACATCACGGTGACGCTAGCATGACATTATCAAACG-3'; SEQ ID NO: 4) and the 1611E-ORF16 reverse primer (5'-CTTTTAACATTTAGCACTCGAGTGTAAAATTAATAATG-3'; SEQ ID NO :5) to perform PCR, and then digest it with NheI and XhoI restriction enzymes, and then clone the digested K2- orf16 fragment into the NheI and Restriction enzymes break it down). To amplify K62 capsular depolymerase, the Ref-K10-1 ORF6 forward primer (5'-ATGAATAAGATGTTTACCCAG-3'; SEQ ID NO: 6) and the Ref-K10-1 ORF6 reverse primer (5'- AATTGGGCGAAGGCGTTCAAAC-3'; SEQ ID NO: 7) was subjected to PCR and cloned into the blunted EcoRI cleavage site of the pET28c plasmid (Novagen). The obtained plasmid was transformed into BL21 Escherichia coli (DE3), induced with 0.4 millimol concentration (mM) IPTG at 16°C overnight to express the recombinant His-tagged protein, and the recombinant His-tagged protein was expressed according to the instructions provided in the reagent set (Qiagen). method for protein purification.

克雷伯氏肺炎桿菌莢膜多醣(Klebsiella pneumoniae capsular polysaccharide ( CPSCPS )的純化) purification

分別從克雷伯氏肺炎桿菌NTUH-K2044∆ wbbO,NTUH-A4528∆ wbbO和K62 reference ∆ wbbO突變菌株中純化出K1,K2及K62的莢膜多醣(CPS)(Hsieh PF, Lin TL, Yang FL, et al. Lipopolysaccharide O1 antigen contributes to the virulence in Klebsiella pneumoniaecausing pyogenic liver abscess. PloS one 2012; 7:e33155),以消除O多醣的污染。將細菌在Luria瓊脂盤上,於37℃下培養12小時。將細菌收集並放入無菌水(重量/體積=1/10)中,在100℃下加熱10分鐘。冷卻後,將細菌溶液以15,000xg離心20分鐘。將上清液(體積)與冰冷的丙酮(4倍體積)混合以進行多醣沉澱。在12,000xg離心20分鐘後,得到一未經加工的莢膜多醣(CPS)沉澱物。將該沉澱物打散並懸浮在無菌水中並冷凍乾燥。未經加工的莢膜多醣(CPS)粉末在37℃下被核醣核酸酶(Roche)和脫氧核醣核酸酶I(Roche)分解24小時,然後與蛋白酶K在10毫莫耳濃度(mM)的三羥甲基氨基甲烷-HCl(pH 7.4)中進一步分解6至8小時。在100℃變性10分鐘後,上清液以孔洞大小約為8至10千道耳吞的透析膜進行透析純化並冷凍乾燥。部分純化的莢膜多醣(CPS)以0.1%疊氮化鈉在過濾的純水中進行洗脫,接著在TSK HW-65F管柱[1.6公分(直徑)×90公分(高度)]上進一步純化。通過苯酚-硫酸法檢測含有碳水化合物的碎片並以純水進行透析(分子量閥值:1 千道耳吞),並以冷凍乾燥濃縮。 Capsular polysaccharides (CPS) of K1, K2 and K62 were purified from Klebsiella pneumoniae NTUH-K2044Δ wbbO , NTUH-A4528Δ wbbO and K62 reference Δ wbbO mutant strains respectively (Hsieh PF, Lin TL, Yang FL , et al. Lipopolysaccharide O1 antigen contributes to the virulence in Klebsiella pneumoniae causing pyogenic liver abscess. PloS one 2012;7:e33155) to eliminate O-polysaccharide contamination. Bacteria were cultured on Luria agar plates at 37°C for 12 hours. Bacteria were collected and placed in sterile water (weight/volume = 1/10) and heated at 100°C for 10 minutes. After cooling, the bacterial solution was centrifuged at 15,000xg for 20 minutes. Mix the supernatant (volume) with ice-cold acetone (4 volumes) for polysaccharide precipitation. After centrifugation at 12,000xg for 20 minutes, an unprocessed capsular polysaccharide (CPS) pellet was obtained. The pellet was broken up and suspended in sterile water and freeze-dried. Raw capsular polysaccharide (CPS) powder was decomposed by ribonuclease (Roche) and deoxyribonuclease I (Roche) at 37 °C for 24 h and then mixed with proteinase K at 10 millimolar concentration (mM). Further decomposition occurs in hydroxymethylaminomethane-HCl (pH 7.4) for 6 to 8 hours. After denaturation at 100°C for 10 minutes, the supernatant was dialyzed and purified using a dialysis membrane with a pore size of approximately 8 to 10 kilodaltons and freeze-dried. Partially purified capsular polysaccharide (CPS) was eluted with 0.1% sodium azide in filtered pure water and further purified on a TSK HW-65F column [1.6 cm (diameter) × 90 cm (height)] . The carbohydrate-containing fragments were detected by the phenol-sulfuric acid method and dialyzed against pure water (molecular weight threshold: 1 kilodalton) and concentrated by freeze-drying.

莢膜多寡醣之莢膜多醣(Capsular polysaccharide (capsular polysaccharide) CPSCPS )結構分析) Structural analysis

先前的研究( Yang FL et al., The Journal of biological chemistry 2011, 286(24):21041-21051; Corsaro MM et al., Carbohydrate research 2005, 340(13):2212-2217)已揭示了克雷伯氏肺炎桿菌NTUH-K2044(K1)和A4528(K2)莢膜多醣的化學結構。 Previous studies ( Yang FL et al., The Journal of biological chemistry 2011, 286(24):21041-21051; Corsaro MM et al., Carbohydrate research 2005, 340(13):2212-2217 ) have revealed that Cray Chemical structures of capsular polysaccharides of C. burnetii NTUH-K2044 (K1) and A4528 (K2).

質譜分析法:在基質輔助雷射脫附電離質譜分析上,先將0.5微升(μl)樣品與0.5微升(μl)基質溶液(20毫克/毫升 2,5-二羥基苯甲酸(DHB))混合在50% ACN和1% 硝酸水溶液(H 3PO 4)中,得一混合液,將混合液點在不銹鋼的盤子上,經空氣乾燥後,在4800型基質輔助雷射脫附電離-飛行時間/飛行時間質譜分析儀(Applied Biosystems,Foster City,CA)上,以加速電壓為20千伏特、電網電壓為16%的正反射器模式下進行分析。典型的光譜係由1000個激光照射產生的。使用Data-Explorer軟件(Applied Biosystems)( Tsai CF et al., Neuromethods 2011, 57:181-196),通過基線扣除和噪音去除處理原始光譜。在一次質譜分析上,在Ultraflex II 基質輔助雷射脫附電離-飛行時間/飛行時間質譜儀(Bruker Daltonik GmbH,Germany)上進行測量。質譜係在質荷比(m / z)範圍從500到4,000的反射模式下獲得的。質譜/質譜分析係在升降機模式下進行的。質譜分析由中央研究院基因組研究中心的質譜儀實驗室(GRC Mass Core Facility)進行。 Mass spectrometry: For matrix-assisted laser desorption ionization mass spectrometry, 0.5 microliters (μl) of sample was first mixed with 0.5 microliters (μl) of matrix solution (20 mg/ml 2,5-dihydroxybenzoic acid (DHB) ) mixed in 50% ACN and 1% nitric acid aqueous solution (H 3 PO 4 ) to obtain a mixed solution. The mixed solution was placed on a stainless steel plate. After air drying, it was subjected to 4800 matrix-assisted laser desorption ionization - Analysis was performed on a time-of-flight/time-of-flight mass spectrometer (Applied Biosystems, Foster City, CA) in specular reflector mode with an acceleration voltage of 20 kV and a grid voltage of 16%. A typical spectrum is generated from 1000 laser shots. Raw spectra were processed by baseline subtraction and noise removal using Data-Explorer software (Applied Biosystems) ( Tsai CF et al., Neuromethods 2011, 57:181-196 ). Measurements were performed on an Ultraflex II matrix-assisted laser desorption ionization-time-of-flight/time-of-flight mass spectrometer (Bruker Daltonik GmbH, Germany) in primary mass spectrometry. Mass spectra were acquired in reflection mode with mass-to-charge ratios (m/z) ranging from 500 to 4,000. Mass spectrometry/mass spectrometry analyzes were performed in elevator mode. Mass spectrometry analysis was performed by the GRC Mass Core Facility of the Genome Research Center of Academia Sinica.

核磁共振光譜分析:本發明記錄一重水中的小莢膜多醣(CPS)片段的核磁共振光譜分析結果;所有的二維核磁共振光譜分析實驗都使用Bruker所提供的標準脈衝序列進行。核磁共振光譜分析數據係使用上旋轉3.1處理。核磁共振光譜分析實驗和共振分配:所有的核磁共振實驗都在Bruker AVANCE 600或AVANCE 800核磁共振質譜儀(Bruker,Karlsruhe,Germany)上進行,配備有三重( 1H、 13C和 15N)共振冷凍探針,包括一屏蔽z-梯度。收集二維(2D) 1H NMR、TOCSY和NOESY光譜。所有重組蛋白質的異核核磁共振實驗均按要求進行。通過CBCA(CO)NH、HNCACB、HNCO、HN(CA)CO和C(CO)NH的獨立連接性分析實現骨架原子的序列特異性分配。 1H共振使用3D HAHB(CO)NH和HCCH-TOCSY分配。 Nuclear magnetic resonance spectroscopic analysis: The present invention records the nuclear magnetic resonance spectroscopic analysis results of small capsular polysaccharide (CPS) fragments in heavy water; all two-dimensional nuclear magnetic resonance spectroscopic analysis experiments are performed using the standard pulse sequence provided by Bruker. NMR spectroscopic analysis data were processed using spin-up 3.1. NMR spectroscopy experiments and resonance assignments: All NMR experiments were performed on a Bruker AVANCE 600 or AVANCE 800 NMR mass spectrometer (Bruker, Karlsruhe, Germany) equipped with triple ( 1H , 13C and 15N ) resonances Cryoprobe, including a shielded z-gradient. Two-dimensional (2D) 1 H NMR, TOCSY and NOESY spectra were collected. All heteronuclear NMR experiments of recombinant proteins were performed as required. Sequence-specific assignment of backbone atoms was achieved by independent connectivity analysis of CBCA(CO)NH, HNCACB, HNCO, HN(CA)CO, and C(CO)NH. 1 H resonances were assigned using 3D HAHB(CO)NH and HCCH-TOCSY.

酶裂解:通過β-氫消除反應,以K1裂解酶將K1 莢膜多醣(CPS)降解,以產生葡萄醣醛酸的C-4和C-5之間的雙鍵,並測定其在232奈米波長吸光值的分光光度變化。在UV-VIS分光光度計(Ultrospec 4000 UV / Visible; Amersham Pharmacia Biotech,Piscataway,NJ,USA)中,25℃的條件下,在1毫升體積的比色管中進行三重複測定。將重組K1裂解酶(10微克/毫升)加入到含有25毫莫耳濃度(mM)、pH7.5的三羥甲基氨基甲烷(Tris)、3毫莫耳濃度(mM)的氯化鎂(MgCl 2)和40微克/毫升的莢膜多醣(CPS)的反應混合物中,隨後測定15分鐘的232奈米波長吸光值的增加。對照組則不含K1裂解酶。 Enzymatic cleavage: K1 capsular polysaccharide (CPS) is degraded by K1 lyase through β-hydrogen elimination reaction to generate the double bond between C-4 and C-5 of glucuronic acid and measured at 232 nm Spectrophotometric changes in wavelength absorbance values. Determinations were performed in triplicate in a UV-VIS spectrophotometer (Ultrospec 4000 UV/Visible; Amersham Pharmacia Biotech, Piscataway, NJ, USA) at 25 °C in colorimetric tubes with a volume of 1 ml. Recombinant K1 lyase (10 μg/ml) was added to a solution containing 25 mM Tris, pH 7.5, and 3 mM MgCl 2 ) and 40 μg/ml capsular polysaccharide (CPS) in the reaction mixture, and then measured the increase in absorbance at 232 nm wavelength for 15 min. The control group did not contain K1 lyase.

3,5- 二硝基水楊酸( DNSA )測定法(對於 K2 水解酶)來定量還原末端:本發明係通過估算3,5-二硝基水楊酸還原醣的濃度的方法來確定水解酶活性(DNAS)(Sigma-Aldrich) ( Danner M et al., European journal of biochemistry / FEBS 1993, 215(3):653-661; Miller GL et al., Analytical Chemistry 1959, 31(3):426-428)。當樣品與DNSA混合併加熱以催化反應時,通過裝置FlexStation 3將DNS的3'端的硝基還原成可在535奈米波長測量吸光值的胺。通過定量還原醣的濃度可以確定每種水解酶的條件。 Quantification of the reducing end using the 3,5 -dinitrosalicylic acid ( DNSA ) assay (for K2 hydrolase): This method is determined by estimating the concentration of the 3,5-dinitrosalicylic acid reducing sugar. Hydrolase activity (DNAS) (Sigma-Aldrich) ( Danner M et al., European journal of biochemistry / FEBS 1993, 215(3):653-661; Miller GL et al., Analytical Chemistry 1959, 31(3): 426-428 ). When the sample is mixed with DNSA and heated to catalyze the reaction, the nitro group at the 3' end of the DNS is reduced by the FlexStation 3 device to an amine whose absorbance can be measured at 535 nm. The conditions for each hydrolase can be determined by quantifying the concentration of reducing sugars.

毛細管電泳:本發明式係在Beckman P/ACE MDQ毛細管電泳系統上進行毛細管電泳,該毛細管電泳系統配備有設置在230奈米波長的UV檢測器。在25℃下,以電動力學層析法塗覆的熔融石英毛細管(內徑77微米,總長度65公分,從注射點到檢測器50公分)進行分離和分析。操作緩衝液由磷酸鈉緩衝液(50毫莫耳濃度(mM),pH9.0)組成。將緩衝液通過孔洞直徑0.2微米的膜濾器真空過濾脫氣,並在超聲波水槽中振盪。每次執行前,毛細管先以0.1莫耳濃度的NaOH清洗5分鐘,再以二次蒸餾水清洗5分鐘,然後用操作緩衝液處理5分鐘。待分析的樣品使用壓力注射模式自動注射,其中樣品加壓15秒。使用正常極性,在20千伏特(約65毫安培)下進行毛細管電泳。 Capillary electrophoresis: Capillary electrophoresis is performed on a Beckman P/ACE MDQ capillary electrophoresis system equipped with a UV detector set at a wavelength of 230 nanometers. Separation and analysis were performed at 25°C in electrodynamic chromatography-coated fused silica capillaries (inner diameter 77 μm, total length 65 cm, 50 cm from injection point to detector). The working buffer consisted of sodium phosphate buffer (50 millimolar (mM), pH 9.0). The buffer solution was vacuum filtered and degassed through a membrane filter with a pore diameter of 0.2 μm, and oscillated in an ultrasonic water tank. Before each execution, the capillary was cleaned with 0.1 molar NaOH for 5 minutes, then with double-distilled water for 5 minutes, and then treated with operating buffer for 5 minutes. The sample to be analyzed is automatically injected using pressure injection mode, where the sample is pressurized for 15 seconds. Perform capillary electrophoresis at 20 kV (approximately 65 mA) using normal polarity.

分解後的莢膜多醣(Decomposed capsular polysaccharide ( CPSCPS )與)and DT-CRM197DT-CRM197 載體蛋白的接合conjugation of carrier proteins

kochetkov 胺化製備醣基胺的方法:於還原醣水溶液(20毫克的還原醣溶解在3.0毫升的二次蒸餾水中)中加入碳酸銨(3.0克,過量)。將得到的懸浮液密封,並在室溫下攪拌7天,之後將反應混合物冷凍乾燥直至殘餘物的干重保持恆定而獲得無色的固態醣基胺,且使用時不經進一步的純化。 Method for preparing glycosylamines by kochetkov amination: Add ammonium carbonate (3.0 g, excess) to a reducing sugar aqueous solution (20 mg of reducing sugar dissolved in 3.0 ml of double distilled water). The resulting suspension was sealed and stirred at room temperature for 7 days, after which the reaction mixture was freeze-dried until the dry weight of the residue remained constant to obtain the glycosylamine as a colorless solid and used without further purification.

通過醣基胺連接硫醇連接物的方法:於醣基胺溶液(20毫克的醣基胺溶解在3.0毫升的磷酸鹽緩衝生理鹽水(pH7.4)中)中加入3,3'-二硫代雙(磺基琥珀酰亞胺基丙酸酯,DTSSP,20毫克,過量),之後加入1莫耳濃度的NaOH溶液使反應混合物維持在pH 7.4至7.8,並在室溫下攪拌16小時。於前述之溶液中加入二硫蘇醣醇(DTT,20毫克,過量),該混合物在40℃下攪拌1-2小時。最後進行減壓除去溶劑,殘留物經Sephadex LH-20柱層析純化,用二次蒸餾水洗脫,得到所需的產物:分解的莢膜多醣-硫醇(CPS-SH)。 To connect thiol linkers via glycosylamine: Add 3,3'-disulfide to the glycosylamine solution (20 mg of glycosylamine dissolved in 3.0 ml of phosphate buffered saline (pH 7.4)). Substitute bis(sulfosuccinimidylpropionate, DTSSP, 20 mg, excess), then add 1 molar NaOH solution to maintain the reaction mixture at pH 7.4 to 7.8, and stir at room temperature for 16 hours. Dithiothreitol (DTT, 20 mg, excess) was added to the aforementioned solution, and the mixture was stirred at 40°C for 1-2 hours. Finally, the solvent was removed under reduced pressure, and the residue was purified by Sephadex LH-20 column chromatography and eluted with double distilled water to obtain the desired product: decomposed capsular polysaccharide-thiol (CPS-SH).

CRM197- 馬來醯亞胺( CRM197-maleimid 的合成:在通過交替溶解在水中並透析(Amicon Ultra-0.5,10 千道耳吞)將市售CRM197(1.0毫克)的鹽除去之後,將殘餘物溶於磷酸鹽緩衝生理鹽水(pH6.5,1.0毫升)中,並轉移到樣品瓶。於該溶液中加入N-ε-馬來醯亞胺(maleimid)己酰氧基磺基琥珀酰亞胺酯(Sulfo-EMCS,1.0毫克,8.22×10 -6莫耳),然後在室溫下攪拌反應2小時,再用Amicon Ultra-0.5(10 千道耳吞)純化該混合物。在使用基質輔助雷射脫附電離-飛行時間光譜分析檢查分子量和BCA測定以計算蛋白質的總量之後,將CRM197-馬來醯亞胺( CRM197-maleimid)保存在磷酸鹽緩衝生理鹽水(pH7.2,1.0毫克/毫升)中,於下一步使用。根據基質輔助雷射脫附電離-飛行時間光譜分析的數據,可以計算馬來醯亞胺的官能團的數量。例如,當CRM197-馬來醯亞胺( CRM197-maleimid)的分子量為61841時,便可以確定CRM197-馬來醯亞胺( CRM197-maleimid)上的馬來醯亞胺官能團的數量。 Synthesis of CRM197 -maleimid : After removal of salts from commercially available CRM197 (1.0 mg) by alternate dissolution in water and dialysis (Amicon Ultra-0.5, 10 kDa ) , the residual Dissolve in phosphate buffered saline (pH 6.5, 1.0 ml) and transfer to sample vial. Add N-ε-maleimid (maleimid) hexanoyloxysulfosuccinimide ester (Sulfo-EMCS, 1.0 mg, 8.22×10 -6 mol) to this solution, and then incubate at room temperature. The reaction was stirred for 2 hours and the mixture was purified using Amicon Ultra-0.5 (10 kilodaltons). After using matrix-assisted laser desorption ionization-time of flight spectroscopy to check the molecular weight and BCA determination to calculate the total amount of protein, CRM197-maleimid was stored in phosphate-buffered saline (pH 7. 2, 1.0 mg/ml), used in the next step. Based on data from matrix-assisted laser desorption ionization-time of flight spectroscopy, the number of functional groups of maleimide can be calculated. For example, when the molecular weight of CRM197 -maleimid is 61841, the number of maleimine functional groups on CRM197-maleimid can be determined.

分解的莢膜多醣 -CRM197 CPS-CRM197 )接合物( 1 4 )的合成:將CRM197-馬來醯亞胺( CRM197-maleimid)溶於磷酸鹽緩衝生理鹽水(pH7.2,1.0毫克/毫升)中,然後向溶液中加入不同量的分解的莢膜多醣-硫醇(CPS-SH)(在磷酸鹽緩衝生理鹽水中為5.0毫克/毫升,pH7.2)。該混合物在室溫下攪拌2小時。 通過使用Amicon Ultra-0.5(10千道耳吞)來純化經分解的莢膜多醣-CRM197(CPS-CRM197)接合物,以通過透析移除非反應性分解的莢膜多醣-硫醇(CPS-SH)和磷酸鈉鹽。再以通過基質輔助雷射脫附電離-飛行時間光譜分析來確定該所獲得的經分解的莢膜多醣-CRM197(CPS-CRM197)接合物的碳水化合物摻入率。非反應性分解的莢膜多醣-硫醇(CPS-SH)與二硫蘇醣醇(DTT)反應後,經LH-20管柱層析純化即可回收。通過改變經分解的莢膜多醣-硫醇(CPS-SH)的量,我們可以將不同比例的寡醣抗原決定位接合到CRM197載體上。 Synthesis of decomposed capsular polysaccharide -CRM197 ( CPS-CRM197 ) conjugates ( 1 to 4 ): Dissolve CRM197-maleimid in phosphate buffered saline (pH 7.2, 1.0 mg/ ml), then varying amounts of decomposed capsular polysaccharide-thiol (CPS-SH) (5.0 mg/ml in phosphate buffered saline, pH 7.2) were added to the solution. The mixture was stirred at room temperature for 2 hours. The cleaved capsular polysaccharide-CRM197 (CPS-CRM197) conjugate was purified by using Amicon Ultra-0.5 (10 kDa) to remove non-reactive cleaved capsular polysaccharide-thiol (CPS-CRM197) by dialysis. SH) and sodium phosphate. The carbohydrate incorporation rate of the obtained decomposed capsular polysaccharide-CRM197 (CPS-CRM197) conjugate was determined by matrix-assisted laser desorption ionization-time of flight spectroscopy. The non-reactive decomposed capsular polysaccharide-thiol (CPS-SH) reacts with dithiothreitol (DTT) and can be recovered through LH-20 column chromatography purification. By varying the amount of cleaved capsular polysaccharide-thiol (CPS-SH), we can conjugate different ratios of oligosaccharide epitopes to the CRM197 vector.

疫苗接種Vaccination

將莢膜多醣(CPS)接合的疫苗在磷酸鹽緩衝生理鹽水中稀釋至濃度為100微克/毫升,並將醣脂佐劑C34在二甲基亞碸(DMSO)中溶解至濃度為100微克/毫升。100微升由莢膜多醣(CPS)接合疫苗(2微克聚醣)和2微克佐劑組成的疫苗混合物以肌肉注射(IM)的方式施打於小鼠。對於K1和K2疫苗:五週齡的雌性BALB / c小鼠接受疫苗三次,每次間隔一周。 對於K62疫苗:五週齡的雌性BALB / c小鼠以每兩週接種一次疫苗,共五次。The capsular polysaccharide (CPS)-conjugated vaccine was diluted in phosphate-buffered saline to a concentration of 100 μg/ml, and the glycolipid adjuvant C34 was dissolved in dimethylsulfoxide (DMSO) to a concentration of 100 μg/ml. ml. 100 μl of a vaccine mixture consisting of capsular polysaccharide (CPS) conjugated vaccine (2 μg glycan) and 2 μg adjuvant was administered intramuscularly (IM) to mice. For K1 and K2 vaccines: Five-week-old female BALB/c mice received the vaccine three times, one week apart. For the K62 vaccine: Five-week-old female BALB/c mice were vaccinated every two weeks for five times.

對抗莢膜多醣(Against capsular polysaccharide ( CPSCPS )的抗體的檢測) detection of antibodies

通過免疫斑點試驗將不同量的純化的莢膜多醣(CPS)轉移到膜上。通過培養疫苗接種後的小鼠的血清(1:1000稀釋)來檢測抗莢膜多醣(CPS)的抗體。Different amounts of purified capsular polysaccharide (CPS) were transferred to the membrane by immunospot assay. Antibodies against capsular polysaccharide (CPS) were detected by culturing sera from vaccinated mice (1:1000 dilution).

血清殺菌試驗Serum bactericidal test

小鼠血清在56℃下培養30分鐘後,用生理鹽水做二倍連續稀釋(1/2倍至1/256倍)。將25微升(μl)稀釋的血清和12.5微升(μl)細菌懸浮液(100 菌落形成單位(CFU,colony-forming unit))在37℃下培養15分鐘。培養後,加入12.5微升(μl)新生兔子的補體(Pel-Freez,USA)並在37℃下培養1小時。然後將反應混合物鋪在LB盤上。培養至隔天後,計算存活細菌的數量。血清殺菌力價被定義為血清稀釋度的倒數,對比於僅接種佐劑的對照組小鼠,接種疫苗小鼠的細菌-補體-血清達到50%的殺菌力。After incubating the mouse serum at 56°C for 30 minutes, make two-fold serial dilutions (1/2 times to 1/256 times) with physiological saline. Incubate 25 μl of diluted serum and 12.5 μl of bacterial suspension (100 colony-forming units (CFU)) at 37°C for 15 minutes. After incubation, 12.5 microliters (μl) of newborn rabbit's complement (Pel-Freez, USA) was added and incubated at 37°C for 1 hour. The reaction mixture was then spread on an LB pan. After culturing for the next day, the number of surviving bacteria was counted. Serum bactericidal potency was defined as the reciprocal of serum dilution, and bacterial-complement-serum from vaccinated mice achieved 50% bactericidal potency compared to control mice vaccinated with adjuvant only.

保護力分析Protection power analysis

對於K1和K2疫苗:疫苗接種後一周(每組5隻小鼠),包含疫苗接種的或對照小鼠(僅佐劑),用腹腔注射(IP)方式接種1×10 4菌落形成單位(CFU,colony-forming unit)的NTUH-K2044或NTUH-A4528菌株。實驗進行30天以觀察小鼠的死亡率。通過Kaplan-Meier分析法並以log-rank檢驗分析小鼠的生存率; P值<0.05則被認為具有統計學上的顯著差異。對於K62疫苗:接種疫苗組或對照組小鼠(僅用佐劑)每兩天以環磷醯胺(100毫克/公斤)進行前處理兩次。在環磷醯胺處理的小鼠中,白血球和嗜中性球的數量顯著偏低。在環磷醯胺處理後兩天(每組5隻小鼠),以5×10 6菌落形成單位(CFU,colony-forming unit)的K62參考菌株對這些小鼠進行腹腔注射接種。進行30天的觀察,以確認小鼠的死亡率。通過Kaplan-Meier分析法並以log-rank檢驗分析小鼠的生存率; P值<0.05則被認為具有統計學上的顯著差異。本發明所述的其他免疫原的疫苗皆以如上所述的類似方法進行測定。 實施方式 1 :分離感染克雷伯氏肺炎桿菌 1611E 株( K2 莢膜型)的噬菌體 For K1 and K2 vaccines: One week after vaccination (5 mice per group), including vaccinated or control mice (adjuvant only), inoculate 1 × 10 colony forming units (CFU) intraperitoneally (IP) , colony-forming unit) NTUH-K2044 or NTUH-A4528 strain. The experiment was carried out for 30 days to observe the mortality of mice. The survival rates of mice were analyzed by Kaplan-Meier analysis and log-rank test; P values <0.05 were considered to have statistically significant differences. For K62 vaccine: mice in the vaccinated group or control group (adjuvant only) were pretreated with cyclophosphamide (100 mg/kg) twice every two days. The numbers of white blood cells and neutrophils were significantly lower in cyclophosphamide-treated mice. Two days after cyclophosphamide treatment (5 mice per group), these mice were inoculated intraperitoneally with 5 × 10 colony-forming units (CFU) of the K62 reference strain. Observations were conducted for 30 days to confirm the mortality of mice. The survival rates of mice were analyzed by Kaplan-Meier analysis and log-rank test; P values <0.05 were considered to have statistically significant differences. Vaccines with other immunogens described in the present invention are all tested using similar methods as described above. Embodiment 1 : Isolation of phages infecting Klebsiella pneumoniae strain 1611E ( K2 capsular type)

先前的研究已揭示了來自K1特異性噬菌體NTUH-K2044-K1-1的K1莢膜解聚酶(K1-ORF34)( Lin TL et al., The Journal of infectious diseases 2014, 210(11):1734-1744)。為了分離K2莢膜降解酶,從未處理的水中分離出感染克雷伯氏肺炎桿菌1611E株(K2型莢膜)的噬菌體。檢測到具有半透明光暈的透明菌斑,並將噬菌體命名為1611E-K2-1。使用 wzy引子對另外7個莢膜型K2菌株的莢膜類型進行聚合酶連鎖反應測定來評估1611E-K2-1噬菌體K2型莢膜的敏感性。該噬菌體可能會感染所有K2型莢膜的菌株。 實施方式 2 :鑑定推定的莢膜解聚酶 Previous studies have revealed the K1 capsular depolymerase (K1-ORF34) from the K1-specific phage NTUH-K2044-K1-1 ( Lin TL et al., The Journal of infectious diseases 2014, 210(11):1734 -1744 ). To isolate the K2 capsule-degrading enzyme, phages infecting Klebsiella pneumoniae strain 1611E (K2-type capsule) were isolated from untreated water. Clear plaques with a translucent halo were detected, and the phage was named 1611E-K2-1. The susceptibility of the K2 type capsule of 1611E-K2-1 bacteriophage was evaluated by polymerase chain reaction assay on the capsule types of seven additional capsular type K2 strains using the wzy primer. This phage may infect all K2-capsulated strains. Embodiment 2 : Identification of putative capsular depolymerases

鑑定推定的Presumptive identification K2K2 莢膜解聚酶capsular depolymerase

噬菌體1611E-K2-1的全基因體長度被確定為47,797個鹼基對。基因體序列的註釋顯示該噬菌體預計包含17個超過500個鹼基對的開放閱讀區(ORF)。噬菌體1611E-K2-1的開放閱讀區(ORF)分析顯示,預測的ORF16與尾部突起63D唾液酸酶顯示出46%的氨基酸同一性,顯示該蛋白可能對應於莢膜解聚酶。K2- orf16基因被克隆成質體並在大腸桿菌中表達。純化的重組K2-ORF16蛋白的純度如圖1A所示。當在接種克雷伯氏肺炎桿菌1611E的盤子上點樣時,重組的K2-ORF16蛋白會產生類似於斑塊暈的半透明斑點(圖1B)。從1611E噬菌體中提取莢膜多醣(CPS),然後用十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE)分離K2-ORF16蛋白,並用阿爾西藍染色(圖1C)。結果證明,K2-ORF16蛋白可以分解K2 莢膜多醣(CPS)。這種酶對K2型莢膜的敏感性在另外7個莢膜型K2菌株中得到進一步證實。 結果顯示K2-ORF16蛋白係K2莢膜解聚酶。 The full genome length of phage 1611E-K2-1 was determined to be 47,797 base pairs. Annotation of the genome sequence shows that this phage is predicted to contain 17 open reading regions (ORFs) of over 500 base pairs. Open reading region (ORF) analysis of phage 1611E-K2-1 showed that the predicted ORF16 showed 46% amino acid identity with tail protrusion 63D sialidase, indicating that this protein may correspond to a capsular depolymerase. The K2- orf16 gene was cloned into plasmids and expressed in E. coli. The purity of the purified recombinant K2-ORF16 protein is shown in Figure 1A. When spotted on plates inoculated with Klebsiella pneumoniae 1611E, the recombinant K2-ORF16 protein produced translucent spots that resembled a halo of plaques (Fig. 1B). Capsular polysaccharide (CPS) was extracted from 1611E phage, and the K2-ORF16 protein was separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and stained with Alcian blue (Fig. 1C). The results demonstrated that the K2-ORF16 protein can break down K2 capsular polysaccharide (CPS). The sensitivity of this enzyme to K2-type capsules was further confirmed in seven additional capsular-type K2 strains. The results showed that the K2-ORF16 protein is a K2 capsular depolymerase.

鑑定推定的Presumptive identification K62K62 莢膜解聚酶capsular depolymerase

從未處理的水中分離出感染莢膜型K10和K62菌株的噬菌體,表示為噬菌體Ref-K10-1。從噬菌體基因組測序分析中鑑定出兩種推定的莢膜解聚酶(ORF5和ORF6)。在這兩種蛋白質表現後,ORF6被證實為K62莢膜解聚酶,可在接種K62參考菌株的盤子上產生半透明斑點。 實施方式 3 :分析 K1-ORF34 莢膜解聚酶分解的莢膜多醣( CPS Phages infecting the capsular K10 and K62 strains were isolated from untreated water and designated phage Ref-K10-1. Two putative capsular depolymerases (ORF5 and ORF6) were identified from phage genome sequencing analysis. Following the presentation of these two proteins, ORF6 was confirmed to be the K62 capsular depolymerase that produced translucent spots on plates inoculated with the K62 reference strain. Embodiment 3 : Analysis of Capsular Polysaccharide ( CPS ) Decomposed by K1-ORF34 Capsular Depolymerase

進一步分析K1-ORF34莢膜解聚酶分解的莢膜多醣(CPS)的結構。K1 莢膜多醣(CPS)在與純化的K1-ORF34蛋白培養後,被還原成寡醣。經膠體滲透層析儀和通過質譜分析和毛細管電泳分析的分離顯示,大部分寡醣係六醣,而九醣係非常少量的,即為三醣單元的二聚體和三聚體(圖2A和2B)。從分子量為1145的寡醣的串連質譜分析中可以看出,葡萄醣醛酸被還原成雙鍵衍生物,在232奈米波長處被吸收,維持了包括丙酮酸化和乙醯化的修飾(圖2C)。分解的寡醣的結構以核磁共振光譜進行測定(圖2D)。K1-ORF34分解的寡醣仍然可以被抗K1抗血清識別(數據未顯示)。因此,K1-ORF34酶屬於一種裂解酶,可用於K1 莢膜多醣(CPS)接合疫苗的開發。 實施方式 4 :分析莢膜解聚酶分解的莢膜多醣( CPS The structure of capsular polysaccharide (CPS) decomposed by K1-ORF34 capsular depolymerase was further analyzed. K1 capsular polysaccharide (CPS) is reduced to oligosaccharides after incubation with purified K1-ORF34 protein. Separation by colloidal permeation chromatography and analysis by mass spectrometry and capillary electrophoresis showed that most of the oligosaccharides are hexasaccharides, while a very small amount of nonasaccharides are dimers and trimers of trisaccharide units (Figure 2A and 2B). From the tandem mass spectrometry analysis of an oligosaccharide with a molecular weight of 1145, it can be seen that glucuronic acid is reduced to a double-bond derivative, which is absorbed at a wavelength of 232 nm, maintaining modifications including pyruvation and acetylation (Fig. 2C). The structure of the decomposed oligosaccharides was determined by NMR spectroscopy (Fig. 2D). Oligosaccharides cleaved by K1-ORF34 could still be recognized by anti-K1 antiserum (data not shown). Therefore, the K1-ORF34 enzyme is a lytic enzyme and can be used in the development of K1 capsular polysaccharide (CPS) conjugated vaccines. Embodiment 4 : Analysis of Capsular Polysaccharide ( CPS ) Decomposed by Capsular Depolymerase

分析analyze K2-ORF16K2-ORF16 莢膜解聚酶分解的莢膜多醣(Capsular polysaccharide broken down by capsular depolymerase ( CPSCPS )

進一步分析被K2-ORF16莢膜解聚酶分解的K2莢膜多醣(CPS)的結構。在與純化的K2-ORF16蛋白一起培養後,K2 莢膜多醣(CPS)會被還原成寡醣。光譜結果顯示,兩種不同分子量(質荷比(m / z)為703和1365)的寡醣組成在經酵素的降解後被釋放出來(圖3A),並通過電灑游離質譜-質譜聯用分析進一步檢查(圖3B和3C)。根據之前揭示的K2 莢膜多醣(CPS)的結構,K2-ORF16分解的莢膜多醣(CPS)的主要產物係四醣(一個重複單元),次要產物係八醣(兩個重複單元)。因此,K2-ORF16酵素屬於一種水解酶,可用於開發K2 莢膜多醣(CPS)結合疫苗。The structure of K2 capsular polysaccharide (CPS) cleaved by K2-ORF16 capsular depolymerase was further analyzed. After incubation with purified K2-ORF16 protein, K2 capsular polysaccharide (CPS) is reduced to oligosaccharides. The spectral results showed that two oligosaccharide compositions with different molecular weights (mass-to-charge ratio (m/z) of 703 and 1365) were released after enzyme degradation (Figure 3A), and were analyzed by electrospray dissociation mass spectrometry-mass spectrometry. The analysis was examined further (Figures 3B and 3C). According to the previously revealed structure of K2 capsular polysaccharide (CPS), the main product of the capsular polysaccharide (CPS) decomposed by K2-ORF16 is a tetrasaccharide (one repeating unit), and the secondary product is an octasaccharide (two repeating units). Therefore, K2-ORF16 enzyme is a hydrolase and can be used to develop K2 capsular polysaccharide (CPS) conjugate vaccine.

分析analyze K62K62 莢膜解聚酶分解的莢膜多醣(Capsular polysaccharide broken down by capsular depolymerase ( CPSCPS )。).

進一步分析經K62莢膜解聚酶分解的K62莢膜多醣(CPS)的結構。在與純化的K62莢膜解聚酶一起培養後,K62 莢膜多醣(CPS)會被還原成寡醣。從基質輔助雷射脫附游離/飛行時間質譜分析和串連質譜的分析結果可以看出,分解的K62 莢膜多醣(CPS)產物主要為兩個重複單元(十醣),及少量的一個重複單元(五醣)(圖4)。從質量分析上看,K62莢膜解聚酶屬於一種水解酶,可用於K62 莢膜多醣(CPS)接合疫苗的研製。The structure of K62 capsular polysaccharide (CPS) decomposed by K62 capsular depolymerase was further analyzed. K62 capsular polysaccharide (CPS) is reduced to oligosaccharides after incubation with purified K62 capsular depolymerase. From the analysis results of matrix-assisted laser desorption free/time-of-flight mass spectrometry and tandem mass spectrometry, it can be seen that the decomposed K62 capsular polysaccharide (CPS) product is mainly two repeating units (deca-saccharide), and a small amount of one repeating unit unit (pentasaccharide) (Fig. 4). From the quality analysis point of view, K62 capsular depolymerase is a hydrolase and can be used in the development of K62 capsular polysaccharide (CPS) conjugated vaccine.

根據如上所述的類似方法來分析KN2,K24,K28和K64的莢膜解聚酶分解的莢膜多醣(CPS)。 實施方式 5 :莢膜多醣( CPS )接合疫苗 Capsular polysaccharide (CPS) broken down by the capsular depolymerases of KN2, K24, K28 and K64 was analyzed according to a similar method as described above. Embodiment 5 : Capsular polysaccharide ( CPS ) conjugation vaccine

用於接合CRM197載體蛋白的K1、K2、K24、K28、K62和K64寡醣的主要醣鍊長度如下:六醣(K1 莢膜多醣(CPS)的兩個重複單元)、四醣(K2莢膜多醣(CPS)的一個重複單元)、十二醣(K62 莢膜多醣(CPS)的兩個重複單元)、六醣(K64 莢膜多醣(CPS)的一個重複單元)、五醣(K24 莢膜多醣(CPS)的一個重複單元)和六醣(K28 莢膜多醣(CPS)的一個重複單元)。通過基質輔助雷射脫附游離/飛行時間質譜分析質譜測定抗原決定位的比例,並相對應地計算出聚醣的量。以K1為代表,透過分解的K1-莢膜多醣-硫醇(CPS-SH)數量的改變,我們可以得到免疫原比率從1:1.4到1:10.2;K1疫苗的詳細免疫原比例如下表所示。免疫原比率通過基質輔助雷射脫附游離/飛行時間質譜分析質譜測定。 實施方式 6 :毒理學試驗(以 K1 作為代表性實例) The main sugar chain lengths of the K1, K2, K24, K28, K62 and K64 oligosaccharides used to conjugate the CRM197 carrier protein are as follows: hexasaccharide (two repeating units of K1 capsular polysaccharide (CPS)), tetrasaccharide (K2 capsular polysaccharide) polysaccharide (CPS)), dodecose (two repeating units of K62 capsular polysaccharide (CPS)), hexasaccharide (one repeating unit of K64 capsular polysaccharide (CPS)), pentasaccharide (K24 capsular polysaccharide) polysaccharide (CPS)) and hexasaccharide (K28 a repeating unit of capsular polysaccharide (CPS)). The ratio of epitopes is determined by matrix-assisted laser desorption/time-of-flight mass spectrometry and the amount of glycans is calculated accordingly. Taking K1 as a representative, by changing the amount of decomposed K1-capsular polysaccharide-thiol (CPS-SH), we can get the immunogen ratio from 1:1.4 to 1:10.2; the detailed immunogen ratio of K1 vaccine is as shown in the table below Show. Immunogen ratios were determined by matrix-assisted laser desorption/time-of-flight mass spectrometry. Embodiment 6 : Toxicology test (taking K1 as a representative example)

記錄每次免疫接種K1莢膜多醣(CPS)接合疫苗前一天和後一天的小鼠的體重(圖5A)和直腸溫度(圖5B)。在第一次、第二次和第三次免疫接種K1莢膜多醣(CPS)接合疫苗後一周收集小鼠的血清,然後測定肝臟(血清轉胺酶(ALT))和腎臟(血尿素氮(BUN)和肌酸酐)的功能(圖5C)。這些結果顯示,在免疫接種三劑K1莢膜多醣(CPS)接合疫苗的小鼠中並未觀察到副作用。 K2、K24、K28、K62或K64的莢膜多醣(CPS)的毒理學測定也按照與上述相似的方法進行。 實施方式 7 :抗體反應和血清殺菌試驗 The body weight (Fig. 5A) and rectal temperature (Fig. 5B) of mice were recorded one day before and one day after each immunization with the K1 capsular polysaccharide (CPS) conjugate vaccine. Sera from mice were collected one week after the first, second, and third immunizations with K1 capsular polysaccharide (CPS) conjugate vaccine, and then liver (serum transaminase (ALT)) and kidney (blood urea nitrogen ( BUN) and creatinine) functions (Fig. 5C). These results showed that no side effects were observed in mice immunized with three doses of the K1 capsular polysaccharide (CPS) conjugate vaccine. Toxicological determination of capsular polysaccharide (CPS) of K2, K24, K28, K62 or K64 was also performed according to a method similar to that described above. Embodiment 7 : Antibody response and serum bactericidal test

採集以肌肉內注射方式施用K1、K2或K62 莢膜多醣(CPS)接合疫苗的小鼠的血清,用於抗體檢測和殺菌測定。免疫斑點試驗的結果顯示,由莢膜多醣(CPS)接合疫苗誘導的抗體可以與其原始的莢膜多醣(CPS)相互作用(圖6)。Sera from mice administered K1, K2, or K62 capsular polysaccharide (CPS) conjugate vaccines by intramuscular injection were collected for antibody detection and bactericidal assays. The results of the immunospot assay showed that antibodies induced by the capsular polysaccharide (CPS) conjugate vaccine could interact with its original capsular polysaccharide (CPS) (Figure 6).

殺菌測定的結果顯示,與來自未免疫小鼠的血清相比,來自經K1 莢膜多醣(CPS)接合疫苗免疫的小鼠的血清,即使係使用1:128稀釋的血清,仍可以殺死大於50%的K1細菌(殺菌力價為32至128)。免疫K2莢膜多醣(CPS)接合疫苗的小鼠的血清的K2細菌的殺菌力價為8至32。在免疫K62 莢膜多醣(CPS)接合疫苗的小鼠的40%的血清中可檢測到對K62細菌的殺菌活性(殺菌力價為8至32)。因此,莢膜多醣(CPS)接合疫苗可成功誘導小鼠中莢膜型特異性抗體的產生,並且該抗體具有殺菌作用。 實施方式 8 :保護試驗 Results from the bactericidal assay showed that sera from mice immunized with the K1 capsular polysaccharide (CPS) conjugate vaccine, even at a 1:128 dilution, killed > 50% K1 bacteria (bactericidal power price 32 to 128). The bactericidal potency of K2 bacteria in sera from mice immunized with the K2 capsular polysaccharide (CPS) conjugate vaccine ranged from 8 to 32. Bactericidal activity against K62 bacteria (bactericidal potency valence 8 to 32) was detected in 40% of the sera of mice immunized with the K62 capsular polysaccharide (CPS) conjugated vaccine. Therefore, the capsular polysaccharide (CPS) conjugate vaccine can successfully induce the production of capsular type-specific antibodies in mice, and the antibodies have bactericidal effects. Embodiment 8 : Protection test

本發明亦使用克雷伯氏肺炎桿菌( K. pneumoniae)攻擊免疫小鼠,以評估疫苗是否具有體內保護作用。以每週一次肌肉注射的方式對小鼠進行K1、K2莢膜多醣(CPS)接合疫苗的免疫接種(對照組僅給予佐劑)。在第三次免疫接種一周後,用1×10 4菌落形成單位(CFU,colony-forming unit)克雷伯氏肺炎桿菌NTUH-K2044或NTUH-A4528對小鼠進行腹腔注射感染。用克雷伯氏肺炎桿菌攻擊後30天的結果顯示,小鼠在接受K1或K2 莢膜多醣(CPS)接合疫苗後,其存活率顯著高於僅接受佐劑的小鼠的存活率(圖7A和B)。 The present invention also uses K. pneumoniae to challenge immunized mice to evaluate whether the vaccine has a protective effect in vivo. Mice were immunized with K1 and K2 capsular polysaccharide (CPS) conjugate vaccines by intramuscular injection once a week (the control group was only given adjuvant). One week after the third immunization, mice were infected intraperitoneally with 1×10 colony -forming unit (CFU) of Klebsiella pneumoniae NTUH-K2044 or NTUH-A4528. Results 30 days after challenge with Klebsiella pneumoniae showed that the survival rate of mice receiving K1 or K2 capsular polysaccharide (CPS) conjugate vaccine was significantly higher than that of mice receiving adjuvant alone (Figure 7A and B).

然後用5×10 6菌落形成單位(CFU,colony-forming unit)的K62細菌攻擊用環磷醯胺處理以誘導嗜中性球減少症並免疫接種K62莢膜多醣(CPS)接合疫苗的小鼠。K62 莢膜多醣(CPS)接合疫苗顯著保護了免疫受損的小鼠免於K62細菌的感染(圖7C)。 實施方式 9 K1 K2 莢膜多醣( CPS )接合二價疫苗的功效 Mice treated with cyclophosphamide to induce neutropenia and immunized with the K62 capsular polysaccharide (CPS) conjugate vaccine were then challenged with 5 × 10 colony-forming units (CFU) of K62 bacteria. . The K62 capsular polysaccharide (CPS) conjugate vaccine significantly protected immune-compromised mice from infection with K62 bacteria (Fig. 7C). Embodiment 9 : Efficacy of K1 and K2 capsular polysaccharide ( CPS ) conjugated bivalent vaccines

引起侵襲性感染的克雷伯氏肺炎桿菌株的普遍莢膜型係K1和K2莢膜型。因此,進一步檢查了二價疫苗(等量的K1和K2 莢膜多醣(CPS)接合疫苗的混合物)的保護效力(圖8A和8B)。免疫接種佐劑組的小鼠經腹腔注射感染1×10 4菌落形成單位(CFU,colony-forming unit)的NTUH-K2044和NTUH-A4528的克雷伯氏肺炎桿菌後,分別造成了的80%和100%的死亡率;相反地,免疫接種二價疫苗的小鼠經腹腔注射感染後則沒有觀察到任何死亡。因此,小鼠在免疫接種二價疫苗之後,顯著保護了小鼠同時免於K1和K2克雷伯氏肺炎桿菌的感染。 實施方式 10 :經 K64 K24 K28 KN2 莢膜解聚酶分解的莢膜多醣( CPS )的結構 The common capsular types of Klebsiella pneumoniae strains that cause invasive infections are the K1 and K2 capsular types. Therefore, the protective efficacy of the bivalent vaccine, a mixture of equal amounts of K1 and K2 capsular polysaccharide (CPS) conjugated vaccines, was further examined (Figures 8A and 8B). After the mice in the immunization adjuvant group were infected by intraperitoneal injection with 1×10 4 colony-forming unit (CFU, colony-forming unit) of Klebsiella pneumoniae of NTUH-K2044 and NTUH-A4528, 80% of the and 100% mortality; in contrast, no deaths were observed in mice immunized with the bivalent vaccine following intraperitoneal infection. Therefore, mice immunized with the bivalent vaccine were significantly protected from infection by both K1 and K2 Klebsiella pneumoniae. Embodiment 10 : Structure of capsular polysaccharide ( CPS ) decomposed by K64 , K24 , K28 and KN2 capsular depolymerases

1. K641.K64

經分解後的K64 莢膜多醣(CPS)在一個重複單元(六醣)中係主要的,在兩個重複(十二醣)中係次要的。由於反應產物的核磁共振光譜中顯示了新的雙鍵信號,所以K64 莢膜多醣(CPS)切割酶係為一種裂解酶。主要的K64片段的串連質譜分析結果(六醣)如圖9所示。The decomposed K64 capsular polysaccharide (CPS) is major in one repeating unit (hexasaccharide) and minor in two repeating units (dodecaccharide). K64 capsular polysaccharide (CPS) cleavage enzyme is a lytic enzyme due to the new double bond signal shown in the NMR spectrum of the reaction product. The results of tandem mass spectrometry analysis of the main K64 fragment (hexasaccharide) are shown in Figure 9.

2. K242.K24

根據已公開的K24 莢膜多醣(CPS)結構,其係由四種己醣和一種己醣醛酸所組成。分解後的K24 莢膜多醣(CPS)質譜顯示,主要產物為乙醯化修飾的雙重重複單元寡醣[質荷比(m / z)1773,(Hex) 8(HexA) 2],次要單醣為乙醯化(質荷比(m / z)907和865),其顯示K24酶作具有一種水解酶的作用。主要的K24片段串連質譜分析結果(五醣)如圖10所示。 According to the published structure of K24 capsular polysaccharide (CPS), it is composed of four hexose sugars and one hexuronic acid. The mass spectrum of the decomposed K24 capsular polysaccharide (CPS) showed that the main product was an acetylation-modified double repeating unit oligosaccharide [mass-to-charge ratio (m/z) 1773, (Hex) 8 (HexA) 2 ], and the minor single product was The sugars are acetylated (mass-to-charge ratio (m/z) 907 and 865), which shows that the K24 enzyme acts as a hydrolase. The main K24 fragment tandem mass spectrometry analysis results (pentasaccharide) are shown in Figure 10.

3. K283. K28

從基質輔助雷射脫附游離/飛行時間質譜分析的結果中可以看出,分解物-KN 2 莢膜多醣(CPS)在一個重複單元(六醣)中係主要的。主要的K28片段串連質譜分析結果(六醣)如圖11所示。From the results of matrix-assisted laser desorption/time-of-flight mass spectrometry analysis, it can be seen that the decomposition product-KN 2 capsular polysaccharide (CPS) is dominant in one repeating unit (hexasaccharide). The main K28 fragment tandem mass spectrometry results (hexasaccharide) are shown in Figure 11.

4. KN24.KN2

克雷伯氏肺炎桿菌KN2屬於新的莢膜型,目前仍然沒文獻描述其化學結構。從基質輔助雷射脫附游離/飛行時間質譜分析的結果可以看出,分解物-KN2 莢膜多醣(CPS)係由四個己醣和一個己醣醛酸(分子量1027)所組成。 此外,根據基質輔助雷射脫附游離/飛行時間質譜分析的質荷比(m / z)結果,該結果顯示KN2酶係一種水解酶。該質荷比(m / z) 1027進一步通過電灑游離質譜-質譜聯用分析法進行分析。串連質譜分析的片段證實了我們的猜測是正確的。在不久的將來,以氣相色譜法–質譜法聯用(GC-MS)分析KN2莢膜多醣(CPS)的成分和其連接物,將被用於闡明KN2莢膜多醣(CPS)的詳細化學結構。 KN2水解酶分解的莢膜多醣(CPS)的基質輔助雷射脫附游離/飛行時間質譜分析結果如圖12所示。 實施方式 11 :莢膜多醣( CPS )疫苗與莢膜多醣( CPS )接合疫苗的比較 Klebsiella pneumoniae KN2 belongs to a new capsule type, and there is still no literature describing its chemical structure. From the results of matrix-assisted laser desorption/time-of-flight mass spectrometry analysis, it can be seen that the decomposition product-KN2 capsular polysaccharide (CPS) is composed of four hexose sugars and one hexuronic acid (molecular weight 1027). In addition, based on the mass-to-charge ratio (m/z) results of matrix-assisted laser desorption/time-of-flight mass spectrometry analysis, the results showed that the KN2 enzyme is a hydrolase. The mass-to-charge ratio (m/z) 1027 was further analyzed by electrospray dissociation mass spectrometry-mass spectrometry. Tandem mass spectrometry analysis of the fragments confirmed our suspicions to be correct. In the near future, gas chromatography–mass spectrometry (GC-MS) analysis of KN2 capsular polysaccharide (CPS) components and their linkers will be used to elucidate the detailed chemistry of KN2 capsular polysaccharide (CPS). structure. The results of matrix-assisted laser desorption/time-of-flight mass spectrometry analysis of capsular polysaccharide (CPS) decomposed by KN2 hydrolase are shown in Figure 12. Embodiment 11 : Comparison of capsular polysaccharide ( CPS ) vaccine and capsular polysaccharide ( CPS ) conjugated vaccine

比較接受K1未經加工的莢膜多醣(CPS)(2毫克)或K1 莢膜多醣(CPS)接合疫苗(2毫克)免疫的小鼠中誘導出的抗莢膜多醣(CPS)抗體和血清殺菌活性(圖13A和B)。接受K1 莢膜多醣(CPS)接合疫苗的小鼠中誘導出的抗K1抗體的量高於接受K1未經加工的莢膜多醣(CPS)的小鼠中誘導出的抗K1抗體的量。故,接受K1 莢膜多醣(CPS)接合疫苗的小鼠的血清殺菌活性也顯著較高。Comparison of induction of anticapsular polysaccharide (CPS) antibodies and serum bactericidal in mice immunized with K1 unprocessed capsular polysaccharide (CPS) (2 mg) or K1 capsular polysaccharide (CPS) conjugated vaccine (2 mg) activity (Fig. 13A and B). The amount of anti-K1 antibodies induced in mice that received the K1 capsular polysaccharide (CPS) conjugate vaccine was higher than that in mice that received K1 unprocessed capsular polysaccharide (CPS). Therefore, the serum bactericidal activity of mice receiving the K1 capsular polysaccharide (CPS) conjugate vaccine was also significantly higher.

without

圖1(A)到(C)顯示純化K2-ORF16蛋白的酵素活性。(A)純化的K2-ORF16蛋白(以箭頭表示)以十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE)分離,並利用考馬斯藍染色,其蛋白質大小(千道耳吞)標記在蛋白標準旁邊;(B)當噬菌體1611E-K2-1(左)及其K2-ORF16蛋白(右)分別點在含有克雷伯氏肺炎桿菌( K.pneumoniae)1611E菌株的一覆蓋頂層瓊脂的多孔盤上時,可觀察到具有半透明暈和半透明斑點的清晰斑點;(C)以十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE)分離以不同量的K2-ORF16蛋白處理的經萃取的K2莢膜多醣(CPS)並以阿爾西藍染色。 Figure 1 (A) to (C) shows the enzyme activity of purified K2-ORF16 protein. (A) Purified K2-ORF16 protein (indicated by arrow) was separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and stained with Coomassie blue. Its protein size (kilodalars) Endocytosis) is marked next to the protein standard; (B) When phage 1611E-K2-1 (left) and its K2-ORF16 protein (right) are respectively spotted on an overlay containing K. pneumoniae ( K. pneumoniae ) 1611E strain Clear spots with translucent halos and translucent spots can be observed when placed on a multi-well plate of top agar; (C) Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separation of different amounts of Extracted K2 capsular polysaccharide (CPS) treated with K2-ORF16 protein and stained with Alcian blue.

圖2(A)到(D)顯示以K1-ORF34蛋白分解的K1 莢膜多醣(CPS)的質量和毛細管電泳分析。(A)經K1-ORF34裂解的K1 莢膜多醣(CPS)的質量分佈並以Bio-Gel P-6 Gel(BIO-RAD #1504130)膠體管柱分離;(B)經K1-ORF34裂解的K1 莢膜多醣(CPS)的毛細管電泳;(C)K1莢膜多醣(CPS)片段(分子量:1,145)的串連質譜分析;(D) K1寡醣核磁共振氫譜。Figure 2 (A) to (D) shows mass and capillary electrophoresis analysis of K1 capsular polysaccharide (CPS) proteolytically digested by K1-ORF34. (A) Mass distribution of K1 capsular polysaccharide (CPS) cleaved by K1-ORF34 and separated by Bio-Gel P-6 Gel (BIO-RAD #1504130) colloidal column; (B) K1 cleaved by K1-ORF34 Capillary electrophoresis of capsular polysaccharide (CPS); (C) Tandem mass spectrometry analysis of K1 capsular polysaccharide (CPS) fragment (molecular weight: 1,145); (D) H NMR spectrum of K1 oligosaccharide.

圖3(A)到(C)顯示經K2-ORF16蛋白分解的K2 莢膜多醣(CPS)的結構分析。(A)K2-ORF16蛋白分解的K2莢膜多醣(CPS)的基質輔助雷射脫附電離-飛行時間質譜(MALDI-TOF)分析;(B)質荷比(m / z)為703的電灑游離-一次質譜分析;以及(C) 質荷比(m / z)為1365的電灑游離質譜-質譜聯用分析。Figures 3(A) to (C) show structural analysis of K2 capsular polysaccharide (CPS) cleaved by K2-ORF16 proteolytic process. (A) Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) analysis of K2 capsular polysaccharide (CPS) broken down by K2-ORF16 proteins; (B) Electron with a mass-to-charge ratio (m/z) of 703 Sprinkle ionization-primary mass spectrometry analysis; and (C) Electrospray ionization mass spectrometry-mass spectrometry analysis with a mass-to-charge ratio (m/z) of 1365.

圖4顯示了經K62莢膜解聚酶分解之K62 莢膜多醣(CPS)的主要產物結構的串連質譜分析。Figure 4 shows tandem mass spectrometry analysis of the structure of the main product of K62 capsular polysaccharide (CPS) degraded by K62 capsular depolymerase.

圖5(A)到(C)顯示了K1莢膜多醣(CPS)接合疫苗的安全性。(A)記錄每次免疫接種K1莢膜多醣(CPS)接合疫苗前一天和後一天的小鼠的體重。(B)記錄每次免疫接種K1莢膜多醣(CPS)接合疫苗前一天和後一天的小鼠的直腸溫度。(C)測定每次免疫接種K1莢膜多醣(CPS)接合疫苗後一周的小鼠的肝(血清轉胺酶(ALT))和腎(血尿素氮(BUN)和肌酸酐)功能。Figures 5(A) to (C) show the safety profile of the K1 capsular polysaccharide (CPS) conjugate vaccine. (A) The body weight of mice was recorded one day before and one day after each immunization with K1 capsular polysaccharide (CPS) conjugate vaccine. (B) Rectal temperatures were recorded in mice one day before and one day after each immunization with K1 capsular polysaccharide (CPS) conjugate vaccine. (C) Hepatic (serum transaminases (ALT)) and renal (blood urea nitrogen (BUN) and creatinine) functions were measured in mice one week after each immunization with the K1 capsular polysaccharide (CPS) conjugate vaccine.

圖6顯示了接種K1或K2或K62 莢膜多醣(CPS)接合疫苗後的小鼠,其會誘導出對抗莢膜多醣(CPS)的抗體。將不同量的K1或K2(2000奈克至7.8125奈克,2倍稀釋)或K62 莢膜多醣(CPS)(4000奈克至500奈克,2倍稀釋)轉移到膜上,並以從接種K1或K2或K62 莢膜多醣(CPS)接合疫苗的小鼠中獲得的血清(1:1000稀釋)用來做墨點法分析。Figure 6 shows the induction of anti-capsular polysaccharide (CPS) antibodies in mice vaccinated with K1, K2, or K62 capsular polysaccharide (CPS) conjugate vaccine. Different amounts of K1 or K2 (2000 nanograms to 7.8125 nanograms, 2-fold dilution) or K62 capsular polysaccharide (CPS) (4000 nanograms to 500 nanograms, 2-fold dilution) were transferred to the membrane and separated from the inoculation Serum (1:1000 dilution) obtained from mice vaccinated with K1, K2, or K62 capsular polysaccharide (CPS) was used for blot analysis.

圖7 A到C顯示了K1或K2或K62莢膜多醣(CPS)接合疫苗在小鼠體內的功效。五隻經K1或K2 莢膜多醣(CPS)接合疫苗免疫的小鼠,分別以腹腔注射接種1×10 4菌落形成單位(CFU,colony-forming unit)的克雷伯氏肺炎桿菌NTUH-K2044(A)或NTUH- A4528。接種K1或K2莢膜多醣(CPS)接合疫苗顯著增加了感染克雷伯氏肺炎桿菌NTUH-K2044( P= 0.0144,對數等級檢定(log-rank test))或NTUH-A4528( P= 0.0023,對數等級檢定(log-rank test))的小鼠的存活率。以5×10 6菌落形成單位(CFU,colony-forming unit)的K62克雷伯氏肺炎桿菌(C)攻擊五隻接種K62 莢膜多醣(CPS)接合疫苗並用環磷醯胺處理以誘導嗜中性細胞減少症的小鼠。 K62 莢膜多醣(CPS)接合疫苗顯著保護免疫受損的小鼠免於K62克雷伯氏肺炎桿菌的感染( P= 0.0448,對數等級檢定(log-rank test))。 Figure 7 A to C shows the efficacy of K1 or K2 or K62 capsular polysaccharide (CPS) conjugate vaccines in mice. Five mice immunized with K1 or K2 capsular polysaccharide (CPS) conjugate vaccine were each intraperitoneally inoculated with 1×10 4 colony-forming unit (CFU) of Klebsiella pneumoniae NTUH-K2044 ( A) or NTUH-A4528. Vaccination with the K1 or K2 capsular polysaccharide (CPS) conjugate vaccine significantly increased infection with K. pneumoniae NTUH-K2044 ( P = 0.0144, log-rank test) or NTUH-A4528 ( P = 0.0023, log Survival rate of mice using log-rank test. Five animals were vaccinated with K62 capsular polysaccharide (CPS) conjugated vaccine and treated with cyclophosphamide to induce neutropenia, challenged with 5 × 10 6 colony-forming units (CFU) of K62 Klebsiella pneumoniae (C). Cytopenic mice. The K62 capsular polysaccharide (CPS) conjugate vaccine significantly protected immunocompromised mice from K62 K. pneumoniae infection ( P = 0.0448, log-rank test).

圖8A和B顯示了K1和K2 莢膜多醣(CPS)接合二價疫苗在小鼠中的功效。經K1和K2 莢膜多醣(CPS)接合二價疫苗免疫的五隻小鼠分別分別以腹腔注射接種1×10 4菌落形成單位(CFU,colony-forming unit)的克雷伯氏肺炎桿菌NTUH-K2044(A)或NTUH-A4528(B)。接種K1或K2 莢膜多醣(CPS)接合疫苗顯著增加了感染克雷伯氏肺炎桿菌NTUH-K2044( P= 0.0143,對數等級檢定(log-rank test))或NTUH-A4528( P= 0.0023,對數等級檢定(log-rank test))的小鼠的存活率。 Figure 8A and B shows the efficacy of K1 and K2 capsular polysaccharide (CPS) conjugated bivalent vaccines in mice. Five mice immunized with K1 and K2 capsular polysaccharide (CPS) conjugated bivalent vaccines were each intraperitoneally injected with 1×10 4 colony-forming unit (CFU) of Klebsiella pneumoniae NTUH- K2044(A) or NTUH-A4528(B). Vaccination with the K1 or K2 capsular polysaccharide (CPS) conjugate vaccine significantly increased infection with K. pneumoniae NTUH-K2044 ( P = 0.0143, log-rank test) or NTUH-A4528 ( P = 0.0023, log Survival rate of mice using log-rank test.

圖9至12分別顯示K64 莢膜多醣(CPS),K24 莢膜多醣(CPS),K28 莢膜多醣(CPS)和KN2 莢膜多醣(CPS)的光譜。Figures 9 to 12 show the spectra of K64 capsular polysaccharide (CPS), K24 capsular polysaccharide (CPS), K28 capsular polysaccharide (CPS) and KN2 capsular polysaccharide (CPS), respectively.

圖13 A和B顯示以未經加工的K1 莢膜多醣(CPS)或K1 莢膜多醣(CPS)接合疫苗接種的小鼠,誘導出抗K1 莢膜多醣(CPS)(A)和血清殺菌活性(B)的抗體。將不同量的K1(2000奈克至7.8125奈克,兩倍稀釋)轉移到膜上,並以未經加工的K1 莢膜多醣(CPS)或K1 莢膜多醣(CPS)接合疫苗接種的小鼠中獲得的血清(1:1000稀釋)用來做墨點法分析。Figure 13 A and B shows the induction of anti-K1 capsular polysaccharide (CPS) (A) and serum bactericidal activity in mice vaccinated with unprocessed K1 capsular polysaccharide (CPS) or K1 capsular polysaccharide (CPS) conjugate vaccine. (B) Antibodies. Different amounts of K1 (2000 nanograms to 7.8125 nanograms, two-fold dilution) were transferred to the membrane and vaccinated mice were conjugated with unprocessed K1 capsular polysaccharide (CPS) or K1 capsular polysaccharide (CPS). The serum obtained (1:1000 dilution) was used for ink blot analysis.

                                  序列表
          <![CDATA[<110>  國立臺灣大學]]>
                 中央研究院
          <![CDATA[<120>  克雷伯氏肺炎桿菌之莢膜多醣疫苗]]>
          <![CDATA[<130>  106134175]]>
          <![CDATA[<150>  US 62/403,365]]>
          <![CDATA[<151>  2016-10-03]]>
          <![CDATA[<150>  TW 106134175]]>
          <![CDATA[<151>  2017-10-03]]>
          <![CDATA[<160>  7     ]]>
          <![CDATA[<170>  PatentIn version 3.5]]>
          <![CDATA[<210>  1]]>
          <![CDATA[<211>  651]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  K1 專一性噬菌體]]>
          <![CDATA[<400>  1]]>
          Met Ala Leu Ile Arg Leu Val Ala Pro Glu Arg Val Phe Ser Asp Leu 
          1               5                   10                  15      
          Ala Ser Met Val Ala Tyr Pro Asn Phe Gln Val Gln Asp Lys Ile Thr 
                      20                  25                  30          
          Leu Leu Gly Ser Ala Gly Gly Asp Phe Thr Phe Thr Thr Thr Ala Ser 
                  35                  40                  45              
          Val Val Asp Asn Gly Thr Val Phe Ala Val Pro Gly Gly Tyr Leu Leu 
              50                  55                  60                  
          Arg Lys Phe Val Gly Pro Ala Tyr Ser Ser Trp Phe Ser Asn Trp Thr 
          65                  70                  75                  80  
          Gly Ile Val Thr Phe Met Ser Ala Pro Asn Arg His Leu Val Val Asp 
                          85                  90                  95      
          Thr Val Leu Gln Ala Thr Ser Val Leu Asn Ile Lys Ser Asn Ser Thr 
                      100                 105                 110         
          Leu Glu Phe Thr Asp Thr Gly Arg Ile Leu Pro Asp Ala Ala Val Ala 
                  115                 120                 125             
          Arg Gln Val Leu Asn Ile Thr Gly Ser Ala Pro Ser Val Phe Val Pro 
              130                 135                 140                 
          Leu Ala Ala Asp Ala Ala Ala Gly Ser Lys Val Ile Thr Val Ala Ala 
          145                 150                 155                 160 
          Gly Ala Leu Ser Ala Val Lys Gly Thr Tyr Leu Tyr Leu Arg Ser Asn 
                          165                 170                 175     
          Lys Leu Cys Asp Gly Gly Pro Asn Thr Tyr Gly Val Lys Ile Ser Gln 
                      180                 185                 190         
          Ile Arg Lys Val Val Gly Val Ser Thr Ser Gly Gly Val Thr Ser Ile 
                  195                 200                 205             
          Arg Leu Asp Lys Ala Leu His Tyr Asn Tyr Tyr Leu Ser Asp Ala Ala 
              210                 215                 220                 
          Glu Val Gly Ile Pro Thr Met Val Glu Asn Val Thr Leu Val Ser Pro 
          225                 230                 235                 240 
          Tyr Ile Asn Glu Phe Gly Tyr Asp Asp Leu Asn Arg Phe Phe Thr Ser 
                          245                 250                 255     
          Gly Ile Ser Ala Asn Phe Ala Ala Asp Leu His Ile Gln Asp Gly Val 
                      260                 265                 270         
          Ile Ile Gly Asn Lys Arg Pro Gly Ala Ser Asp Ile Glu Gly Arg Ser 
                  275                 280                 285             
          Ala Ile Lys Phe Asn Asn Cys Val Asp Ser Thr Val Lys Gly Thr Cys 
              290                 295                 300                 
          Phe Tyr Asn Ile Gly Trp Tyr Gly Val Glu Val Leu Gly Cys Ser Glu 
          305                 310                 315                 320 
          Asp Thr Glu Val His Asp Ile His Ala Met Asp Val Arg His Ala Ile 
                          325                 330                 335     
          Ser Leu Asn Trp Gln Ser Thr Ala Asp Gly Asp Lys Trp Gly Glu Pro 
                      340                 345                 350         
          Ile Glu Phe Leu Gly Val Asn Cys Glu Ala Tyr Ser Thr Thr Gln Ala 
                  355                 360                 365             
          Gly Phe Asp Thr His Asp Ile Gly Lys Arg Val Lys Phe Val Arg Cys 
              370                 375                 380                 
          Val Ser Tyr Asp Ser Ala Asp Asp Gly Phe Gln Ala Arg Thr Asn Gly 
          385                 390                 395                 400 
          Val Glu Tyr Leu Asn Cys Arg Ala Tyr Arg Ala Ala Met Asp Gly Phe 
                          405                 410                 415     
          Ala Ser Asn Thr Gly Val Ala Phe Pro Ile Tyr Arg Glu Cys Leu Ala 
                      420                 425                 430         
          Tyr Asp Asn Val Arg Ser Gly Phe Asn Cys Ser Tyr Gly Gly Gly Tyr 
                  435                 440                 445             
          Val Tyr Asp Cys Glu Ala His Gly Ser Gln Asn Gly Val Arg Ile Asn 
              450                 455                 460                 
          Gly Gly Arg Val Lys Gly Gly Arg Tyr Thr Arg Asn Ser Ser Ser His 
          465                 470                 475                 480 
          Ile Phe Val Thr Lys Asp Val Ala Glu Thr Ala Gln Thr Ser Leu Glu 
                          485                 490                 495     
          Ile Asp Gly Val Ser Met Arg Tyr Asp Gly Thr Gly Arg Ala Val Tyr 
                      500                 505                 510         
          Phe His Gly Thr Val Gly Ile Asp Pro Thr Leu Val Ser Met Ser Asn 
                  515                 520                 525             
          Asn Asp Met Thr Gly His Gly Leu Phe Trp Ala Leu Leu Ser Gly Tyr 
              530                 535                 540                 
          Thr Val Gln Pro Thr Pro Pro Arg Met Ser Arg Asn Leu Leu Asp Asp 
          545                 550                 555                 560 
          Thr Gly Ile Arg Gly Val Ala Thr Leu Val Ala Gly Glu Ala Thr Val 
                          565                 570                 575     
          Asn Ala Arg Val Arg Gly Asn Phe Gly Ser Val Ala Asn Ser Phe Lys 
                      580                 585                 590         
          Trp Val Ser Glu Val Lys Leu Thr Arg Leu Thr Phe Pro Ser Ser Ala 
                  595                 600                 605             
          Gly Ala Leu Thr Val Thr Ser Val Ala Gln Asn Gln Asp Val Pro Thr 
              610                 615                 620                 
          Pro Asn Pro Asp Leu Asn Ser Phe Val Ile Arg Ser Ser Asn Ala Ala 
          625                 630                 635                 640 
          Asp Val Ser Gln Val Ala Trp Glu Val Tyr Leu 
                          645                 650     
          <![CDATA[<210>  2]]>
          <![CDATA[<211>  668]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  噬菌體 1611E-K2-1]]>
          <![CDATA[<400>  2]]>
          Met Thr Ile Ile Lys Arg Ala Asp Leu Gly Arg Pro Leu Thr Trp Asp 
          1               5                   10                  15      
          Glu Leu Asp Asp Asn Phe Gln Gln Val Asp Asp Leu Thr Ala Ala Ala 
                      20                  25                  30          
          Ser Ala Ala Val Leu Ser Ala Ser Ala Ser Ala Thr Ala Ala Ala Gly 
                  35                  40                  45              
          Ser Ala Thr Asn Ser Leu Asn Ser Ala Asn Ser Ala Ala Ser Ser Ala 
              50                  55                  60                  
          Asp Asp Ala Ala Ala Ser Ala Thr Val Ala Ile Asn Ala Leu Met Asn 
          65                  70                  75                  80  
          Ser Thr Phe Glu Pro Ala Asp Phe Asp Phe Thr Ser Gly Gly Thr Leu 
                          85                  90                  95      
          Asp Ser Thr Asp Arg Asn Lys Ala Val Tyr Asn Pro Ala Asp Asn Asn 
                      100                 105                 110         
          Trp Tyr Ser Trp Ser Gly Ile Leu Pro Lys Ile Val Thr Ala Ala Thr 
                  115                 120                 125             
          Asp Pro Thr Ala Asp Ser Asn Trp Lys Pro Arg Thr Asp Gln Leu Leu 
              130                 135                 140                 
          Arg Gln Asn Leu Ala Ser Ser Val Ile Pro Gly Thr Ser Leu Val Thr 
          145                 150                 155                 160 
          His Ser Asp Gly Ile His Leu Asp Asp Tyr Ile Glu Ile Phe Asn Arg 
                          165                 170                 175     
          Arg Thr Lys Phe Ile Met Pro Glu Asp Phe Pro Gly Thr Asp Thr Glu 
                      180                 185                 190         
          Gln Leu Gln Ser Ala Leu Ser Tyr Ala Lys Ser Asn Arg Val Asn Val 
                  195                 200                 205             
          Val Leu Gln Ala Gly Lys Thr Tyr Tyr Val Thr Gly Ser Gln Gly Leu 
              210                 215                 220                 
          Glu Val Asp Leu Gly Tyr Tyr Ser Phe Glu Ser Pro Asn Gly Ile Ala 
          225                 230                 235                 240 
          Tyr Ile Asp Phe Thr Gly Cys Thr Ala Thr Tyr Cys Leu Trp Val His 
                          245                 250                 255     
          Ser Ser Arg Pro Tyr Pro Asp Gly Ser Glu Asn His Cys Thr Ser Met 
                      260                 265                 270         
          Arg Gly Ile Lys Phe Lys Ser Ser Val Lys Gly Ile Gly Gln Arg Leu 
                  275                 280                 285             
          Leu Leu Thr Gly Asn Asn Asn Asp Ser Ser Asn Gly Thr Tyr Asn Gly 
              290                 295                 300                 
          Asp Cys Lys Ile Glu Asn Cys Met Phe Ser Thr Ala Asp Ile Val Leu 
          305                 310                 315                 320 
          Gly Ala Ser Asn Ser Thr Trp Arg Tyr Lys Phe Ile Asn Cys Gly Phe 
                          325                 330                 335     
          Met Met Glu Ser Thr Gly Gly Thr Tyr Ala Met His Phe Pro Ala Gly 
                      340                 345                 350         
          Ile Ser Asp Ser Gly Glu Ser Val Thr Phe Gln Asn Cys Lys Ile Phe 
                  355                 360                 365             
          Asp Met Lys Gly Cys Pro Ile Leu Val Glu Cys Ala Ser Phe Ala Ile 
              370                 375                 380                 
          Gly Met Pro Gly Thr Ser Val Leu Asn Thr Pro Ile Lys Ile Thr Gly 
          385                 390                 395                 400 
          Ser Gly Ala Met Val Ile Met Asp Ser Ala Ala Asn Ile Glu Asn Pro 
                          405                 410                 415     
          Gly Ala Ser Ala Trp Tyr Arg Tyr Gly Glu Val Thr Gly Thr Gly Ala 
                      420                 425                 430         
          Arg Leu Ile Leu Asn Gly Cys Thr Leu Val Cys Asn Asn Pro Ser Leu 
                  435                 440                 445             
          Gln Thr Lys Pro Leu Phe Tyr Val Gly Ala Asn Ala Phe Ile Asp Val 
              450                 455                 460                 
          Thr Leu Val Lys Thr Pro Gly Asn Asp Tyr Leu Phe Gln Asn Gly Asp 
          465                 470                 475                 480 
          Glu Gly Leu Arg Thr Phe Val Glu Gly Asp Gly Tyr Val Thr Ala Ser 
                          485                 490                 495     
          His Cys Ile Gly Asp Ile Leu Ser Gly Val Gly Asn Ile Pro Leu His 
                      500                 505                 510         
          Lys Ser Leu Asn Pro Thr Leu Asn Pro Gly Phe Glu Thr Gly Asp Leu 
                  515                 520                 525             
          Ser Ser Trp Ser Phe Asn Asn Gln Gly Ser Ala Ser Gln Thr Cys Val 
              530                 535                 540                 
          Val Gly Thr Ala Tyr Lys Lys Thr Gly Thr Tyr Gly Ala Arg Met Thr 
          545                 550                 555                 560 
          Ser Phe Gly Ser Leu Ser Cys Phe Leu Thr Gln Lys Val Lys Val Thr 
                          565                 570                 575     
          Gln His Gly Tyr Tyr Ser Thr Thr Cys Gln Ile Asn Thr Ile Thr Ala 
                      580                 585                 590         
          Gly Thr Gly Thr Thr Ala Gly Ser Leu Thr Ile Thr Phe Tyr Asn Arg 
                  595                 600                 605             
          Asp Gly Asn Ala Leu Gln Ala Gly Ala Ser Ser Asn Phe Thr Asn Thr 
              610                 615                 620                 
          Pro Ser Gly Trp Gln Ser Val Gly Arg Phe Ile Gln Gly Arg Val Pro 
          625                 630                 635                 640 
          Gln Ala Ala Glu Tyr Cys Glu Val Ser Phe Arg Cys Arg Glu Gly Ala 
                          645                 650                 655     
          Val Ile Asp Val Asp Asn Phe Ile Ile Asn Phe Thr 
                      660                 665             
          <![CDATA[<210>  3]]>
          <![CDATA[<211>  535]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223> 合成多肽;一載體蛋白]]>
          <![CDATA[<400>  3]]>
          Gly Ala Asp Asp Val Val Asp Ser Ser Lys Ser Phe Val Met Glu Asn 
          1               5                   10                  15      
          Phe Ser Ser Tyr His Gly Thr Lys Pro Gly Tyr Val Asp Ser Ile Gln 
                      20                  25                  30          
          Lys Gly Ile Gln Lys Pro Lys Ser Gly Thr Gln Gly Asn Tyr Asp Asp 
                  35                  40                  45              
          Asp Trp Lys Glu Phe Tyr Ser Thr Asp Asn Lys Tyr Asp Ala Ala Gly 
              50                  55                  60                  
          Tyr Ser Val Asp Asn Glu Asn Pro Leu Ser Gly Lys Ala Gly Gly Val 
          65                  70                  75                  80  
          Val Lys Val Thr Tyr Pro Gly Leu Thr Lys Val Leu Ala Leu Lys Val 
                          85                  90                  95      
          Asp Asn Ala Glu Thr Ile Lys Lys Glu Leu Gly Leu Ser Leu Thr Glu 
                      100                 105                 110         
          Pro Leu Met Glu Gln Val Gly Thr Glu Glu Phe Ile Lys Arg Phe Gly 
                  115                 120                 125             
          Asp Gly Ala Ser Arg Val Val Leu Ser Leu Pro Phe Ala Glu Gly Ser 
              130                 135                 140                 
          Ser Ser Val Glu Tyr Ile Asn Asn Trp Glu Gln Ala Lys Ala Leu Ser 
          145                 150                 155                 160 
          Val Glu Leu Glu Ile Asn Phe Glu Thr Arg Gly Lys Arg Gly Gln Asp 
                          165                 170                 175     
          Ala Met Tyr Glu Tyr Met Ala Gln Ala Cys Ala Gly Asn Arg Val Arg 
                      180                 185                 190         
          Arg Ser Val Gly Ser Ser Leu Ser Cys Ile Asn Leu Asp Trp Asp Val 
                  195                 200                 205             
          Ile Arg Asp Lys Thr Lys Thr Lys Ile Glu Ser Leu Lys Glu His Gly 
              210                 215                 220                 
          Pro Ile Lys Asn Lys Met Ser Glu Ser Pro Asn Lys Thr Val Ser Glu 
          225                 230                 235                 240 
          Glu Lys Ala Lys Gln Tyr Leu Glu Glu Phe His Gln Thr Ala Leu Glu 
                          245                 250                 255     
          His Pro Glu Leu Ser Glu Leu Lys Thr Val Thr Gly Thr Asn Pro Val 
                      260                 265                 270         
          Phe Ala Gly Ala Asn Tyr Ala Ala Trp Ala Val Asn Val Ala Gln Val 
                  275                 280                 285             
          Ile Asp Ser Glu Thr Ala Asp Asn Leu Glu Lys Thr Thr Ala Ala Leu 
              290                 295                 300                 
          Ser Ile Leu Pro Gly Ile Gly Ser Val Met Gly Ile Ala Asp Gly Ala 
          305                 310                 315                 320 
          Val His His Asn Thr Glu Glu Ile Val Ala Gln Ser Ile Ala Leu Ser 
                          325                 330                 335     
          Ser Leu Met Val Ala Gln Ala Ile Pro Leu Val Gly Glu Leu Val Asp 
                      340                 345                 350         
          Ile Gly Phe Ala Ala Tyr Asn Phe Val Glu Ser Ile Ile Asn Leu Phe 
                  355                 360                 365             
          Gln Val Val His Asn Ser Tyr Asn Arg Pro Ala Tyr Ser Pro Gly His 
              370                 375                 380                 
          Lys Thr Gln Pro Phe Leu His Asp Gly Tyr Ala Val Ser Trp Asn Thr 
          385                 390                 395                 400 
          Val Glu Asp Ser Ile Ile Arg Thr Gly Phe Gln Gly Glu Ser Gly His 
                          405                 410                 415     
          Asp Ile Lys Ile Thr Ala Glu Asn Thr Pro Leu Pro Ile Ala Gly Val 
                      420                 425                 430         
          Leu Leu Pro Thr Ile Pro Gly Lys Leu Asp Val Asn Lys Ser Lys Thr 
                  435                 440                 445             
          His Ile Ser Val Asn Gly Arg Lys Ile Arg Met Arg Cys Arg Ala Ile 
              450                 455                 460                 
          Asp Gly Asp Val Thr Phe Cys Arg Pro Lys Ser Pro Val Tyr Val Gly 
          465                 470                 475                 480 
          Asn Gly Val His Ala Asn Leu His Val Ala Phe His Arg Ser Ser Ser 
                          485                 490                 495     
          Glu Lys Ile His Ser Asn Glu Ile Ser Ser Asp Ser Ile Gly Val Leu 
                      500                 505                 510         
          Gly Tyr Gln Lys Thr Val Asp His Thr Lys Val Asn Ser Lys Leu Ser 
                  515                 520                 525             
          Leu Phe Phe Glu Ile Lys Ser 
              530                 535 
          <![CDATA[<210>  4]]>
          <![CDATA[<211>  39]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  合成多核苷酸;1611E-ORF16順向引子]]>
          <![CDATA[<400>  4]]>
          caaacatcac ggtgacgcta gcatgaccat tatcaaacg                              39
          <![CDATA[<210>  5]]>
          <![CDATA[<211>  38]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  合成多核苷酸;1611E-ORF16反向引子]]>
          <![CDATA[<400>  5]]>
          cttttaacat ttagcactcg agtgtaaaat taataatg                               38
          <![CDATA[<210>  6]]>
          <![CDATA[<211>  21]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  合成多核苷酸;Ref-K10-1 ORF6順向引子]]>
          <![CDATA[<400>  6]]>
          atgaataaga tgtttaccca g                                                 21
          <![CDATA[<210>  7]]>
          <![CDATA[<211>  22]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  合成多核苷酸;Ref-K10-1 ORF6反向引子]]>
          <![CDATA[<400>  7]]>
          aattgggcga aggcgttcaa ac                                                22
           Sequence Listing <![CDATA[<110> National Taiwan University]]> Academia Sinica <![CDATA[<120> Klebsiella pneumoniae capsular polysaccharide vaccine]]> <![CDATA[<130> 106134175]]> <![CDATA[<150> US 62/403,365]]> <![CDATA[<151> 2016-10-03]]> <![CDATA[<150> TW 106134175]]> <! [CDATA[<151> 2017-10-03]]> <![CDATA[<160> 7 ]]> <![CDATA[<170> PatentIn version 3.5]]> <![CDATA[<210> 1] ]> <![CDATA[<211> 651]]> <![CDATA[<212> PRT]]> <![CDATA[<213> K1 specific phage]]> <![CDATA[<400> 1 ]]> Met Ala Leu Ile Arg Leu Val Ala Pro Glu Arg Val Phe Ser Asp Leu 1 5 10 15 Ala Ser Met Val Ala Tyr Pro Asn Phe Gln Val Gln Asp Lys Ile Thr 20 25 30 Leu Leu Gly Ser Ala Gly Gly Asp Phe Thr Phe Thr Thr Thr Ala Ser 35 40 45 Val Val Asp Asn Gly Thr Val Phe Ala Val Pro Gly Gly Tyr Leu Leu 50 55 60 Arg Lys Phe Val Gly Pro Ala Tyr Ser Ser Trp Phe Ser Asn Trp Thr 65 70 75 80 Gly Ile Val Thr Phe Met Ser Ala Pro Asn Arg His Leu Val Val Asp 85 90 95 Thr Val Leu Gln Ala Thr Ser Val Leu Asn Ile Lys Ser Asn Ser Thr 100 105 110 Leu Glu Phe Thr Asp Thr Gly Arg Ile Leu Pro Asp Ala Ala Val Ala 115 120 125 Arg Gln Val Leu Asn Ile Thr Gly Ser Ala Pro Ser Val Phe Val Pro 130 135 140 Leu Ala Ala Asp Ala Ala Ala Gly Ser Lys Val Ile Thr Val Ala Ala 145 150 155 160 Gly Ala Leu Ser Ala Val Lys Gly Thr Tyr Leu Tyr Leu Arg Ser Asn 165 170 175 Lys Leu Cys Asp Gly Gly Pro Asn Thr Tyr Gly Val Lys Ile Ser Gln 180 185 190 Ile Arg Lys Val Val Gly Val Ser Thr Ser Gly Gly Val Thr Ser Ile 195 200 205 Arg Leu Asp Lys Ala Leu His Tyr Asn Tyr Tyr Leu Ser Asp Ala Ala 210 215 220 Glu Val Gly Ile Pro Thr Met Val Glu Asn Val Thr Leu Val Ser Pro 225 230 235 240 Tyr Ile Asn Glu Phe Gly Tyr Asp Asp Leu Asn Arg Phe Phe Thr Ser 245 250 255 Gly Ile Ser Ala Asn Phe Ala Ala Asp Leu His Ile Gln Asp Gly Val 260 265 270 Ile Ile Gly Asn Lys Arg Pro Gly Ala Ser Asp Ile Glu Gly Arg Ser 275 280 285 Ala Ile Lys Phe Asn Asn Cys Val Asp Ser Thr Val Lys Gly Thr Cys 290 295 300 Phe Tyr Asn Ile Gly Trp Tyr Gly Val Glu Val Leu Gly Cys Ser Glu 305 310 315 320 Asp Thr Glu Val His Asp Ile His Ala Met Asp Val Arg His Ala Ile 325 330 335 Ser Leu Asn Trp Gln Ser Thr Ala Asp Gly Asp Lys Trp Gly Glu Pro 340 345 350 Ile Glu Phe Leu Gly Val Asn Cys Glu Ala Tyr Ser Thr Thr Gln Ala 355 360 365 Gly Phe Asp Thr His Asp Ile Gly Lys Arg Val Lys Phe Val Arg Cys 370 375 380 Val Ser Tyr Asp Ser Ala Asp Asp Gly Phe Gln Ala Arg Thr Asn Gly 385 390 395 400 Val Glu Tyr Leu Asn Cys Arg Ala Tyr Arg Ala Ala Met Asp Gly Phe 405 410 415 Ala Ser Asn Thr Gly Val Ala Phe Pro Ile Tyr Arg Glu Cys Leu Ala 420 425 430 Tyr Asp Asn Val Arg Ser Gly Phe Asn Cys Ser Tyr Gly Gly Gly Gly Tyr 435 440 445 Val Tyr Asp Cys Glu Ala His Gly Ser Gln Asn Gly Val Arg Ile Asn 450 455 460 Gly Gly Arg Val Lys Gly Gly Arg Tyr Thr Arg Asn Ser Ser Ser His 465 470 475 480 Ile Phe Val Thr Lys Asp Val Ala Glu Thr Ala Gln Thr Ser Leu Glu 485 490 495 Ile Asp Gly Val Ser Met Arg Tyr Asp Gly Thr Gly Arg Ala Val Tyr 500 505 510 Phe His Gly Thr Val Gly Ile Asp Pro Thr Leu Val Ser Met Ser Asn 515 520 525 Asn Asp Met Thr Gly His Gly Leu Phe Trp Ala Leu Leu Ser Gly Tyr 530 535 540 Thr Val Gln Pro Thr Pro Pro Arg Met Ser Arg Asn Leu Leu Asp Asp 545 550 555 560 Thr Gly Ile Arg Gly Val Ala Thr Leu Val Ala Gly Glu Ala Thr Val 565 570 575 Asn Ala Arg Val Arg Gly Asn Phe Gly Ser Val Ala Asn Ser Phe Lys 580 585 590 Trp Val Ser Glu Val Lys Leu Thr Arg Leu Thr Phe Pro Ser Ser Ala 595 600 605 Gly Ala Leu Thr Val Thr Ser Val Ala Gln Asn Gln Asp Val Pro Thr 610 615 620 Pro Asn Pro Asp Leu Asn Ser Phe Val Ile Arg Ser Ser Asn Ala Ala 625 630 635 640 Asp Val Ser Gln Val Ala Trp Glu Val Tyr Leu 645 650 <![CDATA[<210> 2]]> <![ CDATA[<211> 668]]> <![CDATA[<212> PRT]]> <![CDATA[<213> Phage 1611E-K2-1]]> <![CDATA[<400> 2]]> Met Thr Ile Ile Lys Arg Ala Asp Leu Gly Arg Pro Leu Thr Trp Asp 1 5 10 15 Glu Leu Asp Asp Asn Phe Gln Gln Val Asp Asp Leu Thr Ala Ala Ala 20 25 30 Ser Ala Ala Val Leu Ser Ala Ser Ala Ser Ala Thr Ala Ala Ala Gly 35 40 45 Ser Ala Thr Asn Ser Leu Asn Ser Ala Asn Ser Ala Ala Ser Ser Ala 50 55 60 Asp Asp Ala Ala Ala Ser Ala Thr Val Ala Ile Asn Ala Leu Met Asn 65 70 75 80 Ser Thr Phe Glu Pro Ala Asp Phe Asp Phe Thr Ser Gly Gly Thr Leu 85 90 95 Asp Ser Thr Asp Arg Asn Lys Ala Val Tyr Asn Pro Ala Asp Asn Asn 100 105 110 Trp Tyr Ser Trp Ser Gly Ile Leu Pro Lys Ile Val Thr Ala Ala Thr 115 120 125 Asp Pro Thr Ala Asp Ser Asn Trp Lys Pro Arg Thr Asp Gln Leu Leu 130 135 140 Arg Gln Asn Leu Ala Ser Ser Val Ile Pro Gly Thr Ser Leu Val Thr 145 150 155 160 His Ser Asp Gly Ile His Leu Asp Asp Tyr Ile Glu Ile Phe Asn Arg 165 170 175 Arg Thr Lys Phe Ile Met Pro Glu Asp Phe Pro Gly Thr Asp Thr Glu 180 185 190 Gln Leu Gln Ser Ala Leu Ser Tyr Ala Lys Ser Asn Arg Val Asn Val 195 200 205 Val Leu Gln Ala Gly Lys Thr Tyr Tyr Val Thr Gly Ser Gln Gly Leu 210 215 220 Glu Val Asp Leu Gly Tyr Tyr Ser Phe Glu Ser Pro Asn Gly Ile Ala 225 230 235 240 Tyr Ile Asp Phe Thr Gly Cys Thr Ala Thr Tyr Cys Leu Trp Val His 245 250 255 Ser Ser Arg Pro Tyr Pro Asp Gly Ser Glu Asn His Cys Thr Ser Met 260 265 270 Arg Gly Ile Lys Phe Lys Ser Ser Val Lys Gly Ile Gly Gln Arg Leu 275 280 285 Leu Leu Thr Gly Asn Asn Asn Asp Ser Ser Asn Gly Thr Tyr Asn Gly 290 295 300 Asp Cys Lys Ile Glu Asn Cys Met Phe Ser Thr Ala Asp Ile Val Leu 305 310 315 320 Gly Ala Ser Asn Ser Thr Trp Arg Tyr Lys Phe Ile Asn Cys Gly Phe 325 330 335 Met Met Glu Ser Thr Gly Gly Thr Tyr Ala Met His Phe Pro Ala Gly 340 345 350 Ile Ser Asp Ser Gly Glu Ser Val Thr Phe Gln Asn Cys Lys Ile Phe 355 360 365 Asp Met Lys Gly Cys Pro Ile Leu Val Glu Cys Ala Ser Phe Ala Ile 370 375 380 Gly Met Pro Gly Thr Ser Val Leu Asn Thr Pro Ile Lys Ile Thr Gly 385 390 395 400 Ser Gly Ala Met Val Ile Met Asp Ser Ala Ala Asn Ile Glu Asn Pro 405 410 415 Gly Ala Ser Ala Trp Tyr Arg Tyr Gly Glu Val Thr Gly Thr Gly Ala 420 425 430 Arg Leu Ile Leu Asn Gly Cys Thr Leu Val Cys Asn Asn Pro Ser Leu 435 440 445 Gln Thr Lys Pro Leu Phe Tyr Val Gly Ala Asn Ala Phe Ile Asp Val 450 455 460 Thr Leu Val Lys Thr Pro Gly Asn Asp Tyr Leu Phe Gln Asn Gly Asp 465 470 475 480 Glu Gly Leu Arg Thr Phe Val Glu Gly Asp Gly Tyr Val Thr Ala Ser 485 490 495 His Cys Ile Gly Asp Ile Leu Ser Gly Val Gly Asn Ile Pro Leu His 500 505 510 Lys Ser Leu Asn Pro Thr Leu Asn Pro Gly Phe Glu Thr Gly Asp Leu 515 520 525 Ser Ser Trp Ser Phe Asn Asn Gln Gly Ser Ala Ser Gln Thr Cys Val 530 535 540 Val Gly Thr Ala Tyr Lys Lys Thr Gly Thr Tyr Gly Ala Arg Met Thr 545 550 555 560 Ser Phe Gly Ser Leu Ser Cys Phe Leu Thr Gln Lys Val Lys Val Thr 565 570 575 Gln His Gly Tyr Tyr Ser Thr Thr Cys Gln Ile Asn Thr Ile Thr Ala 580 585 590 Gly Thr Gly Thr Thr Ala Gly Ser Leu Thr Ile Thr Phe Tyr Asn Arg 595 600 605 Asp Gly Asn Ala Leu Gln Ala Gly Ala Ser Ser Asn Phe Thr Asn Thr 610 615 620 Pro Ser Gly Trp Gln Ser Val Gly Arg Phe Ile Gln Gly Arg Val Pro 625 630 635 640 Gln Ala Ala Glu Tyr Cys Glu Val Ser Phe Arg Cys Arg Glu Gly Ala 645 650 655 Val Ile Asp Val Asp Asn Phe Ile Ile Asn Phe Thr 660 665 <![CDATA[<210> 3]]> <![CDATA[<211> 535]]> <![CDATA[<212> PRT]]> <![CDATA[<213> artificial sequence]] > <![CDATA[<220>]]> <![CDATA[<223> Synthetic polypeptide; a carrier protein]]> <![CDATA[<400> 3]]> Gly Ala Asp Asp Val Val Asp Ser Ser Lys Ser Phe Val Met Glu Asn 1 5 10 15 Phe Ser Ser Tyr His Gly Thr Lys Pro Gly Tyr Val Asp Ser Ile Gln 20 25 30 Lys Gly Ile Gln Lys Pro Lys Ser Gly Thr Gln Gly Asn Tyr Asp Asp 35 40 45 Asp Trp Lys Glu Phe Tyr Ser Thr Asp Asn Lys Tyr Asp Ala Ala Gly 50 55 60 Tyr Ser Val Asp Asn Glu Asn Pro Leu Ser Gly Lys Ala Gly Gly Val 65 70 75 80 Val Lys Val Thr Tyr Pro Gly Leu Thr Lys Val Leu Ala Leu Lys Val 85 90 95 Asp Asn Ala Glu Thr Ile Lys Lys Glu Leu Gly Leu Ser Leu Thr Glu 100 105 110 Pro Leu Met Glu Gln Val Gly Thr Glu Glu Phe Ile Lys Arg Phe Gly 115 120 125 Asp Gly Ala Ser Arg Val Val Leu Ser Leu Pro Phe Ala Glu Gly Ser 130 135 140 Ser Ser Val Glu Tyr Ile Asn Asn Trp Glu Gln Ala Lys Ala Leu Ser 145 150 155 160 Val Glu Leu Glu Ile Asn Phe Glu Thr Arg Gly Lys Arg Gly Gln Asp 165 170 175 Ala Met Tyr Glu Tyr Met Ala Gln Ala Cys Ala Gly Asn Arg Val Arg 180 185 190 Arg Ser Val Gly Ser Ser Leu Ser Cys Ile Asn Leu Asp Trp Asp Val 195 200 205 Ile Arg Asp Lys Thr Lys Thr Lys Ile Glu Ser Leu Lys Glu His Gly 210 215 220 Pro Ile Lys Asn Lys Met Ser Glu Ser Pro Asn Lys Thr Val Ser Glu 225 230 235 240 Glu Lys Ala Lys Gln Tyr Leu Glu Glu Phe His Gln Thr Ala Leu Glu 245 250 255 His Pro Glu Leu Ser Glu Leu Lys Thr Val Thr Gly Thr Asn Pro Val 260 265 270 Phe Ala Gly Ala Asn Tyr Ala Ala Trp Ala Val Asn Val Ala Gln Val 275 280 285 Ile Asp Ser Glu Thr Ala Asp Asn Leu Glu Lys Thr Thr Ala Ala Leu 290 295 300 Ser Ile Leu Pro Gly Ile Gly Ser Val Met Gly Ile Ala Asp Gly Ala 305 310 315 320 Val His His Asn Thr Glu Glu Ile Val Ala Gln Ser Ile Ala Leu Ser 325 330 335 Ser Leu Met Val Ala Gln Ala Ile Pro Leu Val Gly Glu Leu Val Asp 340 345 350 Ile Gly Phe Ala Ala Tyr Asn Phe Val Glu Ser Ile Ile Asn Leu Phe 355 360 365 Gln Val Val His Asn Ser Tyr Asn Arg Pro Ala Tyr Ser Pro Gly His 370 375 380 Lys Thr Gln Pro Phe Leu His Asp Gly Tyr Ala Val Ser Trp Asn Thr 385 390 395 400 Val Glu Asp Ser Ile Ile Arg Thr Gly Phe Gln Gly Glu Ser Gly His 405 410 415 Asp Ile Lys Ile Thr Ala Glu Asn Thr Pro Leu Pro Ile Ala Gly Val 420 425 430 Leu Leu Pro Thr Ile Pro Gly Lys Leu Asp Val Asn Lys Ser Lys Thr 435 440 445 His Ile Ser Val Asn Gly Arg Lys Ile Arg Met Arg Cys Arg Ala Ile 450 455 460 Asp Gly Asp Val Thr Phe Cys Arg Pro Lys Ser Pro Val Tyr Val Gly 465 470 475 480 Asn Gly Val His Ala Asn Leu His Val Ala Phe His Arg Ser Ser Ser 485 490 495 Glu Lys Ile His Ser Asn Glu Ile Ser Ser Asp Ser Ile Gly Val Leu 500 505 510 Gly Tyr Gln Lys Thr Val Asp His Thr Lys Val Asn Ser Lys Leu Ser 515 520 525 Leu Phe Phe Glu Ile Lys Ser 530 535 <![CDATA[<210> 4]]> <![CDATA [<211> 39]]> <![CDATA[<212> DNA]]> <![CDATA[<213> artificial sequence]]> <![CDATA[<220>]]> <![CDATA[< 223> Synthetic polynucleotide; 1611E-ORF16 forward primer]]> <![CDATA[<400> 4]]> caaacatcac ggtgacgcta gcatgaccat tatcaaacg 39 <![CDATA[<210> 5]]> <![CDATA[ <211> 38]]> <![CDATA[<212> DNA]]> <![CDATA[<213> Artificial sequence]]> <![CDATA[<220>]]> <![CDATA[<223 > Synthetic polynucleotide; 1611E-ORF16 reverse primer]]> <![CDATA[<400> 5]]> cttttaacat ttagcactcg agtgtaaaat taataatg 38 <![CDATA[<210> 6]]> <![CDATA[< 211> 21]]> <![CDATA[<212> DNA]]> <![CDATA[<213> artificial sequence]]> <![CDATA[<220>]]> <![CDATA[<223> Synthetic polynucleotide; Ref-K10-1 ORF6 forward primer]]> <![CDATA[<400> 6]]> atgaataaga tgtttaccca g 21 <![CDATA[<210> 7]]> <![CDATA[ <211> 22]]> <![CDATA[<212> DNA]]> <![CDATA[<213> Artificial sequence]]> <![CDATA[<220>]]> <![CDATA[<223 > Synthetic polynucleotide; Ref-K10-1 ORF6 reverse primer]]> <![CDATA[<400> 7]]> aattgggcga aggcgttcaa ac 22
      

Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0001

Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0002

Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0003

Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0004

Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0005

Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0006

Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0007

Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0008

Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0009

Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0010

Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0011

Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0012

Claims (15)

一種克雷伯氏肺炎桿菌莢膜多醣疫苗,其包含: 一免疫原,其包含具有下列公式(II) 、公式 (III) 、公式(IV) 、公式 (V) 、公式(VI) 或其組合的醣重複單元,其中n為1至4,且該免疫原為分解後的莢膜多醣-硫醇之形式。 A Klebsiella pneumoniae capsular polysaccharide vaccine, which contains: an immunogen containing the following formula (II) , formula (III) , formula (IV) , formula (V) , formula (VI) or combinations thereof of sugar repeating units, wherein n is 1 to 4, and the immunogen is in the broken down capsular polysaccharide-thiol form. 如請求項1所述之疫苗,其中該免疫原包含公式(II)之醣重複單元,且n為1。The vaccine according to claim 1, wherein the immunogen contains the sugar repeating unit of formula (II), and n is 1. 如請求項1所述之疫苗,其中該免疫原包含公式(III)之醣重複單元,且n為1。The vaccine according to claim 1, wherein the immunogen contains the sugar repeating unit of formula (III), and n is 1. 如請求項1所述之疫苗,其中該免疫原包含公式(IV)之醣重複單元,且n為2。The vaccine according to claim 1, wherein the immunogen contains the sugar repeating unit of formula (IV), and n is 2. 如請求項1所述之疫苗,其中該免疫原包含公式(V)之醣重複單元,且n為1。The vaccine according to claim 1, wherein the immunogen contains the sugar repeating unit of formula (V), and n is 1. 如請求項1所述之疫苗,其中該免疫原包含公式(VI)之醣重複單元,且n為1。The vaccine according to claim 1, wherein the immunogen contains the sugar repeating unit of formula (VI), and n is 1. 一種克雷伯氏肺炎桿菌莢膜多醣疫苗,其係為包含如請求項1所述之公式(III)及公式(IV)之免疫原的莢膜多醣接合二價疫苗。A Klebsiella pneumoniae capsular polysaccharide vaccine, which is a capsular polysaccharide conjugated bivalent vaccine containing the immunogens of formula (III) and formula (IV) as described in claim 1. 一種克雷伯氏肺炎桿菌莢膜多醣疫苗,其係由如請求項1所述之公式(III)之免疫原、公式(IV)之免疫原以及一載體所組成之混合物所形成的莢膜多醣接合二價疫苗,其中該公式(III)之免疫原及該公式(IV)之免疫原分別與該載體接合。A Klebsiella pneumoniae capsular polysaccharide vaccine, which is a capsular polysaccharide formed from a mixture of the immunogen of formula (III), the immunogen of formula (IV) and a carrier as described in claim 1 Conjugated bivalent vaccine, wherein the immunogen of formula (III) and the immunogen of formula (IV) are respectively conjugated to the carrier. 如請求項8所述之疫苗,其中該載體係蛋白質、肽、脂質、聚合物、樹狀聚合物、病毒體、類病毒顆粒(VLP)或其組合。The vaccine according to claim 8, wherein the carrier protein, peptide, lipid, polymer, dendrimer, virion, virus-like particle (VLP) or a combination thereof. 如請求項9所述之疫苗,其中該載體係蛋白質載體。The vaccine according to claim 9, wherein the carrier is a protein carrier. 如請求項10所述之疫苗,其中該蛋白質載體係細菌類毒素,毒素,外毒素及其無毒衍生物或其組合。The vaccine according to claim 10, wherein the protein carrier system is bacterial toxoid, toxin, exotoxin and non-toxic derivatives thereof or combinations thereof. 如請求項10所述之疫苗,其中該蛋白質載體係選自由鑰孔蟲戚血藍蛋白(KLH)、B型肝炎病毒核心蛋白、甲狀腺球蛋白、白蛋白、人血清白蛋白(HSA)、卵清蛋白、肺炎球菌表面蛋白A(PspA)、肺炎球菌粘附蛋白(PsaA)、結核菌素純化蛋白衍生物(PPD)、運鐵蛋白結合蛋白、聚氨基酸、破傷風類毒素、破傷風毒素片段C、白喉類毒素、CRM(無毒白喉毒素突變體)、霍亂毒素、金黃色葡萄球菌外毒素或類毒素、大腸桿菌熱不穩定性腸毒素、銅綠假單胞菌外毒素A、細菌外膜蛋白、腦膜炎奈瑟氏菌血清型B外膜蛋白複合物(OMPC)以及外膜3類孔蛋白(rPorB)組成之群組。The vaccine according to claim 10, wherein the protein carrier system is selected from the group consisting of keyhole hemocyanin (KLH), hepatitis B virus core protein, thyroglobulin, albumin, human serum albumin (HSA), egg Albumin, pneumococcal surface protein A (PspA), pneumococcal adhesion protein (PsaA), tuberculin purified protein derivative (PPD), transferrin-binding protein, polyamino acids, tetanus toxoid, tetanus toxin fragment C, Diphtheria toxoid, CRM (nontoxic diphtheria toxin mutant), cholera toxin, Staphylococcus aureus exotoxins or toxoids, Escherichia coli heat-labile enterotoxin, Pseudomonas aeruginosa exotoxin A, bacterial outer membrane proteins, meninges Neisseria serotype B outer membrane protein complex (OMPC) and outer membrane porin class 3 (rPorB). 如請求項10所述之疫苗,其中該蛋白質載體係具有SEQ ID NO:3所示胺基酸序列的CRM197。The vaccine according to claim 10, wherein the protein carrier system has CRM197 of the amino acid sequence shown in SEQ ID NO: 3. 一種如請求項1、7或8所述之疫苗用於製備引發針對克雷伯氏肺炎桿菌的免疫反應之醫藥組合物的用途。Use of a vaccine as described in claim 1, 7 or 8 for preparing a pharmaceutical composition that triggers an immune response against Klebsiella pneumoniae. 一種如請求項1、7或8所述之疫苗用於製備預防克雷伯氏肺炎桿菌感染之醫藥組合物的用途。The use of a vaccine as described in claim 1, 7 or 8 for preparing a pharmaceutical composition for preventing Klebsiella pneumoniae infection.
TW111122713A 2016-10-26 2017-10-03 Klebsiella pneumoniae capsule polysaccharide vaccines TWI824571B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662413269P 2016-10-26 2016-10-26
US62413269 2016-10-26

Publications (2)

Publication Number Publication Date
TW202237179A TW202237179A (en) 2022-10-01
TWI824571B true TWI824571B (en) 2023-12-01

Family

ID=64796984

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111122713A TWI824571B (en) 2016-10-26 2017-10-03 Klebsiella pneumoniae capsule polysaccharide vaccines
TW106134175A TWI771328B (en) 2016-10-26 2017-10-03 Klebsiella pneumoniae capsule polysaccharide vaccines

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW106134175A TWI771328B (en) 2016-10-26 2017-10-03 Klebsiella pneumoniae capsule polysaccharide vaccines

Country Status (1)

Country Link
TW (2) TWI824571B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11103567B2 (en) * 2018-12-06 2021-08-31 Academia Sinica Glycoconjugate vaccines, preparation method and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 Ho JY et al., "Functions of Some Capsular Polysaccharide Biosynthetic Genes in Klebsiella pneumoniae NTUH K-2044" PLoS ONE Volume 6,Issue 7, e21664, p.1-9, 2011/07/12

Also Published As

Publication number Publication date
TW201834681A (en) 2018-10-01
TW202237179A (en) 2022-10-01
TWI771328B (en) 2022-07-21

Similar Documents

Publication Publication Date Title
Mettu et al. Synthetic carbohydrate-based vaccines: challenges and opportunities
JP7268125B2 (en) Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising same and uses thereof
KR102157200B1 (en) Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
EP2056871B1 (en) Protein matrix vaccines and methods of making and administering such vaccines
JP2020504760A (en) Polypeptide antigen conjugates with unnatural amino acids
Goyette-Desjardins et al. Protection against Streptococcus suis serotype 2 infection using a capsular polysaccharide glycoconjugate vaccine
KR20160104076A (en) Streptococcus pneumoniae capsular polysaccharides and conjugates thereof
JP2017088622A (en) Meningococcal serogroups x conjugate
JP2019073528A (en) Cycloalkyne derivatized saccharides
JP2022513562A (en) Purified capsular polysaccharide of Streptococcus pneumoniae
US20180271969A1 (en) Streptococcus suis polysaccharide-protein conjugate composition
Zhu et al. Recent advances in lipopolysaccharide-based glycoconjugate vaccines
US20230248839A1 (en) Immunogenic compositions
Prasanna et al. Semisynthetic glycoconjugate based on dual role protein/PsaA as a pneumococcal vaccine
TWI824571B (en) Klebsiella pneumoniae capsule polysaccharide vaccines
EP1747262B1 (en) Conserved inner core lipopolysaccharide epitopes as multi-species vaccine candidates
JP2018522978A (en) Immunogenic composition
WO2020010016A1 (en) Self-adjuvanted immunogenic conjugates
US11097000B2 (en) Klebsiella pneumoniae capsule polysaccharide vaccines
AU2018290298A2 (en) Immunogenic compositions
RU2818894C1 (en) C-polysaccharide-free capsular polysaccharides of streptococcus pneumoniae with a 2,5-anhydromanose residue at the reducing end
Raso Characterization and immunogenicity of O-Antigen based Shigella Generalized Modules for Membrane Antigens vaccines
Mallick Extraction and Purification of Capsular Polysaccharide from Streptococcus Pneumoniae and Escherichia Coli for Conjucate Vaccines Preperation
Donaldson Antimicrobial Carbohydrate Vaccines: Development of Burkholderia pseudomallei immunogens
KR20070031936A (en) Conserved inner core lipopolysaccharide epitopes as multi?species vaccine candidates